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Abstract. Let α, β and γ be algebraic numbers of respective degrees a, b and c over
Q such that α + β + γ = 0. We prove that there exist algebraic numbers α1, β1 and γ1
of the same respective degrees a, b and c over Q such that α1β1γ1 = 1. This proves a
previously formulated conjecture. We also investigate the problem of describing the set
of triplets (a, b, c) ∈ N3 for which there exist finite field extensions K/k and L/k (of a
fixed field k) of degrees a and b, respectively, such that the degree of the compositum
KL over k equals c. Towards another earlier formulated conjecture, under certain natural
assumptions (related to the inverse Galois problem), we show that the set of such triplets
forms a multiplicative semigroup.

1. Introduction. In [3], jointly with Chris Smyth, we proposed the
following problem:

Find all possible triplets (a, b, c) ∈ N3 for which there exist algebraic
numbers α, β, γ, of degrees a, b, c (over Q), respectively, such that

α+ β + γ = 0.

When such α, β, γ exist, we say that (a, b, c) is sum-feasible. For example,
(2, 2, 4) is sum-feasible (take α =

√
2, β =

√
3, γ = −(

√
2 +
√

3)), whereas
(2, 2, 5) is not, since the degree of the sum of two algebraic numbers cannot
exceed the product of their degrees.

This is a natural generalization of the trivial problem with two algebraic
numbers summing to zero which only happens if their degrees are equal.
With three numbers, even for small values of a, b and c it is sometimes
difficult to determine whether (a, b, c) is sum-feasible. See, for instance, the
proof of [2, Theorem 1.1], where, jointly with Florian Luca, we showed that
(6, 6, 8) is not sum-feasible (see also [3, Theorem 38]). In fact, [3, Theorem 5]
combined with [2, Corollary 1.6] provides the description of all sum-feasible
triplets (a, b, c) satisfying a ≤ b ≤ c where b ≤ 7. In particular, by exploiting
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the properties of the projective special linear group PSL(2, 7) of order 168,
we proved that (7, 7, 28) is sum-feasible, although there is no particular
reason for this to happen.

In a similar fashion, we say that a triplet (a, b, c) ∈ N3 is product-feasible
if there are algebraic numbers α, β and γ of respective degrees a, b and c
over Q such that αβγ = 1 (1). We conjectured (see [3, Conjecture 3]) that
if (a, b, c) ∈ N3 is sum-feasible then it is also product-feasible. We can now
prove this conjecture.

Theorem 1.1. If for (a, b, c) ∈ N3 there exist algebraic numbers α, β, γ
of respective degrees a, b, c over Q satisfying

α+ β + γ = 0,

then there also exist algebraic numbers α1, β1, γ1 of respective degrees a, b, c
over Q such that

α1β1γ1 = 1.

Note that the converse of Theorem 1.1 is false, i.e., if (a, b, c) ∈ N3 is
product-feasible then it is not necessarily sum-feasible. This can be easily
seen from the following example. Let

α = (−1− i
√

3)/4, β =
3
√

2, γ = (−1 + i
√

3)/
3
√

2.

Then α, β, γ have degrees 2, 3, 3, respectively, and αβγ = 1. Therefore,
(2, 3, 3) is product-feasible. However, it is not sum-feasible, by the main
theorem of [4]. See [3, Theorem 8] for an infinite family of product-feasible
triplets which are not sum-feasible.

Let k be a field. We say that a triplet (a, b, c) ∈ N3 is compositum-
feasible over k if there exist finite field extensions K/k and L/k of degrees
a and b such that the degree of their compositum KL (over k) is c. In
case k = Q we simply say “compositum-feasible” instead of “compositum-
feasible over Q”. In [3, Theorem 5] and [2, Corollary 1.5] we described all
the compositum-feasible triplets (a, b, c) satisfying a ≤ b ≤ c where b ≤ 7.
Moreover, [2, Theorem 1.4] implies that given a triplet (a, b, c) ∈ N3 one
can in principle find whether it is compositum-feasible or not by performing
a finite calculation with all the subgroups of the full symmetric group Sc
which appear as Galois groups of irreducible polynomials of degree c.

