ACTA ARITHMETICA 172.1 (2016)

Points de hauteur bornée sur les hypersurfaces lisses des variétés toriques

par

TEDDY MIGNOT (Grenoble)

1. Introduction. La conjecture de Manin sur le comportement asymptotique du nombre de points de hauteur bornée des variétés algébriques a récemment été démontrée par Schindler pour le cas des hypersurfaces des espaces biprojectifs par des arguments généralisant la méthode du cercle telle qu'elle a été utilisée par Birch pour le cas des hypersurfaces des espaces projectifs. Une idée naturelle est alors de chercher à généraliser la méthode de Schindler à des hypersurfaces de variétés toriques plus générales dont le groupe de Picard a pour rang 2.

On considère une variété torique complète lisse $X = X(\Delta)$ de dimension *n* définie par le réseau $N = \mathbb{Z}^n$ et un éventail Δ ayant n+2 arêtes engendrées par des vecteurs notés $v_0, v_1, \ldots, v_n, v_{n+1} \in \mathbb{R}^n$. De telles variétés ont été classifiées par Kleinschmidt [K]. Nous supposerons par ailleurs que le groupe de Picard Pic(X) et le cône effectif C_{Eff}^1 de X sont engendrées par les classes de diviseurs associés aux arêtes de 2 vecteurs générateurs de l'éventail, disons v_0 et v_{n+1} . Pour des raisons pratiques, nous supposerons que

$$v_0 = -\sum_{i=1}^m v_i$$
 et $v_{n+1} = -\sum_{i=r+1}^n v_i$

pour des entiers r, m tels que $0 \le r \le m \le n$. On note D_0 et D_{n+1} les diviseurs associés à v_0 et v_{n+1} , et $[D_0], [D_{n+1}]$ leurs classes dans $\operatorname{Pic}(X)$. On peut alors écrire

$$\operatorname{Pic}(X) = \mathbb{Z}[D_0] \oplus \mathbb{Z}[D_{n+1}], \quad C_{\operatorname{Eff}}^1 = \mathbb{R}^+[D_0] + \mathbb{R}^+[D_{n+1}],$$

et la classe du diviseur anticanonique de X est

$$[-K_X] = (m+1)[D_0] + (n-r+1)[D_{n+1}].$$

Received 8 January 2015; revised 27 July 2015. Published online 10 December 2015.

²⁰¹⁰ Mathematics Subject Classification: 11D45, 11D72, 11P55.

Key words and phrases: points of bounded height, hypersurfaces, toric varieties, circle method, major arcs, minor arcs.

T. Mignot

D'autre part, pour $d_1, d_2 \in \mathbb{N}$ fixés considérons un diviseur de classe $d_1[D_0] + d_2[D_{n+1}]$ et une hypersurface Y de dimension supposée supérieure ou égale à 3, définie par une section de ce diviseur. On supposera que l'hypersurface choisie est lisse. La classe du diviseur anticanonique de Y est alors donnée par

$$[-K_Y] = (m+1-d_1)[\tilde{D}_0] + (n-r+1-d_2)[\tilde{D}_{n+1}],$$

où D_0 et D_{n+1} désignent les diviseurs induits par D_0 et D_{n+1} sur Y. En utilisant par exemple la construction décrite par Salberger [Sa, §10], on peut construire explicitement la hauteur H sur X associée à $(n_1 - d_1)[D_0] + (n_2 - d_2)[D_{n+1}]$. Elle induit une hauteur sur Y qui est la hauteur associée à $[-K_Y]$, et que l'on notera encore H. L'objectif est alors de donner une formule asymptotique pour le nombre

$$\mathcal{N}_U(B) = \operatorname{card}\{P \in Y(\mathbb{Q}) \cap U \mid H(P) \le B\},\$$

pour un ouvert U bien choisi. Plus précisément, nous allons montrer que $\mathcal{N}_U(B)$ vérifie la conjecture de Manin, i.e. que pour r et n-m assez grands (condition analogue à celle donnée par Birch [Bi] pour les hypersurfaces de l'espace projectif), ce cardinal est de la forme

$$\mathcal{N}_U(B) = C_H(Y)B\log(B) + O(B),$$

où $C_H(Y)$ est la constante conjecturée par Peyre.

La variété torique X peut être définie comme le quotient de

$$X_1 = (\mathbb{A}^{r+1} \setminus \{\mathbf{0}\}) \times ((\mathbb{A}^{m-r} \times \mathbb{A}^{n-m+1}) \setminus \{\mathbf{0}\}) \subset \mathbb{A}^{n+2}$$

par l'action du tore $\mathbb{C}^*\times\mathbb{C}^*$ définie par

$$\forall (\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z}) \in X_1, \, \forall (\lambda, \mu) \in \mathbb{C}^* \times \mathbb{C}^*, \quad (\lambda, \mu) \cdot (\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z}) = (\lambda \boldsymbol{x}, \lambda \mu \boldsymbol{y}, \mu \boldsymbol{z}).$$

Notons $\pi : X_1 \to X$ la projection canonique. L'hypersurface Y de X est alors $\pi(Y_1)$ où Y_1 est l'hypersurface de X_1 donnée par une équation $F(\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z}) = 0$, où F est un polynôme homogène de degré d_1 (resp. d_2) en $(\boldsymbol{x}, \boldsymbol{y})$ (resp. $(\boldsymbol{y}, \boldsymbol{z})$). En notant

$$(1.1) \quad V_1^* = \left\{ (\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z}) \in \mathbb{A}^{n+2} \middle| \forall i \in \{0, \dots, r\}, \frac{\partial F}{\partial x_i} (\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z}) = 0, \\ \forall j \in \{r+1, \dots, m\}, \frac{\partial F}{\partial y_j} (\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z}) = 0 \right\}, \\ (1.2) \quad V_2^* = \left\{ (\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z}) \in \mathbb{A}^{n+2} \middle| \forall j \in \{r+1, \dots, m\}, \frac{\partial F}{\partial y_j} (\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z}) = 0, \\ \forall k \in \{m+1, \dots, n+1\}, \frac{\partial F}{\partial z_k} (\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z}) = 0 \right\},$$

nous démontrons le résultat ci-dessous :

THÉORÈME 1.1. Pour $d_1 \ge 2, d_2 \ge 1$, pour tous n, m, r tels que $n + 2 - \max\{\dim V_1^*, \dim V_2^*\} > 13d_2(d_1 + d_2)2^{d_1 + d_2}$

et $r \geq 6d_1 - 3$, il existe un ouvert U tel que

 $\mathcal{N}_U(B) = C_H(Y)B\log(B) + O(B)$

lorsque $B \to \infty$, où $C_H(Y)$ est la constante conjecturée par Peyre.

Pour la construction de l'ouvert U, nous renvoyons le lecteur à la formule (6.10). Remarquons que ce théorème implique en particulier que le principe de Hasse est vérifié par les hypersurfaces considérées.

Dans la section 2 nous fixons précisément le cadre de notre étude. Nous y décrivons entre autres les variétés toriques auxquelles nous nous intéresserons, l'expression de la hauteur, et la forme des équations définissant les hypersurfaces. Nous montrons que le calcul de $\mathcal{N}_U(B)$ peut se ramener à celui de

$$N_{d,U}(B) = \operatorname{card}\left\{ (\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z}) \in (\mathbb{Z}^{r+1} \times \mathbb{Z}^{m-r} \times \mathbb{Z}^{n-m+1}) \cap U \ \middle| \ \boldsymbol{x} \neq \boldsymbol{0}, \\ (\boldsymbol{y}, \boldsymbol{z}) \neq (\boldsymbol{0}, \boldsymbol{0}), \ F(d\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z}) = 0, \ |\boldsymbol{x}|^{m+1-d_1} \max\left(\frac{|\boldsymbol{y}|}{d|\boldsymbol{x}|}, |\boldsymbol{z}|\right)^{n-r+1-d_2} \leq B \right\}.$$

La méthode utilisée pour évaluer les $N_{d,U}(B)$ est fortement inspirée de celle développée par Schindler [Sch2] pour traiter le cas des hypersurfaces des espaces biprojectifs. Cette méthode consiste dans un premier temps à donner une formule asymptotique pour le nombre $N_{d,U}(P_1, P_2)$ de points $(\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z})$ de $U \cap \mathbb{Z}^{n+2}$ tels que $|\boldsymbol{x}| \leq P_1$ et $\max(\frac{|\boldsymbol{y}|}{d|\boldsymbol{x}|}, |\boldsymbol{z}|) \leq P_2$ pour des bornes P_1, P_2 fixées.

Dans la section 3, en utilisant des arguments issus de la méthode du cercle, on établit une formule asymptotique pour $N_{d,U}(P_1, P_2)$ lorsque P_1 et P_2 sont «relativement proches» en un sens que nous préciserons. Dans la section 4 (resp. 5), pour un $\boldsymbol{x} \in \mathbb{Z}^{r+1}$ (resp. $\boldsymbol{z} \in \mathbb{Z}^{n-m+1}$) fixé, on donne une formule asymptotique pour le nombre de points $(\boldsymbol{y}, \boldsymbol{z})$ (resp. $(\boldsymbol{x}, \boldsymbol{y})$) vérifiant $F(d\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z}) = 0$ tels que $\max(\frac{|\boldsymbol{y}|}{d|\boldsymbol{x}|}, |\boldsymbol{z}|) \leq P_2$ (resp. $|\boldsymbol{x}| \leq P_1$), en utilisant à nouveau la méthode du cercle. Les résultats obtenus combinés avec ceux de la section 2 nous permettrons dans la section 6 d'établir une formule asymptotique pour $N_{d,U}(P_1, P_2)$ avec P_1, P_2 quelconques.

Dans la section 7, on utilise les résultats établis par Blomer et Brüdern [B-B] pour conclure quant à la valeur de $N_{d,U}(B)$ à partir des estimations obtenues dans les sections précédentes. Enfin, dans la section 8, on conclut en démontrant le théorème 1.1 donnant une formule asymptotique pour $\mathcal{N}_U(B)$. On vérifie en particulier que la constante obtenue est bien celle avancée par Peyre [Pe].

2. Préliminaires

2.1. Notations et premières propriétés. Rappelons les définitions suivantes :

DÉFINITION 2.1. Étant donné un réseau N, un éventail est un ensemble Δ de cônes polyédrique de $N_{\mathbb{R}} = N \otimes \mathbb{R}$ vérifiant :

- (1) pour tout cône $\sigma \in \Delta$, on a $0 \in \sigma$;
- (2) toute face d'un cône de Δ est un cône de Δ ;
- (3) l'intersection de deux cônes de Δ est une face de chacun de ces cônes.

On dit de plus que l'éventail est

- complet si $\bigcup_{\sigma \in \Delta} \sigma = N_{\mathbb{R}}$,
- régulier si chaque cône de Δ est engendré par une famille de vecteurs pouvant être complétée en une base de $N_{\mathbb{R}}$.

Pour tout éventail Δ nous noterons Δ_{\max} l'ensemble des cônes de dimension maximale, et pour tout cône $\sigma \in \Delta$, on notera $\sigma(1)$ l'ensemble des vecteurs générateurs des arêtes de σ . Pour un cône polyhédral σ de $N_{\mathbb{R}}$ donné on définit le semi-groupe

$$S_{\sigma} = \sigma^{\vee} \cap N^{\vee},$$

où σ^{\vee} (resp. $N^{\vee} = M$) désigne le cône (resp. réseau) dual de σ (resp. N). La variété torique affine sur un corps k associée à σ est la variété affine

(2.1)
$$U_{\sigma} = \operatorname{Spec}(k[S_{\sigma}]).$$

On remarque que si σ, τ sont deux cônes de $N_{\mathbb{R}}$, alors

$$\tau \subset \sigma \; \Rightarrow \; U_\tau \subset U_\sigma.$$

Étant donné un réseau N et un éventail Δ , on définit une variété algébrique $X = X(\Delta)$ sur k par recollement des ouverts U_{σ} pour $\sigma \in \Delta$. Nous renvoyons le lecteur à [F, §§1–3] pour plus de détails sur les variétés toriques. Remarquons que la variété $X(\Delta)$ est lisse (resp. complète) si Δ est régulier (resp. complet).

Nous allons considérer une variété torique X de dimension n définie par un éventail Δ à d = n + r arêtes dont les générateurs seront notés dans cette section $v_1, \ldots, v_n, v_{n+1}, \ldots, v_{n+r} \in \mathbb{Z}^n$, et un réseau $N = \mathbb{Z}^n$. On note $D_1, \ldots, D_n, \ldots, D_{n+r}$ les diviseurs associés aux vecteurs générateurs (voir [F, §3.3]). Rappelons que dans le cas où X est lisse, le groupe de Picard de X est de rang r. Pour simplifier nous allons imposer une première condition aux variétés toriques que nous considérerons : nous nous intéresserons exclusivement aux variétés toriques complètes lisses dont le cône effectif est simplicial et que tout diviseur effectif soit combinaison linéaire de r diviseurs D_i , disons $[D_{n+1}], \ldots, [D_{n+r}]$. Une première question naturelle est si ceci peut se traduire en termes de propriétés sur les cônes de l'éventail. Nous allons répondre à cette question dans ce qui va suivre.

On souhaite donc avoir, pour tout $i \in \{1, \ldots, n\}$,

$$[D_i] = \sum_{j=1}^{'} a_{i,j} [D_{n+j}]$$

avec $a_{i,j} \in \mathbb{N}$ pour tous i, j. Ceci équivaut à dire qu'il existe des entiers naturels $a_{i,j}$ tels que les diviseurs $D_i - \sum_{j=1}^r a_{i,j} D_{n+j}$ soient principaux pour tous $i \in \{1, \ldots, n\}$. Rappelons que les diviseurs principaux de X sont exactement les diviseurs div (χ^u) associés aux caractères χ^u du tore de X (voir [F]) pour $u \in M = N^{\vee} = \mathbb{Z}^n$ définis par

$$\operatorname{div}(\chi^u) = \sum_{k=1}^{n+r} \langle u, v_k \rangle D_k.$$

On cherche donc des vecteurs $u_1, \ldots, u_n \in \mathbb{Z}^n$ tels que pour tous $i, j \in \{1, \ldots, n\}$,

(2.2)
$$\langle u_i, v_j \rangle = \delta_{i,j}$$

(i.e. (u_1, \ldots, u_n) est la base duale de (v_1, \ldots, v_n) au sens des espaces vectoriels) et

$$(2.3) \qquad \langle u_i, v_k \rangle \le 0$$

pour tout $k \in \{n+1, \ldots, n+r\}$. Ceci implique en particulier que (v_1, \ldots, v_n) est une famille génératrice d'un cône maximal (i.e. de dimension n) de Δ . En effet, puisque Δ est complet, si le cône $C\langle v_1, \ldots, v_n \rangle$ engendré par v_1, \ldots, v_n n'est pas un cône maximal de Δ , alors il existe $j \in \{1, \ldots, n\}$ tel que $v_{n+j} \in$ $C\langle v_1, \ldots, v_n \rangle$, donc il existe des coefficients $\alpha_i \geq 0$ non tous nuls tels que $v_{n+j} = \sum_{i=1}^n \alpha_i v_i$. Mais ceci implique

$$\forall k \in \{1, \dots, n\}, \quad \langle u_k, v_{n+j} \rangle = \left\langle u_k, \sum_{i=1}^n \alpha_i v_i \right\rangle = \alpha_k,$$

et donc d'après (2.3),

 $\forall k \in \{1, \dots, n\}, \quad \alpha_k \le 0,$

d'où contradiction. Donc $C\langle v_1, \ldots, v_n \rangle$ est bien un cône maximal de Δ .

Puisque l'on a supposé que X est lisse, (v_1, \ldots, v_n) est alors une base du réseau \mathbb{Z}^n dont (u_1, \ldots, u_n) est la base duale (au sens des réseaux). La condition (2.3) impose d'autre part que pour cette base duale (u_1, \ldots, u_n) ,

$$\forall k \in \{n+1, \dots, n+r\}, \quad \langle u_i, v_k \rangle \le 0$$

Une condition nécessaire et suffisante pour que ceci soit vérifié est que

$$v_{n+1}, \ldots, v_{n+r} \in C\langle -v_1, \ldots, -v_n \rangle$$

où $C\langle -v_1, \ldots, -v_n \rangle$ désigne le cône de \mathbb{R}^n engendré par $-v_1, \ldots, -v_n$.

REMARQUE 2.2. Si l'on note

$$\forall k \in \{1, \dots, r\}, \quad v_{n+k} = -\sum_{i=1}^{n} a_{i,k} v_i,$$

avec $a_{i,k} \in \mathbb{N}$, on vérifie qu'alors

$$\forall i \in \{1, \dots, n\}, \quad [D_i] = \sum_{k=1}^r a_{i,k} [D_{n+k}].$$

2.2. Hauteurs sur les hypersurfaces de variétés toriques. Etant donnée une variété torique complète lisse X définie par un éventail Δ à n+rarêtes et un réseau $N = \mathbb{Z}^n$, dont le groupe de Picard et le cône effectif sont engendrés par $[D_{n+1}], \ldots, [D_{n+r}]$ (cf. section précédente), on considère la classe du diviseur anticanonique de X qui sera de la forme

$$[-K_X] = \sum_{i=1}^{n+r} [D_i] = \sum_{k=1}^r n_k [D_{n+k}]$$

avec $n_1, \ldots, n_r \in \mathbb{N}$. On considère alors un diviseur de classe $\sum_{k=1}^r d_k[D_{n+k}]$ avec $d_1, \ldots, d_r \in \mathbb{N}$. Une section globale *s* du fibré en droites associé à ce diviseur sur *X* permet de définir une hypersurface de *X* que l'on notera *Y*. La classe du diviseur anticanonique sur *Y* sera induite par la classe du diviseur

(2.4)
$$D_0 = \sum_{k=1}^r (n_k - d_k) D_{n+k}.$$

Nous allons donner une construction de la hauteur associée à $\mathcal{O}(D_0)$ sur X. Pour cela, nous utiliserons la construction des hauteurs sur les variétés toriques décrite par Salberger [Sa].

Soit ν une place sur \mathbb{Q} , et $|\cdot|_{\nu} : \mathbb{Q}^* \to \mathbb{R}^+$ la valeur absolue associée. On pose, comme dans la section précédente, $N = \mathbb{Z}^n$, $M = N^{\vee} = \mathbb{Z}^n$ et $U(\mathbb{Q}_{\nu})$ le tore $\operatorname{Hom}(M, \mathbb{Q}_{\nu}^*)$ qui peut être identifié avec un ouvert dense de Zariski de $X(\mathbb{Q}_{\nu})$ à condition de fixer un point de cet ouvert. L'application $\log |\cdot|_{\nu} : \mathbb{Q}_{\nu}^* \to \mathbb{R}$ induit un morphisme $L : U(\mathbb{Q}_{\nu}) \to N_{\mathbb{R}} = \mathbb{R}^n$. Pour tout $\sigma \in \Delta$, $L^{-1}(-\sigma)$ est un sous-ensemble fermé de $U(\mathbb{Q}_{\nu})$. On note alors $C_{\sigma,\nu}$ l'adhérence de $L^{-1}(-\sigma)$ dans $X(\mathbb{Q}_{\nu})$. On utilise ces ensembles $C_{\sigma,\nu}$ pour construire une norme $\|\cdot\|_{D,\nu}$ sur $\mathcal{O}(D)$ pour tout diviseur de Weil D sur X, via la proposition suivante :

PROPOSITION 2.3 ([Sa, Proposition 9.2]). Soit $D = \sum_{i=1}^{n+r} a_i D_i$ un diviseur de Weil sur X et s une section locale analytique de $\mathcal{O}(D)$ définie en $P \in X(\mathbb{Q}_{\nu})$. Le point $P \in X(\mathbb{Q}_{\nu})$ appartient à $C_{\sigma,\nu}$ pour un certain $\sigma \in \Delta$. Soit $\chi^{u(\sigma)}$ un caractère sur U représentant le diviseur de Cartier correspon-

dant à D sur U_{σ} (i.e. $\langle u(\sigma), v_i \rangle = -a_i$ pour tout $v_i \in \sigma(1)$). On pose alors $\|s(P)\|_{D,\nu} = |s(P)\chi^{u(\sigma)}(P)|_{\nu},$

et cette expression est indépendante du choix de $\sigma \in \Delta$ tel que $P \in C_{\sigma,\nu}$.

La proposition suivante nous sera utile par la suite.

PROPOSITION 2.4 ([Sa, Proposition 9.8]). Soit $D = \sum_{i=1}^{n+r} a_i D_i$ un diviseur de Weil sur X tel que $\mathcal{O}(D)$ est engendré par ses sections globales. Pour $\sigma \in \Delta_{\max}$, si $\chi^{-u(\sigma)}$ désigne l'unique caractère sur U qui engendre $\mathcal{O}(D)$ sur U_{σ} (i.e. $\langle u(\sigma), v_i \rangle = -a_i$ pour tout $v_i \in \sigma(1)$), alors $\chi^{-u(\sigma)}$ est une section globale de $\mathcal{O}(D)$ et $\chi^{-u(\sigma)}(P) \neq 0$ pour tout $P \in U_{\sigma}(\mathbb{Q}_{\nu})$. Si s est une section locale de $\mathcal{O}(D)$ définie en $P \in X(\mathbb{Q}_{\nu})$, alors

$$||s(P)||_{D,\nu} = \inf_{\sigma \in \Delta_{\max}} |s(P)\chi^{u(\sigma)}(P)|_{\nu},$$

où Δ_{\max} désigne l'ensemble des cônes de Δ de dimension n. De plus, si D est ample et $\sigma \in \Delta_{\max}$, alors $C_{\sigma,\nu}$ est l'ensemble des $P \in X(\mathbb{Q}_{\nu})$ tels que $|\chi^{u(\sigma)-u(\tau)}(P)|_{\nu} \leq 1$ pour tout $\tau \in \Delta_{\max}$.

On peut alors définir la hauteur associée à un diviseur D. Si $D = \sum_{i=1}^{n+r} a_i D_i$ est un diviseur de Weil sur X et $P \in X(\mathbb{Q})$, la hauteur associée à D est l'application $H_D: X(\mathbb{Q}) \to [0, \infty]$ définie par

$$H_D(P) = \prod_{\nu \in \operatorname{Val}(\mathbb{Q})} \|s(P)\|_{D,\nu}^{-1},$$

où Val(\mathbb{Q}) désigne l'ensemble des places de \mathbb{Q} , et *s* une section locale de $\mathcal{O}(D)$ définie en *P* telle que $s(P) \neq 0$.

REMARQUE 2.5. Comme on peut le voir dans [Sa, Proposition 10.12], pour tout $P \in U(\mathbb{Q})$, $H_D(P)$ ne dépend que de la classe de D dans $\operatorname{Pic}(X)$.

Par la suite, on notera H la hauteur sur X associée au diviseur D_0 défini par (2.4). Notre objectif sera alors d'évaluer

$$\mathcal{N}_{V}(B) = \operatorname{card}\{P \in V(\mathbb{Q}) \cap Y(\mathbb{Q}) \mid H(P) \le B\}$$

pour un certain ouvert dense $V \subset U$ de X. Pour évaluer cette quantité il est plus pratique de se ramener à compter le nombre de points de hauteur bornée sur un torseur universel (voir [Sa, §3] pour la définition) associé à X. Pour les variétés toriques, la construction du torseur universel est relativement simple et est donnée dans [Sa, §8]. Nous allons rappeler cette construction.

On considère le réseau $N_0 = \mathbb{Z}^{n+r}$ et $M_0 = N_0^{\vee} = \mathbb{Z}^{n+r}$. À tout générateur v_i d'une arête du cône Δ on associe l'élément $e_{0,i}$ de la base canonique de $N_0 = \mathbb{Z}^{n+r}$. On pose alors $N_1 = N_0$ et on note Δ_1 l'éventail constitué de tous les cônes engendrés par les $e_{0,i}$. La variété torique X_1 déterminée par (N_1, Δ_1) est alors l'espace affine \mathbb{A}^{n+r} . Pour tout $\sigma \in \Delta$, on note d'autre part σ_0 le

T. Mignot

cône de $N_{0,\mathbb{R}}$ engendré par les $e_{0,i}$ pour i tels que $v_i \in \sigma$. Les cônes σ_0 ainsi associés forment alors un éventail régulier Δ_0 de $N_{0,\mathbb{R}}$ (cf. [Sa, Proposition 8.4]), et (Δ_0, N_0) définit une variété torique $X_0 \subset X_1$. Soit $U_{0,\sigma} = \text{Spec}(\mathbb{Q}[S_{\sigma_0}])$ où $S_{\sigma_0} = \sigma_0^{\vee} \cap M_0$. Les morphismes toriques $\pi_{\sigma} : U_{0,\sigma} \to U_{\sigma}$ définis par les applications naturelles de σ_0 sur σ se recollent en un morphisme $\pi : X_0 \to X$ qui est alors un torseur universel sur X (cf. [Sa, Proposition 8.5]).

Étant donné que $X_0 \subset X_1 = \mathbb{A}_{\mathbb{Q}}^{n+r}$, les points de X_0 s'écrivent sous forme de (n+r)-uplets de coordonnées $\boldsymbol{x} = (x_1, \ldots, x_n, x_{n+1}, \ldots, x_{n+r})$. On notera alors, pour tout diviseur $D = \sum_{i=1}^{n+r} a_i D_i$,

$$\boldsymbol{x}^D = \prod_{i=1}^{n+r} x_i^{a_i}.$$

REMARQUE 2.6. Si $\sigma \in \Delta$, on note

$$\underline{\sigma} = \sum_{i \mid v_i \notin \sigma(1)} D_i$$

Alors $U_{0,\sigma}$ est l'ouvert de X_1 déterminé par $x^{\underline{\sigma}} \neq 0$, et donc X_0 est l'ouvert de X_1 défini par

$$\boldsymbol{x} \in X_0 \iff \exists \sigma \in \Delta_{\max}, \, \boldsymbol{x}^{\underline{\sigma}} \neq 0.$$

En rappelant que $D_0 = \sum_{k=1}^r (n_k - d_k) D_{n+k}$, on définit alors les diviseurs $D(\sigma)$ associés :

DÉFINITION 2.7. Soit $\sigma \in \Delta_{\max}$, et soit $\chi^{u(\sigma)}$ le caractère de U tel que $\chi^{-u(\sigma)}$ engendre $\mathcal{O}(D_0)$ sur U_{σ} . On pose alors

$$D(\sigma) = D_0 + \sum_{v_i \in \sigma(1)} \langle -u(\sigma), v_i \rangle D_i.$$

REMARQUE 2.8. Les diviseurs $D(\sigma)$ ne dépendent que de la classe de D_0 dans $\operatorname{Pic}(X)$.

LEMME 2.9. Soit $\sigma \in \Delta_{\max}$. Si $\mathcal{O}(D_0)$ est engendré par ses section globales, alors $\chi^{-u(\sigma)}$ est une section globale de $\mathcal{O}(D_0)$, et $D(\sigma)$ est un diviseur effectif à support contenu dans $\bigcup_{v,\notin\sigma(1)} D_i$.

Démonstration. Si $\mathcal{O}(D_0)$ est engendré par ses sections globales alors, pour tout $\sigma \in \Delta_{\max}$, il existe une section globale de $\mathcal{O}(D_0)$ qui engendre $\mathcal{O}(D_0)$ sur U_{σ} . Or, U_{σ} est un espace affine, donc à multiplication par un scalaire près, il existe une unique section locale qui engendre $\mathcal{O}(D_0)$ sur U_{σ} . Donc la section locale $\chi^{-u(\sigma)}$ est en fait une section globale.

Par conséquent, d'après la description de $\Gamma(X, D_0)$ donnée dans [F, p. 68] on a

$$\langle -u(\sigma), v_i \rangle \ge -a_i$$

où $a_i = 0$ pour tout $i \in \{1, \ldots, n\}$ et $a_{n+k} = n_k - d_k$ pour tout $k \in \{1, \ldots, r\}$.

De plus, on a $\langle -u(\sigma), v_i \rangle = -a_i$ pour tout *i* tel que $v_i \in \sigma(1)$. Donc $D(\sigma)$ est bien effectif et à support contenu dans $\bigcup_{v_i \notin \sigma(1)} D_i$.

Nous pouvons à présent définir une fonction hauteur H_0 sur $X_0(\mathbb{Q})$ en posant simplement $H_0 = H \circ \pi$.

PROPOSITION 2.10. On suppose que $\mathcal{O}(D_0)$ est engendré par ses sections globales. Avec les notation ci-dessus, on a

$$\forall P_0 = \boldsymbol{x} \in X_0(\mathbb{Q}), \quad H_0(P_0) = \prod_{\nu \in \operatorname{Val}(\mathbb{Q})} \sup_{\sigma \in \Delta_{\max}} |\boldsymbol{x}^{D(\sigma)}|_{\nu}$$

Démonstration. La démonstration est directement inspirée de la preuve de [Sa, Proposition 10.14]. On considère un point $P_0 \in X_0(\mathbb{Q}), P = \pi(P_0),$ et $\tau \in \Delta_{\max}$ tel que $P \in U_{\tau}$. Alors $\chi^{-u(\tau)}$ est une section locale définie en $P \in U_{\tau}$, et $\|\chi^{-u(\tau)}(P)\|_{D_0,\nu} = \inf_{\sigma \in \Delta_{\max}} |\chi^{u(\sigma)-u(\tau)}|_{\nu}$.

Remarquons que puisque $P \in U_{\tau}$, d'après le lemme 2.9, $\boldsymbol{x}^{D(\tau)} \neq 0$ (étant donné que $D(\tau)$ est effectif à support contenu dans $\bigcup_{v: \notin \sigma(1)} D_i$), et que

$$\frac{\boldsymbol{x}^{D(\sigma)}}{\boldsymbol{x}^{D(\tau)}} = \chi^{u(\tau) - u(\sigma)}(P).$$

Par conséquent, si s désigne la section locale $\chi^{-u(\tau)}$, on a

$$\|s(P)\|_{D_0,\nu}^{-1} = \sup_{\sigma \in \Delta_{\max}} \left| \frac{\boldsymbol{x}^{D(\sigma)}}{\boldsymbol{x}^{D(\tau)}} \right|_{\nu}.$$

De plus, par la formule du produit, on a $\prod_{\nu \in Val(\mathbb{Q})} |x^{D(\tau)}|_{\nu} = 1$, d'où le résultat.

De la même manière que nous avons construit X_0 , on peut construire un \mathbb{Z} -torseur universel sur la variété \tilde{X} sur \mathbb{Z} obtenue à partir des ouverts affines $\tilde{U}_{\sigma} = \operatorname{Spec}(\mathbb{Z}[S_{\sigma}])$ (voir [Sa, p. 207]). On notera ce torseur $\tilde{\pi} : \tilde{X}_0 \to \tilde{X}$. On considère alors la proposition suivante (issue de [Sa, Proposition 11.3]) :

PROPOSITION 2.11. Soit $P_0 = \mathbf{x} \in X_0(\mathbb{Q})$ qui se relève en un \mathbb{Z} -point $\tilde{P}_0 = \tilde{\mathbf{x}} \ de \ \tilde{X}_0$. Alors

$$H_0(P_0) = \sup_{\sigma \in \Delta_{\max}} |\tilde{\boldsymbol{x}}^{D(\sigma)}|,$$

 $o\hat{u} \mid \cdot \mid d\hat{e}$ signe la valeur absolue usuelle sur \mathbb{R} .

Alors

Plutôt que de compter les \mathbb{Q} -points de hauteur bornée de X, nous allons compter les \mathbb{Z} -points de \tilde{X}_0 en utilisant le lemme ci-dessous :

LEMME 2.12 ([Sa, démonstration du Lemme 11.4a)]). Pour $m \in \mathbb{N}$, soient

$$c(m) = \operatorname{card} \{ P \in U(\mathbb{Q}) \mid H(P) = m \},$$

$$c_0(m) = \operatorname{card} \{ P \in \tilde{X}_0 \cap U_0(\mathbb{Q}) \mid H_0(P_0) = m \}.$$

$$c(m) = c_0(m)/2^r.$$

Ainsi, étant donné un ouvert de Zariski V de X, si l'on note

$$\mathcal{N}_{0,V}(B) = \operatorname{card}\{P_0 \in \tilde{Y}_0(\mathbb{Z}) \cap U_0(\mathbb{Q}) \cap \pi^{-1}(V) \mid H_0(P_0) \le B\}$$

(où \tilde{Y}_0 est l'hypersurface de \tilde{X}_0 correspondant à l'hypersurface Y de X), on a

$$\mathcal{N}_V(B) = \mathcal{N}_{0,V}(B)/2^r.$$

Nous chercherons donc dorénavant à évaluer $\mathcal{N}_{0,V}(B)$. Nous allons le faire pour le cas des variétés toriques complètes lisses à n+2 générateurs (i.e. cas où r = 2). Nous allons d'abord, dans la section suivante, décrire ces variétés, puis construire la hauteur sur les torseurs universels correspondants.

2.3. Cas des variétés toriques à n + 2 générateurs. On considère n + 2 vecteurs $v_0, v_1, \ldots, v_n, v_{n+1} \in \mathbb{Z}^n$ tels que (v_1, \ldots, v_n) forme une base de \mathbb{Z}^n et

$$\begin{cases} v_0 = -\sum_{i=1}^r v_i - \sum_{i=r+1}^m a_i v_i, \\ v_{n+1} = -\sum_{i=r+1}^n v_i, \end{cases}$$

où $1 \le r \le m \le n$, et $a_i \in \mathbb{Z}$. On pose $I = \{0, \ldots, r\}$ et $J = \{r+1, \ldots, n+1\}$. On considère l'éventail Δ défini par les cônes maximaux :

$$\sigma_{i,j} = C \langle (v_k)_{k \in I, \, k \neq i}, (v_l)_{l \in J, \, l \neq j} \rangle$$

pour tous $i \in I$ et $j \in J$. D'après [K, Théorème 1], toute variété torique complète lisse dont l'éventail Δ admet n + 2 arêtes est isomorphe à une variété torique de ce type pour un certain $(r, m, (a_i)_{i \in \{r+1, \dots, m\}})$ fixé.

Dans ce qui va suivre, nous nous intéresserons exclusivement à la sousfamille de ces variétés définies par $a_{r+1} = \cdots = a_m = 1$ de sorte que $v_0 = -\sum_{i=1}^m v_i$. Pour cette sous-famille, les hypersurfaces considérées auront la particularité d'être définies par des polynômes homogènes en certaines variables, ce qui sera utile pour pouvoir appliquer les méthodes de différenciations utilisées par Schindler [Sch1], [Sch2].

Remarquons que dans ce cas précis, d'après les résultats obtenus dans la section 2.1, si, pour tout $i \in \{0, 1, ..., n\}$, D_i désigne le diviseur associé à v_i , on a

$$\begin{bmatrix} D_1 \end{bmatrix} = \begin{bmatrix} D_0 \end{bmatrix}, \quad \begin{bmatrix} D_{r+1} \end{bmatrix} = \begin{bmatrix} D_0 \end{bmatrix} + \begin{bmatrix} D_{n+1} \end{bmatrix}, \quad \begin{bmatrix} D_{m+1} \end{bmatrix} = \begin{bmatrix} D_{n+1} \end{bmatrix}, \\ \begin{bmatrix} D_2 \end{bmatrix} = \begin{bmatrix} D_0 \end{bmatrix}, \quad \begin{bmatrix} D_{r+2} \end{bmatrix} = \begin{bmatrix} D_0 \end{bmatrix} + \begin{bmatrix} D_{n+1} \end{bmatrix}, \quad \begin{bmatrix} D_{m+2} \end{bmatrix} = \begin{bmatrix} D_{n+1} \end{bmatrix}, \\ \dots \\ \begin{bmatrix} D_r \end{bmatrix} = \begin{bmatrix} D_0 \end{bmatrix}, \quad \begin{bmatrix} D_m \end{bmatrix} = \begin{bmatrix} D_0 \end{bmatrix} + \begin{bmatrix} D_{n+1} \end{bmatrix}, \quad \begin{bmatrix} D_n \end{bmatrix} = \begin{bmatrix} D_{n+1} \end{bmatrix}.$$

La classe du diviseur anticanonique de X est alors donné par (cf. [F])

$$[-K_X] = \sum_{i=0}^{n+1} [D_i] = (m+1)[D_0] + (n-r+1)[D_{n+1}].$$

Considérons à présent une hypersurface Y de X donnée par une section globale s de $\mathcal{O}(D)$ où D désigne le diviseur $d_1D_0 + d_2D_{n+1}$. Le diviseur anticanonique de Y est alors le diviseur induit par

$$(m+1-d_1)[D_0] + (n-r+1-d_2)[D_{n+1}].$$

REMARQUE 2.13. Dans tout ce qui va suivre, nous supposerons que le diviseur anticanonique de Y appartient à l'intérieur du cône effectif. Ceci revient à dire, d'après ce qui précède, que $m + 1 > d_1$ et $n - r + 1 > d_2$. Par ailleurs, pour des raisons pratiques quant à la définition de la hauteur, nous supposerons également que $m + r - n - d_1 + d_2 \ge 1$.

D'autre part, les sections globales de $\mathcal{O}(D)$ sont données par (cf. [F, §3.4])

$$\Gamma(X, \mathcal{O}(D)) = \bigoplus_{u \in P_D \cap \mathbb{Z}^n} \mathbb{C} \cdot \chi^u,$$

où χ^u est le caractère associé à u, et P_D le polytope

$$P_D = \{ u \in \mathbb{Z}^n \mid \forall k \in \{1, \dots, n\}, \langle u, v_k \rangle \ge 0, \\ \langle u, v_0 \rangle \ge -d_1 \text{ et } \langle u, v_{n+1} \rangle \ge -d_2 \}.$$

Chaque section (à coefficients rationnels) $s = \sum_{u \in P_D \cap \mathbb{Z}^n} \alpha_u \chi^u$ où $\alpha_u \in \mathbb{Q}$ définit une hypersurface Y (que l'on suppose lisse) de X, et se relève en une fonction $f : \tilde{X}_0 \to \mathbb{R}$ définie par, pour tous $(\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z}) \in \mathbb{Q}^{n+2}$ tels que $x_0 \neq 0$ et $z_{n+1} \neq 0$,

$$f(\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z}) = \sum_{u \in P_D \cap \mathbb{Z}^n} \alpha_u \prod_{i=0}^r x_i^{\langle u, v_i \rangle} \prod_{j=r+1}^m y_j^{\langle u, v_j \rangle} \prod_{k=m+1}^{n+1} z_k^{\langle u, v_k \rangle}$$

L'hypersurface de \tilde{X}_0 définie par l'annulation de cette fonction correspond alors au torseur universel au-dessus de Y. Par conséquent, en utilisant le lemme 2.12, on a que les Q-points de Y correspondent (modulo l'action des points de torsion de $T_{\rm NS}$) aux Z-points $(\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z})$ de \tilde{X}_0 tels que $F(\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z}) = 0$ où F est le polynôme

$$F(\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z}) = x_0^{d_1} z_{n+1}^{d_2} f(\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z}).$$

REMARQUE 2.14. On remarque que le polynôme ainsi défini est de degré homogène égal à d_1 en $(\boldsymbol{x}, \boldsymbol{y})$ et de degré homogène d_2 en $(\boldsymbol{y}, \boldsymbol{z})$, c'est-à-dire, pour tous $\lambda, \mu \in \mathbb{C}$,

$$F(\lambda \boldsymbol{x}, \lambda \mu \boldsymbol{y}, \mu \boldsymbol{z}) = \lambda^{d_1} \mu^{d_2} F(\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z}).$$

En effet, le degré de chaque monôme en $(\boldsymbol{x}, \boldsymbol{y})$ est

$$d_1 + \langle u, v_0 \rangle + \sum_{i=1}^m \langle u, v_i \rangle = d_1,$$

car $v_0 = -\sum_{i=1}^m v_i$, et de même pour $(\boldsymbol{y}, \boldsymbol{z})$.

