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Abstract. We continue our study of the category of Doi Hom-Hopf modules intro-
duced in [Colloq. Math., to appear]. We find a sufficient condition for the category of
Doi Hom-Hopf modules to be monoidal. We also obtain a condition for a monoidal Hom-
algebra and monoidal Hom-coalgebra to be monoidal Hom-bialgebras. Moreover, we in-
troduce morphisms between the underlying monoidal Hom-Hopf algebras, Hom-comodule
algebras and Hom-module coalgebras, which give rise to functors between the category
of Doi Hom-Hopf modules, and we study tensor identities for monodial categories of
Doi Hom-Hopf modules. Furthermore, we construct a braiding on the category of Doi
Hom-Hopf modules. Finally, as an application of our theory, we get a braiding on the
category of Hom-modules, on the category of Hom-comodules, and on the category of
Hom-Yetter–Drinfeld modules.

1. Introduction. The category AM(H)C of Doi–Hopf modules was
introduced in [11], where H is a Hopf algebra, A a right H-comodule algebra
and C a left H-module coalgebra. It is the category of those modules over the
algebra A which are also comodules over the coalgebra C and satisfy certain
compatibility condition involving H. The study of AM(H)C turned out to
be very useful: it was shown in [11] that many categories such as the module
and comodule categories over bialgebras, the Hopf modules category [24],
and the Yetter–Drinfeld category [22] are special cases of AM(H)C . For a
further study of Doi–Hopf modules, we refer to [3], [4]. In [2], it is proved that
Yetter–Drinfeld modules are special cases of Doi–Hopf modules, therefore
the category of Yetter–Drinfeld modules is a Grothendieck category.

Hom-algebras and Hom-coalgebras were introduced by Makhlouf and
Silvestrov [18] as generalizations of ordinary algebras and coalgebras in the
following sense: the associativity of multiplication is replaced by Hom-asso-
ciativity, and similarly for Hom-coassociativity. They also described the
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structures of Hom-bialgebras and Hom-Hopf algebras, and extended some
important results from ordinary Hopf algebras to Hom-Hopf algebras in [19]
and [20]. Recently, more properties and structures of Hom-Hopf algebras
have been developed: see [5]–[9], [12]–[14], [16], [25]–[28] and references
therein.

Caenepeel and Goyvaerts [1] studied Hom-bialgebras and Hom-Hopf
algebras from a categorical view point, and called them monoidal Hom-
bialgebras and monoidal Hom-Hopf algebras respectively; these are slightly
different from the above Hom-bialgebras and Hom-Hopf algebras. Makhlouf
and Panaite [17] defined Yetter–Drinfeld modules over Hom-bialgebras and
showed that Yetter–Drinfeld modules over a Hom-bialgebra with bijective
structure map provide solutions of the Hom-Yang–Baxter equation. Also
Liu and Shen [15] studied Yetter–Drinfeld modules over monoidal Hom-
bialgebras and called them Hom-Yetter–Drinfeld modules; they showed that
the category of Hom-Yetter–Drinfeld modules is a braided monoidal cate-
gory. Chen and Zhang [8] defined the category of Hom-Yetter–Drinfeld mod-
ules in a slightly different way to [15], and showed that it is a full monoidal
subcategory of the left center of the left Hom-module category. We have
defined in [13] the category of Doi Hom-Hopf modules and we have proved
that the category of Hom-Yetter–Drinfeld modules is a subcategory of our
category of Doi Hom-Hopf modules.

In this paper, we discuss the following question: how do we make the
category of Doi Hom-Hopf modules into a monoidal category? We show
in Section 3 that it is sufficient that (A, β) and (C, γ) are monoidal Hom-
bialgebras with some extra conditions. As an example, we consider the cate-
gory of Hom-Yetter–Drinfeld modules, which is well known to be a monoidal
category from [15]; this category is a special case of our theory.

In Section 4, we give maps between the underlying monoidal Hom-Hopf
algebras, Hom-comodule algebras and Hom-module coalgebras, which give
rise to functors between the categories of Doi Hom-Hopf modules. Moreover,
we study tensor identities for monoidal categories of Doi Hom-Hopf modules.
As an application, we prove that the category of Doi Hom-Hopf modules has
enough injective objects.

Suppose that we have a monoidal category of Doi Hom-Hopf modules.
How do we define a braiding on this category? In Section 5, we point out this
comes down to giving a twisted convolution inverse map Q : C⊗C → A⊗A
satisfying some complicated compatibility conditions. As an application we
get a braiding on the category of Hom-modules, on the category of Hom-
comodules, and on the category of Hom-Yetter–Drinfeld modules.

Throughout this paper we freely use the Hopf algebra and coalgebra
terminology introduced in [10], [21], [23] and [24].
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2. Preliminaries. Throughout this paper we work over a commutative
ring k; we recall from [1] and [13] some information about Hom-structures,
needed in what follows.

Let C be a category. We introduce a new category H (C) as follows:
Objects are couples (M,µ) with M ∈ C and µ ∈ AutC(M). A morphism
f : (M,µ)→ (N, ν) is a morphism f : M → N in C such that ν ◦ f = f ◦ µ.

Let Mk denote the category of k-modules. Then H (Mk) will be called
the Hom-category associated to Mk. If (M,µ) ∈ Mk, then µ : M → M

is obviously a morphism in H (Mk). It is easy to show that H̃ (Mk) =

(H (Mk),⊗, (I, I), ã, l̃, r̃)) is a monoidal category by [1, Proposition 1.1]: the

tensor product of (M,µ) and (N, ν) in H̃ (Mk) is given by (M,µ)⊗(N, ν) =
(M ⊗N,µ⊗ ν).

Assume that (M,µ), (N, ν), (P, π) ∈ H̃ (Mk). The associativity and unit
constraints are given by the formulas

ãM,N,P ((m⊗ n)⊗ p) = µ(m)⊗ (n⊗ π−1(p)),
l̃M (x⊗m) = r̃M (m⊗ x) = xµ(m).

An algebra in H̃ (Mk) will be called a monoidal Hom-algebra:

Definition 2.1. A monoidal Hom-algebra is an object (A,α) ∈ H̃ (Mk)
together with a k-linear map mA : A⊗A→ A and an element 1A ∈ A such
that

α(ab) = α(a)α(b), α(1A) = 1A,

α(a)(bc) = (ab)α(c), a1A = 1Aa = α(a),

for all a, b, c ∈ A. Here we use the notation mA(a⊗ b) = ab.

Definition 2.2. A monoidal Hom-coalgebra is an object (C, γ)∈H̃ (Mk)
together with k-linear maps ∆ : C → C ⊗C, ∆(c) = c(1) ⊗ c(2) (summation
implicitly understood) and ε : C → k such that

∆(γ(c)) = γ(c(1))⊗ γ(c(2)), ε(γ(c)) = ε(c),

and

γ−1(c(1))⊗ c(2)(1) ⊗ c(2)(2) = c(1)(1) ⊗ c(1)(2) ⊗ γ−1(c(2)),
ε(c(1))c(2) = ε(c(2))c(1) = γ−1(c),

for all c ∈ C.

Definition 2.3. A monoidal Hom-bialgebra H = (H,α,m, η,∆, ε) is a

bialgebra in the symmetric monoidal category H̃ (Mk). This means that
(H,α,m, η) is a monoidal Hom-algebra, (H,α,∆, ε) is a monoidal Hom-
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coalgebra, and ∆ and ε are morphisms of Hom-algebras, that is,

∆(ab) = a(1)b(1) ⊗ a(2)b(2), ∆(1H) = 1H ⊗ 1H ,

ε(ab) = ε(a)ε(b), ε(1H) = 1H .

Definition 2.4. A monoidal Hom-Hopf algebra is a monoidal Hom-

bialgebra (H,α) together with a linear map S : H → H in H̃ (Mk) such that

S ∗ I = I ∗ S = ηε, Sα = αS.

Definition 2.5. Let (A,α) be a monoidal Hom-algebra. A right

(A,α)-Hom-module is an object (M,µ) ∈ H̃ (Mk) consisting of a k-module
and a linear map µ : M → M together with a morphism ψ : M ⊗ A → M ,

ψ(m · a) = m · a, in H̃ (Mk) such that

(m · a) · α(b) = µ(m) · (ab), m · 1A = µ(m),

for all a ∈ A and m ∈M . The fact that ψ ∈ H̃ (Mk) means that

µ(m · a) = µ(m) · α(a).

A morphism f : (M,µ) → (N, ν) in H̃ (Mk) is called right A-linear if it

preserves the A-action, that is, f(m · a) = f(m) · a. H̃ (Mk)A will denote
the category of right (A,α)-Hom-modules and A-linear morphisms.