The three feasibility problems are related. For instance, if (a, b, c) ∈ N3

is compositum-feasible then it is also sum-feasible and product-feasible (see
[3, Proposition 1]). The converse is false, since (4, 4, 6) is sum-feasible, but
not compositum-feasible (see, e.g., [3, Proposition 29]).

(1) Note that the equalities α+β+γ = 0 and αβγ = 1 can be replaced by α+β+γ ∈ Q
and αβγ ∈ Q \ {0}, respectively.
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Among other things, in [3] we conjectured that the set of compositum-
feasible triplets forms a multiplicative semigroup:

Conjecture 1.2 (Part of [3, Conjecture 4]). If (a, b, c), (a′, b′, c′) ∈ N3

are compositum-feasible then so is (aa′, bb′, cc′).

Some partial cases of Conjecture 1.2 are given in [3, Lemma 26 and
Corollary 27]. For example, if (a, b, c) is compositum-feasible and p is an
arbitrary prime number then (ap, bp2, cp2) is also compositum-feasible.

In order to state our next result we first recall some basics related to
the so-called inverse Galois problem. Let k be a field, and let G be a finite
group. We say that G occurs as a Galois group over k if there exists a Galois
extension K/k whose Galois group Gal(K/k) is isomorphic to G. Given a
field k the inverse problem of Galois theory (or simply the inverse Galois
problem) asks whether every finite group occurs as a Galois group over k
(see, for instance, [5], [7], [10]). It is believed that in case k = Q (the classical
inverse Galois problem) the answer is affirmative.

Theorem 1.3. If every finite group occurs over Q as a Galois group
then Conjecture 1.2 is true.

Recall that a field k is said to be perfect if every finite extension K/k
is separable. For instance, fields of characteristic zero and finite fields are
perfect. Theorem 1.3 is a corollary of the following result.

Theorem 1.4. Let k be a perfect field. Assume that every finite group
occurs as a Galois group over k. Then for any (a, b, c), (a′, b′, c′) ∈ N3

compositum-feasible over k the triplet (aa′, bb′, cc′) is also compositum-fea-
sible over k.

Note that not every perfect field satisfies the assumption of Theorem 1.4.
For example, only cyclic groups occur as Galois groups over finite fields.

There are fields for which the inverse Galois problem is solved. For in-
stance, Riemann’s existence theorem implies that every finite group occurs
as a Galois group over the field C(t) of rational functions with indeterminate
t and complex coefficients (see, e.g., [5]). Since the field C(t) is perfect (as
it is of characteristic zero), Theorem 1.4 implies the following:

Corollary 1.5. If (a, b, c), (a′, b′, c′) ∈ N3 are compositum-feasible over
C(t) then so is the product (aa′, bb′, cc′).

The proofs of Theorems 1.1 and 1.4 are based on quite different argu-
ments, so they are given in two separate sections.

We remark that, by Propositions 3.1 and 3.2 below, the assumption
in Theorem 1.4 that every finite group occurs as a Galois group over k
can be replaced by the following weaker (but quite technical) condition.
Assume that a triplet (a, b, c) over k is realizable by the fields K,L, so that
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a = [K : k], b = [L : k], c = [KL : k], with G being the Galois group of the
normal closure of KL over k (and similarly that (a′, b′, c′) is realizable by
some fields K ′, L′, so that a′ = [K ′ : k], b′ = [L′ : k], c′ = [K ′L′ : k]). We
will show that then (aa′, bb′, cc′) is compositum-feasible over k if the n-fold
direct product Gn occurs as a Galois group over k, where n is the number of
intermediate fields between k and K ′L′ (including k and K ′L′). At the end
of Section 3 we will show that the number of intermediate fields m in a finite
separable extension F/k of degree d ≥ 2 (including k and F ) is bounded by

(1.1) m ≤ 2 +
∑
`

(
d− 1

`− 1

)
,

where the sum is taken over all divisors ` of d satisfying 1 < ` < d. This
bound is better than the one in [8, Exercise A-30] (i.e. 2d!) and the one in
[12] (i.e. 2d−1).