T. Mignot

Réciproquement, on peut voir que tout polynôme en (x, y, z) de degré homogène d_1 en (x, y) et de degré homogène d_2 en (y, z) est un polynôme correspondant à une unique section globale s de $\mathcal{O}(D)$.

REMARQUE 2.15. Dans tout ce qui va suivre on supposera que l'hypersurface Y définie par $F(\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z}) = 0$ est lisse. En fait, cette propriété est vraie pour un ouvert dense de Zariski de coefficients $(\alpha_u)_{u \in P_D \cap \mathbb{Z}^n}$. D'autre part, pour un ouvert dense de coefficients $(\alpha_u)_{u \in P_D \cap \mathbb{Z}^n}$, la variété V_1^* (resp. V_2^*) définie par (1.1) (resp. (1.2)) est de dimension n - m + 1 (resp. r + 1).

Nous allons à présent construire la hauteur sur X associée au diviseur $D_Y = (m + 1 - d_1)D_0 + (n - r + 1 - d_2)D_{n+1}$ (correspondant au diviseur anticanonique sur Y). Comme précédemment, d'après [F, §3.4], les sections globales de $\mathcal{O}(D_Y)$ sont données par

$$\Gamma(X, \mathcal{O}(D_Y)) = \bigoplus_{u \in P_{D_Y} \cap \mathbb{Z}^n} \mathbb{C} \cdot \chi^u,$$

où P_{D_Y} est le polytope

$$P_{D_Y} = \{ u \in \mathbb{Z}^n \mid \forall k \in \{1, \dots, n\}, \langle u, v_k \rangle \ge 0, \\ \langle u, v_0 \rangle \ge m + 1 - d_1 \text{ et } \langle u, v_{n+1} \rangle \ge n - r + 1 - d_2 \}.$$

Une base des sections globales est donc donnée par les $(\chi^u)_{u \in P_{D_Y}}$, qui se relèvent en des fonctions $(f_u)_{u \in P_{D_Y}}$ de \tilde{X}_0 dans \mathbb{R} qui sont exactement les monômes en $(\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z})$ de degré $m+1-d_1$ en $(\boldsymbol{x}, \boldsymbol{y})$ et de degré $n-r+1-d_2$ en $(\boldsymbol{y}, \boldsymbol{z})$. La hauteur H associée à D_Y est donc définie sur $\tilde{X}_0(\mathbb{Z}) \subset \mathbb{Z}^{n+2}$ par, pour tout $\boldsymbol{q} = (\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z}) \in \tilde{X}_0(\mathbb{Z})$,

$$H_{0}(\boldsymbol{q}) = \max_{\substack{\forall i, j, k, \alpha_{i}, \beta_{j}, \gamma_{k} \in \mathbb{N} \\ \sum_{i=0}^{r} \alpha_{i} + \sum_{j=r+1}^{m} \beta_{j} = m+1-d_{1} \\ \sum_{j=r+1}^{m} \beta_{j} + \sum_{k=m+1}^{n+1} \gamma_{k} = n-r+1-d_{2}}} \prod_{i=0}^{r} |x_{i}|^{\alpha_{i}} \prod_{j=r+1}^{m} |y_{j}|^{\beta_{j}} \prod_{k=m+1}^{n+1} |z_{k}|^{\gamma_{k}}}$$
$$= \max_{\substack{\alpha, \beta, \gamma \in \mathbb{N} \\ \alpha+\beta=m+1-d_{1} \\ \beta+\gamma=n-r+1-d_{2}}} |\boldsymbol{x}|^{\alpha} |\boldsymbol{y}|^{\beta} |\boldsymbol{z}|^{\gamma}$$
$$= \max\{|\boldsymbol{x}|^{m+1-d_{1}} |\boldsymbol{z}|^{n-r+1-d_{2}}, |\boldsymbol{x}|^{(m+1-d_{1})-(n-r+1-d_{2})} |\boldsymbol{y}|^{n-r+1-d_{2}}\}$$
$$= |\boldsymbol{x}|^{m+1-d_{1}} \max(|\boldsymbol{y}|/|\boldsymbol{x}|, |\boldsymbol{z}|)^{n-r+1-d_{2}}.$$

Remarquons enfin que dans le cas présent, $\tilde{X}_0(\mathbb{Z}) \subset \mathbb{Z}^{n+2}$ peut être décrit comme l'ensemble des (n + 2)-uplets d'entiers notés $\boldsymbol{q} = (\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z})$, avec $\boldsymbol{x} = (x_0, x_1, \ldots, x_r), \, \boldsymbol{y} = (y_{r+1}, \ldots, y_m), \, \boldsymbol{z} = (z_{m+1}, \ldots, z_{n+1})$, tels que (cf. [Sa, 11.5])

(2.5)
$$\exists \sigma \in \Delta_{\max}, \quad q^{\underline{\sigma}} \neq 0,$$

(2.6)
$$\operatorname{pgcd}_{\sigma \in \Delta_{\max}}(\boldsymbol{q}^{\underline{\sigma}}) = 1,$$

12

Par la définition de Δ et des cônes maximaux $(\sigma_{i,j})_{(i,j)\in I\times J}$, on a

$$q^{\underline{\sigma_{i,j}}} = \prod_{l \notin \sigma_{i,j}(1)} q_l = q_i q_j.$$

Par conséquent, la condition (2.5) équivaut à

(2.7)
$$\boldsymbol{x} \neq \boldsymbol{0} \quad \text{et} \quad (\boldsymbol{y}, \boldsymbol{z}) \neq \boldsymbol{0}.$$

De même, on remarque que $\operatorname{pgcd}_{\sigma \in \Delta_{\max}}(q^{\underline{\sigma}}) = \operatorname{pgcd}(x) \operatorname{pgcd}(y, z)$, et la condition (2.6) équivaut donc à

(2.8)
$$\operatorname{pgcd}(\boldsymbol{x}) = 1 \quad \operatorname{et} \quad \operatorname{pgcd}(\boldsymbol{y}, \boldsymbol{z}) = 1.$$

Ainsi, calculer $\mathcal{N}(B) = \operatorname{card} \{ P \in Y(\mathbb{Q}) \mid H(P) \leq B \}$ revient à calculer le nombre de points de

$$\{\boldsymbol{q} = (\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z}) \in \tilde{X}_0(\mathbb{Z}) \mid H(\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z}) \leq B\}.$$

Par ailleurs, quitte à appliquer une inversion de Möbius (en un sens que nous préciserons ultérieurement), on peut se ramener au calcul de

$$\begin{split} N_{d,U}(B) &= \operatorname{card}\{(\boldsymbol{x},\boldsymbol{y},\boldsymbol{z}) \in \mathbb{Z}^{n+2} \cap U \mid \boldsymbol{x} \neq \boldsymbol{0}, \, (\boldsymbol{y},\boldsymbol{z}) \neq (\boldsymbol{0},\boldsymbol{0}), \\ F(d\boldsymbol{x},\boldsymbol{y},\boldsymbol{z}) &= 0, \, H_d(\boldsymbol{x},\boldsymbol{y},\boldsymbol{z}) \leq B \rbrace \end{split}$$

pour un certain ouvert U que nous préciserons ultérieurement, et pour tout $d\in\mathbb{N}^*,$ avec

(2.9)
$$H_d(\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z}) = |\boldsymbol{x}|^{m+1-d_1} \max\left(\frac{|\boldsymbol{y}|}{d|\boldsymbol{x}|}, |\boldsymbol{z}|\right)^{n-r+1-d_2}.$$

Nous allons donc chercher à obtenir une formule asymptotique pour $N_{d,U}(B)$.

3. Première étape. Nous allons établir une formule asymptotique pour $N_{U,d}(B)$, pour un $d \in \mathbb{N}^*$ fixé, en nous inspirant de la méthode décrite par Schindler [Sch1], [Sch2]. L'idée générale est de considérer la fonction $h_d : \mathbb{N}^2 \to [0, \infty]$ définie par

(3.1)
$$h_d(k,l) = \operatorname{card}\left\{ (\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z}) \in \mathbb{Z}^{n+2} \cap U \ \middle| \ |\boldsymbol{x}| = k, \\ \max\left(\left\lfloor \frac{|\boldsymbol{y}|}{d|\boldsymbol{x}|} \right\rfloor, |\boldsymbol{z}| \right) = l \text{ et } F(d\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z}) = 0 \right\}$$

(où U est un ouvert de Zariski de \mathbb{A}^{n+2} que nous préciserons ultérieurement), de donner des formules asymptotiques pour

$$\sum_{k \le P_1} \sum_{l \le P_2} h_d(k, l), \quad \sum_{k \le P_1} h_d(k, l) \quad \text{et} \quad \sum_{l \le P_2} h_d(k, l),$$

T. Mignot

afin de pouvoir appliquer un résultat de Blomer et Brüdern [B-B] pour en déduire une formule asymptotique pour

$$\sum_{k^{m+1-d_1}l^{n-r+1-d_2} \le B} h_d(k,l) \sim_{B \to \infty} N_{U,d}(B).$$

Dans cette première partie, pour des réels $P_1,P_2 \geq 1$ fixés, nous allons chercher à calculer

(3.2)
$$N_d(P_1, P_2) = \operatorname{card}\{(\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z}) \in (P_1\mathcal{B}_1 \times dP_1P_2\mathcal{B}_2 \times P_2\mathcal{B}_3) \cap \mathbb{Z}^{n+2} \mid |\boldsymbol{y}| \le d|\boldsymbol{x}|P_2 \text{ et } F(d\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z}) = 0\},$$

où $\mathcal{B}_1 = [-1, 1]^{r+1}$, $\mathcal{B}_2 = [-1, 1]^{m-r}$, $\mathcal{B}_3 = [-1, 1]^{n-m+1}$. Plus précisément, nous allons montrer que pour r et n-m assez grands on a

$$N_d(P_1, P_2) = \sigma_d P_1^{m+1-d_1} P_2^{n-r+1-d_2} + O(d^v P_1^{m+1-d_1} P_2^{n-r+1-d_2} \min\{P_1, P_2\}^{-\delta}),$$

où σ_d est une constante (ne dépendant que de d), $\delta > 0$ un réel arbitrairement petit et v un réel que nous préciserons. Ceci nous permettra plus tard d'obtenir une formule pour $\sum_{k < P_1} \sum_{l < P_2} h_d(k, l)$.

3.1. Une inégalité de Weyl. Dans toute cette partie nous allons supposer $1 \le P_2 \le P_1$. On notera donc $P_1 = P_2^b$ avec $b \ge 1$. Nous allons évaluer $N_d(P_1, P_2)$ en nous inspirant de la méthode du cercle de Hardy–Littlewood. Pour cela, on introduit la fonction génératrice définie par

(3.3)
$$S_d(\alpha) = \sum_{\substack{\boldsymbol{x} \in \mathbb{Z}^{r+1} \\ |\boldsymbol{x}| \le P_1}} \sum_{\substack{\boldsymbol{y} \in \mathbb{Z}^{m-r} \\ |\boldsymbol{y}| \le d| \boldsymbol{x}| P_2}} \sum_{\substack{\boldsymbol{z} \in \mathbb{Z}^{n-m+1} \\ |\boldsymbol{z}| \le P_2}} e(\alpha F(d\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z})).$$

pour $\alpha \in [0,1]$, et où *e* désigne la fonction $x \mapsto \exp(2i\pi x)$. On remarque alors que

$$N_d(P_1, P_2) = \int_0^1 S_d(\alpha) \, d\alpha.$$

Étant donnés $\boldsymbol{x} \in \mathbb{Z}^{r+1}$ et $\boldsymbol{y} \in \mathbb{Z}^{m-r}$, on constate que

$$|\boldsymbol{y}| \leq d|\boldsymbol{x}|P_2 \iff |\boldsymbol{x}| \geq rac{|\boldsymbol{y}|}{dP_2} \iff |\boldsymbol{x}| \geq \left\lceil rac{|\boldsymbol{y}|}{dP_2}
ight
ceil.$$

En posant $N = \left\lceil \frac{|\boldsymbol{y}|}{dP_2} \right\rceil$ (ce qui équivaut à dire que $|\boldsymbol{y}| \in \left]d(N-1)P_2, dNP_2\right]$), on remarque que $S(\alpha)$ peut être réexprimée sous la forme

$$S_d(\alpha) = \sum_{N=1}^{P_1} S_{d,N}(\alpha),$$

où

(3.4)
$$S_{d,N}(\alpha) = \sum_{N \leq |\boldsymbol{x}| \leq P_1} \sum_{d(N-1)P_2 < |\boldsymbol{y}| \leq dNP_2} \sum_{|\boldsymbol{z}| \leq P_2} e(\alpha F(d\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z})).$$

 Si

$$\mathcal{E}_N = \{ \boldsymbol{y} \in \mathbb{Z}^{m-r} \mid d(N-1)P_2 < |\boldsymbol{y}| \le dNP_2 \},\$$

on remarque que

$$\mathcal{E}_N = igcup_{\mathcal{I} \subset \{r+1,...,m\}} igcup_{\mathcal{J} \subset \{r+1,...,m\}} igcup_{\mathcal{J}
eq \emptyset} \mathcal{C}_{N,\mathcal{I},\mathcal{J}}$$

avec

(3.5)
$$\mathcal{C}_{N,\mathcal{I},\mathcal{J}} = \{ \boldsymbol{y} \in \mathcal{E}_N \mid \forall i \in \mathcal{I}, \, y_i \ge 0 \text{ et } \forall i \notin \mathcal{I}, \, y_i < 0, \\ \forall j \in \mathcal{J}, \, |y_j| > d(N-1)P_2 \text{ et } \forall j \notin \mathcal{J}, \, |y_j| \le d(N-1)P_2 \}.$$

On a alors

(3.6)
$$S_{d,N}(\alpha) \ll \sum_{\substack{\mathcal{I}, \mathcal{J} \subset \{r+1,\dots,m\}\\ \mathcal{J} \neq \emptyset}} |S_{d,N,\mathcal{I},\mathcal{J}}(\alpha)|$$

où

(3.7)
$$S_{d,N,\mathcal{I},\mathcal{J}}(\alpha) = \sum_{|\boldsymbol{x}| \le P_1} \sum_{\boldsymbol{y} \in \mathcal{C}_{N,\mathcal{I},\mathcal{J}}} \sum_{|\boldsymbol{z}| \le P_2} e(\alpha F(d\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z})).$$

Par une inégalité de Hölder on a, pour N fixé,

(3.8)
$$|S_{d,N,\mathcal{I},\mathcal{J}}(\alpha)|^{2^{d_2-1}} \ll P_1^{(r+1)(2^{d_2-1}-1)} \sum_{|\boldsymbol{x}| \le P_1} |S_{d,N,\mathcal{I},\mathcal{J},\boldsymbol{x}}(\alpha)|^{2^{d_2-1}},$$

où l'on a noté

(3.9)
$$S_{d,N,\mathcal{I},\mathcal{J},\boldsymbol{x}}(\alpha) = \sum_{\boldsymbol{y}\in\mathcal{C}_{N,\mathcal{I},\mathcal{J}}} \sum_{|\boldsymbol{z}|\leq P_2} e(\alpha F(d\boldsymbol{x},\boldsymbol{y},\boldsymbol{z})).$$

Désormais, pour alléger les notations, on posera $\llbracket n \rrbracket = \{1, \dots, n\}$.

Nous allons chercher à «linéariser» le polynôme F en appliquant un opérateur Δ défini de la façon suivante : pour tout polynôme f à N variables on pose, pour tous $\mathbf{t}_1, \mathbf{t}_2 \in \mathbb{R}^N$,

$$\Delta_{\boldsymbol{t}_1} f(\boldsymbol{t}_2) = f(\boldsymbol{t}_1 + \boldsymbol{t}_2) - f(\boldsymbol{t}_1).$$

Dans ce qui suit, nous appliquons $d_2 - 1$ fois l'opérateur Δ à F en les variables $(\boldsymbol{y}, \boldsymbol{z})$, et nous obtenons un polynôme en $d_2(n - r + 1) + r + 1$ variables $(\boldsymbol{x}, \boldsymbol{y}^{(j)}, \boldsymbol{z}^{(j)})_{j \in [\![d_2]\!]}$. Puis, en appliquant l'opérateur $\Delta d_1 - 1$ fois à ce polynôme en les variables $(\boldsymbol{x}, \boldsymbol{y}^{(j)})_{j \in [\![d_2]\!]}$, nous obtenons finalement un polynôme en $(r + 1)d_1 + (m - r)d_1d_2 + (n - m + 1)d_2$ variables du type

 $(\boldsymbol{x}^{(i)}, \boldsymbol{y}^{(j,i)}, \boldsymbol{z}^{(j)})_{i \in [\![d_1]\!], j \in [\![d_2]\!]}$ de la forme

$$\begin{split} \Gamma_{d}^{(1)}((\boldsymbol{x}^{(i)}, \boldsymbol{y}^{(j,i)}, \boldsymbol{z}^{(j)})_{i \in [\![d_1]\!], j \in [\![d_2]\!]}) + G_1((\boldsymbol{x}^{(i)}, \boldsymbol{y}^{(j,i)}, \boldsymbol{z}^{(j)})_{i \in [\![d_1-1]\!], j \in [\![d_2]\!]}) \\ + G_2((\boldsymbol{x}^{(i)}, \boldsymbol{y}^{(j,i)}, \boldsymbol{z}^{(j)})_{[\![d_1]\!], j \in [\![d_2-1]\!]}) \end{split}$$

où G_1 (resp. G_2) est indépendant de $(\boldsymbol{x}^{(d_1)}, \boldsymbol{y}^{(j,d_1)})_{j \in [\![d_2]\!]}$ (resp. de $(\boldsymbol{y}^{(d_2,i)}, \boldsymbol{z}^{(d_2)})_{i \in [\![d_1]\!]}$), et $\Gamma_d^{(1)}$ est linéaire en $(\boldsymbol{x}^{(i)}, \boldsymbol{y}^{(j,i)})_{j \in [\![d_2]\!]}$ pour tout $i \in [\![d_1]\!]$ et linéaire en $(\boldsymbol{y}^{(j,i)}, \boldsymbol{z}^{(j)})_{i \in [\![d_1]\!]}$ pour tout $j \in [\![d_2]\!]$.

Pour $N, \mathcal{I}, \mathcal{J}$ fixés, posons

 $\mathcal{U}_{N,\mathcal{I},\mathcal{J}} = \mathcal{C}_{N,\mathcal{I},\mathcal{J}} \times P_2 \mathcal{B}_3 \subset dP_1 P_2 \mathcal{B}_2 \times P_2 \mathcal{B}_3, \quad \mathcal{U}_{N,\mathcal{I},\mathcal{J}}^D = \mathcal{U}_{N,\mathcal{I},\mathcal{J}} - \mathcal{U}_{N,\mathcal{I},\mathcal{J}},$ et

$$\mathcal{U}_{N,\mathcal{I},\mathcal{J}}((\boldsymbol{y}^{(1)},\boldsymbol{z}^{(1)}),\ldots,(\boldsymbol{y}^{(t)},\boldsymbol{z}^{(t)})) \\ = \bigcap_{(\varepsilon_1,\ldots,\varepsilon_t)\in\{0,1\}^t} (\mathcal{U}_{N,\mathcal{I},\mathcal{J}} - \varepsilon_1(\boldsymbol{y}^{(1)},\boldsymbol{z}^{(1)}) - \cdots - \varepsilon_t(\boldsymbol{y}^{(t)},\boldsymbol{z}^{(t)})).$$

Si l'on note $\mathcal{F}(\boldsymbol{y},\boldsymbol{z})=\alpha F(d\boldsymbol{x},\boldsymbol{y},\boldsymbol{z})$ (pour \boldsymbol{x} fixé), et

(3.10)
$$\mathcal{F}_t((\boldsymbol{y}^{(1)}, \boldsymbol{z}^{(1)}), \dots, (\boldsymbol{y}^{(t)}, \boldsymbol{z}^{(t)}))$$
$$= \sum_{(\varepsilon_1, \dots, \varepsilon_t) \in \{0, 1\}^t} (-1)^{\varepsilon_1 + \dots + \varepsilon_t} \mathcal{F}(\varepsilon_1(\boldsymbol{y}^{(1)}, \boldsymbol{z}^{(1)}) + \dots + \varepsilon_t(\boldsymbol{y}^{(t)}, \boldsymbol{z}^{(t)})),$$

en utilisant [Schm, (11.2)], on obtient la majoration

$$|S_{d,N,\mathcal{I},\mathcal{J},\boldsymbol{x}}|^{2^{d_2-1}} \ll |\mathcal{U}_{N,\mathcal{I},\mathcal{J}}^D|^{2^{d_2-1}-d_2} \sum_{(\boldsymbol{y}^{(1)},\boldsymbol{z}^{(1)})\in\mathcal{U}_{N,\mathcal{I},\mathcal{J}}^D} \cdots \sum_{(\boldsymbol{y}^{(d_2-2)},\boldsymbol{z}^{(d_2-2)})\in\mathcal{U}_{N,\mathcal{I},\mathcal{J}}^D} \left| \sum_{\substack{(\boldsymbol{y}^{(d_2-1)},\boldsymbol{z}^{(d_2-1)})\\\in\mathcal{U}_{N,\mathcal{I},\mathcal{J}}((\boldsymbol{y}^{(1)},\boldsymbol{z}^{(1)}),\ldots,(\boldsymbol{y}^{(d_2-2)},\boldsymbol{z}^{(d_2-2)}))} e(\mathcal{F}_{d_2-1}((\boldsymbol{y}^{(1)},\boldsymbol{z}^{(1)}),\ldots,(\boldsymbol{y}^{(d_2-1)},\boldsymbol{z}^{(d_2-1)}))) \right|^2,$$

que l'on peut encore majorer par

$$\left((dP_1P_2)^{m-r}P_2^{n-m+1} \right)^{2^{d_2-1}-d_2} \sum_{\substack{|\boldsymbol{y}^{(1)}| \leq 2dP_1P_2 \\ |\boldsymbol{z}^{(1)}| \leq 2P_2}} \cdots \sum_{\substack{|\boldsymbol{y}^{(d_2-2)}| \leq 2dP_1P_2 \\ |\boldsymbol{z}^{(d_2-2)}| \leq 2P_2}} \\ \left| \sum_{\substack{(\boldsymbol{y}^{(d_2-1)}, \boldsymbol{z}^{(d_2-1)}) \\ \in \mathcal{U}_{N,\mathcal{I},\mathcal{J}}((\boldsymbol{y}^{(1)}, \boldsymbol{z}^{(1)}), \dots, (\boldsymbol{y}^{(d_2-1)}, \boldsymbol{z}^{(d_2-1)}))} e(\mathcal{F}_{d_2-1}((\boldsymbol{y}^{(1)}, \boldsymbol{z}^{(1)}), \dots, (\boldsymbol{y}^{(d_2-1)}, \boldsymbol{z}^{(d_2-1)}))) \right|^2.$$

Pour tous $(\boldsymbol{y}, \boldsymbol{z}), (\boldsymbol{y}', \boldsymbol{z}') \in \mathcal{U}_{N,\mathcal{I},\mathcal{J}}((\boldsymbol{y}^{(1)}, \boldsymbol{z}^{(1)}), \dots, (\boldsymbol{y}^{(d_2-2)}, \boldsymbol{z}^{(d_2-2)}))$ on a $\mathcal{F}_{d_2-1}((\boldsymbol{y}^{(1)}, \boldsymbol{z}^{(1)}), \dots, (\boldsymbol{y}, \boldsymbol{z})) - \mathcal{F}_{d_2-1}((\boldsymbol{y}^{(1)}, \boldsymbol{z}^{(1)}), \dots, (\boldsymbol{y}', \boldsymbol{z}'))$ $= \mathcal{F}_{d_2}((\boldsymbol{y}^{(1)}, \boldsymbol{z}^{(1)}), \dots, (\boldsymbol{y}^{(d_2)}, \boldsymbol{z}^{(d_2)}) - \mathcal{F}_{d_2-1}((\boldsymbol{y}^{(1)}, \boldsymbol{z}^{(1)}), \dots, (\boldsymbol{y}^{(d_2-1)}, \boldsymbol{z}^{(d_2-1)})),$

pour

$$(\boldsymbol{y}^{(d_2-1)}, \boldsymbol{z}^{(d_2-1)}) \in \mathcal{U}_{N, \mathcal{I}, \mathcal{J}}((\boldsymbol{y}^{(1)}, \boldsymbol{z}^{(1)}), \dots, (\boldsymbol{y}^{(d_2-2)}, \boldsymbol{z}^{(d_2-2)}))^D$$

 et

$$(\boldsymbol{y}^{(d_2)}, \boldsymbol{z}^{(d_2)}) \in \mathcal{U}_{N, \mathcal{I}, \mathcal{J}}((\boldsymbol{y}^{(1)}, \boldsymbol{z}^{(1)}), \dots, (\boldsymbol{y}^{(d_2-1)}, \boldsymbol{z}^{(d_2-1)}))$$

donnés par

$$(m{y},m{z}) = (m{y}^{(d_2)},m{z}^{(d_2)}), \quad (m{y}',m{z}') = (m{y}^{(d_2-1)}+m{y}^{(d_2)},m{z}^{(d_2-1)}+m{z}^{(d_2)}).$$

On obtient donc

$$|S_{d,N,\mathcal{I},\mathcal{J},\boldsymbol{x}}(\alpha)|^{2^{d_2-1}} \ll (d^{m-r}P_1^{m-r}P_2^{n-r+1})^{2^{d_2-1}-d_2} \sum_{\boldsymbol{y}^{(1)},\boldsymbol{z}^{(1)}} \dots \sum_{\boldsymbol{y}^{(d_2-2)},\boldsymbol{z}^{(d_2-2)}} \sum_{\boldsymbol{y}^{(d_2-1)},\boldsymbol{z}^{(d_2-1)},\boldsymbol{y}^{(d_2-1)},\boldsymbol{z}^{(d_2-2)}} e\left(\mathcal{F}_{d_2}((\boldsymbol{y}^{(1)},\boldsymbol{z}^{(1)}),\dots,(\boldsymbol{y}^{(d_2)},\boldsymbol{z}^{(d_2)})\right) - \mathcal{F}_{d_2-1}((\boldsymbol{y}^{(1)},\boldsymbol{z}^{(1)}),\dots,(\boldsymbol{y}^{(d_2-1)},\boldsymbol{z}^{(d_2-1)}))\right)$$

où chaque $\boldsymbol{y}^{(i)}$ (resp. $\boldsymbol{z}^{(i)}$) appartient à une union de boîtes de taille au plus dP_1P_2 (resp. P_2).

D'après [Schm, Lemme 11.4],

$$\mathcal{F}_{d_2}((\boldsymbol{y}^{(1)}, \boldsymbol{z}^{(1)}), \dots, (\boldsymbol{y}^{(d_2}, \boldsymbol{z}^{(d_2)})) - \mathcal{F}_{d_2-1}((\boldsymbol{y}^{(1)}, \boldsymbol{z}^{(1)}), \dots, (\boldsymbol{y}^{(d_2-1)}, \boldsymbol{z}^{(d_2-1)})) \\ = \alpha F_1(d\boldsymbol{x}, \tilde{\boldsymbol{y}}, \tilde{\boldsymbol{z}}) + \alpha F_2(d\boldsymbol{x}, \hat{\boldsymbol{y}}, \hat{\boldsymbol{z}}),$$

où l'on a noté

$$egin{aligned} & ilde{m{y}} = (m{y}^{(1)}, \dots, m{y}^{(d_2)}), & ilde{m{z}} = (m{z}^{(1)}, \dots, m{z}^{(d_2)}), \ & ilde{m{y}} = (m{y}^{(1)}, \dots, m{y}^{(d_2-1)}), & ilde{m{z}} = (m{z}^{(1)}, \dots, m{z}^{(d_2-1)}), \end{aligned}$$

avec F_i une forme multilinéaire en $(\tilde{\boldsymbol{y}}, \tilde{\boldsymbol{z}})$ de la forme

$$\sum_{\boldsymbol{i}=(i_1,\ldots,i_{d_2})\in\{r+1,\ldots,n+1\}^{d_2}} E_{\boldsymbol{i}}(d\boldsymbol{x})t_{i_1}^{(1)}\ldots t_{i_{d_2}}^{(d_2)}$$

où

$$t_i^{(j)} = \begin{cases} y_i^{(j)} & \text{si } i \in \{r+1, \dots, m\}, \\ z_i^{(j)} & \text{si } i \in \{m+1, \dots, n+1\} \end{cases}$$

pour tout $j \in [\![d_2]\!]$, et $E_i(d\mathbf{x})$ symétrique en i. Remarquons par ailleurs que F_1 et F_2 sont homogènes de degré d_1 en $(\mathbf{x}, \tilde{\mathbf{y}})$.

Pour $\tilde{\boldsymbol{z}} \in [-P_2, P_2]^{d_2(n-m+1)}$ fixé, on note

$$S_{d,\tilde{\boldsymbol{z}}}(\alpha) = \sum_{|\boldsymbol{x}| \leq P_1} \sum_{\boldsymbol{y}^{(1)}, \dots, \boldsymbol{y}^{(d_2)}} e\left(\alpha F_1(d\boldsymbol{x}, \tilde{\boldsymbol{y}}, \tilde{\boldsymbol{z}}) + \alpha F_2(d\boldsymbol{x}, \hat{\boldsymbol{y}}, \hat{\boldsymbol{z}})\right),$$

et d'après ce qui précède, on a

$$|S_{d,N,\mathcal{I},\mathcal{J}}(\alpha)|^{2^{d_2-1}} \ll (P_1^{r+1})^{2^{d_2-1}-1} ((dP_1P_2)^{m-r})^{2^{d_2-1}-d_2} (P_2^{n-m+1})^{2^{d_2-1}-d_2} \sum_{|\tilde{\mathbf{z}}| \le P_2} |S_{d,\tilde{\mathbf{z}}}(\alpha)|.$$

En élevant à la puissance 2^{d_1-1} , puis en utilisant une inégalité de Hölder et en posant $\tilde{d} = d_1 + d_2 - 2$, cette dernière formule donne

$$(3.11) |S_{d,N,\mathcal{I},\mathcal{J}}(\alpha)|^{2^{\tilde{d}}} \ll (P_1^{r+1})^{2^{\tilde{d}}-2^{d_1-1}} ((dP_1P_2)^{m-r})^{2^{\tilde{d}}-d_22^{d_1-1}} (P_2^{n-m+1})^{2^{\tilde{d}}-d_2} \sum_{|\tilde{\boldsymbol{z}}| \le P_2} |S_{d,\tilde{\boldsymbol{z}}}(\alpha)|^{2^{d_1-1}}.$$

Par ailleurs, en appliquant le procédé de différenciation précédent à $S_{d,\tilde{z}}(\alpha)$, on obtient

$$|S_{d,\tilde{\boldsymbol{z}}}(\alpha)|^{2^{d_{1}-1}} \ll (P_{1}^{r+1})^{2^{d_{1}-1}-d_{1}} ((dP_{1}P_{2})^{d_{2}(m-r)})^{2^{d_{1}-1}-d_{1}} \\ \sum_{|\boldsymbol{x}^{(1)}| \leq P_{1}} \sum_{|\boldsymbol{y}^{(1,1)}| \leq dP_{1}P_{2}} \cdots \sum_{|\boldsymbol{y}^{(d_{2},1)}| \leq dP_{1}P_{2}} \sum_{|\boldsymbol{x}^{(2)}| \leq P_{1}} \\ \sum_{|\boldsymbol{y}^{(1,2)}| \leq dP_{1}P_{2}} \cdots \sum_{|\boldsymbol{x}^{(d_{1})}| \leq P_{1}} \sum_{|\boldsymbol{y}^{(1,d_{1})}| \leq dP_{1}P_{2}} \cdots \sum_{|\boldsymbol{y}^{(d_{2},d_{1})}| \leq dP_{1}P_{2}} \\ e\Big(\sum_{i=1,2} \mathcal{F}_{d_{1}}^{(i)}((\boldsymbol{x}^{(i)},\boldsymbol{y}^{(j,i)})_{i\in[[d_{1}]],j\in[[d_{2}]]}) - \mathcal{F}_{d_{1}-1}^{(i)}((\boldsymbol{x}^{(i)},\boldsymbol{y}^{(j,i)})_{i\in[[d_{1}-1]],j\in[[d_{2}]]})\Big),$$

où pour $i \in \{1,2\}, \mathcal{F}_k^{(i)}$ désigne la forme de (3.10) associée à $\mathcal{F}(\boldsymbol{x}, \tilde{\boldsymbol{y}}) = \alpha F_i(d\boldsymbol{x}, \tilde{\boldsymbol{y}}, \tilde{\boldsymbol{z}})$ pour un $\tilde{\boldsymbol{z}}$ fixé. On remarque que

$$\begin{aligned} \mathcal{F}_{d_{1}}^{(1)}((\boldsymbol{x}^{(i)},\boldsymbol{y}^{(j,i)})_{i\in\llbracket d_{1}\rrbracket,j\in\llbracket d_{2}\rrbracket}) - \mathcal{F}_{d_{1}-1}^{(1)}((\boldsymbol{x}^{(i)},\boldsymbol{y}^{(j,i)})_{i\in\llbracket d_{1}-1\rrbracket,j\in\llbracket d_{2}\rrbracket}) \\ &= \Gamma_{d}^{(1)}((\boldsymbol{x}^{(i)},\boldsymbol{y}^{(j,i)},\boldsymbol{z}^{(j)})_{i\in\llbracket d_{1}\rrbracket,j\in\llbracket d_{2}\rrbracket}) + g_{d}((\boldsymbol{x}^{(i)},\boldsymbol{y}^{(j,i)},\boldsymbol{z}^{(j)})_{i\in\llbracket d_{1}-1\rrbracket,j\in\llbracket d_{2}\rrbracket}) \end{aligned}$$

où $\Gamma_d^{(1)}$ est, rappelons-le, une forme linéaire en $(\boldsymbol{x}^{(i)}, \boldsymbol{y}^{(j,i)})_{j \in [\![d_2]\!]}$ pour chaque $i \in [\![d_1]\!]$, de la forme

$$\alpha \sum_{\boldsymbol{i} = (i_1, \dots, i_{d_1}) \in I^{d_1}} G_{d, \boldsymbol{i}}(\tilde{\boldsymbol{z}}) u_{i_1}^{(1)} \dots u_{i_{d_1}}^{(d_1)}$$

avec

$$I = \{0, 1, \dots, r\} \cup \{(r+1, 1), \dots, (m, 1), \dots, (r+1, d_2), \dots, (m, d_2)\},$$

(3.12)
$$u_i^{(j)} = \begin{cases} x_i^{(j)} & \text{si } i \in \{0, 1, \dots, r\}, \\ y_k^{(l,j)} & \text{si } i = (k, l) \in \{r+1, \dots, m\} \times \{1, \dots, d_2\}, \end{cases}$$

avec $G_{d,i}(\tilde{z}) \in \mathbb{Z}[d, \tilde{z}]$ symétrique en i et dont le degré en d est

$$f_{\boldsymbol{i}} = \operatorname{card}\{k \in \llbracket d_1 \rrbracket \mid i_k \in \{0, \dots, r\}\}$$

On peut donc écrire $G_{d,i}(\tilde{z}) = d^{f_i}G_i(\tilde{z})$ avec $G_i(\tilde{z})$ symétrique en i.