Definition 2.6. Let (C, γ) be a monoidal Hom-coalgebra. A right

(C, γ)-Hom-comodule is an object (M,µ) ∈ H̃ (Mk) together with a k-linear

map ρM : M → M ⊗ C (notation ρM (m) = m[0] ⊗m[1]) in H̃ (Mk) such
that

m[0][0] ⊗ (m[0][1] ⊗ γ−1(m[1])) = µ−1(m[0])⊗∆C(m[1]),

m[0]ε(m[1]) = µ−1(m),

for all m ∈M . The fact that ρM ∈ H̃ (Mk) means that

ρM (µ(m)) = µ(m[0])⊗ γ(m[1]).

Morphisms of right (C, γ)-Hom-comodules are defined in the obvious way.

The category of right (C, γ)-Hom-comodules will be denoted by H̃ (Mk)C .

Definition 2.7. Let (H,α) be a monoidal Hom-Hopf algebra. A mono-
idal Hom-algebra (A, β) is called a right (H,α)-Hom-comodule algebra if
(A, β) is a right (H,α) Hom-comodule with coaction ρA : A → A ⊗ H,
ρA(a) = a[0] ⊗ a[1], such that

ρA(ab) = a[0]b[0] ⊗ a[1]b[1], ρA(1A) = 1A ⊗ 1H ,

for all a, b ∈ A.

Definition 2.8. Let (H,α) be a monoidal Hom-Hopf algebra. A mono-
idal Hom-coalgebra (C, γ) is called a left (H,α)-Hom-module coalgebra if
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(C, γ) is a left (H,α)-Hom-module with action φ : H⊗C → C, φ(h⊗c) = h·c,
such that

∆C(h · c) = h(1) · c(1) ⊗ h(2) · c(2), εC(h · c) = εC(c)εH(h),

for all c ∈ C and g, h ∈ H.

A Doi Hom-Hopf datum is a triple (H,A,C), where H is a monoidal
Hom-Hopf algebra, A a right (H,α)-Hom comodule algebra and (C, γ) a
left (H,α)-Hom module coalgebra.

Definition 2.9. Given a Doi Hom-Hopf datum (H,A,C), a Doi Hom-
Hopf module (M,µ) is a left (A, β)-Hom-module which is also a right (C, γ)-
Hom-comodule with the coaction structure ρM : M → M ⊗ C defined by
ρM (m) = m[0] ⊗m[1] such that the following compatibility condition holds:
for all m ∈M and a ∈ A,

ρM (a ·m) = a[0] ·m[0] ⊗ a[1] ·m[1].

A morphism between left-right Doi Hom-Hopf modules is a k-linear map

which is a morphism in the categories AH̃ (Mk) and C̃ (Mk)C at the same

time. AH̃ (Mk)(H)C will denote the category of left-right Doi Hom-Hopf
modules and morphisms between them.

3. Making the category of Doi Hom-Hopf modules into a mono-
idal category. Now suppose that C and A are both monoidal Hom-bial-
gebras.

Proposition 3.1. Let (M,µ)∈AH̃ (Mk)(H)C , (N, ν)∈AH̃ (Mk)(H)C.

Then M ⊗N ∈ AH̃ (Mk)(H)C with structure maps

a · (m⊗ n) = a(1) ·m⊗ a(2) · n, ρM⊗N (m⊗ n) = m[0] ⊗ n[0] ⊗m[1]n[1]

if and only if

(3.1) a(1)[0] ⊗ a(2)[0] ⊗ (a(1)[1] · c)(a(2)[1] · d) = a[0](1) ⊗ a[0](2) ⊗ a[1] ◦ (cd)

for all a ∈ A and c, d ∈ C. Furthermore, C = AH̃ (Mk)(H)C is a monoidal
category.

Proof. It is easy to see that M ⊗N is a left (A, β)-module and a right
(C, γ)-comodule. Now we check that the compatibility condition holds:

ρM⊗N (a · (m⊗ n)) = (a(1) ·m)[0] ⊗ (a(2) · n)[0] ⊗ (a(1) ·m)[1](a(2) · n)[1]

= a(1)[0] ·m[0] ⊗ (a(2)[0] · n[0])⊗ (a(1)[1] ·m[1])(a(2)[1] · n[1])
(3.1)
= a[0](1) ·m[0] ⊗ (a[0](2) · n[0])⊗ a[1] · (m[1]n[1])

= a[0] · (m[0] ⊗ n[0])⊗ a[1] · (m[1]n[1]).

So M ⊗N ∈ AH̃ (Mk)(H)C .
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Conversely, one can easily check that A ⊗ C ∈ AH̃ (Mk)(H)C , let m =
1⊗ c and n = 1⊗ d for any c, d ∈ C and easily get (3.2).

Furthermore, k is an object in AH̃ (Mk)(H)C with structure maps

a · x = εA(a)x, ρ(x) = x⊗ 1C ,

for all x ∈ k if and only if

(3.2) εA(a)1C = εA(a(0))(a(1) · 1C)

for all a ∈ A. Then it is easy to see that (C = AH̃ (Mk)(H)C ,⊗, k, ã, l̃, r̃) is

a monoidal category, where ã, l̃, r̃ are given by

ãM,N,P ((m⊗ n)⊗ p) = µ(m)⊗ (n⊗ π−1(p)),
l̃M (x⊗m) = r̃M (m⊗ x) = xµ(m),

for (M,µ), (N, ν), (P, π) ∈ C.
We call G = (H,A,C) a monoidal Doi Hom-Hopf datum if G is a Doi

Hom-Hopf datum and A,C are Hom-bialgebras with the additional compat-
ibility relations (3.1) and (3.2).

We will give an example of a monoidal category AH̃ (Mk)(H)C . First,
we define Yetter–Drinfeld modules over a monoidal Hom-Hopf algebra;
these were also introduced by Liu and Shen [15] or Guo and Zhang [13]
similarly.

Definition 3.2. Let (H,α) be a monoidal Hom-Hopf algebra. A left-

right (H,α)-Hom-Yetter–Drinfeld module is an object (M,µ) in H̃ (Mk)
such that (M,µ) a left (H,α)-Hom-module and a right (H,α)-Hom-co-
module with the following compatibility condition:

(3.3) h(1) ·m[0] ⊗ h(2)m[1] = µ((h(2) · µ−1(m))[0])⊗ (h(2) · µ−1(m))[1]h(1)

for all h ∈ H and m ∈M . We denote by HH Y DH the category of left-right
(H,α)-Hom-Yetter–Drinfeld modules, morphisms being left (H,α)-linear
right (H,α)-colinear maps.

Proposition 3.3. (3.3) is equivalent to

(3.4) ρ(h ·m) = α(h(2)(1)) ·m[0] ⊗ (h(2)(2)α
−1(m[1]))S

−1(h(1))

for all h ∈ H and m ∈M .

Proof. For one direction, we compute

µ((h(2) · µ−1(m))[0])⊗ ((h(2) · µ−1(m))[1])h(1)
(3.4)
= µ(α(h(2)(2)(1)) · µ−1(m[0]))⊗

(
(h(2)(2)(2)α

−2(m[1]))S
−1(h(2)(1))

)
h(1)

= α(h(2)(1)) ·m[0] ⊗ (h(2)(2)α
−1(m[1]))(S

−1(h(1)(2))h(1)(1))

= h(1) ·m[0] ⊗ h(2)m[1].
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Conversely, we have

h(2)(1) ·m[0] ⊗ (h(2)(2)m[1])S
−1(h(1))

(3.3)
= µ((h(2)(2) · µ−1(m))[0])⊗ ((h(2)(2) · µ−1(m))[1]h(2)(1))S

−1(h(1))

= µ((α−1(h(2))·µ−1(m))[0])⊗α((α−1(h(2))·µ−1(m))[1])(h(1)(2)S
−1(h(1)(1)))

= µ((α−2(h) · µ−1(m))[0])⊗ α2((α−2(h) · µ−1(m))[1])

= (α−1(h) ·m)[0] ⊗ α((α−1(h) ·m)[1]),

which implies (3.4).

Theorem 3.4. Let (H,α) be a monoidal Hom-Hopf algebra with a bi-
jective antipode.

(1) H can be made into a right Hop ⊗ H-Hom-comodule algebra. The
coaction H → H ⊗Hop ⊗H is given by

h 7→ α(h(2)(1))⊗ (S−1(α−1(h(1)))⊗ h(2)(2)).

(2) H can be made into a left Hop⊗H-Hom-module coalgebra. The action
of Hop ⊗H on H is given by

(h⊗ k) . c = (kα−1(c))α(h).