2. Proof of Theorem 1.1. In the proof we shall use the following
lemma.

Lemma 2.1. Let d and X be positive integers, and let z1, . . . , zd be dis-
tinct complex numbers. Then there is a positive integer k for which the
equality

(2.1) (k + z1)
x1 · · · (k + zd)

xd = 1

does not hold for x1, . . . , xd ∈ Z satisfying |x1|, . . . , |xd| ≤ X unless x1 =
· · · = xd = 0.

Proof. Assume that there are no such k. Note that there are (2X + 1)d

vectors (x1, . . . , xd) ∈ Zd satisfying

(2.2) max
1≤i≤d

|xi| ≤ X.

Hence, for some non-zero vector (x1, . . . , xd) ∈ Zd satisfying (2.2), equality
(2.1) holds for infinitely many positive integers k. Let S ⊂ N be the set of
all such k. Let I and J be the sets of indices i in {1, . . . , d} for which xi are
positive and negative respectively, so that I ∩ J = ∅ and I ∪ J ⊆ {1, . . . , d}.
Without restriction of generality we may assume that x1 > 0, so that 1 ∈ I.

Consider the polynomial

P (z) :=
∏
i∈I

(z + zi)
xi −

∏
j∈J

(z + zj)
−xj ,

where the second product is 1 if the set J is empty. By the definition of S, P
and (2.1), we see that P (k) = 0 for each k ∈ S. However, P is a polynomial,
so P (z) ≡ 0. In particular, from 1 ∈ I and P (−z1) = 0 we deduce that∏
j∈J(−z1 + zj)

−xj = 0, which is impossible in view of zj 6= z1 for j > 1.
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Proof of Theorem 1.1. Let α, β, γ and a, b, c be as in the hypothesis. Also,
let K be the Galois closure of Q(α, β, γ) over Q, and let G = Gal(K/Q).
Set d = [K : Q] = |G|. By the normal basis theorem, there is w ∈ K such
that wj = σj(w), j = 1, . . . , d, where σj runs through all d automorphisms
σ1, . . . , σd of G, is a basis of K. In particular, there are rational numbers
a1, . . . , ad for which

α = a1w1 + · · ·+ adwd.

Similarly, there exist b1, . . . , bd ∈ Q and c1, . . . , cd ∈ Q such that

β = b1w1 + · · ·+ bdwd, γ = c1w1 + · · ·+ cdwd.

Clearly, a = degα is the number of distinct numbers in the list σ(α),
where σ runs through the d automorphisms of G. For each σ ∈ G, we can
write

σ(α) = aσ(1)w1 + · · ·+ aσ(d)wd,

where σ acts a permutation of {1, . . . , d}. As w1, . . . , wd is a basis of K, we
see that a is equal to the number of distinct vectors in the set

A := {(aσ(1), . . . , aσ(d)) : σ ∈ G},
each repeated d/|A| = d/a times. Similarly, the degrees b and c are equal to
the numbers of distinct vectors in

B := {(bσ(1), . . . , bσ(d)) : σ ∈ G}, C := {(cσ(1), . . . , cσ(d)) : σ ∈ G},
respectively. Also, α+ β + γ = 0 implies

(2.3) ai + bi + ci = 0

for each i = 1, . . . , d.
Note that, by replacing the initial w by w + k, where k ∈ Z, we get