D'autre part, puisque F_2 ne dépendait que de $\boldsymbol{x}, \hat{\boldsymbol{y}}, \hat{\boldsymbol{z}},$ la partie

$$\mathcal{F}_{d_1}^{(2)}((\boldsymbol{x}^{(i)}, \boldsymbol{y}^{(j,i)})_{i \in [\![d_1]\!], j \in [\![d_2]\!]}) - \mathcal{F}_{d_1-1}^{(2)}((\boldsymbol{x}^{(i)}, \boldsymbol{y}^{(j,i)})_{i \in [\![d_1-1]\!], j \in [\![d_2]\!]})$$

est en fait un polynôme en $\tilde{x}, \hat{z}, (y^{(j,i)})_{i \in [d_1], j \in [d_2-1]}$ de la forme

$$\Gamma_{d}^{(2)}((\boldsymbol{x}^{(i)}, \boldsymbol{y}^{(j,i)}, \boldsymbol{z}^{(j)})_{i \in [\![d_1]\!], j \in [\![d_2-1]\!]}) + h_d((\boldsymbol{x}^{(i)}, \boldsymbol{y}^{(j,i)}, \boldsymbol{z}^{(j)})_{i \in [\![d_1-1]\!], j \in [\![d_2-1]\!]})$$

où $\Gamma_d^{(2)}$ est une forme linéaire en $(\boldsymbol{x}^{(i)}, \boldsymbol{y}^{(j,i)})_{j \in [\![d_2-1]\!]}$ pour tout $i \in [\![d_1]\!]$, de la forme

$$\alpha \sum_{\boldsymbol{i}=(i_1,\ldots,i_{d_1})\in (I')^{d_1}} H_{d,\boldsymbol{i}}(\tilde{\boldsymbol{z}}) u_{i_1}^{(1)} \ldots u_{i_{d_1}}^{(d_1)}$$

avec $I' = \{0, 1, \ldots, r\} \cup \{(r+1, 1), \ldots, (m, 1), \ldots, (r+1, d_2-1), \ldots, (m, d_2-1)\}.$ On observe en particulier que $\Gamma_d^{(2)}$ est indépendant de $(\boldsymbol{y}^{(d_2, i)}, \boldsymbol{z}^{(d_2)})_{i \in [\![d_1]\!]}.$ En regroupant les résultats obtenus on trouve

$$(3.13) \quad |S_{d,N,\mathcal{I},\mathcal{J}}(\alpha)|^{2^{\tilde{d}}} \ll (P_{1}^{r+1})^{2^{\tilde{d}}-d_{1}} ((dP_{1}P_{2})^{m-r})^{2^{\tilde{d}}-d_{1}d_{2}} (P_{2}^{n-m+1})^{2^{\tilde{d}}-d_{2}} \sum_{\tilde{\boldsymbol{z}}} \sum_{(\boldsymbol{x}^{(i)},\boldsymbol{y}^{(j,i)})_{i\in[\mathbb{I}d_{1}-1],\,j\in[\mathbb{I}d_{2}]}} \left| \sum_{\boldsymbol{x}^{(d_{1})},\boldsymbol{y}^{(1,d_{1})},\ldots,\boldsymbol{y}^{(d_{2},d_{1})}} \right| e(\Gamma_{d}^{(1)}((\boldsymbol{x}^{(i)},\boldsymbol{y}^{(j,i)},\boldsymbol{z}^{(j)})_{i\in[\mathbb{I}d_{1}],\,j\in[\mathbb{I}d_{2}]}) + \Gamma_{d}^{(2)}((\boldsymbol{x}^{(i)},\boldsymbol{y}^{(j,i)},\boldsymbol{z}^{(j)})_{i\in[\mathbb{I}d_{1}],\,j\in[\mathbb{I}d_{2}-1]})) \Big|.$$

Avant d'aller plus loin, il convient de faire la remarque suivante :

REMARQUE 3.1. Si l'on avait différencié la forme F en (x, y) puis en (\tilde{y}, z) plutôt qu'en (y, z) puis en (x, \tilde{y}) , on aurait obtenu

$$(3.14) |S_{d,N,\mathcal{I},\mathcal{J}}(\alpha)|^{2^{\tilde{d}}} \ll (P_{1}^{r+1})^{2^{\tilde{d}}-d_{1}} ((dP_{1}P_{2})^{m-r})^{2^{\tilde{d}}-d_{1}d_{2}} (P_{2}^{n-m+1})^{2^{\tilde{d}}-d_{2}} \sum_{\tilde{\boldsymbol{x}}} \sum_{(\boldsymbol{y}^{(j,i)},\boldsymbol{z}^{(j)})_{i\in \llbracket d_{1}\rrbracket, j\in \llbracket d_{2}-1\rrbracket}} \left| \sum_{\boldsymbol{z}^{(d_{2})}, \boldsymbol{y}^{(d_{2},1)}, \dots, \boldsymbol{y}^{(d_{2},d_{1})}} e(\Gamma_{d}^{(1)'}((\boldsymbol{x}^{(i)}, \boldsymbol{y}^{(j,i)}, \boldsymbol{z}^{(j)})_{i\in \llbracket d_{1}\rrbracket, j\in \llbracket d_{2}\rrbracket}) + \Gamma_{d}^{(2)'}((\boldsymbol{x}^{(i)}, \boldsymbol{y}^{(j,i)}, \boldsymbol{z}^{(j)})_{i\in \llbracket d_{1}-1\rrbracket, j\in \llbracket d_{2}\rrbracket})) \right| avec \Gamma_{d}^{(1)'} = \Gamma_{d}^{(1)}.$$

Démonstration. On pose

$$F(\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z}) = \sum_{\substack{m_1, m_2, m_3 \in \mathbb{N} \\ m_1 + m_2 = d_1 \\ m_2 + m_3 = d_2}} \sum_{\substack{\boldsymbol{i} \in \{0, \dots, r\}^{m_1} \\ \boldsymbol{j} \in \{r+1, \dots, m\}^{m_2} \\ \boldsymbol{k} \in \{m+1, \dots, n+1\}^{m_3}}} \alpha_{\boldsymbol{i}, \boldsymbol{j}, \boldsymbol{k}} x_{i_1} \dots x_{i_{m_1}} y_{j_1} \dots y_{j_{m_2}} z_{k_1} \dots z_{k_{m_3}}$$

(avec $\alpha_{i,j,k}$ symétrique en i, j, k). La forme multilinéaire $F_1(dx, \tilde{y}, \tilde{z})$ précédente est alors

$$(-1)^{d_2} m_2! m_3! \sum_{\substack{m_1, m_2, m_3 \in \mathbb{N} \\ m_1 + m_2 = d_1 \\ m_2 + m_3 = d_2}} d^{m_1} \sum_{\substack{\mathbf{i} \in \{0, \dots, r\}^{m_1} \\ \mathbf{j} \in \{r+1, \dots, m\}^{m_2} \\ \mathbf{k} \in \{m+1, \dots, n+1\}^{m_3}}} \alpha_{\mathbf{i}, \mathbf{j}, \mathbf{k}} x_{i_1} \dots x_{i_{m_1}}$$
$$\times \sum_{\sigma \in \mathcal{M}(d_2, m_2)} y_{j_1}^{(\sigma(1))} \dots y_{j_{m_2}}^{(\sigma(m_2))} z_{k_1}^{(\sigma(m_2+1))} \dots z_{k_{m_3}}^{(\sigma(m_2+m_3))}$$

où $\mathcal{M}(d_2, m_2)$ désigne l'ensemble des permutations σ de $\llbracket d_2 \rrbracket$ telles que $\sigma(1) < \cdots < \sigma(m_2)$ et $\sigma(m_2 + 1) < \cdots < \sigma(m_2 + m_3) = \sigma(d_2)$. La forme multilinéaire $\Gamma_d^{(1)}$ obtenue en différenciant en $(\boldsymbol{x}, \tilde{\boldsymbol{y}})$ est alors

$$(-1)^{d_1+d_2}m_1!(m_2)^2!m_3!\sum_{\substack{m_1,m_2,m_3\in\mathbb{N}\\m_1+m_2=d_1\\m_2+m_3=d_2}}d^{m_1}\sum_{\substack{\mathbf{i}\in\{0,\dots,r\}^{m_1}\\\mathbf{j}\in\{r+1,\dots,m\}^{m_2}\\\mathbf{k}\in\{m+1,\dots,n+1\}^{m_3}}}\alpha_{\mathbf{i},\mathbf{j},\mathbf{k}}\sum_{\tau\in\mathcal{M}(d_1,m_1)}\sum_{\sigma\in\mathcal{M}(d_2,m_2)}x_{(d_2,m_2)}^{(d_1,m_1)}\sum_{\sigma\in\mathcal{M}(d_2,m_2)}x_{(d_2,m_2)}^{(d_2,m_2)}d^{(d_2,m_2$$

Il est alors clair que l'on obtient le même résultat en différenciant en (\pmb{x},\pmb{y}) puis en $(\tilde{\pmb{y}},\pmb{z}).$

Pour $\tilde{\boldsymbol{z}}$ et $(\boldsymbol{x}^{(i)}, \boldsymbol{y}^{(j,i)})_{i \in [\![d_1-1]\!], j \in [\![d_2]\!]}$ fixés, si l'on note $\Gamma_d = \Gamma_d^{(1)} + \Gamma_d^{(2)}$, on a

$$(3.15) \quad \left| \sum_{\boldsymbol{x}^{(d_1)}, \boldsymbol{y}^{(1,d_1)}, \dots, \boldsymbol{y}^{(d_2,d_1)}} e(\Gamma_d((\boldsymbol{x}^{(i)}, \boldsymbol{y}^{(j,i)}, \boldsymbol{z}^{(j)})_{i \in \llbracket d_1 \rrbracket, j \in \llbracket d_2 \rrbracket})) \right|$$
$$= \prod_{i \in I^{d_1}} \left| \sum_{u_i^{(d_1)}} e\left(\alpha u_i^{(d_1)} \left(\sum_{\boldsymbol{i} \in I \mid i_{d_1} = i} G_{d, \boldsymbol{i}}(\tilde{\boldsymbol{z}}) u_{i_1}^{(1)} \dots u_{i_{d_1-1}}^{(d_1-1)} + \sum_{\boldsymbol{i}' \in (I')^{d_1} \mid i'_{d_1} = i} H_{d, \boldsymbol{i}}(\tilde{\boldsymbol{z}}) u_{i'_1}^{(1)} \cdots u_{i'_{d_1-1}}^{(d_1-1)} \right) \right) \right|$$

où la somme sur $u_i^{(d_1)}$ porte sur $u_i^{(d_1)}$ appartenant à un intervalle de taille $O(P_1)$ si $i \in \{0, \ldots, r\}$ et de taille $O(dP_1P_2)$ pour

$$i \in \{(r+1,1), \dots, (m,1), \dots, (r+1,d_2), \dots, (m,d_2)\}.$$

Pour simplifier les notations on pose

(3.16)
$$\gamma_{d,i}^{(1)}((\boldsymbol{x}^{(k)}, \boldsymbol{y}^{(j,k)}, \boldsymbol{z}^{(j)})_{k \in [\![d_1-1]\!], j \in [\![d_2]\!]})$$

= $\sum_{\boldsymbol{i} \in I^{d_1} \mid i_{d_1} = \boldsymbol{i}} G_{d,\boldsymbol{i}}(\tilde{\boldsymbol{z}}) u_{i_1}^{(1)} \dots u_{i_{d_1-1}}^{(d_1-1)},$

$$(3.17) \quad \gamma_{d,i}^{(2)}((\boldsymbol{x}^{(k)}, \boldsymbol{y}^{(j,k)}, \boldsymbol{z}^{(j)})_{k \in [\![d_1-1]\!], j \in [\![d_2]\!]}) = \sum_{\boldsymbol{i}' \in (I')^{d_1} \mid i'_{d_1} = \boldsymbol{i}} H_{d,\boldsymbol{i}}(\tilde{\boldsymbol{z}}) u_{i'_1}^{(1)} \dots u_{i'_{d_1-1}}^{(d_1-1)},$$

où les $u_i^{(j)}$ sont les variables définies par (3.12), et

(3.18)
$$\gamma_{d,i} = \gamma_{d,i}^{(1)} + \gamma_{d,i}^{(2)}.$$

En notant, pour tout réel x,

$$||x|| = \inf_{m \in \mathbb{Z}} |x - m|,$$

on peut alors majorer (3.15) par

$$\prod_{i \in I} \min \left(H_i, \|\alpha \gamma_{d,i}(\boldsymbol{x}^{(k)}, \boldsymbol{y}^{(j,k)}, \boldsymbol{z}^{(j)})_{k \in \llbracket d_1 - 1 \rrbracket, j \in \llbracket d_2 \rrbracket} \|^{-1} \right)$$

où

$$H_i = \begin{cases} P_1 & \text{si } i \in \{0, 1, \dots, r\}, \\ dP_1 P_2 & \text{si } i = (k, l) \in \{r + 1, \dots, m\} \times [\![d_2]\!]. \end{cases}$$

Pour tout $\boldsymbol{r} = (r_i)_{i \in I} \in \prod_{i \in I} (\mathbb{N} \cap [0, H_i[), \mathbf{X} = (\boldsymbol{x}^{(i)}, \boldsymbol{y}^{(j,i)}, \boldsymbol{z}^{(j)})_{i \in [d_1 - 1], j \in [d_2 - 1]}$ fixés, on note $\mathcal{A}(\mathbf{X}, \boldsymbol{r})$ l'ensemble des éléments $\boldsymbol{z}^{(d_2)}, \boldsymbol{y}^{(d_2, 1)}, \dots, \boldsymbol{y}^{(d_2, d_1 - 1)}$ tels que $|\boldsymbol{z}^{(d_2)}| \leq P_2, |\boldsymbol{y}^{(d_2, k)}| \leq dP_1 P_2$ pour tout $k \in [d_1 - 1]$ et

$$\forall i \in I, \quad r_i H_i^{-1} \le \{ \alpha \gamma_{d,i} ((\boldsymbol{x}^{(k)}, \boldsymbol{y}^{(j,k)}, \boldsymbol{z}^{(j)})_{k \in [\![d_1-1]\!], j \in [\![d_2]\!]}) \} < (r_i + 1) H_i^{-1};$$

on note $A(\mathbf{X}, \mathbf{r})$ le cardinal de cet ensemble. On a alors l'estimation

$$\sum_{\boldsymbol{z}^{(d_2)}, \boldsymbol{y}^{(d_2, 1)}, \dots, \boldsymbol{y}^{(d_2, d_1 - 1)}} \left| \sum_{\boldsymbol{x}^{(d_1)}, \boldsymbol{y}^{(1, d_1)}, \dots, \boldsymbol{y}^{(d_2, d_1)}} e(\Gamma_d((\boldsymbol{x}^{(i)}, \boldsymbol{y}^{(j, i)}, \boldsymbol{z}^{(j)})_{i \in \llbracket d_1 \rrbracket, j \in \llbracket d_2 \rrbracket})) \right| \\ \ll \sum_{\boldsymbol{r}} A(\mathbf{X}, \boldsymbol{r}) \prod_{i \in I} \min\left(H_i, \max\left(\frac{H_i}{r_i}, \frac{H_i}{H_i - r_i - 1}\right)\right).$$

Par ailleurs, si

$$(\boldsymbol{z}^{(d_2)}, (\boldsymbol{y}^{(d_2,i)})_{i \in \llbracket d_1 - 1 \rrbracket}), (\boldsymbol{z}^{\prime(d_2)}, (\boldsymbol{y}^{\prime(d_2,i)})_{i \in \llbracket d_1 - 1 \rrbracket}) \in \mathcal{A}(\mathbf{X}, \boldsymbol{r}),$$

alors, pour tout $i \in I$,

$$\begin{split} \gamma_{d,i}(\mathbf{X}, \boldsymbol{z}^{(d_2)}, (\boldsymbol{y}^{(d_2,k)})_{k \in \llbracket d_1 - 1 \rrbracket}) &- \gamma_{d,i}(\mathbf{X}, \boldsymbol{z}'^{(d_2)}, (\boldsymbol{y}'^{(d_2,k)})_{k \in \llbracket d_1 - 1 \rrbracket}) \\ &= \gamma_{d,i}^{(1)}(\mathbf{X}, \boldsymbol{z}^{(d_2)} - \boldsymbol{z}'^{(d_2)}, (\boldsymbol{y}^{(d_2,k)} - \boldsymbol{y}'^{(d_2,k)})_{k \in \llbracket d_1 - 1 \rrbracket}) \end{split}$$

 $(\operatorname{car} \gamma_{d,i}^{(2)} \text{ ne dépend pas de } (\boldsymbol{z}^{(d_2)}, (\boldsymbol{y}^{(d_2,k)})_{k \in \llbracket d_1 - 1 \rrbracket}) \text{ et } \gamma_{d,i}^{(1)} \text{ est linéaire en } (\boldsymbol{z}^{(d_2)}, (\boldsymbol{y}^{(d_2,i)})_{i \in \llbracket d_1 - 1 \rrbracket})).$ En notant $N(\mathbf{X})$ le cardinal de l'ensemble des $\boldsymbol{z}^{(d_2)}, \boldsymbol{y}^{(d_2,1)}, \ldots, \boldsymbol{y}^{(d_2,d_1-1)}$ tels que $|\boldsymbol{z}^{(d_2)}| \leq P_1, |\boldsymbol{y}^{(d_2,j)}| \leq dP_1P_2$ et

$$\forall i \in I, \quad \|\alpha \gamma_{d,i}^{(1)}((\boldsymbol{x}^{(k)}, \boldsymbol{y}^{(j,k)}, \boldsymbol{z}^{(j)})_{k \in [\![d_1-1]\!], j \in [\![d_2]\!]})\| < H_i^{-1},$$

on a $A(\mathbf{X}, \mathbf{r}) \ll N(\mathbf{X})$, et donc (3.19) donne

$$\sum_{\boldsymbol{z}^{(d_2)}, \boldsymbol{y}^{(d_2, 1)}, \dots, \boldsymbol{y}^{(d_2, d_1 - 1)}} \left| \sum_{\boldsymbol{x}^{(d_1)}, \boldsymbol{y}^{(1, d_1)}, \dots, \boldsymbol{y}^{(d_2, d_1)}} e(\Gamma((\boldsymbol{x}^{(i)}, \boldsymbol{y}^{(j, i)}, \boldsymbol{z}^{(j)})_{i \in \llbracket d_1 \rrbracket, j \in \llbracket d_2 \rrbracket})) \right| \\ \ll N(\mathbf{X}) \sum_{\boldsymbol{r}} \prod_{i \in I} \min\left(H_i, \max\left(\frac{H_i}{r_i}, \frac{H_i}{H_i - r_i - 1}\right)\right) \\ \ll N(\mathbf{X}) (P_1 \log P_1)^{r+1} (dP_1 P_2 \log(dP_1 P_2))^{d_2(m-r)}.$$

En résumé, si, pour tous $H_1^{(i)}, H_2^{(i,j)}, H_3^{(j)} \ge 1$ et $B_1, B_2 \ge 1$,

 $M(\alpha, (H_1^{(i)}, H_2^{(i,j)}, H_3^{(j)})_{i \in [\![d_1-1]\!], j \in [\![d_2]\!]}, B_1^{-1}, B_2^{-1})$

désigne le cardinal de l'ensemble des $(\boldsymbol{x}^{(i)}, \boldsymbol{y}^{(j,i)}, \boldsymbol{z}^{(j)})_{i \in [\![d_1-1]\!], j \in [\![d_2]\!]}$ tels que $|\boldsymbol{x}^{(i)}| \leq H_1^{(i)}, |\boldsymbol{y}^{(i,j)}| \leq H_2^{(i,j)}, |\boldsymbol{z}^{(j)}| \leq H_2^{(j)}$ pour tous $(i,j) \in [\![d_1-1]\!] \times [\![d_2]\!]$ et

$$\forall k \in \{0, \dots, r\}, \quad \|\alpha \gamma_{d,k}^{(1)}((\boldsymbol{x}^{(i)}, \boldsymbol{y}^{(j,i)}, \boldsymbol{z}^{(j)})_{i \in [\![d_1 - 1]\!], j \in [\![d_2]\!]})\| < B_1^{-1}, \\ \forall k \in \{r + 1, \dots, m\} \times [\![d_2]\!], \quad \|\alpha \gamma_{d,k}^{(1)}((\boldsymbol{x}^{(i)}, \boldsymbol{y}^{(j,i)}, \boldsymbol{z}^{(j)})_{i \in [\![d_1 - 1]\!], j \in [\![d_2]\!]})\| < B_2^{-1},$$

en reprenant la formule (3.14), on obtient (pour $\varepsilon > 0$ arbitrairement petit) $|S_{d,N,\mathcal{I},\mathcal{J}}(\alpha)|^{2^{\tilde{d}}} \ll (P_1^{r+1})^{2^{\tilde{d}}-(d_1-1)+\varepsilon} ((dP_1P_2)^{m-r})^{2^{\tilde{d}}-(d_1-1)d_2+\varepsilon} (P_2^{n-m+1})^{2^{\tilde{d}}-d_2} \times M(\alpha, (P_1, dP_1P_2, P_2)_{i \in [d_1-1], i \in [d_2]}, P_1^{-1}, (dP_1P_2)^{-1}).$

On en déduit (en sommant sur $N \in \{0, \ldots, P_1\}$ et sur les $\mathcal{I}, \mathcal{J} \subset \{r+1, \ldots, m\}$) le lemme ci-dessous.

LEMME 3.2. Pour $\varepsilon > 0$ arbitrairement petit, et pour $\kappa, P > 0$ des réels fixés, l'une au moins des assertions suivantes est vraie :

(1) $|S_d(\alpha)| \ll d^{m-r+\varepsilon+d_1(r+1)/2^{\tilde{d}}} P_1^{m+2+\varepsilon} P_2^{n-r+1+\varepsilon} P^{-\kappa},$ (2) $M(\alpha, (P_1, dP_1P_2, P_2)_{i \in \llbracket d_1 - 1 \rrbracket, j \in \llbracket d_2 \rrbracket}, P_1^{-1}, (dP_1P_2)^{-1})$ $\gg d^{d_1(r+1)} (P_1^{r+1})^{(d_1-1)} ((dP_1P_2)^{m-r})^{(d_1-1)d_2} (P_2^{n-m+1})^{d_2} P^{-2^{\tilde{d}_{\kappa}}}.$ REMARQUE 3.3. Si κ est petit, la condition (1) donne une majoration de $|S_d(\alpha)|$ plus grande que la majoration triviale,

$$|S_d(\alpha)| \ll d^{m-r} P_1^{m+1} P_2^{n-r+1}$$

(ceci est dû à la sommation sur $N \leq P_1$ qui induit un facteur P_1 supplémentaire); c'est pourquoi nous utiliserons uniquement cette majoration pour $P^{\kappa} > P_1^{d_1} P_2^{d_2}$.

3.2. Géométrie des nombres. Nous allons à présent établir des résultats de géométrie des nombres qui nous serons utiles pour la suite de cette section. Il s'agit en fait de généralisations de [Da, Lemme 12.6] et de [Sch1, Lemme 3.1].

LEMME 3.4. Pour deux entiers $n_1, n_2 > 0$ et des réels $(\lambda_{i,j})_{i \in [n_1], j \in [n_2]}$, on considère les formes linéaires

$$\forall i \in \llbracket n_1 \rrbracket, \forall \boldsymbol{u} = (u_1, \dots, u_{n_2}), \quad L_i(\boldsymbol{u}) = \sum_{j=1}^{n_2} \lambda_{i,j} u_j,$$
$$\forall j \in \llbracket n_2 \rrbracket, \forall \boldsymbol{u} = (u_1, \dots, u_{n_1}), \quad L_j^t(\boldsymbol{u}) = \sum_{i=1}^{n_1} \lambda_{i,j} u_i.$$

Soient $a_1, \ldots, a_{n_2}, b_1, \ldots, b_{n_1} > 1$ des réels fixés. Pour tout $0 \le Z \le 1$, on note

$$U(Z) =$$

$$\operatorname{card} \{ (u_1, \dots, u_{n_2}, u_{n_2+1}, \dots, u_{n_2+n_1}) \in \mathbb{Z}^{n_1+n_2} \mid \forall j \in \llbracket n_2 \rrbracket, \ |u_j| \le a_j Z$$
$$et \ \forall i \in \llbracket n_1 \rrbracket, \ |L_i(u_1, \dots, u_{n_2}) - u_{n_2+i}| \le b_i^{-1} Z \},$$

$$U^{t}(Z) = \operatorname{card} \{ (u_{1}, \dots, u_{n_{1}}, u_{n_{1}+1}, \dots, u_{n_{1}+n_{2}}) \in \mathbb{Z}^{n_{1}+n_{2}} \mid \forall i \in [[n_{1}]], |u_{i}| \leq b_{i}Z et \; \forall j \in [[n_{2}]], |L_{j}^{t}(u_{1}, \dots, u_{n_{1}}) - u_{n_{1}+i}| \leq a_{j}^{-1}Z \}.$$

Si $0 < Z_1 \leq Z_2 \leq 1$, alors

$$U(Z_2) \ll_{n_1,n_2} \max\left(\left(\frac{Z_2}{Z_1}\right)^{n_2} U(Z_1), \frac{Z_2^{n_2}}{Z_1^{n_1}} \frac{\prod_{j=1}^{n_2} a_j}{\prod_{i=1}^{n_1} b_i} U^t(Z_1)\right).$$

REMARQUE 3.5. Le lemme 3.1 de [Sch1] présente uniquement le cas où $a_1 = \cdots = a_{n_2} = a$ et $b_1 = \cdots = b_{n_1} = b$. Cette généralisation aux a_i et b_i distincts permet de donner des estimations du nombre de points dans un réseau dont les coordonnées sont bornées par des bornes distinctes.

Démonstration du lemme 3.4. On considère le réseau Λ de $\mathbb{R}^{n_2+n_1}$ défini comme l'ensemble des points

$$(x_1, \dots, x_{n_2}, x_{n_2+1}, \dots, x_{n_2+n_1}) \in \mathbb{R}^{n_1+n_2}$$

tels qu'il existe $(u_1, \dots, u_{n_2}, u_{n_2+1}, \dots, u_{n_2+n_1}) \in \mathbb{Z}^{n_1+n_2}$ tels que

23

$$a_{1}x_{1} = u_{1},$$

$$\vdots$$

$$a_{n_{2}}x_{n_{2}} = u_{n_{2}},$$

$$b_{1}^{-1}x_{n_{2}+1} = L_{1}(u_{1}, \dots, u_{n_{2}}) + u_{n_{2}+1},$$

$$\vdots$$

$$b_{n_{1}}^{-1}x_{n_{2}+n_{1}} = L_{n_{1}}(u_{1}, \dots, u_{n_{2}}) + u_{n_{2}+n_{1}}.$$

Ce réseau est défini par la matrice (i.e. une base de ce réseau est donnée par les colonnes de la matrice)

$$A = \begin{pmatrix} a_1^{-1} & (0) & 0 & \cdots & 0 \\ & \ddots & & \vdots & & \vdots \\ (0) & a_{n_2}^{-1} & 0 & \cdots & 0 \\ b_1 \lambda_{1,1} & \cdots & b_1 \lambda_{1,n_2} & b_1 & & (0) \\ \vdots & & \vdots & & \ddots & \\ b_{n_1} \lambda_{n_1,1} & \cdots & b_{n_1} \lambda_{n_1,n_2} & (0) & & b_{n_1} \end{pmatrix}.$$

On remarque que U(Z) est alors le nombre de points $(x_1, \ldots, x_{n_1+n_2})$ de Λ tels que $|x_i| \leq Z$ pour tout $i \in [n_1 + n_2]$. Par ailleurs,

$$B = (A^{t})^{-1} = \begin{pmatrix} a_{1} & (0) & -a_{1}\lambda_{1,1} & \cdots & -a_{1}\lambda_{n_{1},1} \\ & \ddots & \vdots & & \vdots \\ (0) & a_{n_{2}} & -a_{n_{2}}\lambda_{1,n_{2}} & \cdots & -a_{n_{2}}\lambda_{n_{1},n_{2}} \\ 0 & \cdots & 0 & b_{1}^{-1} & (0) \\ \vdots & & \vdots & & \ddots & \\ 0 & \cdots & 0 & (0) & & b_{n_{1}}^{-1} \end{pmatrix}$$

•

définit un réseau \varOmega ayant les mêmes minima successifs que le réseau $\tilde{\varOmega}$ défini par la matrice

$$\tilde{B} = \begin{pmatrix} b_1^{-1} & (0) & 0 & \cdots \\ & \ddots & \vdots & & \vdots \\ (0) & b_{n_1}^{-1} & 0 & \cdots & 0 \\ a_1 \lambda_{1,1} & \cdots & a_1 \lambda_{n_1,1} & a_1 & & (0) \\ \vdots & & \vdots & & \ddots \\ a_{n_2} \lambda_{1,n_2} & \cdots & a_{n_2} \lambda_{n_1,n_2} & (0) & & a_{n_2} \end{pmatrix}.$$

On pose

$$c = \left(\frac{\prod_{j=1}^{n_2} a_j}{\prod_{i=1}^{n_1} b_i}\right)^{1/(n_1+n_2)}$$

et on note $\Lambda^{\text{nor}} = c\Lambda$, $\Omega^{\text{nor}} = c^{-1}\tilde{\Omega}$ les réseaux normalisés (i.e. de déterminant 1) associés à Λ et Ω . Par la démonstration de [Sch1, Lemme 3.1], on a alors

$$U(Z_2) \ll_{n_1,n_2} \max\left(\left(\frac{Z_2}{Z_1}\right)^{n_2} U(Z_1), \frac{Z_2^{n_2}}{Z_1^{n_1}} c^{n_1+n_2} U^t(Z_1)\right),$$

d'où le résultat. \blacksquare

En particulier, lorsque $n_1 = n_2 = n$, $a_i = b_i$ pour tout i et $\lambda_{i,j} = \lambda_{j,i}$, on obtient le résultat suivant :

LEMME 3.6. Soit n > 0 un entier et $(\lambda_{i,j})_{1 \le i,j \le n}$ des réels tels que $\lambda_{i,j} = \lambda_{j,i}$ pour tous i, j. Considérons des formes linéaires

$$\forall i \in \llbracket n \rrbracket, \forall \boldsymbol{u} = (u_1, \dots, u_n), \quad L_i(\boldsymbol{u}) = \sum_{j=1}^n \lambda_{i,j} u_j.$$

Soient $a_1, \ldots, a_n > 1$ des réels fixés. Pour tout $0 \le Z \le 1$, on note

$$U(Z) = \operatorname{card} \{ (u_1, \dots, u_n, u_{n+1}, \dots, u_{2n}) \mid \forall j \in [\![n]\!], \ |u_j| \le a_j Z \\ et \ \forall i \in [\![n]\!], \ |L_i(u_1, \dots, u_n) - u_{n+i}| \le a_i^{-1} Z \}.$$

Alors

$$U(Z_2) \ll_n (Z_2/Z_1)^n U(Z_1).$$

Revenons à présent à la situation de la section précédente, et considérons, pour $(\boldsymbol{x}^{(i)}, \boldsymbol{y}^{(i,j)}, \boldsymbol{z}^{(j)})_{i \in [\![d_1-2]\!], j \in [\![d_2]\!]}$ fixés, les $N = (r+1) + d_2(m-r)$ formes linéaires en $(\boldsymbol{x}^{(d_1-1)}, \boldsymbol{y}^{(j,d_1-1)})_{j \in [\![d_2]\!]}$ données par les $\alpha \gamma_{d,k}^{(1)}$ pour $k \in I$. Remarquons que d'après (3.16) on a, pour tout $k \in I$,

$$\begin{aligned} \gamma_{d,k}^{(1)}((\boldsymbol{x}^{(i)}, \boldsymbol{y}^{(j,i)}, \boldsymbol{z}^{(j)})_{i \in \llbracket d_1 - 1 \rrbracket, j \in \llbracket d_2 \rrbracket}) &= \sum_{\boldsymbol{i} \in I^{d_1 - 1}} G_{d, \boldsymbol{i}, k}(\tilde{\boldsymbol{z}}) u_{i_1}^{(1)} \dots u_{i_{d_1 - 1}}^{(d_1 - 1)} \\ &= \sum_{\boldsymbol{i} \in I^{d_1 - 1}} d^{f_{\boldsymbol{i}, k}} G_{\boldsymbol{i}, k}(\tilde{\boldsymbol{z}}) u_{i_1}^{(1)} \dots u_{i_{d_1 - 1}}^{(d_1 - 1)} \end{aligned}$$

(où $\tilde{z} = (z^{(1)}, \dots, z^{(d_2)})$ et les $u_i^{(j)}$ sont donnés par (3.12)) et donc pour tous $k, l \in I$ le coefficient $\lambda_{k,l}$ en $u_l^{(d_1-1)}$ s'écrit

$$\lambda_{k,l} = \sum_{i \in I^{d_1-2}} d^{f_{i,l,k}} G_{i,l,k}(\tilde{z}) u_{i_1}^{(1)} \dots u_{i_{d_1-2}}^{(d_1-2)};$$

on observe que, puisque les $G_i(\tilde{z})$ sont symétriques en $i \in I^{d_1}$,

$$\lambda_{k,l} = \lambda_{l,k}.$$

Pour P > 0 fixé et $\theta \in [0, 1]$ supposés tels que $P^{\theta} \le P_2 \le P_1$, on pose $Z_2 = 1$, $Z_1 = (dP_1)^{-1}P^\theta, a_k = P_1 \text{ pour tout } k \in I_1 = \{0, \dots, r\}, \text{ et } a_k = dP_1P_2 \text{ pour } k \in I_2 = \{r+1, \dots, m\} \times [d_2], \text{ de sorte que (en remarquant que } I = I_1 \cup I_2)$

$$\begin{split} \forall k \in I_1, & a_k Z_2 = P_1, & a_k Z_1 = P^{\theta}/d, \\ \forall k \in I_2, & a_k Z_2 = dP_1 P_2, & a_k Z_1 = P_2 P^{\theta}, \\ \forall k \in I_1, & a_k^{-1} Z_2 = P_1^{-1}, & a_k^{-1} Z_1 = d^{-1} P_1^{-2} P^{\theta}, \\ \forall k \in I_2, & a_k^{-1} Z_2 = (dP_1 P_2)^{-1}, & a_k^{-1} Z_1 = (dP_1)^{-2} P_2^{-1} P^{\theta}. \end{split}$$

En appliquant le lemme 3.6, on obtient

$$U(Z_2) \ll (dP_1/P^{\theta})^{r+1+d_2(m-r)}U(Z_1),$$

avec

$$U(Z_{2}) = \operatorname{card} \left\{ (\boldsymbol{x}^{(d_{1}-1)}, (\boldsymbol{y}^{(j,d_{1}-1)})_{j \in \llbracket d_{2} \rrbracket}) \mid |\boldsymbol{x}^{(d_{1}-1)}| \leq P_{1}, |\boldsymbol{y}^{(j,d_{1}-1)}| \leq dP_{1}P_{2}, \\ \operatorname{et} \forall k \in I_{1}, \|\alpha \gamma_{d,k}^{(1)}((\boldsymbol{x}^{(i)}, \boldsymbol{y}^{(j,i)}, \boldsymbol{z}^{(j)})_{i \in \llbracket d_{1}-1 \rrbracket, j \in \llbracket d_{2} \rrbracket})\| < P_{1}^{-1}, \\ \forall k \in I_{2}, \|\alpha \gamma_{d,k}^{(1)}((\boldsymbol{x}^{(i)}, \boldsymbol{y}^{(j,i)}, \boldsymbol{z}^{(j)})_{i \in \llbracket d_{1}-1 \rrbracket, j \in \llbracket d_{2} \rrbracket})\| < (dP_{1}P_{2})^{-1} \right\}$$

 et

$$U(Z_{1}) = \operatorname{card}\left\{ (\boldsymbol{x}^{(d_{1}-1)}, (\boldsymbol{y}^{(j,d_{1}-1)})_{j\in \llbracket d_{2} \rrbracket}) \mid \boldsymbol{x}^{(d_{1}-1)} \mid \leq P^{\theta}/d, \, |\boldsymbol{y}^{(j,d_{1}-1)}| \leq P^{\theta}P_{2}, \\ \operatorname{et} \, \forall k \in I_{1}, \, \|\alpha \gamma_{d,k}^{(1)}((\boldsymbol{x}^{(i)}, \boldsymbol{y}^{(j,i)}, \boldsymbol{z}^{(j)})_{i\in \llbracket d_{1}-1 \rrbracket, j\in \llbracket d_{2} \rrbracket})\| < d^{-1}P_{1}^{-2}P^{\theta}, \\ \forall k \in I_{2}, \, \|\alpha \gamma_{d,k}^{(1)}((\boldsymbol{x}^{(i)}, \boldsymbol{y}^{(j,i)}, \boldsymbol{z}^{(j)})_{i\in \llbracket d_{1}-1 \rrbracket, j\in \llbracket d_{2} \rrbracket})\| < d^{-2}P_{1}^{-2}P_{2}^{-1}P^{\theta} \right\}.$$

En sommant sur les $(\boldsymbol{x}^{(i)}, \boldsymbol{y}^{(i,j)}, \boldsymbol{z}^{(j)})_{i \in \llbracket d_1 - 2 \rrbracket, j \in \llbracket d_2 \rrbracket}$, on obtient alors

$$\begin{split} M(\alpha, (B_1^{(i)}, B_2^{(j,i)}, B_3^{(j)})_{i \in \llbracket d_1 - 1 \rrbracket, j \in \llbracket d_2 \rrbracket}, P_1^{-1}, (dP_1P_2)^{-1}) \\ \ll \left(\frac{dP_1}{P^{\theta}}\right)^{r+1 + d_2(m-r)} \\ \times M(\alpha, (H_1^{(i)}, H_2^{(j,i)}, H_3^{(j)})_{i \in \llbracket d_1 - 1 \rrbracket, j \in \llbracket d_2 \rrbracket}, d^{-1}P_1^{-2}P^{\theta}, d^{-2}P_1^{-2}P_2^{-1}P^{\theta}) \end{split}$$

où

 $\forall i \in \llbracket d_1 - 1 \rrbracket, \ B_1^{(i)} = P_1, \quad \forall i \in \llbracket d_1 - 1 \rrbracket, \ B_2^{(j,i)} = dP_1 P_2, \quad B_3^{(j)} = P_2,$ et

$$H_1^{(i)} = \begin{cases} P_1 & \text{si } i \in [\![d_1 - 2]\!], \\ P^{\theta}/d & \text{si } i = d_1 - 1, \end{cases}$$

$$H_2^{(j,i)} = \begin{cases} dP_1 P_2 & \text{si } i \in [\![d_1 - 2]\!], \\ P^{\theta} P_2 & \text{si } i = d_1 - 1, \end{cases}$$
$$H_3^{(j)} = P_2.$$

Par la suite, on applique le lemme de la même manière en prenant $(\boldsymbol{x}^{(i)}, \boldsymbol{y}^{(j,i)}, \boldsymbol{z}^{(j)})_{i \notin \{d_1, d_1 - l\}}$ fixés (pour *l* variant de 1 à $d_1 - 1$), et en considérant les $\alpha \gamma_{d,k}^{(1)}$ comme des formes linéaires en $(\boldsymbol{x}^{(d_1-l)}, \boldsymbol{y}^{(j,d_1-l)})_{j \in [\![d_2]\!]}$, et en choisissant $Z_2 = d^{-(l-1)/2} P_1^{-(l-1)/2} P^{(l-1)\theta/2}$, $Z_1 = d^{-(l+1)/2} P_1^{-(l+1)/2} P^{(l+1)\theta/2}$, $a_k = d^{(l-1)/2} P_1^{(l+1)/2} P^{-(l-1)\theta/2}$ pour tout $k \in I_1$, et $a_k = d^{(l+1)/2} P_1^{(l+1)/2} P_1^{(l+1)/2} \times P_2 P^{-(l-1)\theta/2}$ pour $k \in I_2$, de sorte que

 $\begin{aligned} \forall k \in I_1, & a_k Z_2 = P_1, & a_k Z_1 = P^{\theta}/d, \\ \forall k \in I_2, & a_k Z_2 = dP_1 P_2, & a_k Z_1 = P_2 P^{\theta}, \\ \forall k \in I_1, & a_k^{-1} Z_2 = d^{-(l-1)} P_1^{-l} P^{(l-1)\theta}, & a_k^{-1} Z_1 = d^{-(l+1)} P_1^{-(l+1)} P^{l\theta}, \\ \forall k \in I_2, & a_k^{-1} Z_2 = d^{-l} P_1^{-l} P_2^{-1} P^{(l-1)\theta}, & a_k^{-1} Z_1 = d^{-(l+1)} P_1^{-(l+1)} P_2^{-1} P^{l\theta}. \end{aligned}$

On obtient alors (à l'étape l) la majoration

$$\begin{split} M\big(\alpha, (B_1^{(i)}, B_2^{(j,i)}, B_3^{(j)})_{i \in \llbracket d_1 - 1 \rrbracket, j \in \llbracket d_2 \rrbracket, d^{-(l-1)} P_1^{-l} P^{(l-1)\theta}, d^{-l} P_1^{-l} P_2^{-1} P^{(l-1)\theta}\big) \\ \ll \left(\frac{dP_1}{P^{\theta}}\right)^{r+1+d_2(m-r)} M\big(\alpha, (H_1^{(i)}, H_2^{(j,i)}, H_3^{(j)})_{i \in \llbracket d_1 - 1 \rrbracket, j \in \llbracket d_2 \rrbracket, d^{-(l+1)} P_1^{-(l+1)} P^{l\theta}, d^{-(l+1)} P_1^{-(l+1)} P_2^{-1} P^{l\theta}\big) \end{split}$$

où

$$B_1^{(i)} = \begin{cases} P_1 & \text{si } i \in [\![d_1 - l]\!], \\ P^{\theta}/d & \text{si } i \in \{d_1 - l + 1, \dots, d_1 - 1\}, \end{cases}$$
$$B_2^{(j,i)} = \begin{cases} dP_1P_2 & \text{si } i \in [\![d_1 - l]\!], \\ P^{\theta}P_2 & \text{si } i \in \{d_1 - l + 1, \dots, d_1 - 1\}, \end{cases}$$
$$B_3^{(j)} = P_2,$$

 et

$$H_1^{(i)} = \begin{cases} P_1 & \text{si } i \in [\![d_1 - l - 1]\!], \\ P^{\theta}/d & \text{si } i \in \{d_1 - l, \dots, d_1 - 1\}, \end{cases}$$
$$H_2^{(j,i)} = \begin{cases} dP_1P_2 & \text{si } i \in [\![d_1 - l - 1]\!], \\ P^{\theta}P_2 & \text{si } i \in \{d_1 - l, \dots, d_1 - 1\}, \end{cases}$$
$$H_3^{(j)} = P_2.$$