(3) The category HH Y DH of left-right Hom-Yetter–Drinfeld modules
is isomorphic to a category of Doi Hom-Hopf modules, namely

HH̃ (Mk)(Hop ⊗H)H .

Proof. (1) We first prove that H is a right Hop⊗H-Hom-comodule. For
any h ∈ H,

(α−1 ⊗∆Hop⊗H)ρH(h) = h(2)(1) ⊗∆Hop⊗H(S−1(α−1(h(1)))⊗ h(2)(2))
= h(2)(1) ⊗ S−1(α−1(h(1)(2)))⊗ h(2)(2)(1) ⊗ S−1(α−1(h(1)(1)))⊗ h(2)(2)(2)
= α(h(2)(1)(1))⊗ S−1(α−1(h(1)(2)))⊗ h(2)(1)(2)
⊗ S−1(α−1(h(1)(1)))⊗ α−1(h(2)(2))

= α2(h(2)(2)(1)(1))⊗ S−1(α−1(h(2)(1)))⊗ α(h(2)(2)(1)(2))

⊗ S−1(α−2(h(1)))⊗ h(2)(2)(2)
= α2(h(2)(1)(2)(1))⊗ S−1(h(2)(1)(1))⊗ α(h(2)(1)(1)(2))

⊗ S−1(α−2(h(1)))⊗ α−1(h(2)(2))
= ρ(α(h(2)(1)))⊗ S−1(α−2(h(1)))⊗ α−1(h(2)(2))
= (ρH ⊗ α−1)ρH(h).



86 S. J. GUO ET AL.

So H is a right Hop ⊗H-Hom-comodule. We also have

ρ(hg) = α(h(2)(1)g(2)(1))⊗
(
S−1(h(1)g(1))⊗α−1(h(2)(2)g(2)(2))

)
= α(h(2)(1))α(g(2)(1))⊗

(
S−1(h(1))S

−1(g(1))⊗α−1(h(2)(2))α−1(g(2)(2))
)

=
(
α(h(2)(1))⊗(S−1(h(1))⊗α−1(h(2)(2)))

)(
α(g(2)(1))⊗(S−1(g(1))⊗α−1(g(2)(2)))

)
= ρH(h)ρH(g).

(2) Now we prove that H is an Hop ⊗ H-Hom-comodule. For any
h, l, k,m, c ∈ H, we have

(α(l)⊗ α(m)) . [(h⊗ k) . c] = (α(l)⊗ α(m)) . (kα−1(c))α(h)

=
[
α(m)[(α−1(k)α−2(c))h]

]
α2(l) =

[
α(m)[k(α−2(c))α−1(h)]

]
α2(l)

= α(mk)[[α−1(c))h]α(l)] = α(mk)[c(hl)] = mk[cα(hl)]

= (hl ⊗mk) . α(c) = [(l ⊗m)(h⊗ k)] . α(c),

and this implies that H is an Hop ⊗H-Hom-module.

Using the fact that (H,α) is an (H,α)-Hom-bimodule algebra, we can
deduce that (H,α) is a left Hop ⊗H-Hom-module coalgebra.

(3) Let (M, ·) be a left (H,α)-module and (M,ρM ) a right (H,α)-co-

module. Then M ∈ HH̃ (Mk)(Hop ⊗H)H if and only if

ρM (h ·m) = α(h(2)(1)) ·m[0] ⊗
(
S−1(α−1(h(1)))⊗ h(2)(2)

)
. m[1]

= α(h(2)(1)) ·m[0] ⊗ (h(2)(2)α
−1(m[1]))S

−1(h(1))

for all h ∈ H and m ∈ M . Thus HH̃ (Mk)(Hop ⊗ H)H is isomorphic to

HH Y DH .

Example 3.5. Let (H,α) be a monoidal Hom-Hopf algebra. We have

shown that the category HH̃ (Mk)(Hop ⊗H)H of Doi Hom-Hopf modules
and the category HH Y DH of Hom-Yetter–Drinfeld modules are isomor-
phic. Recall from [15] that the latter is a monoidal category; let us check
that it is a special case of Proposition 3.3. Indeed, take A = H and C = Hop

as monoidal Hom-bialgebras. Let a = h, c = k and d = g. Then the left-hand
side amounts to

h[0](1) ⊗ h[0](2) ⊗ h[1] · (k • g)

= α(h(2)(1)(1))⊗ α(h(2)(1)(2))⊗
(
S−1(α−1(h(1)))⊗ h(2)(2)

)
· (gk)

= α(h(2)(1)(1))⊗ α(h(2)(1)(2))⊗ [h(2)(2))α
−1(gk)]S−1(h(1)).

The right-hand side is
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h(1)[0] ⊗ h(2)[0] ⊗ (h[1](1) · k)(h[1](2) · g)

= α(h(1)(2)(1))⊗ α(h(2)(2)(1))⊗
(
(S−1(α−1(h(1)(1)))⊗ h(2)(2)(1)) · k

)
•
(
(S−1(α−1(h(1)(2)))⊗ h(2)(2)(2)) · g

)
= α(h(1)(2)(1))⊗ α(h(2)(2)(1))⊗ ((h(2)(2)(2)α

−1(g))S−1(h(1)(2)))(
(h(2)(2)(1)α

−1(k))S−1(h(1)(1))
)

= α(h(1)(2)(1))⊗ α(h(2)(2)(1))

⊗
(
(h(2)(2)(2)α

−1(g))[S−1(α−1(h(1)(2)))h(2)(2)(1)]
)
kS−1(h(1)(1))

= α(h(1)(1)(2))⊗ α(h(2)(1)(2))

⊗
(
(α−1(h(2)(2))α

−1(g))[S−1(h(1)(1)(2))α
−1(h(2)(1))]

)
kS−1(α(h(1)(1)(1)))

= α(h(2)(1)(1))⊗ α(h(2)(1)(2))⊗ ((h(2)(2)(2)α
−1(g))[S−1(h(2)(1)(1))h(2)(1)(1)])

kS−1
(
α−1(h(1))

)
= α(h(2)(1)(1))⊗ α(h(2)(1)(2))⊗ ((h(2)(2)g)kS−1(α−1(h(1)))

= α(h(2)(1)(1))⊗ α(h(2)(1)(2))⊗ [(α−1(h(2)(2))α
−1(g))k]S−1(h(1))

= α(h(2)(1)(1))⊗ α(h(2)(1)(2))⊗ [h(2)(2)α
−1(gk)]S−1(h(1)).

4. Tensor identities

Theorem 4.1. Given Doi Hom-Hopf data (H,A,C) and (H ′, A′, C ′),
suppose that a morphism ξ : (H,A,C)→ (H ′, A′, C ′) consists of three maps
ϕ : H → H ′, ψ : A → A′ and φ : C → C ′ which are respectively monoidal
Hom-Hopf algebra, Hom-algebra and Hom-coalgebra maps satisfying

φ(h · c) = ϕ(h) · φ(c),(4.1)

ρA(ψ(a)) = ψ(a[0])⊗ ϕ(a[1]),(4.2)

for all c ∈ C, h ∈ H and a ∈ A. Then we have a functor F : AH̃ (Mk)(H)C

→ A′H̃ (Mk)(H ′)C
′
, defined as follows:

F (M) = A′ ⊗A M,

where (A′, β′) is a left (A, β)-module via ψ and with structure maps defined
by

b′ · (a′ ⊗A m) = β′−1(b′)a′ ⊗A µ(m),(4.3)

ρF (M)(a
′ ⊗A m) = a′[0] ⊗A m[0] ⊗ a′[1] · φ(m[1]),(4.4)

for all a′, b′ ∈ A′ and m ∈M .

Proof. Let us show that A′ ⊗A M is an object of A′H̃ (Mk)(H ′)C
′
. It is

routine to check that F (M) is a left (A′, β′)-module. For this, we need to
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show that A′⊗AM is a right (C ′, γ′)-comodule and satisfies the compatibility
condition. Indeed, for any m ∈M and a′, b′ ∈ A′, we have

ρF (M)(b
′ ·(a′⊗Am)) = ρF (M)(β

′−1(b′)a′⊗Aµ(m))

= β′−1(b′[0])a
′
[0]⊗Aµ(m[0])⊗[β′−1(b′[1])a

′
[1]] ·φ(γ(m[1]))

= b′[0][a
′
[0]⊗Am[0]]⊗b′[1][a

′
[1] ·φ(m[1])]

= b′ ·(a′[0]⊗Am[0]⊗a′[1] ·φ(m[1])) = b′ρF (M)(a
′⊗Am),

i.e., the compatibility condition holds. It remains to prove that A′ ⊗A M is
a right (C ′, γ′)-comodule. For any m ∈M and a′ ∈ A′, we have

(ρF (M) ⊗ idC′)ρF (M)(a
′ ⊗A m) = (ρF (M) ⊗ id′C)(a′[0] ⊗A m[0] ⊗ a′[1] · φ(m[1]))

= [a′[0][0] ⊗A m[0][0] ⊗ a′[0][1] · φ(m[0][1])]⊗ a′[1] · φ(m[1])

= [β′−1(a′[0])⊗A µ
−1(m[0])⊗ a′[1](1) · φ(m[1](1))]⊗ α′(a′[1](2)) · φ(γ(m[1](2)))

= a′[0] ⊗A m[0] ⊗ [a′[1](1) · φ(m[1](1))⊗ a′[1](2) · φ(m[1](2))]

= (idF (M) ⊗∆C′)ρF (M)(a
′ ⊗A m),

and

(idF (M) ⊗ ε)ρF (M)(a
′ ⊗A m) = (idF (M) ⊗ ε)(a′[0] ⊗A m[0] ⊗ a′[1] · φ(m[1]))

= a′[0]ε(a
′
[1])⊗A m[0]ε(φ(m[1])) = a′ ⊗A m,

as desired.