α+ (a1 + · · ·+ ad)k instead of α, and similarly β + (b1 + · · ·+ bd)k (instead
of β) and γ + (c1 + · · ·+ cd)k (instead of γ). Hence, the degrees of the new
α, β, γ are a, b, c again. Furthermore, the sum of these new α, β, γ is zero,
by (2.3). Note that by multiplying each α, β, γ by the common denominator
of the numbers a1, . . . , ad, b1, . . . , bd, c1, . . . , cd ∈ Q, we do not change the
degrees a, b, c and the property α + β + γ = 0 still holds. Thus, we can
assume that these 3d numbers are all in Z. Define

(2.4) L := max{|a1|, . . . , |ad|, |b1|, . . . , |bd|, |c1|, . . . , |cd|}.
Consider the following three numbers in K:

α1 := (w1 + k)a1 · · · (wd + k)ad ,

where k > max1≤i≤d |wi| is a positive integer to be chosen later,

β1 := (w1 + k)b1 · · · (wd + k)bd

and
γ1 := (w1 + k)c1 · · · (wd + k)cd .
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In view of (2.3) and wi + k 6= 0 for 1 ≤ i ≤ d, we obtain

(2.5) α1β1γ1 = 1.

It remains to show that for some positive integer k we have degα1 = a,
deg β1 = b and deg γ1 = c. This time, all the conjugates of α1 are

(w1 + k)aσ(1) · · · (wd + k)aσ(d) ,

where σ runs through d permutations of {1, . . . , d}. Evidently, two such num-
bers, say, (w1+k)aσ(1) · · · (wd+k)aσ(d) and (w1+k)aτ(1) · · · (wd+k)aτ(d) , where
σ, τ are permutations of {1, . . . , d}, are equal when the vectors (aσ(1), . . . ,
aσ(d)) and (aτ(1), . . . , aτ(d)) are equal. Hence, degα1 = |A| = a if

(w1 + k)aσ(1) · · · (wd + k)aσ(d) 6= (w1 + k)aτ(1) · · · (wd + k)aτ(d)

whenever the vectors (aσ(1), . . . , aσ(d)) and (aτ(1), . . . , aτ(d)) are distinct. By
Lemma 2.1, with X = 2L and L defined in (2.4), we see that such k ∈ N
can be chosen. Thus, degα1 = a. By the same argument, we have deg β1 =
|B| = b and deg γ1 = |C| = c. This shows the existence of a triplet of
algebraic numbers α1, β1, γ1 of degrees a, b, c, respectively, satisfying (2.5),
and so completes the proof of the theorem.

3. Proof of Theorem 1.4. Let K and L be two field extensions of
a field k which are contained in some common field. Then K is said to
be linearly disjoint from L over k if every finite set of elements of K that
is linearly independent over k is still so over L (see, e.g., [6, p. 360]). It
is well-known (see, e.g., [9, Lemma 20.4]) that if K/k and L/k are finite
extensions then the linear disjointness of K from L over k (and vice versa)
is equivalent to

(3.1) [KL : k] = [K : k] · [L : k].

If L/k is a Galois extension then [KL : k] · [K∩L : k] = [K : k] · [L : k], so the
fields K and L are linearly disjoint if and only if (see [11, Corollary 3.4.5])

(3.2) K ∩ L = k.

The following result is essentially a part of [1, Theorem 4.2]. For the sake
of completeness we give its proof.

Proposition 3.1. Suppose that K is a finite Galois extension of a field k
with Galois group G. Assume that for every positive integer n the n-fold di-
rect product Gn occurs as a Galois group over k. Then for any finite separable
extension F/k there exists a Galois extension L over k with Galois group
isomorphic to G which is linearly disjoint from F over k.