Finalement, au rang $l = d_1 - 1$, on obtient

$$(3.20) \qquad M\left(\alpha, (P_1, dP_1P_2, P_2)_{i \in \llbracket d_1 - 1 \rrbracket, j \in \llbracket d_2 \rrbracket}, P_1^{-1}, (dP_1P_2)^{-1}\right) \\ \ll \left(\frac{dP_1}{P^{\theta}}\right)^{(r+1+d_2(m-r))(d_1-1)} M\left(\alpha, (P^{\theta}/d, P^{\theta}P_2, P_2)_{i \in \llbracket d_1 - 1 \rrbracket, j \in \llbracket d_2 \rrbracket}, d^{-(d_1-1)}P_1^{-d_1}P^{(d_1-1)\theta}, d^{-d_1}P_1^{-d_1}P_2^{-1}P^{(d_1-1)\theta}\right).$$

Nous allons à présent chercher à établir des majorations analogues avec les $n_2 = (m - r)(d_1 - 1) + (n - m + 1)$ -uplets de variables donnés par les $(\boldsymbol{y}^{(j,i)}, \boldsymbol{z}^{(j)})_{i \in [\![d_1-1]\!]}$ pour $j \in [\![d_2]\!]$, en considérant toujours les formes linéaires $\alpha \gamma_{d,k}^{(1)}$. Fixons donc $(\boldsymbol{x}^{(i)}, \boldsymbol{y}^{(j,i)}, \boldsymbol{z}^{(j)})_{i \in [\![d_1-1]\!]}$, $j \in [\![d_2-1]\!]$ vérifiant les m - r iné-galités

(3.21)
$$\|\alpha \gamma_{d,(l,d_2)}^{(1)}((\boldsymbol{x}^{(i)}, \boldsymbol{y}^{(j,i)}, \boldsymbol{z}^{(j)})_{i \in [\![d_1-1]\!], j \in [\![d_2-1]\!]})\| < d^{-d_1} P_1^{-d_1} P_2^{-1} P^{(d_1-1)\theta}$$

pour $l \in \{r+1, \ldots, m\}$ (les formes $\gamma_{d,(l,d_2)}^{(1)}$ ne dépendant pas des $\boldsymbol{y}^{(d_2,i)}, \boldsymbol{z}^{(d_2)}$). On considère les variables $(\boldsymbol{y}^{(d_2,i)}, \boldsymbol{z}^{(d_2)})_{i \in [\![d_1-1]\!]}$ et les $n_1 = (r+1) + (d_2-1)$ $\times (m-r)$ formes linéaires $\alpha \gamma_{d,k}^{(1)}, k \neq (l,d_2)$, correspondantes. On applique le lemme 3.4 en choisissant $Z_2 = d^{-d_1/2} P_1^{-d_1/2} P_2^{1/2} P^{(d_1-1)\theta/2}, Z_1 = d^{-d_1/2}$ $\times P_1^{-d_1/2} P_2^{-1/2} P^{(d_1+1)\theta/2}, a_k = d^{d_1/2} P_1^{d_1/2} P_2^{1/2} P^{-(d_1-1)\theta/2}$ pour tout $k \in$ $J_1 = \{m+1, \ldots, n+1\}, a_k = d^{d_1/2} P_1^{d_1/2} P_2^{1/2} P^{-(d_1-3)\theta/2}$ pour $k \in J_2 =$ $\{r+1, \ldots, m\} \times [\![d_1-1]\!], b_k = d^{d_1/2-1} P_1^{d_1/2} P_2^{1/2} P^{-(d_1-1)\theta/2}$ pour $k \in I_1 =$ $\{0, \ldots, r\}$ et $b_k = d^{d_1/2} P_1^{d_1/2} P_2^{3/2} P^{-(d_1-1)\theta/2}$ pour $k \in I_2 = \{r+1, \ldots, m\}$ $\times [\![d_2-1]\!]$ de sorte que

$$\begin{aligned} \forall k \in J_1, & a_k Z_2 = P_2, & a_k Z_1 = P^{\theta}, \\ \forall k \in J_2, & a_k Z_2 = P^{\theta} P_2, & a_k Z_1 = P^{2\theta}, \\ \forall k \in I_1, & b_k^{-1} Z_2 = d^{-(d_1-1)} P_1^{-d_1} P^{(d_1-1)\theta}, & b_k^{-1} Z_1 = d^{-(d_1-1)} P_1^{-d_1} P_2^{-1} P^{d_1\theta}, \\ \forall k \in I'_2, & b_k^{-1} Z_2 = d^{-d_1} P_1^{-d_1} P_2^{-1} P^{(d_1-1)\theta}, & b_k^{-1} Z_1 = d^{-d_1} P_1^{-d_1} P_2^{-2} P^{d_1\theta}, \end{aligned}$$

et de plus

$$\begin{aligned} \forall k \in J_1, & a_k^{-1} Z_1 = d^{-d_1} P_1^{-d_1} P_2^{-1} P^{d_1 \theta}, \\ \forall k \in J_2, & a_k^{-1} Z_1 = d^{-d_1} P_1^{-d_1} P_2^{-1} P^{(d_1 - 1)\theta}, \\ \forall k \in I_1, & b_k Z_1 = P^{\theta}/d, \\ \forall k \in I'_2, & b_k Z_1 = P_2 P^{\theta}. \end{aligned}$$

On trouve alors

$$U(Z_2) \ll \max\left(\left(\frac{P_2}{P^{\theta}}\right)^{n_2} U(Z_1), \frac{Z_2^{n_2}}{Z_1^{n_1}} \frac{\prod_{k \in J} a_k}{\prod_{k \in I_1 \cup I'_2} b_k} U^t(Z_1)\right),$$

avec

$$\frac{Z_2^{n_2}}{Z_1^{n_1}} \frac{\prod_{k \in J} a_k}{\prod_{k \in I_1 \cup I_2'} b_k} = \frac{\prod_{k \in J} a_k Z_2}{\prod_{k \in I_1 \cup I_2'} b_k Z_1} = d^{r+1} \frac{P_2^{n_2}}{P^{n_1 \theta}} \frac{P^{(d_1-1)(m-r)\theta}}{P_2^{(d_2-1)(m-r)}},$$

où

$$\begin{split} U(Z_{2}) &= \operatorname{card} \{ ((\boldsymbol{y}^{(d_{2},i)},\boldsymbol{z}^{(d_{2})})_{i \in \llbracket d_{1}-1 \rrbracket}) \mid |\boldsymbol{z}^{(d_{2})}| \leq P_{2}, |\boldsymbol{y}^{(d_{2},i)}| \leq P^{\theta}P_{2}, \\ \text{et } \forall k \in I_{1}, \, \|\alpha \gamma_{d,k}^{(1)}((\boldsymbol{x}^{(i)},\boldsymbol{y}^{(j,i)},\boldsymbol{z}^{(j)})_{i \in \llbracket d_{1}-1 \rrbracket, j \in \llbracket d_{2} \rrbracket}) \| < d^{-(d_{1}-1)}P_{1}^{-d_{1}}P^{(d_{1}-1)\theta}, \\ \forall k \in I_{2}', \, \|\alpha \gamma_{d,k}^{(1)}((\boldsymbol{x}^{(i)},\boldsymbol{y}^{(j,i)},\boldsymbol{z}^{(j)})_{i \in \llbracket d_{1}-1 \rrbracket, j \in \llbracket d_{2} \rrbracket}) \| < d^{-d_{1}}P_{1}^{-d_{1}}P_{2}^{-1}P^{(d_{1}-1)\theta} \}, \\ U(Z_{1}) &= \operatorname{card} \{ ((\boldsymbol{y}^{(d_{2},i)})_{i \in \llbracket d_{1}-1 \rrbracket}, \boldsymbol{z}^{(d_{2})}) \mid |\boldsymbol{z}^{(d_{2})}| \leq P^{\theta}, \, |\boldsymbol{y}^{(d_{2},i)}| \leq P^{2\theta}, \\ \text{et } \forall k \in I_{1}, \, \|\alpha \gamma_{d,k}^{(1)}((\boldsymbol{x}^{(i)},\boldsymbol{y}^{(j,i)},\boldsymbol{z}^{(j)})_{i \in \llbracket d_{1}-1 \rrbracket, j \in \llbracket d_{2} \rrbracket}) \| < d^{-(d_{1}-1)}P_{1}^{-d_{1}}P_{2}^{-1}P^{d_{1}\theta}, \\ \forall k \in I_{2}', \, \|\alpha \gamma_{d,k}^{(1)}((\boldsymbol{x}^{(i)},\boldsymbol{y}^{(j,i)},\boldsymbol{z}^{(j)})_{i \in \llbracket d_{1}-1 \rrbracket, j \in \llbracket d_{2} \rrbracket}) \| < d^{-d_{1}}P_{1}^{-d_{1}}P_{2}^{-2}P^{d_{1}\theta} \}, \\ U^{t}(Z_{1}) &= \operatorname{card} \{ (\boldsymbol{x}^{(d_{1})}, (\boldsymbol{y}^{(j,d_{1})})_{j \in \llbracket d_{2}-1 \rrbracket}) \mid |\boldsymbol{x}^{(d_{1})}| \leq P^{\theta}/d, \, |\boldsymbol{y}^{(j,d_{1})}| \leq P^{\theta}P_{2}, \\ \text{et } \forall k \in J_{1}, \, \|\alpha (\gamma_{d,k}^{(1)})^{t}((\boldsymbol{x}^{(i)},\boldsymbol{y}^{(j,i)},\boldsymbol{z}^{(j)})_{i \in \llbracket d_{1} \rrbracket, j \in \llbracket d_{2}-1 \rrbracket}) \| < d^{-d_{1}}P_{1}^{-d_{1}}P_{2}^{-1}P^{d_{1}\theta}, \\ \forall k \in J_{2}, \, \|\alpha (\gamma_{d,k}^{(1)})^{t}((\boldsymbol{x}^{(i)},\boldsymbol{y}^{(j,i)},\boldsymbol{z}^{(j)})_{i \in \llbracket d_{1} \rrbracket, j \in \llbracket d_{2}-1 \rrbracket}) \| < d^{-d_{1}}P_{1}^{-d_{1}}P_{2}^{-1}P^{d_{1}\theta}, \\ \forall k \in J_{2}, \, \|\alpha (\gamma_{d,k}^{(1)})^{t}((\boldsymbol{x}^{(i)},\boldsymbol{y}^{(j,i)},\boldsymbol{z}^{(j)})_{i \in \llbracket d_{1} \rrbracket, j \in \llbracket d_{2}-1 \rrbracket}) \| < d^{-d_{1}}P_{1}^{-d_{1}}P_{2}^{-1}P^{d_{1}\theta}, \\ \forall k \in J_{2}, \, \|\alpha (\gamma_{d,k}^{(1)})^{t}((\boldsymbol{x}^{(i)},\boldsymbol{y}^{(j,i)},\boldsymbol{z}^{(j)})_{i \in \llbracket d_{1} \rrbracket, j \in \llbracket d_{2}-1 \rrbracket}) \| < d^{-d_{1}}P_{1}^{-d_{1}}P_{2}^{-1}P^{(d_{1}-1)\theta} \}. \end{cases}$$

Rappelons que

$$\Gamma_{d}^{(1)}((\boldsymbol{x}^{(i)}, \boldsymbol{y}^{(j,i)}, \boldsymbol{z}^{(j)})_{i \in [\![d_1]\!], j \in [\![d_2]\!]}) = \sum_{k \in I} \gamma_{d,k}^{(1)}((\boldsymbol{x}^{(i)}, \boldsymbol{y}^{(j,i)}, \boldsymbol{z}^{(j)})_{i \in [\![d_1-1]\!], j \in [\![d_2]\!]}) u_k^{(d_1)}.$$

Or d'après la remarque 3.1, on a $\Gamma_d^{(1)} = \Gamma_d^{(1)'}$. On pose

$$\Gamma_d^{(1)} = \sum_{\substack{k \in I_1 \cup I_2'\\ l \in J_1 \cup J_2}} \lambda_{k,l} t_l^{(d_2)} u_k^{(d_1)} + \sum_{j=r+1}^m \alpha_j y_j^{(d_1,d_2)}.$$

Alors,

$$\gamma_{d,k}^{(1)}((\boldsymbol{x}^{(i)}, \boldsymbol{y}^{(j,i)}, \boldsymbol{z}^{(j)})_{i \in [\![d_1-1]\!], j \in [\![d_2]\!]}) = \sum_{l \in J_1 \cup J_2} \lambda_{k,l} t_l^{(d_2)},$$
$$(\gamma_{d,l}^{(1)})^t((\boldsymbol{x}^{(i)}, \boldsymbol{y}^{(j,i)}, \boldsymbol{z}^{(j)})_{k \in [\![d_1]\!], j \in [\![d_2-1]\!]}) = \sum_{k \in I_1 \cup I'_2} \lambda_{k,l} u_k^{(d_1)}.$$

Par conséquent les formes linéaires $(\gamma_{d,k}^{(1)})^t$ sont exactement celles que l'on aurait obtenu en différenciant en $(\boldsymbol{x}, \boldsymbol{y})$ puis en $(\tilde{\boldsymbol{y}}, \boldsymbol{z})$ et en sommant ensuite

T. Mignot

sur chaque $(\boldsymbol{z}^{d_2}, \boldsymbol{y}^{d_2, d_1})$. En particulier si l'on considère les formes

$$(\gamma_{d,k}^{(1)})^t((\boldsymbol{x}^{(i)}, \boldsymbol{y}^{(j,i)}, \boldsymbol{z}^{(j)})_{i \in \llbracket d_1 \rrbracket, j \in \llbracket d_2 - 1 \rrbracket})$$

comme des formes en $(\boldsymbol{y}^{j,i}, \boldsymbol{z}^{(j)})_{i \in [\![d_1-1]\!]}$ pour un certain $j \in [\![d_2]\!]$, alors ces formes linéaires vérifient la condition de symétrie du lemme 3.6, et on peut alors appliquer ce lemme comme nous l'avions fait pour les formes en $(\boldsymbol{y}^{j,i}, \boldsymbol{x}^{(i)})_{j \in [\![d_2-1]\!]}$, pour finalement obtenir, en posant

$$\begin{split} M^{t}(\alpha, (H_{1}^{(i)}, H_{2}^{(j,i)}, H_{3}^{(j)})_{i \in \llbracket d_{1} \rrbracket, j \in \llbracket d_{2}-1 \rrbracket}, B_{1}^{-1}, B_{2}^{-1}) \\ &= \operatorname{card} \{ (\boldsymbol{x}^{(i)}, \boldsymbol{y}^{(j,i)}, \boldsymbol{z}^{(j)})_{i \in \llbracket d_{1} \rrbracket, j \in \llbracket d_{2}-1 \rrbracket} \mid \forall (i,j) \in \llbracket d_{1} \rrbracket \times \llbracket d_{2}-1 \rrbracket, \\ & |\boldsymbol{x}^{(i)}| \leq H_{1}^{(i)}, |\boldsymbol{y}^{(i,j)}| \leq H_{2}^{(i,j)}, |\boldsymbol{z}^{(j)}| \leq H_{2}^{(j)} \\ & \text{et } \forall k \in \{r+1, \dots, m\}, \, \|\alpha \gamma_{d,k}^{(1)}((\boldsymbol{x}^{(i)}, \boldsymbol{y}^{(j,i)}, \boldsymbol{z}^{(j)})_{i \in \llbracket d_{1} \rrbracket, j \in \llbracket d_{2}-1 \rrbracket}) \| < B_{1}^{-1}, \\ & \forall k \in \{m+1, \dots, n+1\} \times \llbracket d_{1} \rrbracket, \, \|\alpha (\gamma_{d,k}^{(1)})^{t}((\boldsymbol{x}^{(i)}, \boldsymbol{y}^{(j,i)}, \boldsymbol{z}^{(j)})_{i \in \llbracket d_{1} \rrbracket, j \in \llbracket d_{2}-1 \rrbracket}) \| < B_{2}^{-1} \}, \end{split}$$

et en choisissant

$$H_2^{(j,i)} = P^{\theta} P_2, \quad H_1^{(i)} = P^{\theta}/d, \quad H_3^{(j)} = P_2,$$

la relation suivante :

$$\begin{split} &\sum_{\substack{(\boldsymbol{x}^{(i)},\boldsymbol{y}^{(j,i)},\boldsymbol{z}^{(j)})_{i\in[d_{1}-1],\ j\in[d_{2}-1]\\ \text{vérifiant (3.21)}}} \frac{Z_{2}^{n_{2}}}{Z_{1}^{n_{1}}} \frac{\prod_{k\in J} a_{k}}{\prod_{k\in I_{1}\cup I_{2}'} b_{k}} U^{t}(Z_{1}) \\ &\ll d^{r+1} \frac{P_{2}^{n_{2}}}{P^{n_{1}\theta}} \frac{P^{(d_{1}-1)(m-r)\theta}}{P_{2}^{(d_{2}-1)(m-r)}} \\ &\times M^{t} (\alpha, (H_{1}^{(i)}, H_{2}^{(j,i)}, H_{3}^{(j)})_{i\in[d_{1}],\ j\in[d_{2}-1]}, d^{-d_{1}}P_{1}^{-d_{1}}P_{2}^{-1}P^{d_{1}\theta}, d^{-d_{1}}P_{1}^{-d_{1}}P_{2}^{-1}P^{(d_{1}-1)\theta}) \\ &\ll d^{r+1} \frac{P_{2}^{n_{2}}}{P^{n_{1}\theta}} \frac{P^{(d_{1}-1)(m-r)\theta}}{P_{2}^{(d_{2}-1)(m-r)}} \left(\frac{P_{2}}{P^{\theta}}\right)^{(n-m+1)(d_{2}-1)+(m-r)(d_{2}-1)d_{1}} \\ &\times M^{t} (\alpha, (P^{\theta}/d, P^{2\theta}, P^{\theta})_{i\in[d_{1}],\ j\in[d_{2}-1]}, d^{-d_{1}}P_{1}^{-d_{2}}P^{2}P^{(\tilde{d}+1)\theta}, d^{-d_{1}}P_{1}^{-d_{1}}P_{2}^{-d_{2}}P^{\tilde{d}\theta}) \\ &= d^{r+1} \frac{P_{2}^{(n-m+1)d_{2}+(m-r)(d_{1}-1)d_{2}}}{P^{(n_{2}(d_{2}-1)+n_{1}+(d_{2}-d_{1})(m-r))\theta}} \\ &\times M^{t} (\alpha, (P^{\theta}/d, P^{2\theta}, P^{\theta})_{i\in[d_{1}],\ j\in[d_{2}-1]}, d^{-d_{1}}P_{1}^{-d_{1}}P_{2}^{-d_{2}}P^{(\tilde{d}+1)\theta}, d^{-d_{1}}P_{1}^{-d_{1}}P_{2}^{-d_{2}}P^{\tilde{d}\theta}). \end{split}$$

En procédant de la même manière pour tous les n_2 -uplets de variables $(\boldsymbol{y}^{(j,i)}, \boldsymbol{z}^{(j)})_{i \in [\![d_1-1]\!]}$ pour $j \in [\![d_2]\!]$, on obtient finalement

(3.22)
$$M(\alpha, (P^{\theta}/d, P^{\theta}P_{2}, P_{2})_{i \in \llbracket d_{1}-1 \rrbracket, j \in \llbracket d_{2} \rrbracket, d^{-(d_{1}-1)}P_{1}^{-d_{1}}P^{(d_{1}-1)\theta}, d^{-d_{1}}P_{1}^{-d_{1}}P_{2}^{-1}P^{(d_{1}-1)\theta})$$

$$\ll \frac{P_2^{d_2n_2}}{P^{\theta(d_2-1)n_2}} \max \Big\{ P^{-n_2\theta} M\big(\alpha, (P^{\theta}/d, P^{2\theta}, P^{\theta})_{i \in \llbracket d_1 - 1 \rrbracket, j \in \llbracket d_2 \rrbracket}, H_2, H_1\big), \\ d^{r+1} P^{-(n_1 + (m-r)(d_2 - d_1))\theta} M^t(\alpha, (P^{\theta}/d, P^{2\theta}, P^{\theta})_{i \in \llbracket d_1 \rrbracket, j \in \llbracket d_2 - 1 \rrbracket}, H_1, H_1) \Big\},$$

où l'on a noté

$$H_1 = d^{-d_1} P_1^{-d_1} P_2^{-d_2} P^{(\tilde{d}+1)\theta}, \quad H_2 = d^{-(d_1-1)} P_1^{-d_1} P_2^{-d_2} P^{(\tilde{d}+1)\theta}.$$

En regroupant le lemme 3.2 et les majorations (3.20) et (3.22), on obtient :

LEMME 3.7. Pour $\varepsilon > 0$ arbitrairement petit, et pour $\kappa, P > 0$ des réels fixés, pour tout $\alpha \in [0, 1]$, l'une au moins des assertions suivantes est vraie :

(1)
$$|S_d(\alpha)| \ll_{n,r,m,\varepsilon} d^{m-r+\varepsilon+d_1(r+1)/2^d} P_1^{m+2+\varepsilon} P_2^{n-r+1+\varepsilon} P^{-\kappa},$$

(2) $M(\alpha, (P^{\theta}/d, P^{2\theta}, P^{\theta})_{i \in \llbracket d_1 - 1 \rrbracket, j \in \llbracket d_2 \rrbracket}, H_2, H_1)$
 $\gg (P^{\theta})^{(d_1 - 1)(r+1) + 2(d_1 - 1)d_2(m-r) + d_2(n-m+1))} P^{-2^{\tilde{d}_{\kappa}}},$
(3) $M^t(\alpha, (P^{\theta}/d, P^{2\theta}, P^{\theta})_{i \in \llbracket d_1 \rrbracket, j \in \llbracket d_2 - 1 \rrbracket}, H_1, H_1)$
 $\gg (P^{\theta})^{(d_1(r+1) + 2d_1(d_2 - 1)(m-r) + (d_2 - 1)(n-m+1))} P^{-2^{\tilde{d}_{\kappa}}}.$

Considérons à présent un élément $(\boldsymbol{x}^{(i)}, \boldsymbol{y}^{(j,i)}, \boldsymbol{z}^{(j)})_{i \in [\![d_1-1]\!], j \in [\![d_2]\!]}$ compté par $M(\alpha, (P^{\theta}/d, P^{2\theta}, P^{\theta})_{i \in [\![d_1-1]\!], j \in [\![d_2]\!]}, H_2, H_1)$ et supposons qu'il existe $k_0 \in I$ tel que

$$\alpha \gamma_{d,k_0}^{(1)}((\boldsymbol{x}^{(i)}, \boldsymbol{y}^{(j,i)}, \boldsymbol{z}^{(j)})_{i \in \llbracket d_1 - 1 \rrbracket, j \in \llbracket d_2 \rrbracket}) \neq 0.$$

On pose $q = \gamma_{d,k_0}^{(1)}((\boldsymbol{x}^{(i)}, \boldsymbol{y}^{(j,i)}, \boldsymbol{z}^{(j)})_{i \in [\![d_1-1]\!], j \in [\![d_2]\!]})$. Rappelons que d'après (3.16),

$$\begin{split} \gamma_{d,k_0}^{(1)}((\boldsymbol{x}^{(k)},\boldsymbol{y}^{(j,k)},\boldsymbol{z}^{(j)})_{k\in\llbracket d_1-1\rrbracket, j\in\llbracket d_2\rrbracket)} &= \sum_{\boldsymbol{i}\in I^{d_1-1}} G_{d,\boldsymbol{i},k_0}(\tilde{\boldsymbol{z}}) u_{i_1}^{(1)}\cdots u_{i_{d_1-1}}^{(d_1-1)} \\ &= \sum_{\boldsymbol{i}\in I^{d_1-1}} d^{f_{\boldsymbol{i},k_0}} G_{\boldsymbol{i},k_0}(\tilde{\boldsymbol{z}}) u_{i_1}^{(1)}\cdots u_{i_{d_1-1}}^{(d_1-1)}. \end{split}$$

Par conséquent, si $k_0 \in I_1$ alors d divise q et on a $q \ll dP^{(\tilde{d}+1)\theta}$ (car $|\boldsymbol{x}^{(i)}| \leq P^{\theta}/d$, $|\boldsymbol{y}^{(j,i)}| \leq P^{2\theta}$, $|\boldsymbol{z}^{(j)}| \leq P^{\theta}$) et si a est l'entier le plus proche de αq ,

$$|\alpha q - a| \le d^{-(d_1 - 1)} P_1^{-d_1} P_2^{-d_2} P^{(\tilde{d} + 1)\theta}$$

Dans le cas où $k_0 \in I_2$ on a $q \ll P^{(\tilde{d}+1)\theta}$, et si *a* est l'entier le plus proche de αq ,

$$|\alpha q - a| \le d^{-d_1} P_1^{-d_1} P_2^{-d_2} P^{(d+1)\theta}.$$

En procédant de même avec les éléments $(\boldsymbol{x}^{(i)}, \boldsymbol{y}^{(j,i)}, \boldsymbol{z}^{(j)})_{i \in [\![d_1]\!], j \in [\![d_2-1]\!]}$ comptés par $M^t(\alpha, (P^{\theta}, P^{2\theta}, P^{\theta})_{i \in [\![d_1]\!], j \in [\![d_2-1]\!]}, P_1^{-d_1} P_2^{-d_2} P^{(\tilde{d}+1)\theta})$, on voit que le lemme 3.7 implique :

LEMME 3.8. Pour $\varepsilon > 0$ arbitrairement petit, et pour $\kappa, P > 0$ des réels fixés, pour tout $\alpha \in [0, 1]$, l'une au moins des assertions suivantes est vraie :

- (1) $|S_d(\alpha)| \ll_{n,r,m,\varepsilon} d^{m-r+\varepsilon+d_1(r+1)/2^{\tilde{d}}} P_1^{m+2+\varepsilon} P_2^{n-r+1+\varepsilon} P^{-\kappa},$
- (2) il existe q et a tels que $d \mid q, 0 < q \leq dP^{(\tilde{d}+1)\theta}, 0 \leq a < q$ et

$$|\alpha q - a| \le d^{-(d_1 - 1)} P_1^{-d_1} P_2^{-d_2} P^{(\tilde{d} + 1)\theta}$$

 $(3) il existe q et a tels que 0 < q \le P^{(\tilde{d}+1)\theta}, 0 \le a < q, \text{pgcd}(a,q) = 1 et$ $|\alpha q - a| \le d^{-d_1} P_1^{-d_1} P_2^{-d_2} P^{(\tilde{d}+1)\theta},$ $(4) \operatorname{card} \{ (\boldsymbol{x}^{(i)}, \boldsymbol{y}^{(j,i)}, \boldsymbol{z}^{(j)})_{i \in [\![d_1-1]\!], j \in [\![d_2]\!]} \mid |\boldsymbol{x}^{(i)}| \le P^{\theta}/d, |\boldsymbol{y}^{(j,i)}| \le P^{2\theta},$ $|\boldsymbol{z}^{(j)}| \le P^{\theta} et \forall k \in I, \gamma_{d,k}^{(1)}((\boldsymbol{x}^{(i)}, \boldsymbol{y}^{(j,i)}, \boldsymbol{z}^{(j)})_{i \in [\![d_1-1]\!], j \in [\![d_2]\!]}) = 0 \}$ $\gg (P^{\theta})^{(d_1-1)(r+1)+2(d_1-1)d_2(m-r)+d_2(n-m+1)} P^{-2\tilde{d}\kappa},$ $(5) \operatorname{card} \{ (\boldsymbol{x}^{(i)}, \boldsymbol{y}^{(j,i)}, \boldsymbol{z}^{(j)})_{i \in [\![d_1]\!], j \in [\![d_2-1]\!]} \mid |\boldsymbol{x}^{(i)}| \le P^{\theta}/d, |\boldsymbol{y}^{(j,i)}| \le P^{2\theta},$ $|\boldsymbol{z}^{(j)}| \le P^{\theta} et \forall k \in J, (\gamma_{d,k}^{(1)})^{t}((\boldsymbol{x}^{(i)}, \boldsymbol{y}^{(j,i)}, \boldsymbol{z}^{(j)})_{i \in [\![d_1]\!], j \in [\![d_2-1]\!]}) = 0 \}$ $\gg (P^{\theta})^{d_1(r+1)+2d_1(d_2-1)(m-r)+(d_2-1)(n-m+1)} P^{-2\tilde{d}\kappa}.$

Avant d'aller plus loin, nous introduisons le lemme ci-dessous qui sera utile à plusieurs reprises par la suite :

LEMME 3.9. On considère $p, q, r \in \mathbb{N}$ et $(L_i)_{i \in \llbracket r \rrbracket}$ des formes linéaires à p + q variables. Pour des constantes A, B et $(C_i)_{i \in I}$ fixées on note

$$M(A, B, (C_i)_{i \in \llbracket r \rrbracket}) = \operatorname{card}\{(\boldsymbol{x}, \boldsymbol{y}) \in \mathbb{Z}^p \times \mathbb{Z}^q \mid |\boldsymbol{x}| \le A, \, |\boldsymbol{y}| \le B, \\ \forall i \in \llbracket r \rrbracket, \, \|L_i(\boldsymbol{x}, \boldsymbol{y})\| < C_i\}.$$

Alors pour tout $\xi \geq 1$,

$$M(A, B, (C_i)_{i \in [[r]]}) \le (2\xi)^q M(2A, B/\xi, (2C_i)_{i \in [[r]]}).$$

 $D\acute{e}monstration.$ On subdivise le cube $[-B,B]^q$ en $(2\xi)^q$ cubes de taille $B/\xi.$ Prenons un tel cube $\mathcal C$ et considérons

 $E(\mathcal{C}) = \operatorname{card}\{(\boldsymbol{x}, \boldsymbol{y}) \in \mathbb{Z}^p \times \mathbb{Z}^q \mid |\boldsymbol{x}| \leq A, \, \boldsymbol{y} \in \mathcal{C}, \, \forall i \in [\![r]\!], \, \|L_i(\boldsymbol{x}, \boldsymbol{y})\| \leq C_i\}.$ Si $(\boldsymbol{x}, \boldsymbol{y}), (\boldsymbol{x}', \boldsymbol{y}')$ sont deux points de $E(\mathcal{C})$, alors

 $|\boldsymbol{x} - \boldsymbol{x}'| \le 2A, \quad |\boldsymbol{y} - \boldsymbol{y}'| \le B/\xi,$

et pour tout $i \in [\![r]\!]$,

$$|L_i(\boldsymbol{x}-\boldsymbol{x}',\boldsymbol{y}-\boldsymbol{y}')| \leq 2C_i.$$

On a donc

$$E(\mathcal{C}) \le M(2A, B/\xi, (2C_i)_{i \in \llbracket r \rrbracket})$$

pour tout cube C, d'où le résultat.

Considérons à présent le cas (4) du lemme 3.8. Remarquons avant tout qu'il est facile de voir, en appliquant $d_1 - 1$ fois le lemme 3.9 (avec $L_i = \gamma_{d,i}^{(1)}$, $C_i = 1/2^{d_1}$ et $\xi = P^{\theta}$) que le cardinal considéré peut être majoré, à une constante multiplicative près, par

$$(3.23) \quad (P^{\theta})^{(d_{1}-1)d_{2}(m-r)} \operatorname{card} \{ (\boldsymbol{x}^{(i)}, \boldsymbol{y}^{(j,i)}, \boldsymbol{z}^{(j)})_{i \in \llbracket d_{1}-1 \rrbracket, j \in \llbracket d_{2} \rrbracket} \mid |\boldsymbol{x}^{(i)}| \leq 2P^{\theta}/d, \\ |\boldsymbol{y}^{(j,i)}| \leq P^{\theta}, |\boldsymbol{z}^{(j)}| \leq P^{\theta} \text{ et } \forall k \in I, \ \gamma_{d,k}^{(1)}((\boldsymbol{x}^{(i)}, \boldsymbol{y}^{(j,i)}, \boldsymbol{z}^{(j)})_{i \in \llbracket d_{1}-1 \rrbracket, j \in \llbracket d_{2} \rrbracket}) = 0 \}.$$

Quitte à agrandir θ , nous pouvons remplacer la borne $2P^{\theta}$ sur $\boldsymbol{x}^{(i)}$ par P^{θ} . D'autre part, si l'on pose, pour tout $k \in I$,

$$\gamma_k^{(1)}((\boldsymbol{x}^{(i)}, \boldsymbol{y}^{(j,i)}, \boldsymbol{z}^{(j)})_{i \in [\![d_1-1]\!], j \in [\![d_2]\!]}) = \sum_{\boldsymbol{i} \in I^{d_1-1}} G_{\boldsymbol{i},k}(\tilde{\boldsymbol{z}}) u_{i_1}^{(1)} \dots u_{i_{d_1-1}}^{(d_1-1)},$$

alors

$$\begin{split} \gamma_{d,k}^{(1)}((\pmb{x}^{(i)}, \pmb{y}^{(j,i)}, \pmb{z}^{(j)})_{i \in [\![d_1-1]\!], j \in [\![d_2]\!]}) &= d\gamma_k^{(1)}((d\pmb{x}^{(i)}, \pmb{y}^{(j,i)}, \pmb{z}^{(j)})_{i \in [\![d_1-1]\!], j \in [\![d_2]\!]}) \\ \text{pour tout } k \in I_1, \text{ et} \end{split}$$

$$\gamma_{d,k}^{(1)}((\boldsymbol{x}^{(i)}, \boldsymbol{y}^{(j,i)}, \boldsymbol{z}^{(j)})_{i \in [\![d_1-1]\!], j \in [\![d_2]\!]}) = \gamma_k^{(1)}((d\boldsymbol{x}^{(i)}, \boldsymbol{y}^{(j,i)}, \boldsymbol{z}^{(j)})_{i \in [\![d_1-1]\!], j \in [\![d_2]\!]})$$
nour tout $k \in I_2$. Per conséquent

pour tout $k \in I_2$. Par conséquent,

$$(3.24) \quad \operatorname{card} \{ (\boldsymbol{x}^{(i)}, \boldsymbol{y}^{(j,i)}, \boldsymbol{z}^{(j)})_{i \in \llbracket d_1 - 1 \rrbracket, j \in \llbracket d_2 \rrbracket} \mid |\boldsymbol{x}^{(i)}| \leq P^{\theta} / d, |\boldsymbol{y}^{(j,i)}| \leq P^{\theta}, \\ |\boldsymbol{z}^{(j)}| \leq P^{\theta} \text{ et } \forall k \in I, \gamma_{d,k}^{(1)}((\boldsymbol{x}^{(i)}, \boldsymbol{y}^{(j,i)}, \boldsymbol{z}^{(j)})_{i \in \llbracket d_1 - 1 \rrbracket, j \in \llbracket d_2 \rrbracket}) = 0 \} \\ \ll \operatorname{card} \{ (\boldsymbol{x}^{(i)}, \boldsymbol{y}^{(j,i)}, \boldsymbol{z}^{(j)})_{i \in \llbracket d_1 - 1 \rrbracket, j \in \llbracket d_2 \rrbracket} \mid |\boldsymbol{x}^{(i)}| \leq P^{\theta}, |\boldsymbol{y}^{(j,i)}| \leq P^{\theta}, \\ |\boldsymbol{z}^{(j)}| \leq P^{\theta} \text{ et } \forall k \in I, \gamma_k^{(1)}((\boldsymbol{x}^{(i)}, \boldsymbol{y}^{(j,i)}, \boldsymbol{z}^{(j)})_{i \in \llbracket d_1 - 1 \rrbracket, j \in \llbracket d_2 \rrbracket}) = 0 \}.$$

On considère la variété affine \mathcal{L}_1 définie par l'ensemble des éléments $(\boldsymbol{x}^{(i)}, \boldsymbol{y}^{(j,i)}, \boldsymbol{z}^{(j)})_{i \in [\![d_1-1]\!], j \in [\![d_2]\!]}$ de l'espace affine de dimension $(d_1-1)(r+1)$ + $(d_1-1)d_2(m-r) + d_2(n-m+1)$ vérifiant les équations $\gamma_k^{(1)} = 0$ pour tout $k \in I$. En posant $\kappa = K\theta$, d'après (3.23), la condition (4) du lemme 3.8 implique (pour la démonstration voir [Br, Théorème 3.1])

$$\dim \mathcal{L}_1 \ge (d_1 - 1)(r + 1) + (d_1 - 1)d_2(m - r) + d_2(n - m + 1) - 2^d K.$$

On considère par ailleurs la sous-variété affine V_1^* de $\mathbb{A}^{n+2}_{\mathbb{C}}$ définie par les $(\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z}) \in \mathbb{A}^{n+2}_{\mathbb{C}}$ tels que

$$\forall i \in \{0, \dots, r\}, \quad \frac{\partial F}{\partial x_i} = 0, \quad \forall j \in \{r+1, \dots, m\}, \quad \frac{\partial F}{\partial y_j} = 0.$$

Notons \mathcal{D} le sous-espace de l'espace affine de dimension $(d_1 - 1)(r + 1) + (d_1 - 1)d_2(m - r) + d_2(n - m + 1)$ défini par les $(r + 1)(d_1 - 2) + (m - r) \times ((d_1 - 1)d_2 - 1) + (d_2 - 1)(n - m + 1)$ équations

$$m{x}^{(1)} = \cdots = m{x}^{(d_1-1)}, \ orall (i,j) \in \llbracket d_1 - 1
rbracket imes \llbracket d_2
rbracket, \quad m{y}^{(i,j)} = m{y}^{(1,1)}, \ m{z}^{(1)} = \cdots = m{z}^{(d_2)}.$$

On a alors

$$\dim(\mathcal{L}_1 \cap \mathcal{D}) \ge \dim \mathcal{L}_1 - ((r+1)(d_1-2) + (m-r)((d_1-1)d_2-1) + (d_2-1)(n-m+1)) \ge n+2-2^{\tilde{d}}K.$$

D'autre part, $\mathcal{L}_1 \cap \mathcal{D}$ est isomorphe à V_1^* . Donc, en résumé (4) implique

$$\dim V_1^* \ge n+2-2^d K.$$

De la même manière, en notant V_2^* la sous-variété de $\mathbb{A}^{n+2}_{\mathbb{C}}$ définie par

$$\forall i \in \{m+1,\ldots,n+1\}, \quad \frac{\partial F}{\partial z_i} = 0, \quad \forall j \in \{r+1,\ldots,m\}, \quad \frac{\partial F}{\partial y_j} = 0,$$

on vérifie que la condition (5) implique

$$\dim V_2^* \ge n + 2 - 2^d K.$$

Par conséquent, on choisira

(3.25)
$$K = (n+2 - \max\{\dim V_1^*, \dim V_2^*\} - \varepsilon)/2^d$$

(pour un $\varepsilon > 0$ arbitrairement petit) de sorte que les assertions (4) et (5) ne soient plus possibles. On posera par ailleurs

(3.26)
$$P = P_1^{d_1} P_2^{d_2}.$$

Rappelons que l'on considère des réels θ tels que $P^{\theta} \leq P_2 \leq P_1$, et donc, si $P_1 = P_2^b$, alors $\theta \leq 1/(bd_1 + d_2)$. D'autre part, pour un tel θ , pour a, q tels que $0 < q \leq dP^{(\tilde{d}+1)\theta}$, $d \mid q$ et $0 \leq a < q$, on définit les arcs majeurs

(3.27)
$$\mathfrak{M}_{a,q}^{(1)}(\theta) = \{ \alpha \in [0,1] \mid |\alpha q - a| \le d^{-(d_1 - 1)} P^{-1 + (d + 1)\theta} \},\$$

(3.28)
$$\mathfrak{M}^{(1)}(\theta) = \bigcup_{\substack{1 \le q \le dP^{(\tilde{d}+1)\theta} \\ d|q}} \bigcup_{\substack{0 \le a < q}} \mathfrak{M}^{(1)}_{a,q}(\theta).$$

De même, pour a, q tels que $0 < q \le P^{(\tilde{d}+1)\theta}$ et $0 \le a < q$, on définit

(3.29)
$$\mathfrak{M}_{a,q}^{(2)}(\theta) = \{ \alpha \in [0,1] \mid |\alpha q - a| \le d^{-d_1} P^{-1 + (d+1)\theta} \},\$$

(3.30)
$$\mathfrak{M}^{(2)}(\theta) = \bigcup_{\substack{1 \le q \le P^{(\tilde{d}+1)\theta} \\ \operatorname{pgcd}(a,q) = 1}} \bigcup_{\substack{0 \le a < q \\ \operatorname{pgcd}(a,q) = 1}} \mathfrak{M}^{(2)}_{a,q}(\theta).$$

On notera $\mathfrak{m}(\theta) = [0,1[\setminus (\mathfrak{M}^{(1)}(\theta) \cup \mathfrak{M}^{(2)}(\theta))]$ l'ensemble des arcs mineurs. Avec ces notations, le lemme 3.8 devient :

LEMME 3.10. Pour $\varepsilon > 0$ arbitrairement petit, pour tout $\alpha \in [0,1]$, l'une au moins des assertions suivantes est vraie :

- (1) $|S_d(\alpha)| \ll_{n,m,r,\varepsilon} d^{m-r+\varepsilon+d_1(r+1)/2^{\tilde{d}}} P_1^{m+2} P_2^{n-r+1} P^{-K\theta+\varepsilon},$
- (2) Le réel α appartient à $\mathfrak{M}(\theta) = \mathfrak{M}^{(1)}(\theta) \cup \mathfrak{M}^{(2)}(\theta)$.