Theorem 4.2. Under the assumptions of Theorem 4.1, we have a func-

tor G : A′H̃ (Mk)(H ′)C
′ → AH̃ (Mk)(H)C which is right adjoint to F . It

is defined by
G(M ′) = M ′ �C′ C,

with structure maps

a · (m′ ⊗ c) = a[0] ·m′ ⊗ a[1] · c,(4.5)

ρG(M ′)(m
′ ⊗ c) = µ′−1(m′)⊗ c(1) ⊗ γ(c(2)),(4.6)

for all a ∈ A.

Proof. We first show that G(M ′) is an object of AH̃ (Mk)(H)C . It is
not hard to check that G(M ′) is a left (A, β)-module. Now we check that
G(M ′) is a right (C, γ)-comodule and satisfies the compatibility condition.
For any m′ ∈M ′ and a ∈ A, c ∈ C, we have

ρG(M ′)(a · (m′ ⊗ c)) = ρG(M ′)(a[0] ·m′ ⊗ a[1] · c)
= β−1(a[0]) · µ′−1(m′)⊗ a[1](1) · c(1) ⊗ α(a[1](2)) · γ(c(2))

= a[0][0] · µ′−1(m′)⊗ a[0][1] · c(1) ⊗ a[1] · γ(c(2))

= a · (µ′−1(m′)⊗ c(1) ⊗ γ(c(2))) = aρG(M ′)(m
′ ⊗ c),
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i.e., the compatibility condition holds. It remains to prove that M ′ �C′ C is
a right (C, γ)-comodule. For any m′ ∈M ′ and a ∈ A, we have

(ρG(M ′) ⊗ idC′)ρG(M ′)(m
′ ⊗A c) = (ρG(M ′) ⊗ idC′)(µ

′−1(m′)⊗ c(1) ⊗ γ(c(2)))

= µ′−2(m′)⊗ c(1)(1) ⊗ γ(c(1)(2))⊗ γ(c(2))

= µ′−2(m′)⊗ γ−1(c(1))⊗ γ(c(2)(1))⊗ γ2(c(2)(2))
= µ′−1(m′)⊗ c(1) ⊗ [γ(c(2)(1))⊗ γ(c(2)(2))]

= (idG(M ′) ⊗∆C)ρG(M ′)(m
′ ⊗ c),

and

(idG(M ′) ⊗ ε)ρG(M ′)(m
′ ⊗ c) = (idG(M ′) ⊗ ε)(µ′−1(m′)⊗ c(1) ⊗ γ(c(2)))

= µ′−1(m′)⊗ c(1)ε(c(2))⊗ 1C = m′ ⊗ c,
as required.

We have G(M ′) ∈ AH̃ (Mk)(H)C and the functorial properties can be
checked in a straightforward way. Finally, we show that G is a right adjoint

to F . Take (M,µ) ∈ AH̃ (Mk)(H)C and define ηM : M → GF (M) =
(M ⊗A A

′) �C′ C as follows: for all m ∈M ,

ηM (m) = m[0] ⊗A 1A′ ⊗m[1].

It is easy to see that ηM ∈ AH̃ (Mk)(H)C . Take (M ′, µ′) ∈ A′H̃ (Mk)(H ′)C
′
,

and define δM ′ : FG(M ′)→M ′, where

δM ′(m
′ ⊗ c)⊗A a

′) = εC(c)m′ · a′,

It is easy to check that δM ′ is (A, β)-linear and so δM ′ ∈ A′H̃ (Mk)(H ′)C
′
.

We can also verify η and δ defined above are natural transformations and
satisfy

G(δM ′) ◦ ηG(M ′) = I, δF (M) ◦ F (ηM ) = I,

for all M ∈ AH̃ (Mk)(H)C and M ′ ∈ A′H̃ (Mk)(H ′)C
′
.

A morphism ξ = (ϕ,ψ, φ) between monoidal Doi Hom-Hopf data is called
monoidal if ϕ and φ are monoidal Hom-bialgebra maps. We now consider
the particular situation where H = H ′ and A = A′. The following result is
a generalization of [3].

Theorem 4.3. Let ξ = (idH , idA, φ) : (H,A,C) → (H,A,C ′) be a
monoidal morphism of monoidal Doi Hom-Hopf data. Then

(4.7) G(C ′) = C.

Let (M,µ) ∈ AH̃ (Mk)(H)C be flat as a k-module, and take (N, ν) ∈
AH̃ (Mk)(H)C

′
. If (C, γ) is a monoidal Hom-Hopf algebra, then

M ⊗G(N) ∼= G(F (M)⊗N) in AH̃ (Mk)(H)C .(4.8)



90 S. J. GUO ET AL.

If (C, γ) has a twisted antipode S, then

G(N)⊗M ∼= G(N ⊗ F (M)) in AH̃ (Mk)(H)C .(4.9)

Proof. We know that εC′ ⊗ idC : C ′ �C C → C is an isomorphism; the
inverse map is (φ ⊗ idC)∆C : C → C ′ �C C. It is clear that εC′ ⊗ idC is
(A, β)-linear and (C, γ)-colinear. This proves (4.7).

Now we define a map

Γ : M ⊗G(N) = M ⊗ (N �C′ C)→ G(F (M)⊗N) = (F (M)⊗N) �C′ C

by

Γ (m⊗ (ni ⊗ ci)) = (m[0] ⊗ ni)⊗m[1]ci.

Recall that F (M) = M as an (A, β)-module, with (C ′, γ′)-coaction given by

ρF (M)(m) = m[0] ⊗ φ(m[1]).

(1) Γ is well-defined. We have to show that

Γ (mi ⊗ (ni ⊗ ci)) ∈ (F (M)⊗N) �
′
C C.

This may be seen as follows: for any m ∈M and ni �C′ c ∈ N �C′ C, we have

(ρF (M)⊗N⊗idC)((m[0]⊗ni)⊗m[1]ci) = (m[0][0]⊗ni[0])⊗φ(m[0][1])ni[1]⊗m[1]ci

= (µ(m[0])⊗ ν(ni))⊗ φ(m[0][1])φ(ci(1))⊗ γ−1(m[1]ci(2))

= (m[0] ⊗ ni)⊗ [φ(m[0][1])φ(ci(1))⊗m[1]ci(2)]

= (idF (M)⊗N ⊗ ρC′)((m[0] ⊗ ni)⊗m[1]ci).

(2) Γ is (A, β)-linear. Indeed, for any a ∈ A,m ∈ M and ni �C′ c ∈
N �C′ C, we have

Γ (a · (m⊗ (ni ⊗ ci))) = Γ (a(1) ·m⊗ (a(2)[0] · ni ⊗ a(2)[1] · ci))
= (a(1)[0] ·m[0] ⊗ a(2)[0] · ni)⊗ (a(1)[1] ·m[1])(a(2)[1] · ci)
= (a[0](1) ·m[0] ⊗ a[0](2) · ni)⊗ a(1) · (m[1]ci)

= a[0] · (m[0] ⊗ ni)⊗ a(1) · (m[1]ci) = a · Γ (m⊗ (ni ⊗ ci)).

(3) Γ is (C, γ)-colinear. Indeed, for any m ∈M and ni �C′ c ∈ N �C′ C,
we have

ρ ◦ Γ (m⊗ (ni ⊗ ci)) = ρ((m[0] ⊗ ni)⊗m[1]ci)

= (µ−1(m[0])⊗ ν−1(ni))⊗m[1](1)ci(1) ⊗ γ(m[1](2)ci(2))

= (m[0] ⊗ ν−1(ni))⊗m[0][1]ci(1) ⊗m[1]γ(ci(2))

= (Γ ⊗ idC)(m[0] ⊗ (ν−1(ni)⊗ ci(1)))⊗m[1]γ(ci(2))

= (Γ ⊗ idC) ◦ ρ(m⊗ (ni ⊗ ci)).
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Assume (C, γ) has an antipode and define

Ψ : (F (M)⊗N) �C′ C →M ⊗ (N �C′ C),

Ψ((mi ⊗ ni)⊗ ci) = µ2(mi[0])⊗ (ni ⊗ S(mi[1])γ
−2(ci)).