Proof. By (3.2), the linear disjointness of F and a Galois extension L
over k is equivalent to L∩F = k. Therefore, it suffices to prove the existence
of a normal extension L/k with Galois group G and L ∩ F = k.
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Since the extension F/k is finite and separable, the number of interme-
diate fields F ′ satisfying k ⊆ F ′ ⊆ F (including k and F ) is finite, say m. By
hypothesis, there exists a finite Galois extension E/k with Gal(E/k) ∼= Gm.
Define, for each i = 1, . . . ,m,

Ni := {(g1, . . . , gm) ∈ Gm : gi = 1}.
Obviously, Ni is a subgroup of Gm isomorphic to Gm−1. Denote by Ei the
subfield of E corresponding to Ni. The extension Ei/k is normal, since Ni

is a normal subgroup of Gm. Therefore, Gal(Ei/k) ∼= Gm/Ni
∼= G. Hence,

each extension Ei/k is normal and has Galois group isomorphic to G.
We claim that

(3.3) Ei ∩ Ej = k for i 6= j.

Indeed, the intersection subgroup

Ni ∩Nj := {(g1, . . . , gm) ∈ Gm : gi = gj = 1}, i 6= j,

is isomorphic to Gm−2, and therefore Gm/Ni∩Nj
∼= G2. Moreover, as Ni∩Nj

corresponds to the compositum EiEj , by the fundamental theorem of Ga-
lois theory, the index of Ni ∩Nj in Gm equals the degree of EiEj (over k),
i.e.,

[EiEj : k] = |Gm/Ni ∩Nj | = |G2| = [Ei : k] · [Ej : k].

Consequently, [Ei ∩Ej : k] = 1, which yields Ei ∩Ej = k. This proves (3.3).
Now, we claim that at least one of the fields Ei satisfies Ei ∩ F = k.

Indeed, if Ei∩F = Ej ∩F for some distinct i and j then Ei∩F is a subfield
of Ei∩Ej . This, in view of (3.3), implies Ei∩F = k. Alternatively, if all the
subfields Ei ∩ F , i = 1, . . . ,m, are distinct then one of them equals k, since
there are exactly m distinct intermediate fields between k and F , including
k and F .

Note that in the proof of Proposition 3.1 we have used the separability
of F only to ensure that the number of intermediate fields between k and F
is finite.

Proposition 3.2. Suppose that (a, b, c), (a′, b′, c′) ∈ N3 are composi-
tum-feasible over a field k. Assume that there exist finite separable exten-
sions K/k, L/k, K ′/k, L′/k of degrees a, b, a′, b′, respectively, such that
[KL : k] = c and [K ′L′ : k] = c′. Let G = Gal(K ′L′/k). Assume that for ev-
ery positive integer n the n-fold direct product Gn occurs as a Galois group
over k. Then the triplet (aa′, bb′, cc′) is compositum-feasible over k.

Proof. Let H1 and H2 be the subgroups of G fixing the subfields K ′

and L′, respectively. Then [G : H1] = [K ′ : k] = a′ and [G : H2] = [L′ : k]
= b′. Moreover, the subgroup H1 ∩H2 corresponds to the compositum K ′L′

(see, e.g., [6, Chapter 6, Corollary 1.3]). Therefore, by the fundamental the-
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orem of Galois theory, the index of H1 ∩H2 in G equals the degree of K ′L′

(over k). Consequently, [G : H1 ∩H2] = [K ′L′ : k] = c′.

By Proposition 3.1, there exists a Galois extension N/k whose Galois
group is isomorphic to G and which is linearly disjoint from KL over k.
Let K1 and L1 be the subfields of N corresponding to H1 and H2, respec-
tively. Then [K1 : k] = [G : H1] = a′. Similarly, [L1 : k] = [G : H2] = b′

and [K1L1 : k] = [G : H1 ∩ H2] = c′. This yields the linear disjointness of
KL and K1L1. Hence K and K1 are also linearly disjoint over k, since
subextensions of linearly disjoint extensions are linearly disjoint (part of [6,
Proposition 3.1]). Therefore, by (3.1), we obtain

[KK1 : k] = [K : k] · [K1 : k] = aa′

and [KLK1L1 : k] = [KL : k] · [K1L1 : k] = cc′. Similarly, [LL1 : k] = bb′,
since L and L1 are linearly disjoint over k. Thus, (aa′, bb′, cc′) is compositum-
feasible over k.