3.3. Les arcs mineurs. On considère à présent $\delta > 0$ arbitrairement petit $\theta_0 \leq 1/(bd_1 + d_2)$ tels que

(3.31)
$$K - 2(\tilde{d} + 1) > \left(2\delta + \frac{b}{bd_1 + d_2}\right)\theta_0^{-1},$$

(3.32)
$$1 > (bd_1 + d_2)(5(\tilde{d} + 1)\theta_0 + \delta).$$

REMARQUE 3.11. Pour que les conditions (3.31) et (3.32) puissent être vérifiées, il est nécessaire d'avoir

$$K - 2(\tilde{d} + 1) > \frac{b}{bd_1 + d_2}(bd_1 + d_2)5(\tilde{d} + 1) = 5b(\tilde{d} + 1).$$

Soit encore

 α

 $K > (5b+2)(\tilde{d}+1),$

ce que nous supposerons dorénavant.

Avec ces conditions, on a le lemme suivant :

LEMME 3.12. On a la majoration

$$\int_{\in \mathfrak{m}(\theta)} |S_d(\alpha)| \, d\alpha \ll d^{m-r+\varepsilon+d_1(r+1)/2^d} P_1^{m+1} P_2^{n-r+1} P^{-1-\delta}$$

Démonstration. On considère une suite $(\theta_i)_i$ telle que

$$\theta_T > \theta_{T-1} > \dots > \theta_1 > \theta_0, \quad \theta_T \le \frac{1}{bd_1 + d_2}, \quad \theta_T K > 2\delta + 1 + \frac{b}{bd_1 + d_2}$$

 et

$$\forall i \in \{0, \dots, T-1\}, \quad 2(\tilde{d}+1)(\theta_{i+1}-\theta_i) < \delta/2.$$

Un tel choix de θ_T est possible, étant donné que

$$\frac{K}{bd_1 + d_2} > 2\delta + 1 + \frac{b}{bd_1 + d_2} \iff K > (2\delta + 1)(bd_1 + d_2) + b,$$

ce qui est assuré par la condition $K > (5b+2)(\tilde{d}+1)$ de la remarque 3.11. Quitte à supposer P assez grand, on suppose de plus que T est tel que $T \ll P^{\delta/2}$. Alors, d'après le lemme 3.10,

$$\begin{split} \int_{\substack{\alpha \notin \mathfrak{M}(\theta_T)}} |S_d(\alpha)| \, d\alpha \ll d^{m-r+\varepsilon+d_1(r+1)/2^{\tilde{d}}} P_1^{m+2} P_2^{n-r+1} P^{-K\theta_T+\varepsilon} \\ \ll d^{m-r+\varepsilon+d_1(r+1)/2^{\tilde{d}}} P_1^{m+1} P_2^{n-r+1} P^{-1-\delta}. \end{split}$$

Par ailleurs,

$$\operatorname{Vol}(\mathfrak{M}^{(1)}(\theta_i)) \ll d^{-(d_1-1)} P^{-1+2(\tilde{d}+1)\theta_i},$$

$$\operatorname{Vol}(\mathfrak{M}^{(2)}(\theta_i)) \ll d^{-d_1} P^{-1+2(\tilde{d}+1)\theta_i},$$

et donc

$$\operatorname{Vol}(\mathfrak{M}(\theta_i)) \ll d^{-(d_1-1)} P^{-1+2(d+1)\theta_i}.$$

Par conséquent,

 $\int_{\alpha \in \mathfrak{M}(\theta_{i+1}) \setminus \mathfrak{M}(\theta_i)} |S_d(\alpha)| \, d\alpha \ll d^{m-r+\varepsilon+d_1(r+1)/2\tilde{d}-(d_1-1)} P_1^{m+1} P_2^{n-r+1} P^{-1-3/2\delta}.$

On obtient le résultat en sommant sur tous les $i \in \{0, \dots, T-1\}$ et $T \ll P^{\delta/2}$.

Ainsi, l'intégrale de $S(\alpha)$ sur les arcs mineurs donne une contribution négligeable par rapport à $d^{m-r+\varepsilon+d_1(r+1)/2^{\tilde{d}}}P_1^{m+1}P_2^{n-r+1}P^{-1}$. Nous allons à présent nous intéresser à la contribution des arcs majeurs.

3.4. Les arcs majeurs. Pour des raisons pratiques, nous allons introduire de nouveaux arcs majeurs. Pour tout $\theta \in [0, 1]$, $a, q \in \mathbb{Z}$, on pose

(3.33)
$$\mathfrak{M}'_{a,q}(\theta) = \{ \alpha \in [0,1] \mid |\alpha q - a| \le q d^{-d_1} P^{-1 + (d+1)\theta} \},$$

(3.34)
$$\mathfrak{M}'(\theta) = \bigcup_{\substack{q \le dP^{(\tilde{d}+1)\theta} \\ \operatorname{pgcd}(a,q) = 1}} \bigcup_{\substack{0 \le a < q \\ \operatorname{pgcd}(a,q) = 1}} \mathfrak{M}'_{a,q}(\theta).$$

Remarquons que ce nouvel ensemble $\mathfrak{M}'(\theta)$ contient $\mathfrak{M}(\theta)$. Par ailleurs, si $\theta_0 \in [0, 1]$ vérifie les conditions (3.31) et (3.32), on a le lemme suivant :

LEMME 3.13. Pour $d_1 \ge 2$, les ensembles $\mathfrak{M}'_{a,q}(\theta_0)$ sont disjoints deux à deux.

Démonstration. Supposons qu'il existe $\alpha \in \mathfrak{M}'_{a,q}(\theta_0) \cap \mathfrak{M}'_{a',q'}(\theta_0)$ avec $(a,q) \neq (a',q')$. On a alors (puisque $\operatorname{pgcd}(a,q) = \operatorname{pgcd}(a',q') = 1$)

$$\frac{1}{qq'} \le \left|\frac{a}{q} - \frac{a'}{q'}\right| \le \left|\frac{a}{q} - \alpha\right| + \left|\alpha - \frac{a'}{q'}\right| \le 2d^{-d_1}P^{-1 + (\tilde{d}+1)\theta_0}$$

On aurait donc

$$1 \le 2qq'd^{-d_1}P^{-1+(\tilde{d}+1)\theta_0} \le 2d^{2-d_1}P^{-1+3(\tilde{d}+1)\theta_0} \le 2P^{-1+3(\tilde{d}+1)\theta_0},$$

36
ce qui est absurde car d'après (3.32),

$$\theta_0 < \frac{1}{5(\tilde{d}+1)(bd_1+d_2)} < \frac{1}{3(\tilde{d}+1)}. \bullet$$

Puisque $\mathfrak{M}(\theta_0) \subset \mathfrak{M}'(\theta_0)$, le lemme 3.12 implique le résultat suivant : LEMME 3.14. On a

$$N_d(P_1, P_2) = \sum_{1 \le q \le dP^{(\tilde{d}+1)\theta_0}} \sum_{\substack{0 \le a < q \\ pgcd(a,q) = 1}} \int_{\mathfrak{M}'_{a,q}(\theta_0)} S_d(\alpha) \, d\alpha$$
$$+ O(d^{m-r+\varepsilon+d_1(r+1)/2^{\tilde{d}}} P_1^{m+1} P_2^{n-r+1} P^{-1-\delta})$$

Par la suite, étant donné $\alpha \in \mathfrak{M}'_{a,q}(\theta_0)$, on pose $\alpha = a/q + \beta$ avec $|\beta| \leq d^{-d_1}P^{-1+(\tilde{d}+1)\theta_0}$, et on note

$$(3.35) \quad S_{a,q,d} = \sum_{\boldsymbol{b}_1 \in (\mathbb{Z}/q\mathbb{Z})^{r+1}} \sum_{\boldsymbol{b}_2 \in (\mathbb{Z}/q\mathbb{Z})^{m-r}} \sum_{\boldsymbol{b}_3 \in (\mathbb{Z}/q\mathbb{Z})^{n-m+1}} e\left(\frac{a}{q} F(d\boldsymbol{b}_1, \boldsymbol{b}_2, \boldsymbol{b}_3)\right),$$

$$(3.36) \quad I(\beta) = \int_{\substack{(\boldsymbol{u}, \boldsymbol{v}, \boldsymbol{w}) \in \mathcal{B}_1 \times \mathcal{B}_2 \times \mathcal{B}_3 \\ |\boldsymbol{v}| \le |\boldsymbol{u}|}} e(\beta F(\boldsymbol{u}, \boldsymbol{v}, \boldsymbol{w})) \, d\boldsymbol{u} \, d\boldsymbol{v} \, d\boldsymbol{w}.$$

On établit alors le lemme suivant :

LEMME 3.15. Soit
$$\alpha \in \mathfrak{M}'_{a,q}(\theta_0)$$
. Alors

$$S_d(\alpha) = d^{m-r} P_1^{m+1} P_2^{n-r+1} q^{-(n+2)} S_{a,q,d} I(d^{d_1} P \beta) + O(d^{m-r+1} P_1^{m+1} P_2^{n-r+1} P^{2(\tilde{d}+1)\theta_0} P_2^{-1}).$$

Démonstration. On remarque dans un premier temps que

$$(3.37) \quad S_d(\alpha) = \sum_{\boldsymbol{b}_1 \in (\mathbb{Z}/q\mathbb{Z})^{r+1}} \sum_{\boldsymbol{b}_2 \in (\mathbb{Z}/q\mathbb{Z})^{m-r}} \sum_{\boldsymbol{b}_3 \in (\mathbb{Z}/q\mathbb{Z})^{n-m+1}} e\left(\frac{a}{q}F(d\boldsymbol{b}_1, \boldsymbol{b}_2, \boldsymbol{b}_3)\right) S_3(\boldsymbol{b}_1, \boldsymbol{b}_2, \boldsymbol{b}_3)$$

où

$$S_3(\boldsymbol{b}_1, \boldsymbol{b}_2, \boldsymbol{b}_3) = \sum_{\substack{\boldsymbol{x} \equiv \boldsymbol{b}_1(q) \\ |\boldsymbol{x}| \leq P_1}} \sum_{\substack{\boldsymbol{y} \equiv \boldsymbol{b}_2(q) \\ |\boldsymbol{y}| \leq d | \boldsymbol{x} | P_2}} \sum_{\substack{\boldsymbol{z} \equiv \boldsymbol{b}_2(q) \\ |\boldsymbol{z}| \leq P_2}} e(\beta F(d\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z})).$$

Soient (x'y', z') et (x'', y'', z'') tels que $(qx' + b_1, qy' + b_2, qz' + b_3) \in P_1\mathcal{B}_1 \times dP_1P_2\mathcal{B}_2 \times P_2\mathcal{B}_3$ et $|qy' + b_2| \le d|qx' + b_1|P_2,$ $(qx'' + b_1, qy'' + b_2, qz'' + b_3) \in P_1\mathcal{B}_1 \times dP_1P_2\mathcal{B}_2 \times P_2\mathcal{B}_3$ et $|qy'' + b_2| \le d|qx'' + b_1|P_2,$ $|x' - x''| \le 2, \quad |y' - y''| \le 2, \quad |z' - z''| \le 2,$ Dans ce cas,

$$|F(q\mathbf{x}'+\mathbf{b}_1, q\mathbf{y}'+\mathbf{b}_2, q\mathbf{z}'+\mathbf{b}_3) - F(q\mathbf{x}''+\mathbf{b}_1, q\mathbf{y}''+\mathbf{b}_2, q\mathbf{z}''+\mathbf{b}_3)| \\ \ll qd^{d_1}P_1^{d_1-1}P_2^{d_2} + qd^{d_1}P_1^{d_1-1}P_2^{d_2-1} + qd^{d_1}P_1^{d_1}P_2^{d_2-1} \ll qd^{d_1}P_1^{d_1}P_2^{d_2-1}.$$

Remarquons que lorsque $q > P_2$, l'égalité du lemme est triviale. On suppose donc que $P_2 \ge q$. En remplaçant S_3 par une intégrale on obtient

$$S_{3}(\boldsymbol{b}_{1},\boldsymbol{b}_{2},\boldsymbol{b}_{3}) = \int_{|q\tilde{\boldsymbol{u}}| \leq P_{1}} \int_{|q\tilde{\boldsymbol{v}}| \leq d|q\tilde{\boldsymbol{u}}|P_{2}} \int_{|q\tilde{\boldsymbol{w}}| \leq P_{2}} e(\beta F(dq\tilde{\boldsymbol{u}},q\tilde{\boldsymbol{v}},q\tilde{\boldsymbol{w}})) d\tilde{\boldsymbol{u}} d\tilde{\boldsymbol{v}} d\tilde{\boldsymbol{w}}$$
$$+ O\left(q|\beta|d^{d_{1}}P_{1}^{d_{1}}P_{2}^{(d_{2}-1)}\left(\frac{P_{1}}{q}\right)^{r+1}\left(\frac{dP_{1}P_{2}}{q}\right)^{m-r}\left(\frac{P_{2}}{q}\right)^{n-m+1}\right)$$
$$+ O\left(\left(\frac{P_{1}}{q}\right)^{r+1}\left(\frac{dP_{1}P_{2}}{q}\right)^{m-r}\left(\frac{P_{2}}{q}\right)^{n-m}\right).$$

En rappelant que $|\beta| \leq d^{-d_1}P^{-1+(\tilde{d}+1)\theta_0},$ et en effectuant le changement de variables

$$\boldsymbol{u} = qP_1^{-1}\tilde{\boldsymbol{u}}, \quad \boldsymbol{v} = q(dP_1P_2)^{-1}\tilde{\boldsymbol{v}}, \quad \boldsymbol{w} = qP_2^{-1}\tilde{\boldsymbol{w}},$$

on trouve (puisque $P = P_1^{d_1} P_2^{d_2}$)

$$\begin{split} S_{3}(\boldsymbol{b}_{1},\boldsymbol{b}_{2},\boldsymbol{b}_{3}) &= d^{m-r}P_{1}^{m+1}P_{2}^{n-r+1}q^{-(n+2)} \\ &\times \int \int \int e(\beta F(dP_{1}\boldsymbol{u},dP_{1}P_{2}\boldsymbol{v},P_{2}\boldsymbol{w}))\,d\boldsymbol{u}\,d\boldsymbol{v}\,d\boldsymbol{w} \\ &+ O\left(q|\beta|d^{d_{1}}P_{1}^{d_{1}}P_{2}^{(d_{2}-1)}\left(\frac{P_{1}}{q}\right)^{r+1}\left(\frac{dP_{1}P_{2}}{q}\right)^{m-r}\left(\frac{P_{2}}{q}\right)^{n-m+1}\right) \\ &+ O\left(\left(\frac{P_{1}}{q}\right)^{r+1}\left(\frac{dP_{1}P_{2}}{q}\right)^{m-r}\left(\frac{P_{2}}{q}\right)^{n-m}\right) \\ &= d^{m-r}P_{1}^{m+1}P_{2}^{n-r+1}q^{-(n+2)}I(d^{d_{1}}P\beta) \\ &+ O(d^{m-r+1}P_{1}^{m+1}P_{2}^{n-r+1}P_{2}^{-1}q^{-(n+2)}P^{2(\tilde{d}+1)\theta_{0}}). \end{split}$$

Puis, en remplaçant S_3 par cette expression dans (3.37), on obtient le résultat. \blacksquare

En regroupant les lemmes 3.14 et 3.15, on trouve

$$N_d(P_1, P_2) = d^{m-r} P_1^{m+1} P_2^{n-r+1} \sum_{\substack{1 \le q \le dP^{(\tilde{d}+1)\theta_0}}} q^{-(n+2)}$$
$$\times \sum_{\substack{0 \le a < q \\ \text{pgcd}(a,q) = 1}} S_{a,q,d} \int_{|\beta| \le d^{-d_1} P^{-1+(\tilde{d}+1)\theta_0}} I(d^{d_1} P\beta) \, d\beta$$

+
$$O(d^{m-r+1}P_1^{m+1}P_2^{n-r+1}P^{2(\tilde{d}+1)\theta_0}P_2^{-1}\operatorname{Vol}(\mathfrak{M}'(\theta_0)))$$

+ $O(d^{m-r+\varepsilon+d_1(r+1)/2^{\tilde{d}}}P_1^{m+1}P_2^{n-r+1}P^{-1-\delta}).$

En remarquant que

$$\begin{aligned} \operatorname{Vol}(\mathfrak{M}'(\theta_0)) &\ll \sum_{1 \leq q \leq dP^{(\tilde{d}+1)\theta_0}} \sum_{\substack{0 \leq a < q \\ \operatorname{pgcd}(a,q) = 1}} d^{-d_1} P^{-1 + (\tilde{d}+1)\theta_0} \\ &\ll d^{2-d_1} P^{-1 + 3(\tilde{d}+1)\theta_0}, \end{aligned}$$

et que

$$\int_{|\beta| \le d^{-d_1}P^{-1+(\tilde{d}+1)\theta_0}} I(d^{d_1}P\beta) \, d\beta = d^{-d_1}P^{-1} \int_{|\beta| \le P^{(\tilde{d}+1)\theta_0}} I(\beta) \, d\beta,$$

et en notant

(3.38)
$$\mathfrak{S}_{d}(Q) = \sum_{1 \le q \le Q} q^{-(n+2)} \sum_{\substack{0 \le a < q \\ \text{pgcd}(a,q) = 1}} S_{a,q,d},$$

(3.39)
$$J(\phi) = \int_{|\beta| \le \phi} I(\beta) \, d\beta,$$

on a

$$(3.40) N_d(P_1, P_2) = d^{m-r-d_1} P_1^{m+1-d_1} P_2^{n-r+1-d_2} \mathfrak{S}_d(dP^{(\tilde{d}+1)\theta_0}) J(P^{(\tilde{d}+1)\theta_0}) + O(d^{m-r+3-d_1} P_1^{m+1} P_2^{n-r+1} P^{-1+5(\tilde{d}+1)\theta_0} P_2^{-1}) + O(d^{m-r+\varepsilon+d_1(r+1)/2^{\tilde{d}}} P_1^{m+1} P_2^{n-r+1} P^{-1-\delta}).$$

Or, d'après (3.32) on a supposé $5(\tilde{d}+1)\theta_0 + \delta < 1/(bd_1+d_2)$, donc $d^{m-r+3-d_1}P_1^{m+1}P_2^{n-r+1}P^{-1+5(\tilde{d}+1)\theta_0}P_2^{-1} \ll d^{m-r+3-d_1}P_1^{m+1}P_2^{n-r+1}P^{-1-\delta}.$ On définit à présent

(3.41)
$$\mathfrak{S}_{d} = \sum_{q=1}^{\infty} \sum_{\substack{0 \le a < q \\ \text{pgcd}(a,q) = 1}} q^{-(n+2)} S_{a,q,d},$$

(3.42)
$$J = \int_{\beta \in \mathbb{R}} I(\beta) \, d\beta$$

Afin de pouvoir remplaçer $J(P^{(\tilde{d}+1)\theta_0})$ par J dans (3.40), nous allons établir :

LEMME 3.16. L'intégrale J est absolument convergente, et pour tout ϕ assez grand,

$$|J - J(\phi)| \ll \phi^{-1}.$$

Démonstration. On choisit $\theta \in [0, 1]$ vérifiant les mêmes conditions (3.31) et (3.32) que θ_0 . Soit β tel que $|\beta| > \phi$; on considère P_1 , P_2 , P tels que

 $2|\beta|=P^{(\tilde{d}+1)\theta}$ et on prend d=1. Alors $P^{-1}\beta\in\mathfrak{M}_{0,1}(\theta),$ et d'après le lemme 3.15,

(3.43)
$$S_1(P^{-1}\beta) = P_1^{m+1}P_2^{n-r+1}I(\beta) + O(P_1^{m+1}P_2^{n-r+1}P^{2(\tilde{d}+1)\theta}P_2^{-1}).$$

D'autre part, $P^{-1}\beta$ appartient au bord de $\mathfrak{M}_{0,1}(\theta)$, donc, puisque les $\mathfrak{M}_{a,q}(\theta)$ sont disjoints, pour tout $\varepsilon > 0$ arbitrairement petit, par le lemme 3.10 appliqué à d = 1 on a

(3.44)
$$S_1(P^{-1}\beta) \ll P_1^{m+2}P_2^{n-r+1}P^{-K\theta+\varepsilon}$$

Par conséquent, en regroupant (3.43) et (3.44), on trouve

$$|I(\beta)| \ll P_1 P^{-K\theta+\varepsilon} + O(P_2^{-1} P^{2(\tilde{d}+1)\theta})$$

= $P^{\frac{b}{bd_1+d_2}-K\theta+\varepsilon} + O(P^{-\frac{1}{bd_1+d_2}+2(\tilde{d}+1)\theta}).$

Or, d'après (3.32),

$$\frac{1}{bd_1 + d_2} - 2(\tilde{d} + 1)\theta > 3(\tilde{d} + 1)\theta + \delta,$$

donc

$$P^{-\frac{1}{bd_1+d_2}+2(\tilde{d}+1)\theta} \ll P^{-3(\tilde{d}+1)\theta-\delta} \ll |\beta|^{-3}.$$

Par ailleurs, d'après (3.31),

$$K\theta - 2(\tilde{d} + 1)\theta > 2\delta + \frac{b}{bd_1 + d_2},$$

et donc

$$P^{\frac{b}{bd_1+d_2}-K\theta+\varepsilon} \ll P^{-2(\tilde{d}+1)\theta} \ll |\beta|^{-2}$$

On en déduit $\int_{|\beta| > \phi} |I(\beta)| d\beta \ll \phi^{-1}$, d'où le résultat du lemme.

De même, pour pouvoir remplaçer $\mathfrak{S}_d(dP^{(\tilde{d}+1)\theta_0})$ par \mathfrak{S}_d dans (3.40), on établit :

LEMME 3.17. Pour $d_1 \geq 2$, la série \mathfrak{S}_d est absolument convergente, et pour tout $Q \geq d$ assez grand, on a

$$|\mathfrak{S}_d - \mathfrak{S}_d(Q)| \ll \max\{d^{d_1(r+1)/2^d + \varepsilon}, d\}Q^{-\delta}$$

pour $\delta > 0$ arbitrairement petit.

Démonstration. On choisit $\theta \in [0,1]$ vérifiant (3.31) et (3.32). Soit $q > Q \ge d$ quelconque et a tel que $0 \le a < q$ et pgcd(a,q) = 1. On choisit $P_1, P_2 \ge 1$ tels que $q = dP^{(\tilde{d}+1)\theta}$ avec $P = P_1^{d_1} P_2^{d_2}$. D'après le lemme 3.15, si $\alpha = a/q$, on a

$$|S_d(\alpha)| = d^{m-r} P_1^{m+1} P_2^{n-r+1} q^{-(n+2)} S_{a,q,d} I(0) + O(d^{m-r+1} P_1^{m+1} P_2^{n-r+1} P^{2(\tilde{d}+1)\theta} P_2^{-1}).$$

Par ailleurs, si l'on pose $\theta' = \theta - \nu$ avec $\nu > 0$ arbitrairement petit, on voit que $\alpha = a/q \notin \mathfrak{M}(\theta')$. En effet, supposons qu'il existe a', q' tels que $d \mid q',$ $q' \leq dP^{(\tilde{d}+1)\theta'} < dP^{(\tilde{d}+1)\theta} = q, \ 0 \leq a' < q',$ et $\alpha \in \mathfrak{M}^{(1)}_{a',q'}(\theta')$. Si aq' = qa', on a donc, puisque pgcd(a,q) = 1, $a \mid a'$ et donc si $a' \neq 0$, on a q' = (a'/a)q, ce qui est absurde car q > q'; et si a = a' = 0, alors q = 1, ce qui contredit encore q > q'. Alors

$$1 \le |aq' - a'q| \le qd^{-(d_1 - 1)}P^{-1 + (\tilde{d} + 1)\theta'} < d^{2-d_1}P^{-1 + 2(\tilde{d} + 1)\theta}$$

ce qui est absurde car $\theta < 1/(2(\tilde{d}+1))$ d'après (3.32). De la même manière, s'il existe a', q' tels que $q' \leq P^{(\tilde{d}+1)\theta'} < dP^{(\tilde{d}+1)\theta} = q, \ 0 \leq a' < q',$ $\operatorname{pgcd}(a',q') = 1$ et $\alpha \in \mathfrak{M}_{a',q'}^{(2)}(\theta'),$

$$1 \le |aq' - a'q| \le qd^{-d_1}P^{-1 + (\tilde{d}+1)\theta'} < d^{1-d_1}P^{-1 + 2(\tilde{d}+1)\theta}$$

Par conséquent, d'après le lemme 3.10,

$$|S_d(\alpha)| \ll d^{m-r+\varepsilon+d_1(r+1)/2^{\tilde{d}}} P_1^{m+2} P_2^{n-r+1} P^{-K\theta'+\varepsilon}$$

et on obtient (étant donné que $I(0) \approx 1$), pour ν assez petit,

$$|S_{a,q,d}| \ll q^{n+2} d^{d_1(r+1)/2^{\tilde{d}}} + \varepsilon P_1 P^{-K\theta'+\varepsilon} + (dq^{n+2} P^{2(\tilde{d}+1)\theta} P_2^{-1})$$
$$\ll d^{d_1(r+1)/2^{\tilde{d}}} + \varepsilon q^{n+2} P^{\frac{b}{bd_1+d_2}-K\theta+2\varepsilon} + (dq^{n+2} P^{2(\tilde{d}+1)\theta-\frac{1}{bd_1+d_2}}).$$

Or, par les conditions (3.31) et (3.32), pour $\delta = \delta'(\tilde{d}+1)$,

$$P^{\frac{b}{bd_1+d_2}-K\theta+2\varepsilon} \ll P^{-2(\tilde{d}+1)\theta-\delta'(\tilde{d}+1)\theta} = q^{-2-\delta'},$$
$$P^{2(\tilde{d}+1)\theta-\frac{1}{bd_1+d_2}} \ll P^{-3(\tilde{d}+1)\theta-\delta} \ll q^{-3}.$$

Donc

$$q^{-(n+2)}|S_{a,q,d}| \ll d^{d_1(r+1)/2^{\bar{d}}+\varepsilon}q^{-2-\delta'} + dq^{-3}$$

et ainsi

$$\begin{aligned} |\mathfrak{S}_d - \mathfrak{S}_d(Q)| &\ll \sum_{q>Q} \sum_{\substack{0 \le a < q \\ \operatorname{pgcd}(a,q) = 1}} q^{-(n+2)} |S_{a,q,d}| \\ &\ll \max\{d^{d_1(r+1)/2^{\tilde{d}} + \varepsilon}, d\} \sum_{q>Q} \sum_{\substack{0 \le a < q \\ \operatorname{pgcd}(a,q) = 1}} q^{-2-\delta'} \\ &\ll \max\{d^{d_1(r+1)/2^{\tilde{d}} + \varepsilon}, d\} Q^{-\delta'}. \end{aligned}$$

REMARQUE 3.18. Observons que $\mathfrak{S}_d(d) \ll d^2$, et donc le lemme précédent nous donne

$$|\mathfrak{S}_d| \ll d^2 + \max\{d^{d_1(r+1)/2^{\tilde{d}}+\varepsilon}, d\}d^{-\delta} \ll \max\{d^{d_1(r+1)/2^{\tilde{d}}}, d^2\}.$$

En utilisant les lemmes 3.17 et 3.16, et en notant

(3.45)
$$\sigma_d = d^{m-r-d_1} \mathfrak{S}_d J,$$

on obtient finalement le résultat suivant :

PROPOSITION 3.19. Pour $P_1 = P_2^b$ avec $b \ge 1$, si $d_1 \ge 2$ et si l'on suppose que $K = (n + 2 - \max\{\dim V_1^*, \dim V_2^*\} - \varepsilon)/2^{\tilde{d}}$ est tel que

$$K > \max\{bd_1 + d_2, (5b+2)(d_1 + d_2 - 1)\}$$

alors

$$N_d(P_1, P_2) = \sigma_d P_1^{m+1-d_1} P_2^{n-r+1-d_2} + O(d^{m-r} \max\{d^{d_1(r+1)/2^{\bar{d}}+\varepsilon}, d^{3-d_1}\} P_1^{m+1-d_1-\delta} P_2^{n-r+1-d_2-\delta})$$

pour un réel $\delta > 0$ arbitrairement petit.

REMARQUE 3.20. Remarquons que dans le cas où $P_1 \leq P_2$ et $P_2 = P_1^u$, on obtient exactement la même estimation de $N_d(P_1, P_2)$ lorsque

$$K > \max\{d_1 + ud_2, 7(d_1 + d_2 - 1)\}.$$

4. Deuxième étape. Dans cette section nous allons établir, pour un $\boldsymbol{x} \in \mathbb{Z}^{r+1}$ fixé, en notant $k = |\boldsymbol{x}|$, une formule asymptotique pour

 $N_{d,\boldsymbol{x}}(P_2) = \operatorname{card}\{(\boldsymbol{y},\boldsymbol{z}) \in (dkP_2\mathcal{B}_2 \times P_2\mathcal{B}_3) \cap \mathbb{Z}^{n-r+1} \mid F(d\boldsymbol{x},\boldsymbol{y},\boldsymbol{z}) = 0\},\$

lorsque x appartient à un ensemble ouvert particulier que nous préciserons. À cette fin on pose

(4.1)
$$S_{d,\boldsymbol{x}}(\alpha) = \sum_{\substack{\boldsymbol{y} \in \mathbb{Z}^{m-r} \\ |\boldsymbol{y}| \le dkP_2}} \sum_{\substack{\boldsymbol{z} \in \mathbb{Z}^{n-m+1} \\ |\boldsymbol{z}| \le P_2}} e(\alpha F(d\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z})),$$

et on remarque que

$$N_{d,\boldsymbol{x}}(P_2) = \int_0^1 S_{d,\boldsymbol{x}}(\alpha) \, d\alpha.$$

4.1. Somme d'exponentielles. En appliquant le même procédé que dans la section 3.1, on a, pour \boldsymbol{x} fixé,

$$\begin{split} |S_{d,\boldsymbol{x}}(\alpha)|^{2^{d_2-1}} &\ll ((dkP_2)^{m-r})^{2^{d_2-1}-d_2} (P_2^{n-m+1})^{2^{d_2-1}-d_2} \\ &\times \sum_{\substack{\boldsymbol{y}^{(1)},\boldsymbol{z}^{(1)} \\ |\boldsymbol{y}^{(1)}| \leq dkP_2 \\ |\boldsymbol{z}^{(1)}| \leq P_2 \\ |\boldsymbol{z}^{(d_2-1)}| \leq dkP_2 \\ |\boldsymbol{z}^{(d_2-1)}| \leq P_2 \\ |\boldsymbol{z}^{(d_2-1)}| \leq$$

avec

$$H_j = \begin{cases} dkP_2 & \text{si } j \in \{r+1, \dots, m\}, \\ P_2 & \text{si } j \in \{m+1, \dots, n+1\}, \end{cases}$$

 et

$$\gamma_{d,\boldsymbol{x},j}((\boldsymbol{y}^{(i)},\boldsymbol{z}^{(i)})_{i\in [\![d_2-1]\!]}) = \sum_{\boldsymbol{i}=(i_1,\dots,i_{d_2-1})\in\{r+1,\dots,n+1\}^{d_2-1}} F_{d\boldsymbol{x},\boldsymbol{i},j} u_{i_1}^{(1)}\dots u_{i_{d_2-1}}^{(d_2-1)},$$

où

$$u_i = \begin{cases} y_i & \text{si } i \in \{r+1, \dots, m\}, \\ z_i & \text{si } i \in \{m+1, \dots, n+1\} \end{cases}$$

et les coefficients $F_{dx,i,j}$ sont symétriques en $(i, j) \in \{r + 1, ..., n + 1\}^{d_2}$. À partir de là, on montre comme dans la section 3.1 que

$$|S_{d,\boldsymbol{x}}(\alpha)|^{2^{d_2-1}} \ll ((dkP_2)^{m-r+\varepsilon})^{2^{d_2-1}-d_2+1} (P_2^{n-m+1+\varepsilon})^{2^{d_2-1}-d_2+1} \times M_{d,\boldsymbol{x}}(\alpha, dkP_2, P_2, (dkP_2)^{-1}, P_2^{-1}),$$

où l'on a noté, pour tous réels strictement positifs H_1, H_2, B_1, B_2 ,

$$M_{d,\boldsymbol{x}}(\alpha, H_1, H_2, B_1^{-1}, B_2^{-1}) = \operatorname{card}\{(\boldsymbol{y}^{(1)}, \boldsymbol{z}^{(1)}, \dots, \boldsymbol{y}^{(d_2-1)}, \boldsymbol{z}^{(d_2-1)}) \mid |\boldsymbol{y}^{(i)}| \leq H_1, \\ |\boldsymbol{z}^{(i)}| \leq H_2 \text{ et } \forall j \in \{r+1, \dots, m\}, \|\alpha \gamma_{d,\boldsymbol{x},j}((\boldsymbol{y}^{(i)}, \boldsymbol{z}^{(i)})_{i \in \llbracket d_2 - 1 \rrbracket})\| \leq B_1^{-1}, \\ \forall j \in \{m+1, \dots, n+1\}, \|\alpha \gamma_{d,\boldsymbol{x},j}((\boldsymbol{y}^{(i)}, \boldsymbol{z}^{(i)})_{i \in \llbracket d_2 - 1 \rrbracket})\| \leq B_2^{-1}\}.$$

On en déduit :

Lemme 4.1. Si P > 1, $\kappa > 0$ et $\varepsilon > 0$ arbitrairement petit, l'une au moins des assertions suivantes est vérifiée :

(1)
$$|S_{d,\boldsymbol{x}}(\alpha)| \ll (dk)^{m-r+\varepsilon} P_2^{n+1-r+\varepsilon} P^{-\kappa},$$

(2) $M_{d,\boldsymbol{x}}(\alpha, dkP_2, P_2, (dkP_2)^{-1}, P_2^{-1})$
 $\gg ((dkP_2)^{m-r})^{d_2-1} (P_2^{n-m+1})^{d_2-1} P^{-2^{d_2-1}\kappa}.$

Or pour $(\boldsymbol{y}^{(i)}, \boldsymbol{z}^{(i)})_{i \in [\![d_2-2]\!]}$ fixés, le réseau défini par les $(\boldsymbol{y}^{(d_2-1)}, \boldsymbol{z}^{(d_2-1)})$ et les formes linéaires $\alpha \gamma_{d,\boldsymbol{x},j}$ est symétrique (c'est-à-dire si $\gamma_{d,\boldsymbol{x},j}(\boldsymbol{u}) = \sum_{l \in \{r+1,\dots,n+1\}} \lambda_{j,l} u_l$, alors $\lambda_{j,l} = \lambda_{l,j}$). On peut donc appliquer le lemme 3.6, avec des paramètres a_j, Z, Z' bien choisis. Par des arguments analogues à ceux employés dans la section 3.2 on obtient alors

$$M_{d,\boldsymbol{x}}(\alpha, dkP_2, P_2, (dkP_2)^{-1}, P_2^{-1}) \\ \ll \left(\frac{P_2}{P^{\theta}}\right)^{(d_2-1)(n-r+1)} M_{d,\boldsymbol{x}}(\alpha, dkP^{\theta}, P^{\theta}, (dk)^{-1}P_2^{-d_2}P^{(d_2-1)\theta}, P_2^{-d_2}P^{(d_2-1)\theta}).$$

On remarque par ailleurs (en utilisant le lemme 3.9) que

$$M_{d,\boldsymbol{x}}(\alpha, dkP^{\theta}, P^{\theta}, (dk)^{-1}P_2^{-d_2}P^{(d_2-1)\theta}, P_2^{-d_2}P^{(d_2-1)\theta}) \\ \ll (dk)^{(d_2-1)(m-r)}M_{d,\boldsymbol{x}}(\alpha, P^{\theta}, P^{\theta}, (dk)^{-1}P_2^{-d_2}P^{(d_2-1)\theta}, P_2^{-d_2}P^{(d_2-1)\theta}).$$

On a donc le lemme suivant :

LEMME 4.2. Si P > 1, $\kappa > 0$ et $\varepsilon > 0$ arbitrairement petit, l'une au moins des assertions suivantes est vérifiée :