We have to show that Ψ is well-defined. (M,µ) is flat, so M ⊗ (N �C′ C) is
the equalizer of the maps

idM ⊗ idN ⊗ ρC : M ⊗N ⊗ C →M ⊗N ⊗ C ′ ⊗ C

and

idM ⊗ ρN ⊗ idC : M ⊗N ⊗ C →M ⊗N ⊗ C ′ ⊗ C.

Now take (mi ⊗ ni)⊗ ci ∈ (F (M)⊗N) �C′ C. Then

(4.10) (mi[0] ⊗ ni[0])⊗ φ(mi[1])ni[1] ⊗ ci
= (µ−1(mi)⊗ ν−1(ni))⊗ φ(ci(1))⊗ γ(ci(2)).

Therefore,

idM ⊗ idN ⊗ ρC(µ2(mi[0])⊗ (ni ⊗ S(mi[1])γ
−2(ci)))

= µ2(mi[0])⊗
(
ni ⊗ φ(S(mi[1](2))γ

−2(ci(1)))⊗ S(mi[1](1))γ
−2(ci(2))

)
= mi[0] ⊗ ν−1(ni)⊗ φ(S(γ(mi[1](2)))γ

−1(ci(1)))⊗ S(γ2(mi[1](1)))ci(2)

and

idM ⊗ ρN ⊗ idC(µ2(mi[0])⊗ (ni ⊗ S(mi[1])γ
−2(ci)))

= µ2(mi[0])⊗
(
ni[0] ⊗ ni[1] ⊗ S(mi[1])γ

−2(ci)
)

= mi[0] ⊗ ni[0] ⊗ γ(ni[1])⊗ S(γ(mi[1]))γ
−1(ci).

Applying (idM ⊗ φ ⊗ idC) ◦ (idM ⊗ (∆C ◦ SC)) ◦ ρM to the first factor of
(4.10), we obtain

mi[0][0] ⊗ φ(S(mi[0][1](2)))⊗ S(mi[0][1](1))⊗ ni[0] ⊗ φ(mi[1])ni[1] ⊗ ci
= µ−1(mi[0])⊗ φ(S(γ−1(mi[1](2))))⊗ S(γ−1(mi[1](1)))

⊗ ν−1(ni)⊗ φ(ci(1))⊗ γ(ci(2)).

Applying idM ⊗ γ2 ⊗ idC ⊗ idN ⊗ γ−1 ⊗ γ−1 to the above identity, we have

mi[0][0]⊗φ(S(γ2(mi[0][1](2))))⊗S(mi[0][1](1))⊗ni[0]⊗γ−1(φ(mi[1])ni[1])⊗γ−1(ci)
= µ−1(mi[0])⊗ φ(S(γ(mi[1](2))))⊗ S(γ−1(mi[1](1)))⊗ ν−1(ni)
⊗ φ(γ−1(ci(1)))⊗ ci(2).

Multiplying the second and the fifth factor, and also the third and sixth, we
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have

µ(mi[0])⊗ ni[0] ⊗ γ(ni[1])⊗ S(γ(mi[1]))γ
−1(ci)

= µ(mi[0])⊗ ν−1(ni)⊗ φ
(
S(γ(mi[1](2)))γ

−1(ci(1))
)
⊗ S(γ2(mi[1](1)))ci(2),

and applying µ−1 ⊗ idN ⊗ idC ⊗ idC to the above identity, we obtain

mi[0] ⊗ ni[0] ⊗ γ(ni[1])⊗ S(γ(mi[1]))γ
−1(ci)

= mi[0] ⊗ ν−1(ni)⊗ φ
(
S(γ(mi[1](2)))γ

−1(ci(1))
)
⊗ S(γ2(mi[1](1)))ci(2)

or

idM ⊗ ρN ⊗ idC ◦ (Ψ((mi⊗ni)⊗ ci)) = idM ⊗ idN ⊗ ρC ◦ (Ψ((mi⊗ni)⊗ ci)).

Let us point out that Γ and Ψ are each other’s inverses. In fact,

Γ ◦ Ψ((mi ⊗ ni)⊗ ci) = Γ (µ2(mi[0])⊗ (ni ⊗ S(mi[1]γ
−2(ci))))

= (µ2(mi[0][0])⊗ ni)⊗ γ2(mi[0][1])S(mi[1])γ
−2(ci)

= (µ2(mi[0][0])⊗ ni)⊗ [γ(mi[0][1])S(mi[1])]γ
−1(ci)

= (µ(mi[0])⊗ ni)⊗ [γ(mi[1](1))S(γ(mi[1](2)))]γ
−1(ci)

= (mi ⊗ ni)⊗ ci,

and

Ψ ◦Γ (m⊗ (ni⊗ ci)) = Ψ((m[0]⊗ni)⊗m[1]ci)

= µ2(m[0][0])⊗
(
ni⊗ [S(γ−1(m[0][1]))γ

−2(m[1])]γ
−1(ci)

)
= µ(m[0])⊗

(
ni⊗ [S(γ−1(m[1](1)))γ

−1(m[1](2))]γ
−1(ci)

)
= m⊗ (ni⊗ ci).

The proof of (4.9) is similar and left to the reader.

Corollary 4.4. Let (H,A,C) be a monoidal Doi Hom-Hopf datum,

and Λ: AH̃ (Mk)(H)C → AH̃ (Mk)(H) the functor forgetting the (C, γ)-
coaction. For any flat Doi Hom-Hopf module (M,µ), we have an isomor-
phism

M ⊗ C ∼= Λ(M)⊗ C

in AH̃ (Mk)(H)C . If k is a field, then AH̃ (Mk)(H)C has enough injective

objects, and any injective object in AH̃ (Mk)(H)C is a direct summand of
an object of the form I ⊗ C, where I is an injective (A, β)-module.

We have already proved that the category of Hom-Yetter–Drinfeld mod-
ules may be viewed as the category of Doi Hom-Hopf modules corresponding
to a monoidal Doi Hom-Hopf datum. Then we have the following corollary.
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Corollary 4.5. Let (H,α) be a monoidal Hom-Hopf algebra with the
bijective antipode. Then the category of Hom-Yetter–Drinfeld modules over
(H,α) is a Grothendieck category with enough injective objects.

We continue with the dual version of Theorem 4.3.

Theorem 4.6. Let χ = (idH , ψ, idC) : (H,A,C) → (H,A′, C) be a
monoidal morphism of monoidal Doi Hom-Hopf data. Then

(4.11) F (A) = A′.

Let (M,µ) ∈ AH̃ (Mk)(H)C be flat as a k-module, and take (N, ν) ∈
A′H̃ (Mk)(H)C . If (A′, β′) is a monoidal Hom-Hopf algebra, then

(4.12) F (M)⊗N ∼= F (M ⊗G(N)) in AH̃ (Mk)(H)C .

If (A′, β′) has a twisted antipode S, then

(4.13) N ⊗ F (M) ∼= F (G(N)⊗M) in AH̃ (Mk)(H)C .

Proof. We only prove (4.12) and similarly for (4.11) and (4.13). Assume
that (A′, β′) is a monoidal Hom-Hopf algebra and define

Γ : F (M ⊗G(N)) = A′ ⊗A M ⊗G(N)→ F (M)⊗N = (A′ ⊗A M)⊗N

by

Γ (a′ ⊗ (m⊗ n)) = (a′(1) ⊗m)⊗ a′(2) · n

for all a′ ∈ A′,m ∈M and n ∈ N . Then Γ is well-defined since

Γ (a′ψ(a)⊗ (m⊗ n)) = (a′(1)ψ(a(1))⊗m)⊗ a′(2)ψ(a(2)) · n
= (a′(1) ⊗ a(1) ·m)⊗ a′(2)ψ(a(2)) · n
= Γ (a′ ⊗ (a(1) ·m⊗ ψ(a(2)) · n))

= Γ (a′ ⊗ a · (m⊗ n)).