Let k = Q. In the case of a solvable group G the assertion of Proposi-
tion 3.2 involving the direct product Gn holds, since, by a well-known the-
orem of Shafarevich, every solvable group occurs as a Galois group over Q
(see, e.g., [5, Theorem 0.2.4]).

Proof of Theorem 1.4. Assume that k and (a, b, c), (a′, b′, c′) ∈ N3 satisfy
the condition of the theorem. Then there exist field extensions K/k, L/k,
K ′/k, L′/k of degrees a, b, a′, b′, respectively, such that [KL : k] = c and
[K ′L′ : k] = c′. Since k is perfect, all these extensions are separable. De-
note by G the Galois group of the Galois closure of K ′L′/k. By assumption,
Gn occurs as a Galois group over k for every positive integer n. Hence, by
Proposition 3.2, (aa′, bb′, cc′) is compositum-feasible over k.

In conclusion, we shall prove the upper bound (1.1). It suffices to count
those subfields M , k ⊂ M ⊂ F , different from k and F = k(α), and then
add 2. Let M be such a field, t := [M : k], and let g(x) be the minimal
polynomial of α over M . Note that

d = [F : k] = [F : M ] · [M : k] = [F : M ]t,

so deg g = d/t = `. Following the argument in [8, Proposition 5.3], the
field M is generated by the coefficients of g(x). Since g(x) is a divisor
of the minimum polynomial f(x) of α over k, each M is uniquely deter-
mined by a collection of ` = d/t roots of f(x), one of which is α and the
other ` − 1 roots are its conjugates over k. There are

(
d−1
`−1
)

such collec-

tions, so there are at most
(
d−1
`−1
)

possibilities for extensions M of degree
t = d/`. Summing over all proper divisors ` of d (and adding 2) we obtain
the bound (1.1).



ALGEBRAIC NUMBERS WITH ZERO SUM OR UNIT PRODUCT 167

References

[1] K. Conrad, The Galois correspondence at work, lecture notes, http://www.math.
uconn.edu/̃ kconrad/blurbs/galoistheory/galoiscorrthms.pdf.

[2] P. Drungilas, A. Dubickas and F. Luca, On the degree of compositum of two number
fields, Math. Nachr. 286 (2013), 171–180.

[3] P. Drungilas, A. Dubickas and C. Smyth, A degree problem for two algebraic numbers
and their sum, Publ. Mat. 56 (2012), 413–448.

[4] I. M. Isaacs, Degrees of sums in a separable field extension, Proc. Amer. Math. Soc.
25 (1970), 638–641.

[5] C. U. Jensen, A. Ledet and N. Yui, Generic Polynomials. Constructive Aspects of
the Inverse Galois Problem, Cambridge Univ. Press, Cambridge, 2002.

[6] S. Lang, Algebra, 3rd revised ed., Grad. Texts in Math. 211, Springer, New York,
2002.

[7] G. Malle and B. H. Matzat, Inverse Galois Theory, Springer, Berlin, 1999.
[8] J. S. Milne, Fields and Galois theory, course notes, http://www.jmilne.org/math/

CourseNotes/FT.pdf.
[9] P. Morandi, Field and Galois Theory, Springer, New York, 1996.

[10] H. Völklein, Groups as Galois Groups. An Introduction, Cambridge Univ. Press,
Cambridge, 1996.

[11] S. H. Weintraub, Galois Theory, 2nd. ed., Springer, New York, 2009.
[12] http://math.stackexchange.com/questions/522976/.

Paulius Drungilas
Department of Mathematics
and Informatics
Vilnius University
Naugarduko 24
Vilnius LT-03225, Lithuania
E-mail: pdrungilas@gmail.com
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