(1)
$$|S_{d,\boldsymbol{x}}(\alpha)| \ll (dk)^{m-r+\varepsilon} P_2^{n+1-r+\varepsilon} P^{-\kappa},$$

(2) $M_{d,\boldsymbol{x}}(\alpha, P^{\theta}, P^{\theta}, (dk)^{-1} P_2^{-d_2} P^{(d_2-1)\theta}, P_2^{-d_2} P^{(d_2-1)\theta})$
 $\gg (P^{\theta})^{(n-r+1)(d_2-1)} P^{-2^{d_2-1}\kappa}.$

Remarquons à présent que s'il existe $j_0 \in \{r+1,\ldots,n+1\}$ tel que $\gamma_{d,\boldsymbol{x},j_0}((\boldsymbol{y}^{(i)},\boldsymbol{z}^{(i)})_{i\in [\![d_2-1]\!]}) \neq 0$ pour un certain $(\boldsymbol{y}^{(i)},\boldsymbol{z}^{(i)})_{i\in [\![d_2-1]\!]}$ tel que $|\boldsymbol{y}^{(i)}| \leq P^{\theta}, |\boldsymbol{z}^{(i)}| \leq P^{\theta}$ pour tout $i \in [\![d_2-1]\!]$, et

$$|\alpha\gamma_{d,\boldsymbol{x},j_0}((\boldsymbol{y}^{(i)},\boldsymbol{z}^{(i)})_{i\in[\![d_2-1]\!]})\| \leq P_2^{-d_2}P^{(d_2-1)\theta}$$

alors en posant $q = \gamma_{d, \boldsymbol{x}, j_0}((\boldsymbol{y}^{(i)}, \boldsymbol{z}^{(i)})_{i \in [\![d_2-1]\!]})$, on a $q \ll d^{d_1}k^{d_1}P^{(d_2-1)\theta}$ et il existe *a* tel que

$$|\alpha q - a| \le P_2^{-d_2} P^{(d_2 - 1)\theta}$$

Quitte à changer θ , on peut supposer $q \leq d^{d_1}k^{d_1}P^{(d_2-1)\theta}$, $0 \leq a < q$ et pgcd(a,q) = 1. Dans ce qui suit, on posera

(4.2)
$$\mathfrak{M}_{a,q}^{d,\boldsymbol{x}}(\theta) = \{ \alpha \in [0,1[\mid 2 \mid \alpha q - a] \leq P_2^{-d_2} P^{(d_2-1)\theta} \},$$

(4.3)
$$\mathfrak{M}^{d,\boldsymbol{x}}(\theta) = \bigcup_{\substack{q \le d^{d_1}k^{d_1}P^{(d_2-1)\theta}}} \bigcup_{\substack{0 \le a < q \\ \operatorname{pgcd}(a,q) = 1}} \mathfrak{M}^{d,\boldsymbol{x}}_{a,q}(\theta).$$

On en déduit :

LEMME 4.3. Si P > 1, $\kappa > 0$ et $\varepsilon > 0$ arbitrairement petit, l'une au moins des assertions suivantes est vérifiée :

(1)
$$|S_{d,\boldsymbol{x}}(\alpha)| \ll (dk)^{m-r+\varepsilon} P_2^{n+1-r+\varepsilon} P^{-\kappa},$$

(2) $\alpha \in \mathfrak{M}^{d,\boldsymbol{x}}(\theta),$
(3) $\operatorname{card}\{(\boldsymbol{y}^{(i)}, \boldsymbol{z}^{(i)})_{i \in \llbracket d_2 - 1 \rrbracket} \mid |\boldsymbol{y}^{(i)}| \le P^{\theta}, |\boldsymbol{z}^{(i)}| \le P^{\theta},$
 $et \; \forall j \in \{r+1, \dots, n+1\}, \; \gamma_{d,\boldsymbol{x},j}((\boldsymbol{y}^{(i)}, \boldsymbol{z}^{(i)})_{i \in \llbracket d_2 - 1 \rrbracket}) = 0\}$
 $\gg (P^{\theta})^{(n-r+1)(d_2-1)} P^{-2^{d_2-1}\kappa}.$

On définit, pour \boldsymbol{x} fixé,

(4.4)
$$V_{2,\boldsymbol{x}}^* = \left\{ (\boldsymbol{y}, \boldsymbol{z}) \in \mathbb{C}^{n-r+1} \middle| \forall j \in \{r+1, \dots, m\}, \frac{\partial F}{\partial y_j}(\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z}) = 0 \\ \text{et } \forall k \in \{m+1, \dots, n+1\}, \frac{\partial F}{\partial z_k}(\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z}) = 0 \right\}.$$

Remarquons que $\dim V^*_{2,d\boldsymbol{x}} = \dim V^*_{2,\boldsymbol{x}}$ pour tout $d \geq 1.$ On note

(4.5)
$$\mathcal{A}_{2}^{\lambda} = \{ \boldsymbol{x} \in \mathbb{C}^{r+1} \mid \dim V_{2,\boldsymbol{x}}^{*} < \dim V_{2}^{*} - (r+1) + \lambda \},$$

où $\lambda \in \mathbb{N}$ est un paramètre que nous préciserons ultérieurement. Par abus de langage on notera

$$\mathcal{A}_2^\lambda(\mathbb{Z}) = \mathcal{A}_2^\lambda \cap \mathbb{Z}^{r+1}.$$

Supposons à présent que $\boldsymbol{x} \in \mathcal{A}_2^{\lambda}(\mathbb{Z})$ et que l'assertion (3) du lemme 4.3 est vérifiée. Posons par ailleurs $K_2 = \kappa/\theta$. Si $\mathcal{L}_{2,d,\boldsymbol{x}}$ est la sous-variété affine de $\mathbb{A}^{(n-r+1)(d_2-1)}$ définie par les équations

$$\gamma_{d,\boldsymbol{x},j}((\boldsymbol{y}^{(i)},\boldsymbol{z}^{(i)})_{i\in [\![d_2-1]\!]})=0,$$

alors, d'après la démonstration de [Br, Théorème 3.1],

$$\dim \mathcal{L}_{2,d,\boldsymbol{x}} \ge (n-r+1)(d_2-1) - 2^{d_2-1}K_2$$

On considère d'autre part l'intersection avec la diagonale

$$\mathcal{D}_2: egin{cases} oldsymbol{y}^{(1)} = \cdots = oldsymbol{y}^{(d_2-1)}, \ oldsymbol{z}^{(1)} = \cdots = oldsymbol{z}^{(d_2-1)}. \end{cases}$$

On a

 $\dim(\mathcal{L}_{2,d,\boldsymbol{x}} \cap \mathcal{D}_2) \geq \dim \mathcal{L}_{2,d,\boldsymbol{x}} - (n-r+1)(d_2-2) \geq n-r+1 - 2^{d_2-1}K_2.$ Par ailleurs, $\mathcal{L}_{2,d,\boldsymbol{x}} \cap \mathcal{D}_2$ est isomorphe à $V_{2,d\boldsymbol{x}}^*$, et donc, puisque $\boldsymbol{x} \in \mathcal{A}_2^{\lambda}(\mathbb{Z})$ et dim $V_{2,d\boldsymbol{x}}^* = \dim V_{2,\boldsymbol{x}}^*$, on obtient

$$2^{d_2-1}K_2 \ge n-r+1 - \dim V_{2,\boldsymbol{x}}^* > n+2 - \dim V_2^* - \lambda.$$

On posera donc dorénavant

(4.6)
$$K_2 = (n+2 - \dim V_2^* - \lambda)/2^{d_2 - 1},$$

et le lemme 4.3 devient alors :

LEMME 4.4. Soit $\boldsymbol{x} \in \mathcal{A}_2^{\lambda}(\mathbb{Z})$. Si $\varepsilon > 0$ est un réel arbitrairement petit, l'une au moins des assertions suivantes est vérifiée :

(1) $|S_{d,\boldsymbol{x}}(\alpha)| \ll (dk)^{m-r+\varepsilon} P_2^{n+1-r+\varepsilon} P^{-K_2\theta},$ (2) $\alpha \in \mathfrak{M}^{d,\boldsymbol{x}}(\theta).$

Pour tout le reste de cette section on fixera $P = P_2$. Avant d'aller plus loin, nous établissons une propriété de l'ensemble \mathcal{A}_2^{λ} :

PROPOSITION 4.5. L'ensemble \mathcal{A}_2^{λ} est un ouvert de Zariski de $\mathbb{A}_{\mathbb{C}}^{r+1}$, et de plus,

$$\operatorname{card}\{[-P_1, P_1]^{r+1} \cap (\mathcal{A}_2^{\lambda})^c \cap \mathbb{Z}^{r+1}\} \ll P_1^{r+1-\lambda}.$$

Démonstration. On commence par montrer que $\{ \boldsymbol{x} \in \mathbb{A}_{\mathbb{C}}^{r+1} \mid \dim V_{2,\boldsymbol{x}}^* \geq \lambda \}$ est un fermé de Zariski de $\mathbb{A}_{\mathbb{C}}^{r+1}$.

T. Mignot

Notons Y le fermé de $\mathbb{A}^{r+1}_{\mathbb{C}} \times \mathbb{P}^{n-r}_{\mathbb{C}}$ définit par

$$Y = \left\{ (\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z}) \in \mathbb{A}^{r+1}_{\mathbb{C}} \times \mathbb{P}^{n-r}_{\mathbb{C}} \middle| \forall j \in \{m+1, \dots, n+1\}, \frac{\partial F}{\partial y_j}(\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z}) = 0 \\ \text{et } \forall k \in \{m+1, \dots, n+1\}, \frac{\partial F}{\partial z_k}(\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z}) = 0 \right\}$$

La projection canonique $\pi : Y \subset \mathbb{A}^{r+1}_{\mathbb{C}} \times \mathbb{P}^{n-r}_{\mathbb{C}} \to \mathbb{A}^{r+1}_{\mathbb{C}}$ est un morphisme projectif, donc fermé. Par conséquent, d'après [G-D, Corollaire 13.1.5],

 $\{\boldsymbol{x} \in \mathbb{A}^{r+1}_{\mathbb{C}} \mid \dim Y_{\boldsymbol{x}} \geq \lambda - 1\}$

est un fermé, et puisque $\dim Y_{\boldsymbol{x}} = \dim V^*_{2,\boldsymbol{x}} - 1,$ l'ensemble

$$\{\boldsymbol{x} \in \mathbb{A}^{r+1}_{\mathbb{C}} \mid \dim V^*_{2,\boldsymbol{x}} \geq \lambda\}$$

est un fermé de Zariski de $\mathbb{A}^{r+1}_{\mathbb{C}}$.

On remarque à présent que

$$Y \cap ((\mathcal{A}_2^{\lambda})^c imes \mathbb{P}^{n-r}_{\mathbb{C}}) = \bigsqcup_{oldsymbol{x} \in (\mathcal{A}_2^{\lambda})^c} \pi^{-1}(oldsymbol{x}),$$

donc

 $\dim (\mathcal{A}_2^{\lambda})^c + \dim V_2^* - (r+1) + \lambda - 1 \leq \dim Y = \dim V_2^* - 1,$ ce qui implique dim $(\mathcal{A}_2^{\lambda})^c \leq r+1-\lambda$, et donc

$$\operatorname{card} \{ \boldsymbol{x} \in [-P_1, P_1]^{r+1} \cap (\mathcal{A}_2^{\lambda})^c(\mathbb{Z}) \} \ll P_1^{r+1-\lambda}$$

(cf. démonstration de [Br, Théorème 3.1]).

4.2. Méthode du cercle. On fixe un réel $\theta \in [0, 1]$. On suppose que (4.7) $K_2 > 2(d_2 - 1)$.

On notera

(4.8)
$$\phi(d,k,\theta) = (dk)^{d_1} P_2^{(d_2-1)\theta},$$

(4.9)
$$\Delta_2(\theta, K_2) = \theta(K_2 - 2(d_2 - 1)).$$

Comme dans la section précédente, nous allons séparer l'intégrale sur [0,1] de $S(\alpha)$ en intégrales sur les arcs majeurs et les arcs mineurs. Commençons par traiter le cas des arcs mineurs.

En utilisant le lemme 4.4, par des arguments analogues à ceux employés par Birch pour la démonstration de [Bi, Lemme 4.4] on obtient :

LEMME 4.6. Pour tout $\boldsymbol{x} \in \mathcal{A}_2^{\lambda}(\mathbb{Z})$, on a

$$\int_{\alpha \notin \mathfrak{M}^{d,\boldsymbol{x}}(\theta)} |S_{d,\boldsymbol{x}}(\alpha)| \, d\alpha \ll (dk)^{d_1+m-r+\varepsilon} P_2^{n+1-r-d_2-\Delta_2(\theta,K_2)+\varepsilon}.$$

Soit $x \in \mathcal{A}_2^{\lambda}(\mathbb{Z})$. Définissons la nouvelle famille d'arcs majeurs :

(4.10)
$$\mathfrak{M}_{a,q}^{\prime d,\boldsymbol{x}}(\theta) = \{ \alpha \in [0,1[\mid 2 \mid \alpha q - a \mid \leq q P_2^{-d_2} P^{(d_2-1)\theta} \},$$

(4.11)
$$\mathfrak{M}^{\prime d,\boldsymbol{x}}(\theta) = \bigcup \qquad \bigcup \qquad \mathfrak{M}_{a,q}^{\prime d,\boldsymbol{x}}(\theta).$$

$$q \leq (dk)^{d_1} P^{(d_2-1)\theta} \quad \substack{0 \leq a < q \\ pgcd(a,q) = 1}$$

LEMME 4.7. Si $(dk)^{2d_1}P_2^{-d_2+3\theta(d_2-1)} < 1$, alors les arcs majeurs $\mathfrak{M}_{a,q}^{\boldsymbol{x}'}(\theta)$ sont disjoints deux à deux.

Démonstration. Supposons qu'il existe $\alpha \in \mathfrak{M}_{a,q}^{'d,\boldsymbol{x}}(\theta) \cap \mathfrak{M}_{a',q'}^{'d,\boldsymbol{x}}(\theta)$ pour $(a,q) \neq (a',q'), q,q' \leq \phi(d,k,\theta), 0 \leq a < q, 0 \leq a' < q'$ et $\operatorname{pgcd}(a,q) = \operatorname{pgcd}(a',q') = 1$. Alors

$$\frac{1}{qq'} \le \left|\frac{a}{q} - \frac{a'}{q'}\right| \le P_2^{-d_2 + \theta(d_2 - 1)}$$

et donc

$$1 \le qq' P_2^{-d_2 + \theta(d_2 - 1)} \le (dk)^{2d_1} P_2^{-d_2 + 3\theta(d_2 - 1)},$$

d'où le résultat. \blacksquare

Remarquons que puisque $\mathfrak{M}^{d,\boldsymbol{x}}(\theta) \subset \mathfrak{M}'^{d,\boldsymbol{x}}(\theta)$, d'après le lemme 4.6, on a : LEMME 4.8. Soit $\boldsymbol{x} \in \mathcal{A}_2^{\lambda}(\mathbb{Z})$. Alors

$$N_{d,\boldsymbol{x}}(P_2) = \sum_{q \le \phi(d,k,\theta)} \sum_{\substack{0 \le a < q \\ \text{pgcd}(a,q)=1}} \int_{\alpha \in \mathfrak{M}_{a,q}^{\prime d,\boldsymbol{x}}(\theta)} S_{d,\boldsymbol{x}}(\alpha) \, d\alpha$$
$$+ O((dk)^{d_1 + m - r + \varepsilon} P_2^{n+1 - r - d_2 - \Delta_2(\theta,K_2) + \varepsilon}).$$

On considère à présent $\boldsymbol{x} \in \mathbb{Z}^{r+1}$ quelconque, et on suppose $\alpha \in \mathfrak{M}_{a,q}^{\prime d, \boldsymbol{x}}(\theta)$. On pose $\beta = \alpha - a/q$ et donc $|\beta| \leq \frac{1}{2}P_2^{-d_2 + (d_2 - 1)\theta}$.

LEMME 4.9. On a

$$S_{d,\boldsymbol{x}}(\alpha) = (dk)^{m-r} P_2^{n-r+1} q^{-(n-r+1)} S_{a,q,d}(\boldsymbol{x}) I_{\boldsymbol{x}}(d^{d_1} P_2^{d_2} \beta) + O((dk)^{2d_1+m-r} P_2^{n-r+2\theta(d_2-1)}),$$

avec

(4.12)
$$S_{a,q,d}(\boldsymbol{x}) = \sum_{(\boldsymbol{b}_2, \boldsymbol{b}_3) \in (\mathbb{Z}/q\mathbb{Z})^{m-r} \times (\mathbb{Z}/q\mathbb{Z})^{n-m+1}} e\left(\frac{a}{q}F(d\boldsymbol{x}, \boldsymbol{b}_2, \boldsymbol{b}_3)\right),$$

(4.13)
$$I_{\boldsymbol{x}}(\beta) = \int_{(\boldsymbol{v},\boldsymbol{w})\in[-1,1]^{m-r}\times[-1,1]^{n-m+1}} e(\beta F(\boldsymbol{x},k\boldsymbol{v},\boldsymbol{w})) \, d\boldsymbol{v} \, d\boldsymbol{w}.$$

 $D\acute{e}monstration$. Lorsque $P_2 < q$, l'égalité est trivialement vérifiée. Nous supposerons donc que $P_2 > q$. On peut écrire

T. Mignot

(4.14)
$$S_{d,\boldsymbol{x}}(\alpha) = \sum_{(\boldsymbol{b}_2,\boldsymbol{b}_3)\in(\mathbb{Z}/q\mathbb{Z})^{m-r}\times(\mathbb{Z}/q\mathbb{Z})^{n-m+1}} e\left(\frac{a}{q}F(d\boldsymbol{x},\boldsymbol{b}_2,\boldsymbol{b}_3)\right) S_3(\boldsymbol{b}_2,\boldsymbol{b}_3),$$

où

$$S_3(oldsymbol{b}_2,oldsymbol{b}_3) = \sum_{\substack{oldsymbol{y} \equiv oldsymbol{b}_2(q) \ |oldsymbol{y}| \leq dkP_2}} \sum_{\substack{oldsymbol{z} \equiv oldsymbol{b}_3(q) \ |oldsymbol{z}| \leq P_2}} e\left(eta F(doldsymbol{x},oldsymbol{y},oldsymbol{y})
ight).$$

Si $qy' + b_2, qy'' + b_2 \in [-dkP_2, dkP_2]$ et $qz' + b_3, qz'' + b_3 \in [-P_2, P_2]$ avec

$$|y' - y''| \ll 1, \quad |z' - z''| \ll 1,$$

on a

 $|F(d\boldsymbol{x},q\boldsymbol{y}'+\boldsymbol{b}_2,q\boldsymbol{z}'+\boldsymbol{b}_3)-F(d\boldsymbol{x},q\boldsymbol{y}''+\boldsymbol{b}_2,q\boldsymbol{z}''+\boldsymbol{b}_3)|\ll q(dk)^{d_1}P_2^{d_2-1}.$ Ainsi,

$$S_{3}(\boldsymbol{b}_{2},\boldsymbol{b}_{3}) = \int_{\substack{q\tilde{\boldsymbol{v}}\in[-dkP_{2},dkP_{2}]^{m-r}\\q\tilde{\boldsymbol{w}}\in[-P_{2},P_{2}]^{n-m+1}}} + O(q|\beta|(dk)^{d_{1}}P_{2}^{d_{2}-1}(dkP_{2}/q)^{m-r}(P_{2}/q)^{n-m+1}) + O((dkP_{2}/q)^{m-r}(P_{2}/q)^{n-m}).$$

En rappelant que $|\beta| \leq \frac{1}{2}P_2^{-d_2+(d_2-1)\theta}$, $q \leq \phi(d,k,\theta) = (dk)^{d_1}P^{(d_2-1)\theta}$ et en considérant le changement de variables $q\tilde{\boldsymbol{v}} = dkP_2\boldsymbol{v}$, $q\tilde{\boldsymbol{w}} = P_2\boldsymbol{w}$ on trouve

$$S_3(\boldsymbol{b}_2, \boldsymbol{b}_3) = (dk)^{m-r} P_2^{n-r+1} q^{-(n-r+1)} I_{\boldsymbol{x}}(d^{d_1} P_2^{d_2} \beta) + O(q^{-(n-r)} (dk)^{m-r+d_1} P_2^{n-r+(d_2-1)\theta}).$$

En remplaçant S_3 par cette nouvelle expression dans (4.14), on obtient le résultat.

On pose dorénavant

(4.15)
$$\tilde{\phi}(P_2,\theta) = \frac{1}{2}P_2^{\theta(d_2-1)},$$

(4.16)
$$\eta(\theta) = 1 - 5\theta(d_2 - 1).$$

LEMME 4.10. Pour $\boldsymbol{x} \in \mathcal{A}_2^{\lambda}(\mathbb{Z})$, et $\varepsilon > 0$ arbitrairement petit, on a

$$N_{d,\boldsymbol{x}}(P_2) = (dk)^{m-r} P_2^{n-r+1-d_2} \mathfrak{S}_{d,\boldsymbol{x}}(\phi(d,k,\theta)) J_{d,\boldsymbol{x}}(\tilde{\phi}(P_2,\theta)) + O((dk)^{d_1+m-r} P_2^{n-r+1-d_2-\Delta_2(\theta,K_2)+\varepsilon}) + O((dk)^{4d_1+m-r} P_2^{n-r+1-d_2-\eta(\theta)}),$$

(4.17)
$$\mathfrak{S}_{d,\boldsymbol{x}}(\phi(d,k,\theta)) = \sum_{q \le \phi(d,k,\theta)} q^{-(n-r+1)} \sum_{\substack{0 \le a < q \\ \text{pgcd}(a,q) = 1}} S_{a,q,d}(\boldsymbol{x}),$$

(4.18)
$$J_{d,\boldsymbol{x}}(\tilde{\phi}(P_2,\theta)) = \int_{|\beta| \le \tilde{\phi}(\theta)} I_{\boldsymbol{x}}(d^{d_1}\beta) \, d\beta.$$

48

Démonstration. On notera

$$E_{1} = (dk)^{d_{1}+m-r+\varepsilon} P_{2}^{n-r+1-d_{2}-\Delta_{2}(\theta,K_{2})+\varepsilon},$$

$$E_{2} = (dk)^{2d_{1}+m-r} P_{2}^{n-r+2\theta(d_{2}-1)} \operatorname{Vol}(\mathfrak{M}'^{d,\boldsymbol{x}}(\theta)).$$

D'après les lemmes 4.9 et 4.8,

$$\begin{split} N_{d,\boldsymbol{x}}(P_2) &= (dk)^{m-r} P_2^{n-r+1} \sum_{q \le \phi(d,k,\theta)} q^{-(n-r+1)} \sum_{\substack{0 \le a < q \\ \text{pgcd}(a,q) = 1}} S_{a,q,d}(\boldsymbol{x}) \\ &\times \int_{|\beta| \le P_2^{-d_2} \tilde{\phi}(P_2,\theta)} I_{\boldsymbol{x}}(d^{d_1} P_2^{d_2} \beta) \, d\beta + O(E_1) + O(E_2). \end{split}$$

Par un changement de variable, on a

$$\int_{|\beta| \le P_2^{-d_2} \tilde{\phi}(P_2, \theta)} I_{\boldsymbol{x}}(d^{d_1} P_2^{d_2} \beta) \, d\beta = P_2^{-d_2} \int_{|\beta| \le \tilde{\phi}(P_2, \theta)} I_{\boldsymbol{x}}(d^{d_1} \beta) \, d\beta = P_2^{-d_2} J_{d, \boldsymbol{x}}(\tilde{\phi}(P_2, \theta)).$$

On remarque par ailleurs que

$$\operatorname{Vol}(\mathfrak{M}'^{\boldsymbol{x}}(\theta)) \ll \sum_{q \le \phi(d,k,\theta)} \sum_{0 \le a < q \operatorname{pgcd}(a,q)=1} P_2^{-d_2 + (d_2 - 1)\theta} \ll (dk)^{2d_1} P_2^{-d_2 + 3(d_2 - 1)\theta},$$

et donc

$$E_2 \ll (dk)^{4d_1 + m - r} P_2^{n - r - d_2 + 5\theta(d_2 - 1)} = (dk)^{4d_1 + m - r} P_2^{n - r + 1 - d_2 - \eta(\theta)},$$

ce qui clôt la démonstration du lemme. \blacksquare

Par la suite, on pose

(4.19)
$$\mathfrak{S}_{d,\boldsymbol{x}} = \sum_{q=1}^{\infty} q^{-(n-r+1)} \sum_{\substack{0 \le a < q \\ \operatorname{pgcd}(a,q) = 1}} S_{a,q}(\boldsymbol{x}),$$

(4.20)
$$J_{d,\boldsymbol{x}} = \int_{\mathbb{R}} I_{\boldsymbol{x}}(d^{d_1}\beta) \, d\beta.$$

LEMME 4.11. Soit $\boldsymbol{x} \in \mathcal{A}_2^{\lambda}(\mathbb{Z})$, et $\varepsilon > 0$ arbitrairement petit. Si $d_2 \geq 2$, alors l'intégrale $J_{d,\boldsymbol{x}}$ est absolument convergente, et

$$|J_{d,\boldsymbol{x}}(\tilde{\phi}(P_2,\theta)) - J_{d,\boldsymbol{x}}| \ll P_2^{\theta((d_2-1)-K_2)} \max\left\{P_2^{\varepsilon}, (dk)^{\varepsilon}\right\}.$$

De plus, $|J_{d,\boldsymbol{x}}| \ll (dk)^{\varepsilon}$.

Démonstration. On considère β tel que $|\beta| \ge \tilde{\phi}(\theta)$. On choisit alors des paramètres P et θ' tels que

(4.21)
$$|\beta| = \frac{1}{2} P^{\theta'(d_2 - 1)},$$

(4.22)
$$P^{-K_2\theta'} = P^{-1+2\theta'(d_2-1)}(dk)^{2d_1}.$$

Ces deux égalités impliquent

(4.23)
$$\theta' = \frac{\log(2|\beta|)}{(d_2 - 1)\left(\left(2 + \frac{K_2}{d_2 - 1}\right)\log(2|\beta|) + 2d_1\log(dk)\right)}$$

donc en particulier

(4.24)
$$\theta' \gg \min\left\{1, \frac{\log(2|\beta|)}{\log(dk)}\right\}.$$

Par ailleurs, l'égalité (4.22) implique

$$P^{-2+4\theta'(d_2-1)}(dk)^{4d_1} < 1,$$

donc, pour $d_2 \ge 2$,

$$P^{-d_2+3\theta'(d_2-1)}(dk)^{2d_1} < 1,$$

et ainsi, d'après le lemme 4.7, les arcs majeurs $\mathfrak{M}_{a,q}^{d,\boldsymbol{x}}(\theta')$ correspondant à P et θ' sont disjoints deux à deux. Le réel $P^{-d_2}\beta$ appartient au bord de $\mathfrak{M}_{0,1}(\theta')$, et donc par le lemme 4.4, on a l'estimation

$$|S_{d,\boldsymbol{x}}(P^{-d_2}\beta)| \ll (dk)^{m-r}P^{n-r+1-K_2\theta'+\varepsilon}$$

D'autre part, le lemme 4.9 donne

$$S_{d,\boldsymbol{x}}(P^{-d_2}\beta) = (dk)^{m-r}P^{n-r+1}I(d^{d_1}\beta) + O((dk)^{m-r+2d_1}P^{n-r+2\theta'(d_2-1)}).$$

On a ainsi

$$|I(d^{d_1}\beta)| \ll P^{-K_2\theta' + \varepsilon} + (dk)^{2d_1} P^{-1+2\theta'(d_2-1)} \ll P^{-K_2\theta' + \varepsilon} \ll |\beta|^{-\frac{K_2}{d_2-1} + \frac{\varepsilon}{\theta'(d_2-1)}}.$$

Remarquons que, puisque $\theta' \gg \min\{1, \frac{\log(2|\beta|)}{\log(dk)}\},\$

$$|\beta|^{\frac{\varepsilon}{\theta'(d_2-1)}} \ll \max\{|\beta|^{\varepsilon'}, (dk)^{\varepsilon'}\}$$

pour $\varepsilon'>0$ arbitrai
rement petit. On a donc

$$\begin{aligned} |J_{d,\boldsymbol{x}}(\tilde{\phi}(\theta)) - J_{d,\boldsymbol{x}}| &\ll \int_{|\beta| > \tilde{\phi}(\theta)} |\beta|^{-\frac{K_2}{d_2 - 1}} \max\{|\beta|^{\varepsilon'}, (dk)^{\varepsilon'}\} d\beta \\ &\ll \tilde{\phi}(\theta)^{1 - \frac{K_2}{d_2 - 1}} \max\{\tilde{\phi}(\theta)^{\varepsilon'}, (dk)^{\varepsilon'}\} \\ &\ll P_2^{\theta(d_2 - 1 - K_2)} \max\{P_2^{\varepsilon''}, (dk)^{\varepsilon''}\}, \end{aligned}$$

avec ε'' arbitrairement petit. D'autre part, en choisissant $P_2 \ll 1,$ cette inégalité donne

$$|J_{d,\boldsymbol{x}}(\tilde{\phi}(\theta)) - J_{d,\boldsymbol{x}}| \ll (dk)^{\varepsilon''},$$

et puisque $|J_{d,\boldsymbol{x}}(\tilde{\phi}(\theta))| \ll 1$ lorsque $P_2 \ll 1$, on a immédiatement

$$|J_{d,\boldsymbol{x}}| \ll (dk)^{\varepsilon''}.$$

LEMME 4.12. Soit $\mathbf{x} \in \mathcal{A}_2^{\lambda}(\mathbb{Z})$, et $\varepsilon > 0$ arbitrairement petit. Si $d_2 \geq 2$, alors la série $\mathfrak{S}_{\mathbf{x}}$ est absolument convergente, et

$$|\mathfrak{S}_{d,\boldsymbol{x}}(\phi(d,k,\theta)) - \mathfrak{S}_{d,\boldsymbol{x}}| \ll (dk)^{2d_1+\varepsilon} P_2^{\theta(2(d_2-1)-K_2)}$$

De plus, $|\mathfrak{S}_{d,\boldsymbol{x}}| \ll (dk)^{2d_1+\varepsilon}$.

Pour démontrer ce lemme on introduit pour \boldsymbol{x} fixé et $P\geq 1$ la nouvelle série génératrice

$$S'_{d, \boldsymbol{x}}(\alpha) = \sum_{|\boldsymbol{y}| \leq P} \sum_{|\boldsymbol{z}| \leq P} e(\alpha F(d\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z})).$$

De la même manière que pour le lemme 4.4, on établit :

LEMME 4.13. Si $\varepsilon > 0$ est un réel arbitrairement petit, l'une au moins des assertions suivantes est vérifiée :

- (1) $|S'_{d,\boldsymbol{x}}(\alpha)| \ll P^{n+1-r+\varepsilon-K_2\theta},$
- (2) $\alpha \in \mathfrak{M}^{d,\boldsymbol{x}}(\theta).$

Démonstration du lemme 4.12. Soit $q > \phi(d, k, \theta)$ et $\alpha = a/q$ avec $0 \le a < q$ et $\operatorname{pgcd}(a, q) = 1$. On a donc $S_{a,q,d}(\boldsymbol{x}) = S'_{d,\boldsymbol{x}}(\alpha)$ avec P = q. On considère θ' tel que $q = (dk)^{d_1}q^{(d_2-1)\theta'}$. Si $\theta'' = \theta' - \nu$ pour $\nu > 0$ arbitrairement petit, alors $\alpha \notin \mathfrak{M}^{d,\boldsymbol{x}}(\theta'')$. En effet, s'il existait $a', q' \in \mathbb{Z}$ tels que $0 \le a' < q'$, $\operatorname{pgcd}(a',q') = 1$, $q' \le (dk)^{d_1}q^{\theta''(d_2-1)} < q$ et $\alpha \in \mathfrak{M}^{d,\boldsymbol{x}}_{a',q'}(\theta'')$, on aurait

$$1 \le |aq' - a'q| < q^{1-d_2 + \theta'(d_2 - 1)},$$

ce qui est absurde pour $d_2 \ge 2$. Donc, d'après le lemme précédent,

$$|S_{a,q,d}(\boldsymbol{x})| \ll q^{n+1-r+\varepsilon-K_2\theta'}.$$

Par conséquent,

$$\begin{split} |\mathfrak{S}_{d,\boldsymbol{x}}(\phi(d,k,\theta)) - \mathfrak{S}_{d,\boldsymbol{x}}| &\ll \sum_{q > \phi(d,k,\theta)} q^{-(n-r+1)} \sum_{0 \le a < q} |S_{a,q,d}(\boldsymbol{x})| \\ &\ll \sum_{q > \phi(d,k,\theta)} q^{-(n-r+1)} \sum_{0 \le a < q} q^{n+1-r+\varepsilon-K_2\theta'} \\ &\ll \sum_{q > \phi(d,k,\theta)} q^{-K_2/(d_2-1)+1+\varepsilon} (dk)^{d_1K_2/(d_2-1)} \\ &\ll (dk)^{d_1K_2/(d_2-1)} \phi(d,k,\theta)^{-K_2/(d_2-1)+2+\varepsilon} \\ &\ll (dk)^{2d_1+\varepsilon} P_2^{\theta(2(d_2-1)-K_2)+\varepsilon}. \end{split}$$

Par ailleurs, en prenant $P_2 \ll 1$ cette majoration donne

$$|\mathfrak{S}_{d,\boldsymbol{x}}(\phi(d,k,\theta)) - \mathfrak{S}_{d,\boldsymbol{x}}| \ll (dk)^{2d_1+\varepsilon},$$

et en considérant la majoration triviale $|\mathfrak{S}_{d,\boldsymbol{x}}(\phi(d,k,\theta))| \ll (dk)^{2d_1}$, on trouve finalement $|\mathfrak{S}_{d,\boldsymbol{x}}| \ll (dk)^{2d_1+\varepsilon}$.

On déduit des lemmes 4.12 et 4.11 le résultat suivant :

LEMME 4.14. Soit $\mathbf{x} \in \mathcal{A}_{2}^{\lambda}(\mathbb{Z}), \ \theta \in [0,1] \ et \ P_{2} \ge 1 \ tels \ que$ $(dk)^{2d_{1}}P_{2}^{-d_{2}+3\theta(d_{2}-1)} < 1.$

Si $K_2 > 2(d_2 - 1)$, alors

$$N_{d,\boldsymbol{x}}(P_2) = \mathfrak{S}_{d,\boldsymbol{x}} J_{d,\boldsymbol{x}}(dk)^{m-r} P_2^{n-r+1-d_2} + O(E_2) + O(E_3)$$

avec

$$E_{2} = (dk)^{4d_{1}+m-r} P_{2}^{n-r+1-d_{2}-\eta(\theta)},$$

$$E_{3} = (dk)^{2d_{1}+m-r+\varepsilon} P_{2}^{n-r+1-d_{2}-\Delta_{2}(\theta,K_{2})+\varepsilon},$$

et $\varepsilon > 0$ arbitrairement petit.

Démonstration. Nous avons déjà vu, avec le lemme 4.10, $N_{d,\boldsymbol{x}}(P_2) = (dk)^{m-r} P_2^{n-r+1-d_2} \mathfrak{S}_{d,\boldsymbol{x}}(\phi(d,k,\theta)) J_{d,\boldsymbol{x}}(\tilde{\phi}(\theta)) + O(E_1) + O(E_2),$ où

$$E_1 = (dk)^{d_1 + m - r + \varepsilon} P_2^{n - r + 1 - d_2 - \Delta_2(\theta, K_2) + \varepsilon} \ll E_3.$$

Par ailleurs, d'après les lemmes 4.12 et 4.11, on a

$$\begin{split} |\mathfrak{S}_{d,\boldsymbol{x}}(\phi(d,k,\theta))J_{d,\boldsymbol{x}}(\tilde{\phi}(\theta)) - \mathfrak{S}_{d,\boldsymbol{x}}J_{d,\boldsymbol{x}}| \\ &\leq |\mathfrak{S}_{d,\boldsymbol{x}}(\phi(d,k,\theta)) - \mathfrak{S}_{d,\boldsymbol{x}}| \left|J_{d,\boldsymbol{x}}\right| + |\mathfrak{S}_{d,\boldsymbol{x}}(\phi(d,k,\theta))| \left|J_{d,\boldsymbol{x}}(\tilde{\phi}(\theta)) - J_{d,\boldsymbol{x}}\right| \\ &\ll (dk)^{2d_1+2\varepsilon} P_2^{\theta(2(d_2-1)-K_2)} + (dk)^{2d_1+\varepsilon} P_2^{\theta((d_2-1)-K_2)} \max\{P_2^{\varepsilon}, (dk)^{\varepsilon}\} \end{split}$$

et en mult
lipliant par $(dk)^{m-r}P_2^{n-r+1-d_2}$ on obtient un terme d'erreur

$$(dk)^{2d_1+m-r+\varepsilon} P_2^{n-r+1-d_2-\Delta_2(\theta,K_2)+\varepsilon} = E_3,$$

d'où le résultat.

En fixant $\theta > 0$ tel que $\theta < \frac{1}{5(d_2-1)}$ (de sorte que $\eta(\theta) > 0$), on obtient :

COROLLAIRE 4.15. Soit $\boldsymbol{x} \in \mathcal{A}_2^{\lambda}(\mathbb{Z})$. Si $K_2 > 2(d_2 - 1)$, il existe un réel $\delta > 0$ arbitrairement petit tel que

 $N_{d,\boldsymbol{x}}(P_2) = \mathfrak{S}_{d,\boldsymbol{x}} J_{d,\boldsymbol{x}}(dk)^{m-r} P_2^{n-r+1-d_2} + O((dk)^{m-r+4d_1} P_2^{n-r+1-d_2-\delta})$ uniformément pour tout $k < d^{-1} P_2^{(d_2-1)/(2d_1)}$.

REMARQUE 4.16. La condition d'uniformité $k < d^{-1}P_2^{(d_2-1)/(2d_1)}$ découle de la condition $(dk)^{2d_1}P_2^{-d_2+3\theta(d_2-1)} < 1$ du lemme 4.14.

Dans ce qui va suivre, pour $P_2 = P_1^u$ avec $u \ge 1$, on introduit la fonction (4.25) $g_2(u, \delta) = (1 - 5d_1/u - \delta)^{-1}5(d_2 - 1)(3d_1/u + 2\delta),$ ainsi que

(4.26)
$$N_{d,2}(P_1, P_2) = \operatorname{card}\{(\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z}) \in \mathbb{Z}^{n+2} \mid \boldsymbol{x} \in \mathcal{A}_2^{\lambda}(\mathbb{Z}), \, |\boldsymbol{x}| \le P_1, \\ |\boldsymbol{y}| \le d|\boldsymbol{x}|P_2, \, |\boldsymbol{z}| \le P_2, \, F(d\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z}) = 0\}.$$

On a alors le résultat ci-dessous :

PROPOSITION 4.17. Si $K_2 > 2(d_2 - 1)$, $d_2 \ge 2$, $P_2 = P_1^u$ avec $u > 5d_1$, et de plus

$$K_2 - 2(d_2 - 1) > g_2(u, \delta),$$

alors

$$N_{d,2}(P_1, P_2) = \left(\sum_{\boldsymbol{x} \in P_1 \mathcal{B}_1 \cap \mathcal{A}_2^{\lambda}(\mathbb{Z})} \mathfrak{S}_{d, \boldsymbol{x}} J_{d, \boldsymbol{x}} d^{m-r} |\boldsymbol{x}|^{m-r}\right) P_2^{n-r+1-d_2} + O(d^{m-r+5d_1} P_1^{m+1-d_1} P_2^{n-r+1-d_2-\delta})$$

pour $\delta > 0$ arbitrairement petit.