It is easy to check that Γ is (A′, β′)-linear. Now we shall verify that Γ is
(C, γ)-colinear based on (3.1). For any a′ ∈ A′,m ∈M and n ∈ N , we have

ρ(Γ (a′ ⊗ (m⊗ n))) = ρ((a′(1) ⊗m)⊗ a′(2) · n)

= (a′(1)[0] ⊗m[0])⊗ (a′(2)[0] · n[0])⊗ (a′(1)[1] ⊗m[1])(a
′
(2)[1] · n[1])

(3.1)
= (a′[0](1) ⊗m[0])⊗ (a′[0](2) · n[0])⊗ a

′
[1](m[1]n[1])

= (Γ ⊗ idc)(a
′
[0] ⊗ (m[0] ⊗ n[0]))⊗ a′[1](m[1]n[1])

= (Γ ⊗ idc)ρ(a′ ⊗ (m⊗ n)).

The inverse of Γ is given by

Ψ((a′ ⊗m)⊗ n) = β′2(a′(1))⊗ (m⊗ S(a′(2))ν
−2(n))
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for all a′ ∈ A′,m ∈ M and n ∈ N . One can check that Ψ is well-defined
similarly to Γ . Finally, we have

Ψ(Γ (a′ ⊗ (m⊗ n))) = Ψ((a′(1) ⊗m)⊗ a′(2) · n)

= β′2(a′(1)(1))⊗ (m⊗ S(a′(1)(2))ν
−2(a′(2) · n))

= β′(a′(1))⊗ (m⊗ [S(β′−1(a′(2)(1)))β
′−1(a′(2)(2))] · ν

−1(n))

= a′ ⊗ a′ ⊗ (m⊗ n)

and

Γ (Ψ((a′ ⊗m)⊗ n)) = Γ
(
β′2(a′(1))⊗ (m⊗ S(a′(2))ν

−2(n))
)

= (β′2(a′(1)(1))⊗m)⊗ a′(2) · β
′2(a′(1)(2)) · S(a′(2))ν

−2(n)

= (β′(a′(1))⊗m)⊗ a′(2) · [β
′(a′(2)(1)) · S(β′(a′(2)))]ν

−1(n)

= (a′ ⊗m)⊗ n,

as needed.

5. Braidings on the category of Doi Hom-Hopf modules. Con-
sider now a map Q : C ⊗ C → A ⊗ A, with twisted convolution inverse R
such that (β ⊗ β)Q = Q(γ ⊗ γ) and (β ⊗ β)R = R(γ ⊗ γ). This means
that

R
(
Q1(c(2) ⊗ d(2))[1] · γ−1(c(1))⊗Q2(c(2) ⊗ d(2))[1] · γ−1(d(1))

)(
β(Q2(c(2) ⊗ d(2))[0])⊗ β(Q1(c(2) ⊗ d(2))[0])

)
= εC(c)1A ⊗ εC(d)1A,

Q
(
R2(c(2) ⊗ d(2))[1] · γ−1(c(1))⊗R1(c(2) ⊗ d(2))[1] · γ−1(d(1))

)(
β(R2(c(2) ⊗ d(2))[0])⊗ β(R1(c(2) ⊗ d(2))[0])

)
= εC(c)1A ⊗ εC(d)1A,

for all c, d ∈ C. Sometimes, we write Q(c⊗ d) := Q1(c⊗ d)⊗Q2(c⊗ d) for
all c, d ∈ C.

Let (M,µ), (N, ν) ∈ AH̃ (Mk)(H)C . By Proposition 3.3 we know that

(M ⊗N,µ⊗ ν) ∈ AH̃ (Mk)(H)C . Define a map

(5.1)
cM,N : M ⊗N → N ⊗M,

cM,N (m⊗ n) = Q(n[1] ⊗m[1])(n[0] ⊗m[0]).

We will prove that cM,N is an isomorphism with inverse

c−1M,N : N ⊗M →M ⊗N,

c−1M,N (n⊗m) = R(n[1] ⊗m[1])(m[0] ⊗ n[0]).
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For any m ∈M and n ∈ N , we have

c−1
M,N ◦ cM,N (m⊗ n)

= c−1
M,N (Q(n[1] ⊗m[1])(n[0] ⊗m[0]))

= R
(
(Q1(n[1] ⊗m[1]) · n[0])[1] ⊗ (Q2(n[1] ⊗m[1]) ·m[0])[1]

)(
(Q2(n[1] ⊗m[1]) ·m[0])[0] ⊗ (Q1(n[1] ⊗m[1]) · n[0])[0]

)
= R

(
Q1(γ(n[1](2)) ⊗ γ(m[1](2)))[1] · n[1](1) ⊗ Q2(γ(n[1](2)) ⊗ γ(m[1](2)))[1] ·m[1](1)

)(
Q2(γ(n[1](2)) ⊗ γ(m[1](2)))[0] · µ−1(m[0]) ⊗ Q1(γ(n[1](2)) ⊗ γ(m[1](2)))[0] · ν−1(n[0])

)
=

(
R(Q1(n[1](2) ⊗m[1](2))[1] · γ−1(n[1](1)) ⊗ Q2(n[1](2) ⊗m[1](2))[1] · γ−1(m[1](1)))

(β(Q2(n[1](2) ⊗m[1](2))[0]) ⊗ β(Q1(n[1](2) ⊗m[1](2))[0]))
)

(m[0] ⊗ n[0])

= (εC(m[1])1A ⊗ εC(n[1])1A)(m[0] ⊗ n[0]) = m⊗ n.

So c−1M,N ◦ cM,N = idM⊗N . Similarly, we can prove cM,N ◦ c−1M,N = idN⊗M .

Our aim is now to give necessary and sufficient conditions on Q for cM,N

to define a braiding on the monoidal category of Doi Hom-Hopf modules. Re-

call from [15] that for any (M,µ), (N, ν) ∈ AH̃ (Mk)(H)C , the associativity
and unit constraints are given by

aM,N,P : (M ⊗N)⊗ P →M ⊗ (N ⊗ P ),

(m⊗ n)⊗ p 7→ µ(m)⊗ (n⊗ π−1(p)),
lM : k ⊗M →M, k ⊗m 7→ kµ(m),

rM : M ⊗ k →M, m⊗ k 7→ kµ(m).

Next, we will find conditions under which cM,N is both an (A, β)-module
map and a (C, γ)-comodule map, and satisfies the following conditions (for

P ∈ AH̃ (Mk)(H)C):

aN,P,M ◦ cM,N⊗P ◦ aM,N,P = (idN ⊗ cM,P ) ◦ aN,M,P ◦ (cM,N ⊗ idP ),(5.2)

a−1N,P,M ◦ cM⊗N,P ◦ a−1M,N,P = (cM,P ⊗ idN ) ◦ a−1M,P,N ◦ (idM ⊗ cN,P ).(5.3)

Recall from [13] that A⊗ C can be made into a Doi Hom-Hopf module
as follows: the (A, β)-action and (C, γ)-coaction on A⊗ C are given by the
formulas

a · (b⊗ c) = β−1(a)b⊗ γ(c), ρA⊗C(b⊗ c) = (b[0] ⊗ c(1))⊗ b[1]c(2),

for any a, b ∈ A and c ∈ C.

To formulate and prove our main result, we need some lemmas:

Lemma 5.1. Let (M,µ), (N, ν) ∈ AH̃ (Mk)(H)C . Then cM,N is (A, β)-
linear if and only if

Q(a(2)[1] · c⊗ a(1)[1] · d)(a(2)[0] ⊗ a(1)[0]) = ∆(a)Q(c⊗ d)(5.4)

for all a ∈ A and c, d ∈ C.
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Proof. If cM,N is (A, β)-linear then a.cM,N (m⊗n) = cM,N (a. (m⊗n)).
We compute the two sides of the equation as follows:

a . cM,N (m⊗ n) = (a(1) ⊗ a(2))Q(n[1] ⊗m[1])(n[0] ⊗m[0])

and

cM,N (a . (m⊗ n)) = Q(a(2)[1] · n[1] ⊗ a(1)[1] ·m[1])(a(2)[0] · n[0] ⊗ a(1)[0] ·m[0]).

Conversely, considering these equations and taking M = N = A⊗C and
m = 1⊗ c and n = 1⊗ d for all c, d ∈ C, we get (5.4).

Recall from [7] that a quasitriangular monoidal Hom-Hopf algebra is
a monoidal Hom-Hopf algebra (H,α) together with an invertible element
R = R(1) ⊗R(2) ∈ H ⊗H such that:

(QT1) ∆(R(1))⊗R(2) = R(1) ⊗ r(1) ⊗R(2)r(2),

(QT2) R1 ⊗∆(R2) = R1r1 ⊗ r2 ⊗R2,

(QT3) ε(R(1))R(2) = 1H , R
(1)ε(R(2)) = 1H ,

(QT4) ∆cop(h)R = R∆(h),

(QT5) (α⊗ α)(R) = R,

where ∆cop(h) = h(2) ⊗ h(1) for all h ∈ H. Moreover, (H,α) is called almost
cocommutative if ∆cop(h)R = R∆(h).