Démonstration. La propriété est triviale lorsque $d^{2d_1} > PP_2^{-3/5-\delta}$, puisque dans ce cas, d'une part en utilisant les lemmes 4.12 et 4.11 on a

$$\left(\sum_{\boldsymbol{x} \in P_1 \mathcal{B}_1 \cap \mathcal{A}_2^{\lambda}(\mathbb{Z})} \mathfrak{S}_{d, \boldsymbol{x}} J_{d, \boldsymbol{x}} d^{m-r} |\boldsymbol{x}|^{m-r} \right) P_2^{n-r+1-d_2} \ll d^{m-r+2d_1+2\varepsilon} P_1^{m+1} P_2^{n-r+1-d_2} \ll d^{m-r+5d_1} P_1^{m+1} P_2^{n-r+1-d_2} d^{-2d_1} \ll d^{m-r+5d_1} P_1^{m+1-d_1} P_2^{n-r+1-d_2-\delta},$$

et d'autre part,

$$N_{d,2}(P_1, P_2) \ll d^{m-r} P_1^{m+1} P_2^{n-r+1} \ll d^{m-r+5d_1} P_1^{m+1} P_2^{n-r+1} P^{-5/2} P_2^{3/2+5\delta/2} \ll d^{m-r+5d_1} P_1^{m+1-d_1} P_2^{n-r+1-d_2-\delta}.$$

Supposons à présent que $d^{2d_1} \leq PP_2^{-3/5-\delta}$. Si θ est tel que

(4.27)
$$d^{2d_1} P_1^{2d_1} P_2^{-d_2+3\theta(d_2-1)} < 1,$$

alors d'après le lemme 4.14,

$$N_{d,2}(P_1, P_2) = \left(\sum_{\boldsymbol{x} \in P_1 \mathcal{B}_1 \cap \mathcal{A}_2^{\lambda}(\mathbb{Z})} \mathfrak{S}_{d,\boldsymbol{x}} J_{d,\boldsymbol{x}} d^{m-r} |\boldsymbol{x}|^{m-r}\right) P_2^{n-r+1-d_2} + O(\mathcal{E}_2) + O(\mathcal{E}_3)$$

avec

$$\begin{aligned} \mathcal{E}_2 &= \sum_{\boldsymbol{x} \in P_1 \mathcal{B}_1 \cap \mathcal{A}_2^{\lambda}(\mathbb{Z})} (d|\boldsymbol{x}|)^{4d_1 + m - r} P_2^{n - r + 1 - d_2 - \eta(\theta)} \\ &\ll d^{4d_1 + m - r} P_1^{4d_1 + m + 1} P_2^{n - r + 1 - d_2 - \eta(\theta)} \\ &= d^{4d_1 + m - r} P_1^{m + 1 - d_1} P_2^{n - r + 1 + 5d_1/u - d_2 - \eta(\theta)}, \end{aligned}$$

T. Mignot

$$\mathcal{E}_{3} = \sum_{\substack{\boldsymbol{x} \in P_{1}\mathcal{B}_{1} \cap \mathcal{A}_{2}^{\lambda}(\mathbb{Z}) \\ |\boldsymbol{x}| = k}} (dk)^{2d_{1} + m - r + \varepsilon} P_{2}^{n - r + 1 - d_{2} - \Delta_{2}(\theta, K_{2}) + \varepsilon} \\ \ll d^{2d_{1} + m - r + \varepsilon} P_{1}^{m + 1 - d_{1}} P_{2}^{n - r + 1 - d_{2} + 3d_{1}/u - \Delta_{2}(\theta, K_{2}) + 2\varepsilon}$$

Rappelons que $\eta(\theta) = 1 - 5\theta(d_2 - 1)$. On choisit alors

$$\theta = \frac{1}{5(d_2 - 1)}(1 - \frac{5d_1}{u - \delta}),$$

de sorte que d'une part, en utilisant l'inégalité $d^{2d_1} \leq PP_2^{-3/5+\delta}$, on a $d^{2d_2}P_1^{2d_1}P_2^{-d_2+3\theta(d_2-1)} = d^{2d_2}P_1^{2d_1}P_2^{-d_2+3(1-(5d_1)/u)/5} = d^{2d_2}P^{-1}P_2^{3/5} \leq P^{-\delta}$, la condition (4.27) est donc satisfaite, et de plus

 $5d_1/u - n(\theta) = -\delta.$

Par ailleurs, puisque $K_2 - 2(d_2 - 1) > g_2(u, \delta)$, on voit que

$$K_2 - 2(d_2 - 1) > \theta^{-1}(3d_1/u + 2\delta),$$

et donc $\Delta_2(\theta, K_2) - 3d_1/u > 2\delta$, d'où le résultat.

4.3. Le cas $d_2 = 1$. Lorsque $d_2 = 1$, on peut obtenir des résultats semblables à ceux du corollaire 4.15 et de la proposition 4.17 en utilisant des résultats de géométrie des réseaux. On introduit la définition suivante issue de [Wi, Definition 2.1] :

DÉFINITION 4.18. Soit S un sous-ensemble de \mathbb{R}^n , et soit c un entier tel que $0 \leq c \leq n$. Pour $M \in \mathbb{N}$ et L > 0, on dit que S appartient à $\operatorname{Lip}(n, c, M, L)$ s'il existe M applications $\phi : [0, 1]^{n-c} \to \mathbb{R}^n$ vérifiant

$$\|\phi(x) - \phi(y)\|_2 \le L \|x - y\|_2,$$

 $\|\cdot\|_2$ désignant la norme euclidienne, telles que S soit recouvert par les images de ces applications.

On a le résultat suivant (cf. [M-V, Lemme 2]) :

LEMME 4.19. Soit $S \subset \mathbb{R}^n$ un ensemble bordé dont le bord ∂S appartient à Lip(n, 1, M, L). L'ensemble S est alors mesurable et si Λ est un réseau de \mathbb{R}^n de premier minimum successif λ_1 , on a

$$\left|\operatorname{card}(S \cap \Lambda) - \frac{\operatorname{Vol}(S)}{\operatorname{det}(\Lambda)}\right| \le c(n)M\left(\frac{L}{\lambda_1} + 1\right)^{n-1},$$

où c(n) est une constante ne dépendant que de n.

Soit $\boldsymbol{x} \in \mathcal{A}_2^{\lambda}(\mathbb{Z})$ fixé de norme $|\boldsymbol{x}| = k$. Puisque $d_2 = 1$, le polynôme $F(d\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z})$ est une forme linéaire en $(\boldsymbol{y}, \boldsymbol{z})$ que l'on peut réécrire

54

$$F(d\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z}) = \sum_{j=r+1}^{m} A_j(d\boldsymbol{x})y_j + \sum_{j=m+1}^{n+1} B_j(d\boldsymbol{x})z_j$$

avec $A_j(d\boldsymbol{x})$ ou $B_j(d\boldsymbol{x})$ non tous nuls (car $\boldsymbol{x} \in \mathcal{A}_2^{\lambda}(\mathbb{Z})$). On note alors $H_{d,\boldsymbol{x}}$ l'hyperplan de \mathbb{R}^{n-r+1} défini par $F(d\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z}) = 0$. On note $C_{d,\boldsymbol{x}}$ le corps convexe $\mathcal{B}_{d,\boldsymbol{x}} \cap H_{d,\boldsymbol{x}}$ où

$$\mathcal{B}_{d,\boldsymbol{x}} = \{(\boldsymbol{y}, \boldsymbol{z}) \mid |\boldsymbol{y}| \leq dk, |\boldsymbol{z}| \leq 1\},$$

et $\Lambda_{d,\boldsymbol{x}}$ le réseau $\mathbb{Z}^{n-r+1} \cap H_{d,\boldsymbol{x}}$. Nous allons appliquer le lemme 4.19 à $S = P_2 C_{d,\boldsymbol{x}}$ et $\Lambda = \Lambda_{d,\boldsymbol{x}}$ vus respectivement comme un sous-ensemble et un réseau de $H_{d,\boldsymbol{x}}$ que l'on identifiera à \mathbb{R}^{n-r} . Pour cela nous allons montrer que $\partial C_{d,\boldsymbol{x}} \in \operatorname{Lip}(n-r, 1, 2^{n-r+1}(dk)^{m-r}, (n-r-1)\sqrt{n-r+1})$.

Une face du polytope $C_{d,\boldsymbol{x}}$ est obtenue en prenant l'intersection d'une face \mathcal{F} du polytope $\mathcal{B}_{d,\boldsymbol{x}}$ avec $H_{d,\boldsymbol{x}}$. Considérons par exemple l'intersection (supposée non vide) de la face $\mathcal{F} = \{\boldsymbol{z} \in \mathcal{B}_{d,\boldsymbol{x}} \mid z_{n+1} = 1\}$ avec $H_{d,\boldsymbol{x}}$. Pour simplifier les notations, on pose

$$\begin{cases} \alpha_j = A_j(d\boldsymbol{x}) & \text{pour } j \in \{r+1, \dots, m\}, \\ \beta_j = B_j(d\boldsymbol{x}) & \text{pour } j \in \{m+1, \dots, n+1\}, \end{cases}$$

de sorte que $H_{d,\boldsymbol{x}}$ a pour équation $\alpha_{r+1}y_{r+1} + \cdots + \alpha_m y_m + \beta_{m+1}z_{m+1} + \cdots + \beta_{n+1}z_{n+1} = 0$ (les α_k ou les β_k étant non tous nuls). Par ailleurs, on peut subdiviser $C_{d,\boldsymbol{x}}$ en une union de $2^{n-r+1}(dk)^{m-r}$ polytopes $C_{d,\boldsymbol{x},\boldsymbol{a},\boldsymbol{\epsilon}}$ plus petits en posant

$$C_{d,\boldsymbol{x}} = \bigcup_{\boldsymbol{a}=(a_{r+1},\dots,a_m)\in\{-dk,\dots,dk-1\}^{m-r}} \bigcup_{\boldsymbol{\varepsilon}=(\varepsilon_1,\dots,\varepsilon_n)\in\{-1,0\}^{n-m+1}} C_{d,\boldsymbol{x},\boldsymbol{a},\boldsymbol{\varepsilon}},$$
$$C_{d,\boldsymbol{x},\boldsymbol{a},\boldsymbol{\varepsilon}} = H_{d,\boldsymbol{x}} \cap \left(\left(\prod_{j=r+1}^m [a_j,a_j+1]\right) \times \left(\prod_{j=m+1}^{n+1} [\varepsilon_j,\varepsilon_j+1]\right) \right).$$

On peut par conséquent subdiviser chaque face $\mathcal{F} \cap H_{d,\boldsymbol{x}}$ en considérant $\mathcal{F} \cap C_{d,\boldsymbol{x},\boldsymbol{a},\boldsymbol{\varepsilon}}$ pour tout $(\boldsymbol{a},\boldsymbol{\varepsilon})$. Pour un couple $(\boldsymbol{a},\boldsymbol{\varepsilon})$ fixé, et pour tout $\boldsymbol{z} \in \mathcal{F} \cap C_{d,\boldsymbol{x},\boldsymbol{a},\boldsymbol{\varepsilon}}$, on a alors

$$\alpha_{r+1}y_{r+1} + \dots + \alpha_m y_m + \beta_{m+1}z_{m+1} + \dots + \beta_n z_n + \beta_{n+1} = 0$$

avec max{max_{r+1 \le j \le m} | α_j |, max_{m+1 \le j \le n} | β_j |} $\neq 0$ puisque $\mathcal{F} \cap H_{d, x} \neq \emptyset$.

Supposons, par exemple, que

$$\max\left\{\max_{r+1\leq j\leq m} |\alpha_j|, \max_{m+1\leq j\leq n} |\beta_j|\right\} = |\beta_n|;$$

alors

$$z_n = -\frac{\beta_{n+1}}{\beta_n} - \sum_{j=r+1}^m \frac{\alpha_j}{\beta_n} y_j - \sum_{j=m+1}^{n-1} \frac{\beta_j}{\beta_n} z_j$$

et on peut définir l'application $\phi_{\mathcal{F},\boldsymbol{a},\boldsymbol{\varepsilon}}: [0,1]^{n-1} \to C_{d,\boldsymbol{x},\boldsymbol{a},\boldsymbol{\varepsilon}} \subset \mathbb{R}^{n-r+1}$ par

$$\phi_{\mathcal{F},\boldsymbol{a},\boldsymbol{\varepsilon}}(t_{r+1},\ldots,t_{n-1}) = \left(a_{r+1}+t_{r+1},\ldots,a_m+t_m,\varepsilon_{m+1}+t_{m+1},\ldots,\varepsilon_{n-1}+t_{n-1},\right.\\ \left.-\frac{\beta_{n+1}}{\beta_n}-\sum_{j=r+1}^m\frac{\alpha_j}{\beta_n}(a_j+t_j)-\sum_{j=m+1}^{n-1}\frac{\beta_j}{\beta_n}(\varepsilon_j+t_j),1\right)\!.$$

On remarque que $\mathcal{F} \cap C_{d,\boldsymbol{x},\boldsymbol{a},\boldsymbol{\varepsilon}} \cap H_{d,\boldsymbol{x}} \subset \phi_{\mathcal{F},\boldsymbol{a},\boldsymbol{\varepsilon}}([0,1]^{n-1})$ et que

$$\begin{split} \|\phi_{\mathcal{F},\boldsymbol{a},\boldsymbol{\varepsilon}}(\boldsymbol{t}) - \phi_{\mathcal{F},\boldsymbol{a},\boldsymbol{\varepsilon}}(\boldsymbol{t}')\|_{2} &\leq \sqrt{n-r+1} \, \|\phi_{\mathcal{F},\boldsymbol{a},\boldsymbol{\varepsilon}}(\boldsymbol{t}) - \phi_{\mathcal{F},\boldsymbol{a},\boldsymbol{\varepsilon}}(\boldsymbol{t}')\|_{\infty} \\ &\leq \sqrt{n-r+1} \max\left(1, \sum_{j=r+1}^{m} \frac{|\alpha_{j}|}{|\beta_{n}|} + \sum_{j=m+1}^{n-1} \frac{|\beta_{j}|}{|\beta_{n}|}\right) \|\boldsymbol{t} - \boldsymbol{t}'\|_{\infty} \\ &\leq (n-r-1)\sqrt{n-r+1} \|\boldsymbol{t} - \boldsymbol{t}'\|_{2}. \end{split}$$

Donc $\partial C_{d,\boldsymbol{x}}\in \operatorname{Lip}(n-r,1,2^{n-r+1}(dk)^{m-r},(n-r-1)\sqrt{n-r+1})$ et par conséquent

$$\partial P_2 C_{d,\boldsymbol{x}} \in \operatorname{Lip}(n, 1, 2^{n-r+1} (dk)^{m-r}, (n-r-1)\sqrt{n-r+1} P_2).$$

De plus, puisque $\Lambda_{d,x} \subset \mathbb{Z}^{n-r+1}$, le premier minimum successif de ce réseau est supérieur ou égal à 1. Ainsi, puisque

(4.28)
$$N_{d,\boldsymbol{x}}(P_2) = \{(\boldsymbol{y}, \boldsymbol{z}) \in P_2 \mathcal{B}_{d,\boldsymbol{x}} \cap \mathbb{Z}^{n-r+1} \mid F(d\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z}) = 0\}$$
$$= \operatorname{card}(\Lambda_{d,\boldsymbol{x}} \cap P_2 C_{d,\boldsymbol{x}}),$$

le lemme 4.19 nous donne un analogue du corollaire 4.15 :

LEMME 4.20. *On a*

(4.29)
$$N_{d,\boldsymbol{x}}(P_2) = \frac{\operatorname{Vol}(C_{d,\boldsymbol{x}})}{\det(A_{d,\boldsymbol{x}})} P_2^{n-r} + O((dk)^{m-r} P_2^{n-r-1}),$$

uniformément pour tout \boldsymbol{x} tel que $|\boldsymbol{x}| = k$.

En sommant sur les $x \in P_1\mathcal{B}_1 \cap \mathcal{A}_2^{\lambda}(\mathbb{Z})$, on déduit alors de ce lemme un résultat analogue à la proposition 4.17 :

PROPOSITION 4.21. Si $d_2 = 1$, $P_2 = P_1^u$ et $u > d_1$, alors

$$N_{d,2}(P_1, P_2) = \left(\sum_{\boldsymbol{x} \in P_1 \mathcal{B}_1 \cap \mathcal{A}_2^{\lambda}(\mathbb{Z})} \frac{\operatorname{Vol}(C_{d,\boldsymbol{x}})}{\det(A_{d,\boldsymbol{x}})}\right) P_2^{n-r} + O(d^{m-r} P_1^{m+1-d_1} P_2^{n-r-\delta})$$

pour un certain $\delta > 0$ arbitrairement petit.

Les résultats des propositions 4.17 et 4.21 se révéleront cruciaux pour donner plus tard des estimations de $N_{d,2}(P_1, P_2)$ indépendamment de u. Mais avant cela, nous allons, dans la prochaine section, chercher à établir des résultats analogues à ceux obtenus plus haut pour z fixé. 5. Troisième étape. Nous allons à présent chercher à évaluer, pour $l \in \mathbb{N}^*$ fixé, la somme

$$\sum_{k \le P_1} h_d(k, l),$$

où h_d est la fonction définie par (3.1). On fixe donc

$$l = \max\left(\left\lfloor \frac{|\boldsymbol{y}|}{d|\boldsymbol{x}|}\right\rfloor, |\boldsymbol{z}|\right).$$

Il sera alors nécessaire de distinguer les cas $\lfloor \frac{|\boldsymbol{y}|}{d|\boldsymbol{x}|} \rfloor < |\boldsymbol{z}|$ et $\lfloor \frac{|\boldsymbol{y}|}{d|\boldsymbol{x}|} \rfloor \ge |\boldsymbol{z}|$.

5.1. Premier cas. On suppose ici $\lfloor \frac{|\boldsymbol{y}|}{d|\boldsymbol{x}|} \rfloor < |\boldsymbol{z}| = l$. On choisira donc de fixer \boldsymbol{z} de norme $|\boldsymbol{z}| = l$. Plutôt que calculer directement $\sum_{k \leq P_1} h_d(k, l)$, nous allons, dans un premier temps, chercher à évaluer

(5.1)
$$N_{d,\boldsymbol{z}}(P_1) = \operatorname{card}\{(\boldsymbol{x}, \boldsymbol{y}) \in \mathbb{Z}^{m+1} \mid |\boldsymbol{x}| \le P_1, \, |\boldsymbol{y}| < dl |\boldsymbol{x}|, \, F(d\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z}) = 0\}.$$

On introduit la série génératrice

(5.2)
$$S_{d,\boldsymbol{z}}(\alpha) = \sum_{|\boldsymbol{x}| \le P_1} \sum_{|\boldsymbol{y}| \le dl |\boldsymbol{x}|} e\left(\alpha F(d\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z})\right).$$

Alors comme précédemment $N_{d,\boldsymbol{z}}(P_1) = \int_0^1 S_{d,\boldsymbol{z}}(\alpha) d\alpha$.

5.1.1. Sommes d'exponentielles. Comme dans les sections précédentes, on commence par établir une inégalité de type Weyl. À cette fin, on remarque que

$$|\boldsymbol{y}| < d|\boldsymbol{x}|l \iff |\boldsymbol{x}| > \frac{|\boldsymbol{y}|}{dl} \iff |\boldsymbol{x}| \ge \left\lfloor \frac{|\boldsymbol{y}|}{dl} \right\rfloor + 1.$$

On pose $N = \lfloor \frac{|\mathbf{y}|}{dl} \rfloor$ (ce qui équivant à $|\mathbf{y}| \in [d(N-1)l, dNl[)$, et on remarque que P_{l-1}

$$S_{d,\boldsymbol{z}}(\alpha) = \sum_{N=0}^{P_1-1} S_{d,\boldsymbol{z},N}(\alpha),$$

où

(5.3)
$$S_{d,\boldsymbol{z},N}(\alpha) = \sum_{N+1 \leq |\boldsymbol{x}| \leq P_1} \sum_{d(N-1)l \leq |\boldsymbol{y}| < dNl} e(\alpha F(d\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z})).$$

Comme dans la section 3.1, étant donné que le polynôme F(x, y, z) est homogène de degré d_1 en (x, y), on obtient sans difficulté la majoration

$$|S_{d,\boldsymbol{z},N}(\alpha)|^{2^{d_1-1}} \ll (P_1^{r+1})^{2^{d_1-1}-d_1} ((dlP_1)^{m-r})^{2^{d_1-1}-d_1} \times \sum_{\substack{\boldsymbol{x}^{(1)},\boldsymbol{y}^{(1)} \\ |\boldsymbol{x}^{(1)}| \leq P_1 \\ |\boldsymbol{y}^{(1)}| \leq dlP_1}} \cdots \sum_{\substack{\boldsymbol{x}^{(d_1-1)},\boldsymbol{y}^{(d_1-1)} \\ |\boldsymbol{x}^{(d_2-1)}| \leq P_1 \\ |\boldsymbol{y}^{(d_1-1)}| \leq dlP_1}} \prod_{j=0}^m \min\{H_j, \|\alpha\gamma_{d,\boldsymbol{z},j}((\boldsymbol{x}^{(i)},\boldsymbol{y}^{(i)})_{i\in[\![d_1-1]\!]})\|^{-1}\}$$

avec

$$H_j = \begin{cases} P_1 & \text{si } j \in \{0, \dots, r\}, \\ dl P_1 & \text{si } j \in \{r+1, \dots, m\}, \end{cases}$$

ainsi que

$$\gamma_{d,\boldsymbol{z},j}((\boldsymbol{x}^{(i)},\boldsymbol{y}^{(i)})_{i\in[\![d_1-1]\!]}) = \sum_{\boldsymbol{i}=(i_1,\dots,i_{d_1-1})\in\{0,\dots,m\}^{d_1-1}} F_{d,\boldsymbol{z},\boldsymbol{i},j} u_{i_1}^{(1)}\dots u_{i_{d_1-1}}^{(d_1-1)},$$

où

$$u_{i} = \begin{cases} x_{i} & \text{si } i \in \{0, \dots, r\}, \\ y_{i} & \text{si } i \in \{r+1, \dots, m\}, \end{cases}$$

et les coefficients $F_{d,\mathbf{z},\mathbf{i},j}$ sont symétriques en $(i_1,\ldots,i_{d_1-1},j) \in \{0,\ldots,m\}^{d_2}$. Remarquons que l'on peut écrire

$$F_{d,\boldsymbol{z},\boldsymbol{i},j} = d^{f_{\boldsymbol{i},j}} F_{\boldsymbol{z},\boldsymbol{i},j}$$

avec

$$f_{i,j} = \operatorname{card}\{k \in [\![d_1]\!] \mid i_k \in \{0, \dots, r\}\}$$

(en posant $i_{d_1} = j$). À partir de là, on montre, comme dans la section 3.1 que

$$|S_{d,\boldsymbol{z},N}(\alpha)|^{2^{d_1-1}} \ll (P_1^{r+1+\varepsilon})^{2^{d_1-1}-d_1+1} ((dlP_1)^{m-r+\varepsilon})^{2^{d_1-1}-d_1+1} \times M_{d,\boldsymbol{z}}(\alpha, P_1, dlP_1, P_1^{-1}, (dlP_1)^{-1}),$$

où pour tous réels strictement positifs H_1, H_2, B_1, B_2 ,

(5.4)
$$M_{d,\boldsymbol{z}}(\alpha, H_1, H_2, B_1^{-1}, B_2^{-1})$$

= card{ $(\boldsymbol{x}^{(1)}, \boldsymbol{y}^{(1)}, \dots, \boldsymbol{x}^{(d_1-1)}, \boldsymbol{y}^{(d_2-1)}) \mid \forall i \in \llbracket d_1 - 1 \rrbracket, |\boldsymbol{x}^{(i)}| \leq H_1,$
 $|\boldsymbol{y}^{(i)}| \leq H_2 \text{ et } \forall j \in \{0, \dots, r\}, \|\alpha \gamma_{d,\boldsymbol{z},j}((\boldsymbol{x}^{(i)}, \boldsymbol{y}^{(i)})_{i \in \llbracket d_2 - 1 \rrbracket})\| \leq B_1^{-1},$
et $\forall j \in \{r+1, \dots, m\}, \|\alpha \gamma_{\boldsymbol{z},j}((\boldsymbol{x}^{(i)}, \boldsymbol{y}^{(i)})_{i \in \llbracket d_1 - 1 \rrbracket})\| \leq B_2^{-1}\}.$

On en déduit, en sommant sur N, le lemme ci-dessous :

LEMME 5.1. Pour tous P > 1, $\kappa > 0$ et pour tout $\varepsilon > 0$ arbitrairement petit, l'une au moins des assertions suivantes est vérifiée :

(1)
$$|S_{d,z}(\alpha)| \ll d^{\frac{(d_1-1)(r+1)}{2^{d_1-1}}} P_1^{m+2+\varepsilon} (dl)^{m-r+\varepsilon} P^{-\kappa},$$

(2) $M_{d,z}(\alpha, P_1, dlP_1, P_1^{-1}, (dlP_1)^{-1})$
 $\gg d^{(d_1-1)(r+1)} (P_1^{r+1})^{d_1-1} ((dlP_1)^{m-r})^{d_1-1} P^{-2^{d_1-1}\kappa}.$

On fixe alors $(\boldsymbol{x}^{(i)}, \boldsymbol{y}^{(i)})_{i \in [d_2-2]}$ et on applique le lemme 3.6 avec les variables $\boldsymbol{x}^{(d_1-1)}, \boldsymbol{y}^{(d_1-1)}$ et les formes linéaires $\alpha \gamma_{d,\boldsymbol{z},j}$ pour $j \in \{0,\ldots,m\}$, et en choisissant $Z_2 = 1, Z_1 = d^{-1}P_1^{-1}P^{\theta}, a_j = P_1$ pour tout $j \in \{0,\ldots,r\}$, et $a_j = dlP_1$ pour $j \in \{r+1,\ldots,m\}$, de sorte que

58

$$\begin{aligned} \forall j \in \{0, \dots, r\}, & a_j Z_2 = P_1, & a_j Z_1 = P^{\theta}/d, \\ \forall j \in \{r+1, \dots, m\}, & a_j Z_2 = dl P_1, & a_j Z_1 = l P^{\theta}, \\ \forall j \in \{0, \dots, m\}, & a_j^{-1} Z_2 = P_1^{-1}, & a_j^{-1} Z_1 = d^{-1} P_1^{-2} P^{\theta}, \\ \forall j \in \{r+1, \dots, m\}, & a_j^{-1} Z_2 = (dl P_1)^{-1}, & a_j^{-1} Z_1 = d^{-2} P_1^{-2} l^{-1} P^{\theta}, \end{aligned}$$

avec P > 0 fixé, et $\theta \in [0, 1]$ tel que $P^{\theta} \leq P_1$. En appliquant ce procédé aux autres familles de variables $\boldsymbol{x}^{(i)}, \boldsymbol{y}^{(i)}$, on obtient finalement

$$\begin{split} M_{d,\boldsymbol{z}}(\alpha,P_{1},dlP_{1},P_{1}^{-1},(dlP_{1})^{-1}) \\ \ll \left(\frac{dP_{1}}{P^{\theta}}\right)^{(d_{1}-1)(m+1)} \\ \times M_{d,\boldsymbol{z}}(\alpha,P^{\theta}/d,lP^{\theta},d^{-(d_{1}-1)}P_{1}^{-d_{1}}P^{(d_{1}-1)\theta},d^{-d_{1}}l^{-1}P_{1}^{-d_{1}}P^{(d_{1}-1)\theta}). \end{split}$$

En appliquant le lemme 3.9, on a par ailleurs

$$M_{d,\boldsymbol{z}}(\alpha, P^{\theta}/d, lP^{\theta}, d^{-(d_{1}-1)}P_{1}^{-d_{1}}P^{(d_{1}-1)\theta}, d^{-d_{1}}l^{-1}P_{1}^{-d_{1}}P^{(d_{1}-1)\theta}) \\ \ll l^{(d_{1}-1)(m-r)}M_{d,\boldsymbol{z}}(\alpha, P^{\theta}/d, P^{\theta}, d^{-(d_{1}-1)}P_{1}^{-d_{1}}P^{(d_{1}-1)\theta}, d^{-d_{1}}l^{-1}P_{1}^{-d_{1}}P^{(d_{1}-1)\theta}).$$

On a donc le lemme suivant :

LEMME 5.2. Pour tous P > 1, $\kappa > 0$ et tout $\varepsilon > 0$ arbitrairement petit, l'une au moins des assertions suivantes est vérifiée :

(1)
$$|S_{d,\boldsymbol{z}}(\alpha)| \ll d^{m-r+\varepsilon+\frac{(d_1-1)(r+1)}{2^{d_1-1}}} l^{m-r+\varepsilon} P_1^{m+2+\varepsilon} P^{-\kappa},$$

(2) $M_{d,\boldsymbol{z}}(\alpha, P^{\theta}/d, P^{\theta}, d^{-(d_1-1)} P_1^{-d_1} P^{(d_1-1)\theta}, d^{-d_1} P_1^{-d_1} P^{(d_1-1)\theta})$
 $\gg (P^{\theta})^{(m+1)(d_1-1)} P^{-2^{d_1-1}\kappa}.$

On introduit à présent les nouvelles familles d'arcs majeurs :

(5.5)
$$\mathfrak{M}_{a,q}^{(1),\boldsymbol{z}}(\theta) = \{ \alpha \in [0,1[\mid 2 \mid \alpha q - a] \leq d^{-(d_1-1)} P_1^{-d_1} P^{(d_1-1)\theta} \},$$

(5.6)
$$\mathfrak{M}^{(1),\boldsymbol{z}}(\theta) = [] \qquad [] \qquad \mathfrak{M}_{a,q}^{(1),\boldsymbol{z}}(\theta),$$

(5.6)
$$\mathfrak{M}^{(1),\boldsymbol{z}}(\theta) = \bigcup_{\substack{q \le dl^{d_2} P^{(d_1-1)\theta} \\ d|q}} \bigcup_{\substack{0 \le a < q}} \mathfrak{M}^{(1),\boldsymbol{z}}_{a,q}(\theta)$$

(5.7)
$$\mathfrak{M}_{a,q}^{(2),\boldsymbol{z}}(\theta) = \{ \alpha \in [0,1[\mid 2|\alpha q - a| \le d^{-d_1} P_1^{-d_1} P^{(d_1-1)\theta} \},\$$

(5.8)
$$\mathfrak{M}^{(2),\boldsymbol{z}}(\theta) = \bigcup_{\substack{q \le l^{d_2} P^{(d_1-1)\theta} \\ \operatorname{pgcd}(a,q) = 1}} \bigcup_{\substack{0 \le a < q \\ \operatorname{pgcd}(a,q) = 1}} \mathfrak{M}^{(2),\boldsymbol{z}}_{a,q}(\theta),$$

(5.9)
$$\mathfrak{M}^{\boldsymbol{z}}(\theta) = \mathfrak{M}^{(1),\boldsymbol{z}}(\theta) \cup \mathfrak{M}^{(2),\boldsymbol{z}}(\theta).$$

On a alors comme dans les sections précédentes :

LEMME 5.3. Si P > 1, $\kappa > 0$, et $\varepsilon > 0$ est arbitrairement petit, l'une au moins des assertions suivantes est vérifiée :

T. Mignot

(1)
$$|S_{d,\boldsymbol{z}}(\alpha)| \ll d^{m-r+\varepsilon+\frac{(d_1-1)(r+1)}{2^{d_1-1}}} l^{m-r+\varepsilon} P_1^{m+2+\varepsilon} P^{-\kappa},$$

(2) $\alpha \in \mathfrak{M}^{\boldsymbol{z}}(\theta),$
(3) $\operatorname{card}\{(\boldsymbol{x}^{(i)}, \boldsymbol{y}^{(i)})_{i \in [\![d_1-1]\!]} \mid |\boldsymbol{x}^{(i)}| \leq P^{\theta}/d, |\boldsymbol{y}^{(i)}| \leq P^{\theta},$
 $et \; \forall j \in \{r+1, \dots, n+1\}, \; \gamma_{d,\boldsymbol{z},j}((\boldsymbol{x}^{(i)}, \boldsymbol{y}^{(i)})_{i \in [\![d_1-1]\!]}) = 0\}$
 $\gg (P^{\theta})^{(m+1)(d_1-1)} P^{-2^{d_1-1}\kappa}.$

Pour un \boldsymbol{z} fixé, on définit

(5.10)
$$V_{1,\boldsymbol{z}}^* = \left\{ (\boldsymbol{x}, \boldsymbol{y}) \in \mathbb{C}^{m+1} \middle| \forall i \in \{0, \dots, r\}, \frac{\partial F}{\partial x_i} (\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z}) = 0 \\ \text{et } \forall j \in \{r+1, \dots, m\}, \frac{\partial F}{\partial y_j} (\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z}) = 0 \right\}.$$

On note par ailleurs

(5.11)
$$\mathcal{A}_{1}^{\mu} = \{ \boldsymbol{z} \in \mathbb{C}^{n-m+1} \mid \dim V_{1,\boldsymbol{z}}^{*} < \dim V_{1}^{*} - (n-m+1) + \mu \},\$$

où $\mu \in \mathbb{N}$ est un paramètre que nous préciserons ultérieurement. Par abus de langage on note

$$\mathcal{A}_1^{\mu}(\mathbb{Z}) = \mathcal{A}_1^{\mu} \cap \mathbb{Z}^{n-m+1}.$$

On a alors une propriété analogue à la proposition 4.5 :

PROPOSITION 5.4. L'ensemble \mathcal{A}_{1}^{μ} est un ouvert de Zariski de $\mathbb{A}_{\mathbb{C}}^{n-m+1}$, et de plus,

$$\operatorname{card}\{\boldsymbol{z} \in [-P_2, P_2]^{n-m+1} \cap (\mathcal{A}_1^{\mu})^c \cap \mathbb{Z}^{n-m+1}\} \ll P_2^{n-m+1-\mu}$$

On commence par remarquer que le cardinal de la condition (3) peut être majoré par

$$\operatorname{card} \{ (\boldsymbol{x}^{(i)}, \boldsymbol{y}^{(i)})_{i \in [\![d_1 - 1]\!]} \mid |\boldsymbol{x}^{(i)}| \le P^{\theta}, |\boldsymbol{y}^{(i)}| \le P^{\theta}, \\ \operatorname{et} \forall j \in \{r + 1, \dots, n + 1\}, \, \gamma_{\boldsymbol{z}, j}((\boldsymbol{x}^{(i)}, \boldsymbol{y}^{(i)})_{i \in [\![d_1 - 1]\!]}) = 0 \},$$

où

$$\gamma_{\mathbf{z},j}((\mathbf{x}^{(i)}, \mathbf{y}^{(i)})_{i \in [\![d_1-1]\!]}) = \sum_{\mathbf{i}=(i_1,\dots,i_{d_1-1})\in\{0,\dots,m\}^{d_1-1}} F_{\mathbf{z},\mathbf{i},j} u_{i_1}^{(1)} \dots u_{i_{d_1-1}}^{(d_1-1)}$$

Puis, comme dans la section précédente, en choisissant $\kappa = K_1 \theta$ avec

(5.12)
$$K_1 = (n+2 - \dim V_1^* - \mu)/2^{d_1 - 1}$$

on déduit du lemme 5.3 :

LEMME 5.5. Soit $\mathbf{z} \in \mathcal{A}_1^{\mu}(\mathbb{Z})$. Si $\varepsilon > 0$ est un réel arbitrairement petit, l'une au moins des assertions suivantes est vérifiée :

- (1) $|S_{d,\boldsymbol{z}}(\alpha)| \ll d^{m-r+\varepsilon+\frac{(d_1-1)(r+1)}{2^{d_1-1}}} l^{m-r+\varepsilon} P_1^{m+2+\varepsilon} P^{-K_1\theta},$ (2) $\alpha \in \mathfrak{M}^{\boldsymbol{z}}(\theta).$
- Pour tout le reste de cette section, on fixera $P = P_1$.

5.1.2. *Méthode du cercle.* On fixe un réel $\theta \in [0, 1]$. On suppose de plus que

(5.13)
$$K_1 > 2(d_1 - 1).$$

On notera

(5.14)
$$\phi_1(d, l, \theta) = dl^{d_2} P_1^{(d_1 - 1)\theta},$$

(5.15) $\Delta_1(\theta, K_1) = \theta(K_1 - 2(d_1 - 1)).$

On supposera de plus que θ est tel que

$$\Delta_1(\theta, K_1) > 1.$$

Comme précédemment, nous allons vérifier que les arcs mineurs fournissent bien un terme d'erreur.