Example 5.2. Suppose that C = k and write R = Q(1⊗ 1). Then (5.4)
takes the form R∆cop

A (a) = ∆A(a)R, and this means that (A, β) is almost
cocommutative.

Lemma 5.3. Let (M,µ), (N, ν) ∈ AH̃ (Mk)(H)C . Then cM,N is (C, γ)-
colinear if and only if

(5.5) Q(d(2) ⊗ c(2))[0] ⊗mC

(
Q(d(2) ⊗ c(2))[1](d(1) ⊗ c(1))

)
= Q(d(1) ⊗ c(1))⊗ c(2)d(2)

for all c, d ∈ C.

Proof. If cM,N is (C, γ)-colinear, then

ρN⊗McM,N (m⊗ n) = ρN⊗M
(
Q(n[1] ⊗m[1])(n[0] ⊗m[0])

)
= Q(n[1] ⊗m[1])[0](n[0][0] ⊗m[0][0])⊗mC

(
Q(n[1] ⊗m[1])[1](n[0][1] ⊗m[0][1])

)
= Q(γ−1(n[1](2))⊗ γ−1(m[1](2)))[0](ν(n[0])⊗ µ(m[0]))

⊗mC

(
Q(γ−1(n[1](2))⊗ γ−1(m[1](2)))[1](n[1](1) ⊗m[1](2))

)
.

On the other hand, we have

(cM,N ⊗ idC)ρM⊗N (m⊗ n) = Q(n[0][1] ⊗m[0][1])(n[0][0] ⊗m[0][0])⊗ (m[1]n[1])

= Q(n[1](1) ⊗m[1](1))(ν(n[0])⊗ µ(m[0]))⊗ γ−1(m[1](2)n[1](2)).
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Conversely, let M = N = A⊗ C and take m = 1⊗ c and n = 1⊗ d for
all c, d ∈ C. Then we can get (5.5).

Definition 5.4. A coquasitriangular monoidal Hom-Hopf algebra is a
monoidal Hom-Hopf algebra (H,α) together with a bilinear form σ on (H,α)
(i.e. σ ∈ Hom(H ⊗H, k)) such that:

(BR1) σ(hg, l)〉 = σ(h, l(2))σ(g, l(1)),

(BR2) σ(h, gl) = σ(h(1), g)σ(h(2), l),

(BR3) σ(h(1), g(1))g(2)h(2) = h(1)g(1)σ(h(2), g(2)),

(BR4) σ(1H , h) = σ(h, 1H) = ε(h),

(BR5) σ(α(h), α(g)) = σ(h, g),

for all h, g, l ∈ H. Moreover, (H,α) is called almost commutative if

σ(h(1), g(1))g(2)h(2) = h(1)g(1)σ(h(2), g(2)).

Example 5.5. Suppose A = k. Then (5.5) takes the form

Q(h(1), g(1))g(2)h(2) = h(1)g(1)Q(h(2), g(2)),

and this means that (A, β) is almost commutative.

Lemma 5.6. Let (M,µ), (N, ν), (P, π)∈AH̃ (Mk)(H)C . Then (5.2) holds
if and only if, with U = Q,

(5.6) Q1(e⊗γ(d(2)))⊗(U 1
(
γ−1(c)⊗Q2(e⊗γ(d(2)))[1]d(1)

)
⊗U 2

(
γ−2(c)⊗Q2(e⊗c(2))[1]γ−1(c(1))

)
Q2(e⊗γ(d(2)))[0]

= Q1(eγ−1(c)⊗γ(m[1]))(1)⊗Q1(eγ−1(c)⊗γ(c))(2)⊗Q2(γ−1(e)γ−2(c)⊗d)

for all c, d, e ∈ C.

Proof. If (5.2) holds, then

(idN ⊗ cM,P ) ◦ aN,M,P ◦ (cM,N ⊗ idP )((m⊗ n) ⊗ p)

= (idN ⊗ cM,P ) ◦ aN,M,P (Q1(n[1] ⊗m[1])n[0] ⊗ Q2(n[1] ⊗m[1])m[0] ⊗ p)

= (idN ⊗ cM,P )(β(Q1(n[1] ⊗m[1]))ν(n[0]) ⊗ (Q2(n[1] ⊗m[1])m[0] ⊗ π−1(p)))

= β(Q1(n[1] ⊗m[1]))ν(n[0]) ⊗ U (γ−1(p[1]) ⊗ Q2(n[1] ⊗m[1])[1]m[0][1])

(π−1(p[0]) ⊗ Q2(n[1] ⊗m[1])[0]m[0][0])

= β(Q1(n[1] ⊗ γ(m[1](2))))ν(n[0]) ⊗ U (γ−1(p[1]) ⊗ Q2(n[1] ⊗ γ(m[1](2)))[1]m[1](1))(
π−1(p[0]) ⊗ Q2(n[1] ⊗ γ(m[1](2)))[0]µ

−1(m[0])
)

= β(Q1(n[1] ⊗ γ(m[1](2))))ν(n[0]) ⊗
(
U 1 (γ−1(p[1]) ⊗ Q2(n[1] ⊗ γ(m[1](2)))[1]m[1](1)

)
π−1(p[0]) ⊗ β−1(U 2(γ−1(p[1]) ⊗ Q2(n[1] ⊗ γ(m[1](2)))[1]m[1](1)))

Q2(n[1] ⊗ γ(m[1](2)))[0]m[0]

)
.
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Also we have

aN,P,M ◦cM,N⊗P ◦aM,N,P ((m⊗n)⊗p)
= aN,P,M ◦cM,N⊗P (µ(m)⊗(n⊗π−1(p)))
= aN,P,M

(
(∆A⊗idA)(Q(n[1]γ

−1(p[1])⊗γ(m[1])))((n[0]⊗π−1(p[0]))⊗µ(m[0]))
)

= β
(
Q1(n[1]γ

−1(p[1])⊗γ(m[1]))(1)
)
ν(n[0])⊗Q1(n[1]γ

−1(p[1])⊗γ(m[1]))(2)

π−1(p[0])⊗β−1(Q2(n[1]γ
−1(p[1])⊗γ(m[1])))m[0].

Conversely, take M = N = P = A ⊗ C and m = 1 ⊗ d, n = 1 ⊗ e, and
p = 1⊗ c for all c, d, e ∈ C. Then we obtain (5.6).

The proof of the following lemma is similar to that of Lemma 5.6.

Lemma 5.7. Let (M,µ), (N, ν), (P, π) ∈ AH̃ (Mk)(H)C . Then (5.3)
holds if and only if the following condition is satisfied, with U = Q:

(5.7) U 1
(
Q1(c(2) ⊗ γ−1(e))[1]γ−1(c(1))⊗ γ−2(d)

)
Q1(γ(c(2))⊗ e)[0]

⊗U 2
(
Q1(γ(c(2))⊗ e)[1]c(1) ⊗ γ−1(d)

)
⊗Q2(c⊗ e)

= Q1(c⊗ γ−2(d)γ−1(e))⊗Q2(γ(c)⊗ γ−1(d)e)(1) ⊗Q2(γ(c)⊗ γ−1(d)e)(2)

for all c, d, e ∈ C.

Proof. If (5.3) holds, then

(cM,P ⊗ idN ) ◦ a−1M,P,N ◦ (idM ⊗ cN,P )(m⊗ (n⊗ p))

= (cM,P ⊗ idN ) ◦ a−1M,P,N

(
m⊗Q(p[1] ⊗ n[1])(p[0] ⊗ n[0])

)
= (cM,P ⊗ idN )

(
(µ−1(m)⊗Q1(p[1] ⊗ n[1])p[0])⊗ β(Q2(p[1] ⊗ n[1]))ν(n[0])

)
= U (Q1(p[1] ⊗ n[1])[1]p[0][1] ⊗ γ−1(m[1]))(Q

1(p[1] ⊗ n[1])[0]p[0][0] ⊗ µ−1(m[0]))

⊗ β(Q2(p[1] ⊗ n[1]))ν(n[0])

=
{
β−1

(
U 1(Q1(γ(p[1](2))⊗n[1])[1]p[1](1)⊗γ−1(m[1]))

)
Q1(γ(p[1](2))⊗n[1])[0]

}
p[0]

⊗U 2(Q1(γ(p[1](2))⊗ n[1])[1]p[1](1) ⊗ γ−1(m[1]))µ
−1(m[0])

⊗ β(Q2(p[1] ⊗ n[1]))ν(n[0])

and

a−1P,M,N ◦ cM⊗N,P ◦ a−1M,N,P (m⊗ (n⊗ p))

= a−1P,M,N ◦ cM⊗N,P ((µ−1(m)⊗ n)⊗ π(p))

= a−1P,M,NQ(γ(p[1])⊗ γ−1(m[1])n[1])(π(p[0])⊗ (µ−1(m[0])⊗ n[0]))
= β−1(Q1(γ(p[1])⊗ γ−1(m[1])n[1]))p[0] ⊗Q2(γ(p[1])

⊗ γ−1(m[1])n[1])(1)µ
−1(m[0])⊗ β(Q2(γ(p[1])⊗ γ−1(m[1])n[1]))(2)ν(n[0]).
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Conversely, take M = N = P = A ⊗ C and m = 1 ⊗ d, n = 1 ⊗ e, and
p = 1⊗ c for all c, d, e ∈ C. Then we obtain (5.7).

Therefore, we can summarize our results as follows.

Theorem 5.8. Let (H,A,C) be a monoidal Doi Hom-Hopf datum, and
Q : C⊗C → A⊗A a twisted convolution invertible map. For (M,µ), (N, ν)

∈ AH̃ (Mk)(H)C , the family of maps

cM,N : M ⊗N → N ⊗M, cM,N (m⊗ n) = Q(n[1] ⊗m[1])(n[0] ⊗m[0]),

defines a braiding on the category of Doi Hom-Hopf modules AH̃ (Mk)(H)C

if and only if (5.4)–(5.7) are satisfied.

Example 5.9. (1) Take A = k and write

R = Q(1C ⊗ 1C) =
∑

R(1) ⊗R(2) =
∑

r(1) ⊗ r(2).

Then (5.6) and (5.7) take the form

∆(R(1))⊗R(2) = R(1) ⊗ r(1) ⊗ r(2)R(2),

R(1) ⊗∆(R(2)) = r(1)R(1) ⊗ r(2) ⊗R(2),

and the braiding is

cM,N : M ⊗N → N ⊗M, cM,N (m⊗ n) = R(2) · ν−1(n)⊗R(1) · µ−1(m).

Assume that R is α-invariant (i.e. α(R(1)) ⊗ α(R(2)) = R(1) ⊗ R(2)). We
conclude that the conditions of Theorem 5.8 are satisfied if and only if
(C,R−1) is a quasitriangular monoidal Hom-bialgebra.

(2) If C = k, then (5.6) and (5.7) take the form

σ(hg, l)〉 = σ(h, l(1))σ(g, l(2)), σ(h, gl) = σ(h(1), l)σ(h(2), g),

and the braiding is

cM,N : M ⊗N → N ⊗M, cM,N (m⊗ n) = σ(n[1],m[1])ν(n[0])⊗ µ(m[0]).

Assume that σ is α-invariant (i.e. σ(α(h), α(g)) = σ(h, g) for all h, g ∈ H).
Then the conditions of Theorem 5.8 are satisfied if and only if (A, σ) is a
coquasitriangular monoidal Hom-bialgebra.

(3) Let (H,α) be a monoidal Hom-Hopf algebra with bijective antipode.

We have seen that the category HH̃ (Mk)(Hop ⊗ H)H of Doi Hom-Hopf
modules and the category HH Y DH of Hom-Yetter–Drinfeld modules are
isomorphic. Recall from [15] that HH Y DH is a braided category. The
braiding is induced by

cM,N : M ⊗N → N ⊗M, m⊗ n 7→ ν(n[0])⊗ n[1]µ−1(m).

The corresponding map Q is

Q : H ⊗H → H ⊗H, h⊗ k 7→ η(ε(k))⊗ h.
It is straightforward to check that Q satisfies the conditions of Theorem 5.8.



100 S. J. GUO ET AL.

6. The smash product of monoidal Hom-bialgebras and the
Drinfeld double. In this section, we introduce the smash product of mono-
idal Hom-bialgebras and prove that the Drinfeld double is a quasitriangular
monoidal Hom-Hopf algebra, which generalizes [4].

Let (A, β) be a right (H,α)-Hom comodule algebra, and (B, ζ) a left
(H,α)-Hom module coalgebra. Consider the smash product A#B with the
multiplication given by

(a# b)(c# d) = aβ(c[0]) # (ζ−1(b)↼ c[1])d.

Then A#B is a monoidal Hom algebra with unit 1A # 1B.

Remark 6.1. Here the multiplication of a smash product monoidal
Hom-algebra is diffierent from the one defined by Ma and Li [16].

If (C, γ) is a faithfully projective left (H,α)-Hom module coalgebra, then
(C∗, γ∗) is a right (H,α)-Hom-module algebra. The right (H,α)-action is
given by

(c∗ ↼ h, c) = (c∗, h · c).

Given (M,µ) ∈ AH̃ (Mk)(H)C , we define an A # C∗-action on (M,µ) as
follows:

(a# c∗) ·m = 〈c∗,m[1]〉a ·m[0].

Assume that (A, β) and (B, ζ) are both monoidal Hom-bialgebras, and con-
sider ∆A#B and εA#B defined by

∆A#B(a# b) = (a(1) # b(1))⊗ (a(2) # b(2)), εA#B(a# b) = εA(a)εB(b).

Proposition 6.2. Under the notation introduced above, we have

(6.1) ∆A(β(a[0]))⊗∆A(ζ−1(b) ↼ a[1])

= β(a(1)[0])⊗ β(a(2)[0])⊗ (ζ−1(b(1)) ↼ a[1](1))⊗ (ζ−1(b(2)) ↼ a[1](2))

and

(6.2) εA(a[0])⊗ εB(b ↼ a[1]) = εA(a)εB(b),

for all a ∈ A and b ∈ B, so A # B is a monoidal Hom-bialgebra. If (A, β)
and (B, ζ) are both monoidal Hom-Hopf algebras, then A#B is a monoidal
Hom-Hopf algebras with antipode given by

SA#B(a# b) = S(β(a))[0] # (S(ζ−1(b)) ↼ S(a)[1]).

Proof. We leave it to the reader to show that ∆A#B is multiplicative if
and only if (6.1) holds, and εA#B is multiplicative if and only if (6.2) holds.
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We show that the antipode defined above is convolution invertible. In fact,

(a(1) # b(1))SA#B(a(2) # b(2))

= (a(1) # b(1))(S(β(a(2)))[0] ⊗ (S(ζ−1(b(2))) ↼ S(a(2))[1]))

= a(1)S(β2(a(2)))[0][0]

# (ζ−1(b(1)) ↼ S(β(a(2)))[0][1])(S(ζ−1(b(2))) ↼ S(a(2))[1]))

= a(1)S(β(a(2)))[0]

# (ζ−1(b(1)) ↼ S(β(a(2)))[1](1))
(
S(ζ−1(b(2))) ↼ S(β(a(2)))[1](2)

)
= a(1)S(β(a(2)))[0] # (ζ−1(b(1))S(ζ−1(b(2)))) ↼ S(β(a(2)))[1]

= εA(a)εB(b),

and

SA#B(a(1) # b(1))(a(2) # b(2))

=
(
S(β(a(1)))[0] ⊗ (S(ζ−1(b(1))) ↼ S(a(1))[1])

)
(a(2) # b(2))

= S(β(a(1)))[0]β(a(2)[0]) #
(
S(ζ−1(b(1))) ↼ S(a(1))[1]a(2)[1]

)
b(2)

= εA(a)εB(b),

as desired.

Proposition 6.3. Let (H,A,C) be a monoidal Doi Hom-Hopf datum.
Assume that (C, γ) is faithfully projective as a k-module. Then (A, β)

and (C∗, γ∗) satisfy (6.1), (6.2), and AH̃ (Mk)(H)C and the category of
A# C∗-Hom-modules are isomorphic as monoidal categories.

Proof. Apply the arguments used in [4, p. 94]. The details are left to the
reader.

Inspired by [7], we have the following example.

Example 6.4. Assume that (H,α) is faithfully projective as a k-module.
The monoidal Hom-algebra A#C∗ is nothing else than the Drinfeld double
D(H) = H #H∗. Then we define multiplication by the formula

(h# f)(k # g) = hα2(h(2)(1)) # 〈α∗−2(f), α(h(2)(2)) ⇀ •↼ S−1(α−1(h))〉g.

Now let (H,A,C) be a monoidal Doi Hom-Hopf datum, and Q : C⊗C →
A ⊗ A a twisted convolution invertible map satisfying (5.4)–(5.7). Then Q
induces the map

Q̃ : k → (A# C∗)⊗ (A# C∗).

The braiding on AH̃ (Mk)(H)C translates into a braiding on A#C∗-Hom-
modules. This means that A#C∗ is a quasitriangular monoidal Hom-Hopf-
algebra.
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