LEMME 5.6. Pour tout
$$\mathbf{z} \in \mathcal{A}_{1}^{\mu}(\mathbb{Z})$$
, et si $d_{1} \geq 2$, on a

$$\int_{\alpha \notin \mathfrak{M}^{\mathbf{z}}(\theta)} |S_{\mathbf{z}}(\alpha)| \, d\alpha \ll d^{m-r+\varepsilon + \frac{(d_{1}-1)(r+1)}{2^{d_{1}-1}}} l^{d_{2}+m-r+\varepsilon} P_{1}^{m+2-d_{1}-\Delta_{1}(\theta,K_{1})+\varepsilon}.$$

Démonstration. Considérons une suite

 $0 < \theta = \theta_0 < \theta_1 < \dots < \theta_{T-1} < \theta_T = 1$

telle que

$$(5.16) \qquad \qquad 2(\theta_{i+1} - \theta_i)(d_1 - 1) < \varepsilon$$

et $T \ll P_1^{\varepsilon}$ pour $\varepsilon > 0$ arbitrairement petit (et P_1 assez grand). Puisque $\boldsymbol{z} \in \mathcal{A}_1^{\mu}(\mathbb{Z})$, par le lemme 5.5 on a

$$\int_{\substack{\alpha \notin \mathfrak{M}^{\mathbf{z}}(\theta_T)}} |S_{d,\mathbf{z}}(\alpha)| d\alpha \ll d^{m-r+\varepsilon + \frac{(d_1-1)(r+1)}{2^{d_1-1}}} l^{m-r+\varepsilon} P_1^{m+2-K_1\theta_T+\varepsilon}$$
$$\ll d^{m-r+\varepsilon + \frac{(d_1-1)(r+1)}{2^{d_1-1}}} l^{m-r+\varepsilon} P_1^{m+2-d_1-\Delta_1(\theta,K_1)+\varepsilon}$$

Par ailleurs, on remarque que

$$\begin{aligned} \operatorname{Vol}(\mathfrak{M}^{\boldsymbol{z}}(\theta)) &\ll \operatorname{Vol}(\mathfrak{M}^{(1),\boldsymbol{z}}(\theta)) + \operatorname{Vol}(\mathfrak{M}^{(2),\boldsymbol{z}}(\theta)) \\ &\ll \sum_{q \leq dl^{d_2} P_1^{(d_1-1)\theta}} \sum_{0 \leq a < q} q^{-1} d^{-(d_1-1)} P_1^{-d_1 + (d_1-1)\theta} \\ &+ \sum_{q \leq l^{d_2} P_1^{(d_1-1)\theta}} \sum_{\substack{0 \leq a < q \\ \operatorname{pgcd}(a,q) = 1}} q^{-1} d^{-d_1} P_1^{-d_1 + (d_1-1)\theta} \\ &\ll d^{(2-d_1)} l^{d_2} P_1^{-d_1 + 2(d_1-1)\theta}. \end{aligned}$$

On a alors, pour tout $i \in \{0, \ldots, T-1\}$,

$$\begin{split} & \int |S_{d,\boldsymbol{z}}(\alpha)| \, d\alpha \\ & \propto \in \mathfrak{M}^{\boldsymbol{z}}(\theta_{i+1}) \setminus \mathfrak{M}^{\boldsymbol{z}}(\theta_{i}) \\ & \ll d^{m-r+\varepsilon + \frac{(d_{1}-1)(r+1)}{2^{d_{1}-1}}} l^{m-r+\varepsilon} P_{1}^{m+2-K_{1}\theta_{i}+\varepsilon} \operatorname{Vol}(\mathfrak{M}^{\boldsymbol{z}}(\theta_{i+1})) \\ & \ll d^{m-r+\varepsilon + \frac{(d_{1}-1)(r+1)}{2^{d_{1}-1}} + (2-d_{1})} l^{m-r+d_{2}+\varepsilon} P_{1}^{m+2-K_{1}\theta_{i}+\varepsilon-d_{1}+2(d_{1}-1)\theta_{i+1}} \\ & \ll d^{m-r+\varepsilon + \frac{(d_{1}-1)(r+1)}{2^{d_{1}-1}} + (2-d_{1})} l^{m-r+d_{2}+\varepsilon} P_{1}^{m+2-d_{1}-\Delta_{1}(\theta,K_{1})+\varepsilon} \end{split}$$

et on obtient le résultat souhaité en sommant sur les $i \in \{0, \ldots, T-1\}$.

On introduit une nouvelle famille d'arcs majeurs :

(5.17)
$$\mathfrak{M}_{a,q}^{\prime d,\boldsymbol{z}}(\theta) = \{ \alpha \in [0,1[\mid 2 \mid \alpha q - a] \le q d^{-d_1} P_1^{-d_1} P^{(d_1-1)\theta} \},$$

(5.18)
$$\mathfrak{M}^{\prime d, \boldsymbol{z}}(\theta) = \bigcup_{\substack{q \le \phi_1(d, l, \theta) \\ \operatorname{pgcd}(a, q) = 1}} \bigcup_{\substack{0 \le a < q \\ \operatorname{pgcd}(a, q) = 1}} \mathfrak{M}^{\prime d, \boldsymbol{z}}_{a, q}(\theta),$$

et on vérifie que $\mathfrak{M}^{d, \mathbf{z}}(\theta) \subset \mathfrak{M}'^{d, \mathbf{z}}(\theta)$. On a alors le résultat analogue au lemme 4.7 :

LEMME 5.7. Si $d_1 \geq 2$ et $l^{2d_2}P_1^{-d_1+3\theta(d_1-1)} < 1$, alors les arcs majeurs $\mathfrak{M}'_{a,q}^{\prime d,\mathbf{z}}(\theta)$ sont disjoints deux à deux.

Démonstration. Supposons qu'il existe $\alpha \in \mathfrak{M}_{a,q}^{\prime d, \mathbf{z}}(\theta) \cap \mathfrak{M}_{a',q'}^{\prime d, \mathbf{z}}(\theta)$ pour $(a,q) \neq (a',q'), q,q' \leq \phi_1(d,l,\theta), 0 \leq a < q, 0 \leq a' < q'$ et $\operatorname{pgcd}(a,q) = \operatorname{pgcd}(a',q') = 1$. Alors

 $1 \leq qq'd^{-d_1}P_1^{-d_1+\theta(d_1-1)} \leq d^{2-d_1}l^{2d_2}P_1^{-d_1+3\theta(d_1-1)} \leq l^{2d_2}P_1^{-d_1+3\theta(d_1-1)},$ d'où le résultat. \blacksquare

Comme précédemment, on déduit des lemmes 5.7 et 5.6 que

$$(5.19) \quad N_{d,\boldsymbol{z}}(P_1) = \sum_{q \le \phi_1(d,l,\theta)} \sum_{\substack{0 \le a < q \\ \text{pgcd}(a,q)=1}} \int_{\alpha \in \mathfrak{M}_{a,q}^{\prime d,\boldsymbol{z}}(\theta)} S_{d,\boldsymbol{z}}(\alpha) \, d\alpha$$
$$+ O\left(d^{m-r+\varepsilon + \frac{(d_1-1)(r+1)}{2^{d_1-1}}} l^{d_2+m-r+\varepsilon} P_1^{m+2-d_1-\Delta_1(\theta,K_1)+\varepsilon}\right).$$

On considère $\alpha \in \mathfrak{M}_{a,q}^{\prime d, \mathbf{z}}(\theta)$. On pose $\beta = \alpha - a/q$ et donc on a $|\beta| \leq d^{-d_1} P_1^{-d_1 + (d_1 - 1)\theta}$. De la même manière que nous avons établi le lemme 4.9, on démontre :

LEMME 5.8. On a

$$S_{d,\boldsymbol{z}}(\alpha) = d^{m-r} l^{m-r} P_1^{m+1} q^{-(m+1)} S_{a,q,d}(\boldsymbol{z}) I_{\boldsymbol{z}}(d^{d_1} P_1^{d_1} \beta) + O(d^{m-r+1} l^{2d_2+m-r} P_1^{m+2\theta(d_1-1)})$$

avec

(5.20)
$$S_{a,q,d}(\boldsymbol{z}) = \sum_{(\boldsymbol{b}_1, \boldsymbol{b}_2) \in (\mathbb{Z}/q\mathbb{Z})^{r+1} \times (\mathbb{Z}/q\mathbb{Z})^{m-r}} e\left(\frac{a}{q} F(d\boldsymbol{b}_1, \boldsymbol{b}_2, \boldsymbol{z})\right),$$

(5.21)
$$I_{\boldsymbol{z}}(\beta) = \int_{\substack{(\boldsymbol{u},\boldsymbol{v})\in[-1,1]^{r+1}\times[-1,1]^{m-r}\\|\boldsymbol{v}|<|\boldsymbol{u}|}} e(\beta F(\boldsymbol{u},l\boldsymbol{v},\boldsymbol{z})) \, d\boldsymbol{u} \, d\boldsymbol{v}.$$

Par ailleurs, en posant

(5.22)
$$\tilde{\phi}_1(\theta) = \frac{1}{2} P_1^{\theta(d_1-1)},$$

(5.23)
$$\eta_1(\theta) = 1 - 5\theta(d_1 - 1),$$

on démontre un analogue du lemme 4.10 :

LEMME 5.9. Pour
$$\mathbf{z} \in \mathcal{A}_{1}^{\mu}(\mathbb{Z})$$
, et $\varepsilon > 0$ arbitrairement petit, on a

$$N_{d,\mathbf{z}}(P_{1}) = d^{m-r-d_{1}}l^{m-r}P_{1}^{m+1-d_{1}}\mathfrak{S}_{d,\mathbf{z}}(\phi_{1}(d,l,\theta))J_{\mathbf{z}}(\tilde{\phi}_{1}(\theta))$$

$$+ O(d^{m-r+\varepsilon+\frac{(d_{1}-1)(r+1)}{2^{d_{1}-1}}}l^{d_{2}+m-r+\varepsilon}P_{1}^{m+2-d_{1}-\Delta_{1}(\theta,K_{1})+\varepsilon})$$

$$+ O(d^{m-r+3-d_{1}}l^{4d_{2}+m-r}P_{1}^{m+1-d_{1}-\eta(\theta)}),$$

оù

(5.24)
$$\mathfrak{S}_{d,\boldsymbol{z}}(\phi(d,l,\theta)) = \sum_{q \le \phi(d,l,\theta)} q^{-(m+1)} \sum_{\substack{0 \le a < q \\ \text{pgcd}(a,q) = 1}} S_{a,q,d}(\boldsymbol{z}),$$

(5.25)
$$J_{\boldsymbol{z}}(\tilde{\phi}(\theta)) = \int_{|\beta| \le \tilde{\phi}(\theta)} I_{\boldsymbol{z}}(\beta) \, d\beta$$

On pose à présent

(5.26)
$$\mathfrak{S}_{d,\boldsymbol{z}} = \sum_{q=1}^{\infty} q^{-(m+1)} \sum_{\substack{0 \le a < q \\ \text{pgcd}(a,q) = 1}} S_{a,q,d}(\boldsymbol{z}),$$

(5.27)
$$J_{\boldsymbol{z}} = \int_{\mathbb{R}} I_{\boldsymbol{z}}(\beta) \, d\beta.$$

LEMME 5.10. Soit $\boldsymbol{z} \in \mathcal{A}_1^{\mu}(\mathbb{Z})$ et $\varepsilon > 0$ arbitrairement petit. Si $d_1 \geq 2$ et $\theta < \frac{1}{2(d_1-1)}$, alors l'intégrale $J_{\boldsymbol{z}}$ est absolument convergente, et

$$|J_{\boldsymbol{z}}(\tilde{\phi}(\theta)) - J_{\boldsymbol{z}}| \ll l^{d_2 + \varepsilon} P_1^{-K_1 \theta / 2 + 2\theta(d_1 - 1)}.$$

De plus, $|J_{\boldsymbol{z}}| \ll l^{d_2 + \varepsilon}$.

Démonstration. On considère β tel que $|\beta| \ge \tilde{\phi}(\theta)$. On choisit alors des paramètres P et θ' tels que

T. Mignot

(5.28)
$$|\beta| = \frac{1}{2} P^{\theta'(d_1-1)},$$

(5.29) $P^{1-K_1\theta'} = P^{-1+2\theta'(d_1-1)}l^{2d_2}.$

Ces deux égalités impliquent

(5.30)
$$\theta' = \frac{2(d_1 - 1)^{-1} \log(2|\beta|)}{\left(2 + \frac{K_1}{d_1 - 1}\right) \log(2|\beta|) + 2d_2 \log(l)},$$

donc en particulier

(5.31)
$$\theta' \gg \min\left\{1, \frac{\log(|\beta|)}{\log(l)}\right\}.$$

Par ailleurs, d'après (5.29) on a

$$P^{-2+3\theta'(d_1-1)}l^{2d_2} = P^{\theta'(d_1-1-K_1)} < 1,$$

donc, pour $d_1 \ge 2$,

$$P^{-d_1+3\theta'(d_1-1)}l^{2d_2} < 1,$$

et ainsi, d'après le lemme 4.7, les arcs majeurs $\mathfrak{M}_{a,q}(\theta')$ correspondant à P et θ' sont disjoints deux à deux. Le réel $P^{-d_1}\beta$ appartient au bord de $\mathfrak{M}_{0,1}(\theta')$, et donc par le lemme 5.5 appliqué à d = 1, on a

$$|S_{1,\boldsymbol{z}}(P^{-d_1}\beta)| \ll l^{m-r+\varepsilon}P^{m+2-K_1\theta'+\varepsilon}.$$

Par le lemme 5.8,

$$S_{1,\boldsymbol{z}}(P^{-d_1}\beta) = l^{m-r}P^{m+1}I_{\boldsymbol{z}}(\beta) + O(l^{m-r+2d_2}P^{m+2\theta'(d_1-1)}).$$

On a ainsi

$$|I_{z}(\beta)| \ll l^{\varepsilon} P^{1-K_{1}\theta'+\varepsilon} + l^{2d_{2}} P^{-1+2\theta'(d_{1}-1)} \ll l^{\varepsilon} P^{1-K_{1}\theta'+\varepsilon} \ll l^{\varepsilon} |\beta|^{\frac{1}{\theta'(d_{1}-1)} - \frac{K_{1}}{(d_{1}-1)} + \frac{\varepsilon}{\theta'(d_{1}-1)}}.$$

Étant donné que $\theta' \gg \min\{1, \frac{\log(|\beta|)}{\log(l)}\}$, on en déduit que

$$|\beta|^{\frac{\varepsilon}{\theta'(d_1-1)}} \ll \max\{|\beta|^{\varepsilon'}, l^{\varepsilon'}\}$$

pour $\varepsilon' > 0$ arbitrairement petit. D'autre part, d'après (5.30),

$$\beta \Big|^{\frac{1}{\theta'(d_1-1)} - \frac{K_1}{(d_1-1)}} \ll \big|\beta\big|^{\left(1 - \frac{K_1}{2(d_1-1)}\right)} \big|\beta\big|^{\frac{\log(l^d_2)}{\log(2|\beta|)}} \ll l^{d_2} \big|\beta\big|^{\left(1 - \frac{K_1}{2(d_1-1)}\right)}$$

On a ainsi

$$\begin{aligned} |J_{\mathbf{z}}(\tilde{\phi}(\theta)) - J_{\mathbf{z}}| \ll l^{d_2 + \varepsilon} \int_{|\beta| > \tilde{\phi}(\theta)} |\beta|^{\left(1 - \frac{K_1}{2(d_1 - 1)}\right) + \varepsilon} d\beta \\ \ll l^{d_2 + \varepsilon} \tilde{\phi}(\theta)^{2 - \frac{K_1}{2(d_1 - 1)} + \varepsilon} \ll l^{d_2 + \varepsilon} P_1^{2\theta(d_1 - 1) - K_1\theta/2 + \varepsilon} \end{aligned}$$

avec ε arbitrairement petit. D'autre part, en choisissant $P_1 \ll 1,$ cette inégalité donne

$$|J_{\boldsymbol{z}}(\tilde{\phi}(\theta)) - J_{\boldsymbol{z}}| \ll l^{d_2 + \varepsilon},$$

et puisque $|J_{\boldsymbol{z}}(\tilde{\phi}(\theta))| \ll 1$ lorsque $P_1 \ll 1$, on a immédiatement

$$|J_{\boldsymbol{z}}| \ll l^{a_2+\varepsilon}$$
.

On introduit pour \boldsymbol{z} fixé et $P \geq 1$ la nouvelle série génératrice

$$S_{d,\boldsymbol{z}}'(\alpha) = \sum_{|\boldsymbol{x}| \leq P} \sum_{|\boldsymbol{y}| \leq P} e(\alpha F(d\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z})).$$

De la même manière que pour le lemme 5.5, on établit :

LEMME 5.11. Si $\varepsilon > 0$ est un réel arbitrairement petit, l'une au moins des assertions suivantes est vérifiée :

(1) $|S'_{d,\boldsymbol{z}}(\alpha)| \ll d^{\frac{(d_1-1)(r+1)}{2^{d_1-1}}} P^{m+1+\varepsilon-K_1\theta},$ (2) $\alpha \in \bigcup_{q \leq dl^{d_2} P^{(d_1-1)\theta}} \bigcup_{0 \leq a < q, \operatorname{pgcd}(a,q)=1} \mathfrak{M}^{\boldsymbol{z}}_{a,q}(\theta).$

De la même manière que pour le lemme 4.12, on en déduit :

LEMME 5.12. Soit $\mathbf{z} \in \mathcal{A}_1^{\mu}(\mathbb{Z})$ et $\varepsilon > 0$ arbitrairement petit. Si $d_1 \geq 2$, alors la série $\mathfrak{S}_{\mathbf{z}}$ est absolument convergente, et

$$|\mathfrak{S}_{d,\boldsymbol{z}}(\phi_{1}(d,l,\theta)) - \mathfrak{S}_{d,\boldsymbol{z}}| \ll d^{\frac{(d_{1}-1)(r+1)}{2^{d_{1}-1}} + 2+\varepsilon} l^{2d_{2}+\varepsilon} P_{1}^{\theta(2(d_{1}-1)-K_{1})}.$$

De plus, $|\mathfrak{S}_{\boldsymbol{z}}| \ll d^{\frac{(d_{1}-1)(r+1)}{2^{d_{1}-1}} + 2+\varepsilon} l^{2d_{2}+\varepsilon}.$

Démonstration. On considère $q > \phi(d, k, \theta)$, $\alpha = a/q$ avec $0 \le a < q$ et $\operatorname{pgcd}(a,q) = 1$. Alors $S_{a,q,d}(z) = S'_{d,z}(\alpha)$ avec P = q. On considère θ' tel que $q = dl^{d_2}q^{(d_1-1)\theta'}$. Si $\theta'' = \theta' - \nu$ pour $\nu > 0$ arbitrairement petit, et s'il existait $a', q' \in \mathbb{Z}$ tels que $0 \le a' < q'$, $\operatorname{pgcd}(a',q') = 1$, $q' \le dl^{d_2}q^{\theta''(d_1-1)} < q$ et $\alpha \in \mathfrak{M}^{\mathbf{z}}_{a',q'}(\theta'')$, on aurait

$$1 \le |aq' - a'q| \le q^{1-d_1 + \theta'(d_1 - 1)},$$

ce qui est absurde pour $d_1 \ge 2$. Donc, par le lemme précédent,

$$|S_{a,q,d}(\boldsymbol{z})| \ll d^{\frac{(d_1-1)(r+1)}{2^{d_1-1}}} q^{m+1+\varepsilon-K_1\theta'}.$$

Par conséquent,

$$\begin{split} |\mathfrak{S}_{d,\boldsymbol{z}}(\phi_{1}(d,l,\theta)) - \mathfrak{S}_{d,\boldsymbol{z}}| &\ll \sum_{q > \phi_{1}(d,l,\theta)} q^{-(m+1)} \sum_{0 \le a < q} |S_{a,q,d}(\boldsymbol{z})| \\ &\ll d^{\frac{(d_{1}-1)(r+1)}{2^{d_{1}-1}}} \sum_{q > \phi_{1}(d,l,\theta)} q^{-(m+1)} \sum_{0 \le a < q} q^{m+1+\varepsilon-K_{1}\theta'} \\ &\ll d^{\frac{(d_{1}-1)(r+1)}{2^{d_{1}-1}}} \sum_{q > \phi(d,l,\theta)} q^{-\frac{K_{1}}{d_{1}-1}+1+\varepsilon} l^{\frac{d_{2}K_{1}}{d_{1}-1}} d^{\frac{K_{1}}{d_{1}-1}} \\ &\ll d^{\frac{(d_{1}-1)(r+1)}{2^{d_{1}-1}}+2+\varepsilon} l^{2d_{2}+\varepsilon} P_{1}^{\theta(2(d_{1}-1)-K_{1})+\varepsilon}. \end{split}$$

En prenant $P_1 \ll 1$ cette majoration donne

$$|\mathfrak{S}_{d,\boldsymbol{z}}(\phi_1(d,l,\theta)) - \mathfrak{S}_{d,\boldsymbol{z}}| \ll d^{\frac{(d_1-1)(r+1)}{2^{d_1-1}} + 2+\varepsilon} l^{2d_2+\varepsilon},$$

et en vue de la majoration triviale $|\mathfrak{S}_{d,\mathbf{z}}(\phi_1(d,l,\theta))| \ll d^2 l^{2d_2}$, on trouve finalement

$$|\mathfrak{S}_{d,\boldsymbol{z}}| \ll d^{\frac{(d_1-1)(r+1)}{2^{d_1-1}}+2+\varepsilon} l^{2d_2+\varepsilon}.$$

On déduit des lemmes 5.12 et 5.10 :

LEMME 5.13. Soit $\mathbf{z} \in \mathcal{A}_{1}^{\mu}(\mathbb{Z}), \ \theta \in [0,1]$ et $P_{1} \geq 1$ tels que $l^{2d_{2}}P_{1}^{-d_{1}+3\theta(d_{1}-1)}$ < 1. Si de plus $K_{1} > 4(d_{1}-1)$ et $d_{1} \geq 2$, alors

$$N_{d,z}(P_1) = \mathfrak{S}_{d,z} J_z d^{m-r-d_1} l^{m-r} P_1^{m+1-d_1} + O(E_2) + O(E_3)$$

avec

$$E_{2} = d^{m-r+3-d_{1}} l^{4d_{2}+m-r} P^{m+1-d_{1}-\eta(\theta)},$$

$$E_{3} = d^{m-r+\frac{(d_{1}-1)(r+1)}{2^{d_{1}-1}}+\varepsilon} l^{3d_{2}+m-r+\varepsilon} P_{1}^{m+1-d_{1}+2\theta(d_{1}-1)-K_{1}\theta/2+\varepsilon}$$

et $\varepsilon > 0$ arbitrairement petit.

Démonstration. Par le lemme 5.9, $N_{d,\boldsymbol{z}}(P_1) = d^{m-r-d_1} l^{m-r} P_1^{m+1-d_1} \mathfrak{S}_{d,\boldsymbol{z}}(\phi_1(d,l,\theta)) J_{\boldsymbol{z}}(\tilde{\phi}_1(\theta)) + O(E_1) + O(E_2),$ où

$$E_1 = d^{m-r+\varepsilon+(d_1-1)(r+1)/2^{d_1-1}} l^{d_2+m-r+\varepsilon} P_1^{m+1-d_1-\Delta_1(\theta,K_1)+\varepsilon} \ll E_3.$$

Par ailleurs, d'après les lemmes 5.12 et 5.10,

$$\begin{split} |\mathfrak{S}_{d,\boldsymbol{z}}(\phi_{1}(d,l,\theta))J_{\boldsymbol{z}}(\tilde{\phi}_{1}(\theta)) - \mathfrak{S}_{d,\boldsymbol{z}}J_{\boldsymbol{z}}| \\ &\leq |\mathfrak{S}_{d,\boldsymbol{z}}(\phi_{1}(d,l,\theta)) - \mathfrak{S}_{d,\boldsymbol{z}}| \left|J_{\boldsymbol{z}}\right| + |\mathfrak{S}_{d,\boldsymbol{z}}(\phi_{1}(d,l,\theta))| \left|J_{\boldsymbol{z}}(\tilde{\phi}_{1}(\theta)) - J_{\boldsymbol{z}}\right| \\ &\ll d^{\frac{(d_{1}-1)(r+1)}{2^{d_{1}-1}} + 2+\varepsilon} l^{3d_{2}+2\varepsilon} P_{1}^{\theta(2(d_{1}-1)-K_{1})} + d^{2}l^{3d_{2}+2\varepsilon} P_{1}^{\theta(2(d_{1}-1)-K_{1}/2)+\varepsilon}, \end{split}$$

et en multipliant par $d^{m-r-d_1}l^{m-r}P_1^{m+1-d_1}$, on obtient un terme d'erreur

$$d^{m-r-d_1+\frac{(d_1-1)(r+1)}{2^{d_1-1}}+2+\varepsilon}l^{3d_2+2\varepsilon}P_1^{m+1-d_1+2\theta(d_1-1)-K_1\theta/2+\varepsilon}$$

d'où le résultat. ∎

En fixant $\theta > 0$ tel que $\theta < \frac{1}{5(d_1-1)}$, on obtient le corollaire suivant :

COROLLAIRE 5.14. Soit $\mathbf{z} \in \mathcal{A}_1^{\mu}(\mathbb{Z})$. Si $K_1 > 4(d_1-1)$ et $d_1 \geq 2$, il existe un réel $\delta > 0$ arbitrairement petit tel que

$$\begin{split} N_{d,\boldsymbol{z}}(P_1) &= \mathfrak{S}_{d,\boldsymbol{z}} J_{\boldsymbol{z}} d^{m-r-d_1} l^{m-r} P_1^{m+1-d_1} \\ &+ O\big(d^{m-r} \max\{ d^{\frac{(d_1-1)(r+1)}{2^{d_1-1}} + \varepsilon}, d^{3-d_1} \} l^{m-r+4d_2} P_1^{m+1-d_1-\delta} \big), \end{split}$$

uniformément pour tout $l < P_1^{(d_1-1)/(2d_2)}$.

66

On pose à présent $P_1 = P_2^b$ avec $b \ge 1$, et on introduit la fonction

(5.32)
$$g_1(b,\delta) = \left(1 - \frac{5d_2}{b} - \delta\right)^{-1} 5(d_1 - 1)\left(\frac{4d_2}{b} + 2\delta\right),$$

ainsi que le nombre

(5.33)
$$\tilde{N}_{d,1}^{(1)}(P_1, P_2) = \operatorname{card}\{(\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z}) \in \mathbb{Z}^{n+2} \mid \boldsymbol{z} \in \mathcal{A}_1^{\mu}(\mathbb{Z}), \, |\boldsymbol{x}| \leq P_1, \\ |\boldsymbol{y}| < d|\boldsymbol{x}|P_2, \, |\boldsymbol{z}| \leq P_2, \, |\boldsymbol{y}| \leq d|\boldsymbol{x}| \, |\boldsymbol{z}|, \, F(d\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z}) = 0\} \\ = \operatorname{card}\left\{(\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z}) \in \mathbb{Z}^{n+2} \mid \boldsymbol{z} \in \mathcal{A}_1^{\mu}(\mathbb{Z}), \, |\boldsymbol{x}| \leq P_1, \\ |\boldsymbol{y}| < d|\boldsymbol{x}|P_2, \, |\boldsymbol{z}| \leq P_2, \, \left\lfloor \frac{|\boldsymbol{y}|}{d|\boldsymbol{x}|} \right\rfloor < |\boldsymbol{z}|, \, F(d\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z}) = 0\right\}.$$

On a alors la proposition suivante qui est l'analogue de la proposition 4.17 :

PROPOSITION 5.15. Si
$$K_1 > 4(d_1 - 1)$$
, $P_1 = P_2^b$ et
 $K_1/2 - 2(d_1 - 1) > g_1(b, \delta)$,

alors

$$\tilde{N}_{d,1}^{(1)}(P_1, P_2) = \Big(\sum_{\boldsymbol{z} \in P_2 \mathcal{B}_3 \cap \mathcal{A}_1^{\mu}(\mathbb{Z})} \mathfrak{S}_{d, \boldsymbol{z}} J_{\boldsymbol{z}} |\boldsymbol{z}|^{m-r} \Big) d^{m-r-d_1} P_1^{m+1-d_1} + O\Big(d^{m-r} \max\{ d^{\frac{(d_1-1)(r+1)}{2^{d_1-1}} + \varepsilon}, d^{3-d_1} \} P_1^{m+1-d_1-\delta} P_2^{n-r+1-d_2} \Big),$$

pour $\delta > 0$ arbitrairement petit.

Démonstration. On sait d'après le lemme 5.13 que

$$\tilde{N}_{d,1}^{(1)}(P_1, P_2) = \Big(\sum_{\boldsymbol{z} \in P_2 \mathcal{B}_3 \cap \mathcal{A}_1^{\mu}(\mathbb{Z})} \mathfrak{S}_{d,\boldsymbol{z}} J_{\boldsymbol{z}} |\boldsymbol{z}|^{m-r} \Big) d^{m-r-d_1} P_1^{m+1-d_1} + O(\mathcal{E}_2) + O(\mathcal{E}_3)$$

avec

$$\begin{aligned} \mathcal{E}_2 &= d^{m-r+3-d_1} \sum_{l=1}^{P_2} \sum_{\substack{\boldsymbol{z} \in P_2 \mathcal{B}_3 \cap \mathcal{A}_1^{\mu}(\mathbb{Z}) \\ |\boldsymbol{z}| = l}} l^{4d_2 + m - r} P_1^{m+1-d_1 - \eta(\theta)} \\ &\ll d^{m-r+3-d_1} P_1^{m+1-d_1 - \eta(\theta)} P_2^{4d_2 + n - r + 1} \\ &= d^{m-r+3-d_1} P_1^{m+1-d_1 + 5d_2/b - \eta(\theta)} P_2^{n-r+1-d_2} \end{aligned}$$

 et

$$\begin{aligned} \mathcal{E}_{3} &= d^{m-r+\frac{(d_{1}-1)(r+1)}{2^{d_{1}-1}}+\varepsilon} \\ &\times \sum_{l=1}^{P_{2}} \sum_{\substack{\mathbf{z} \in P_{1}\mathcal{B}_{1} \cap \mathcal{A}_{1}^{\mu}(\mathbb{Z}) \\ |\mathbf{z}|=l}} l^{3d_{2}+m-r+\varepsilon} P_{1}^{n-r+1-d_{1}+2\theta(d_{1}-1)-K_{1}\theta/2+\varepsilon} \\ &\ll d^{m-r+\frac{(d_{1}-1)(r+1)}{2^{d_{1}-1}}+\varepsilon} P_{1}^{m+1-d_{1}+2\theta(d_{1}-1)-K_{1}\theta/2+4d_{2}/b+2\varepsilon} P_{2}^{n-r+1-d_{2}}. \end{aligned}$$

Rappelons que $\eta(\theta) = 1 - 5\theta(d_1 - 1)$. On choisit alors

$$\theta = \frac{1}{5(d_1 - 1)} \left(1 - \frac{5d_2}{b} - \delta \right),$$

de sorte que

$$\frac{5d_2}{b} - \eta(\theta) = -\delta.$$

Puisque $K_1/2 - 2(d_1 - 1) > g_1(b, \delta)$, on a

$$-2\theta(d_1 - 1) + \frac{K_1\theta}{2} > \frac{4d_2}{b} + 2\delta,$$

d'où le résultat.

5.2. Deuxième cas. On suppose à présent $l = \lfloor \frac{|\boldsymbol{y}|}{d|\boldsymbol{x}|} \rfloor \ge |\boldsymbol{z}|$. Dans cette partie nous fixerons l'entier l et \boldsymbol{z} de norme $|\boldsymbol{z}| \le l$, et nous allons évaluer

(5.34)
$$N_{d,l,\boldsymbol{z}}(P_1) = \operatorname{card}\{(\boldsymbol{x}, \boldsymbol{y}) \in \mathbb{Z}^{m+1} \mid |\boldsymbol{x}| \le P_1, \\ dl|\boldsymbol{x}| \le |\boldsymbol{y}| < d(l+1)|\boldsymbol{x}|, F(d\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z}) = 0\}.$$

Pour cela on introduit la série génératrice

(5.35)
$$S_{d,l,\boldsymbol{z}}(\alpha) = \sum_{|\boldsymbol{x}| \le P_1} \sum_{dl|\boldsymbol{x}| \le |\boldsymbol{y}| < d(l+1)|\boldsymbol{x}|} e\left(\alpha F(d\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z})\right),$$

de sorte que $N_{d,l,\boldsymbol{z}}(P_1) = \int_0^1 S_{d,l,\boldsymbol{z}}(\alpha) \, d\alpha.$

Les résultats que nous obtiendrons dans cette section seront sensiblement identiques à ceux de la section précédente, à quelques modifications près.

5.2.1. Somme d'exponentielles. Pour un \boldsymbol{y} donné, on note $N = \lfloor \frac{|\boldsymbol{y}|}{dl} \rfloor$ et $M = \lfloor \frac{|\boldsymbol{y}|}{d(l+1)} \rfloor$. Alors

$$dl|\boldsymbol{x}| \leq |\boldsymbol{y}| < d(l+1)|\boldsymbol{x}| \iff M < |\boldsymbol{x}| \leq N.$$

On note aussi, pour $N, M \in \{0, \ldots, P_1\}$,

$$(5.36) \quad S_{d,N,M,l,\boldsymbol{z}}(\alpha) = \sum_{\substack{M < |\boldsymbol{x}| \le N}} \sum_{\substack{dNl \le |\boldsymbol{y}| < d(N+1)l \\ dM(l+1) \le |\boldsymbol{y}| < d(M+1)(l+1)}} e\left(\alpha F(d\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z})\right),$$

68

et on a

(5.37)
$$S_{d,l,\boldsymbol{z}}(\alpha) = \sum_{N=1}^{P_1} \sum_{M=1}^{P_1} S_{d,N,M,l,\boldsymbol{z}}(\alpha).$$

En appliquant la méthode de différenciation de Weyl des sections précédentes on montre que

$$|S_{d,N,M,l,\boldsymbol{z}}(\alpha)|^{2^{d_1-1}} \ll (P_1^{r+1+\varepsilon})^{2^{d_1-1}-d_1+1} ((dlP_1)^{m-r+\varepsilon})^{2^{d_1-1}-d_1+1} \times M_{d,\boldsymbol{z}}(\alpha, P_1, dlP_1, P_1^{-1}, (dlP_1)^{-1}),$$

où $M_{d,z}(\alpha, P_1, dlP_1, P_1^{-1}, (dlP_1)^{-1})$ a été défini dans (5.4). Puis, en sommant sur M et N, on en déduit :

LEMME 5.16. Pour tous P > 1, $\kappa > 0$ et tout $\varepsilon > 0$ arbitrairement petit, l'une au moins des assertions suivantes est vérifiée :

(1)
$$|S_{d,l,\mathbf{z}}(\alpha)| \ll d^{m-r+\frac{(d_1-1)(r+1)}{2^{d_1-1}}+\varepsilon} P_1^{m+3+\varepsilon} l^{m-r+\varepsilon} P^{-\kappa},$$

(2) $M_{d,\mathbf{z}}(\alpha, P_1, dlP_1, P_1^{-1}, (dlP_1)^{-1})$
 $\gg (P_1^{r+1})^{d_1-1} ((dlP_1)^{m-r})^{d_1-1} P^{-2^{d_1-1}\kappa}$

Par les mêmes arguments que ceux employés dans la section précédente, on en déduit l'équivalent du lemme 5.5 :

LEMME 5.17. Si $\varepsilon > 0$ est un réel arbitrairement petit, et si $\mathbf{z} \in \mathcal{A}_1^{\mu}(\mathbb{Z})$, l'une au moins des assertions suivantes est vérifiée :

(1)
$$|S_{d,l,\boldsymbol{z}}(\alpha)| \ll d^{m-r+\frac{(d_1-1)(r+1)}{2^{d_1-1}}+\varepsilon} l^{m-r+\varepsilon} P_1^{m+3+\varepsilon} P^{-K_1\theta},$$

(2) $\alpha \in \mathfrak{M}^l(\theta),$

où l'on a noté

(5.38)
$$\mathfrak{M}^{l}(\theta) = \mathfrak{M}^{(1),l}(\theta) \cup \mathfrak{M}^{(2),l}(\theta),$$

(5.39)
$$\mathfrak{M}_{a,q}^{(1),l}(\theta) = \{ \alpha \in [0,1[\mid 2|\alpha q - a| \le d^{-(d_1-1)} P_1^{-d_1} P^{(d_1-1)\theta} \},\$$

(5.40)
$$\mathfrak{M}^{(1),l}(\theta) = \bigcup_{\substack{q \le dl^{d_2} P^{(d_1-1)\theta} \\ d|q}} \bigcup_{\substack{0 \le a < q}} \mathfrak{M}^{(1),l}_{a,q}(\theta),$$

(5.41)
$$\mathfrak{M}_{a,q}^{(2),l}(\theta) = \{ \alpha \in [0,1[\mid 2|\alpha q - a| \le d^{-d_1} P_1^{-d_1} P^{(d_1-1)\theta} \},\$$

(5.42)
$$\mathfrak{M}^{(2),l}(\theta) = \bigcup_{\substack{q \le l^{d_2} P^{(d_1-1)\theta} \\ \operatorname{pgcd}(a,q) = 1}} \bigcup_{\substack{0 \le a < q \\ \operatorname{pgcd}(a,q) = 1}} \mathfrak{M}_{a,q}^{(2),l}(\theta).$$

À partir d'ici, on fixe à nouveau $P = P_1$.

5.2.2. *Méthode du cercle.* Pour les arcs mineurs, les calculs effectués pour établir le lemme 5.6 donnent aussi

LEMME 5.18. Pour tout $\boldsymbol{z} \in \mathcal{A}_1^{\mu}(\mathbb{Z})$, on a

$$\int_{\substack{\alpha \notin \mathfrak{M}^{l}(\theta)}} |S_{d,l,\boldsymbol{z}}(\alpha)| \, d\alpha \ll d^{m-r+\varepsilon + \frac{(d_{1}-1)(r+1)}{2^{d_{1}-1}}} l^{d_{2}+m-r+\varepsilon} P_{1}^{m+3-d_{1}-\Delta_{1}(\theta,K_{1})+\varepsilon}$$

Pour les arcs majeurs, on a les équivalents des lemmes $5.8~{\rm et}~5.9$:

LEMME 5.19. On a

$$S_{d,l,\boldsymbol{z}}(\alpha) = d^{m-r} l^{m-r} P_1^{m+1} q^{-(m+1)} S_{a,q,d}(\boldsymbol{z}) I_{l,\boldsymbol{z}}(d^{d_1} P_1^{d_1} \beta) + O(d^{m-r+1} l^{2d_2+m-r} P_1^{m+2\theta(d_1-1)})$$

avec

(5.43)
$$S_{d,a,q}(\boldsymbol{z}) = \sum_{(\boldsymbol{b}_1, \boldsymbol{b}_2) \in (\mathbb{Z}/q\mathbb{Z})^{r+1} \times (\mathbb{Z}/q\mathbb{Z})^{m-r}} e\left(\frac{a}{q} F(d\boldsymbol{b}_1, \boldsymbol{b}_2, \boldsymbol{z})\right),$$

(5.44)
$$I_{l,\boldsymbol{z}}(\beta) = \int_{\substack{(\boldsymbol{u},\boldsymbol{v})\in[-1,1]^{r+1}\times[-1,1]^{m-r}\\|\boldsymbol{u}|\leq|\boldsymbol{v}|<(1+1/l)|\boldsymbol{u}|}} e(\beta F(\boldsymbol{u},l\boldsymbol{v},\boldsymbol{z})) \, d\boldsymbol{u} \, d\boldsymbol{v}.$$

LEMME 5.20. Pour
$$\boldsymbol{z} \in \mathcal{A}_{1}^{\mu}(\mathbb{Z})$$
 et $\varepsilon > 0$ arbitrairement petit, on a
 $N_{d,l,\boldsymbol{z}}(P_{1}) = d^{m-r-d_{1}}l^{m-r}P_{1}^{m+1-d_{1}}\mathfrak{S}_{d,\boldsymbol{z}}(\phi_{1}(d,l,\theta))J_{l,\boldsymbol{z}}(\tilde{\phi}_{1}(\theta))$

$$+ O(d^{m-r+\varepsilon+\frac{(d_{1}-1)(r+1)}{2^{d_{1}-1}}}l^{d_{2}+m-r+\varepsilon}P_{1}^{m+3-d_{1}-\Delta_{1}(\theta,K_{1})+\varepsilon})$$

$$+ O(d^{m-r+3-d_{1}}l^{4d_{2}+m-r}P_{1}^{m+1-d_{1}-\eta(\theta)}),$$

оù

(5.45)
$$\mathfrak{S}_{d,\boldsymbol{z}}(\phi(d,l,\theta)) = \sum_{q \le \phi(d,l,\theta)} q^{-(m+1)} \sum_{\substack{0 \le a < q \\ \text{pgcd}(a,q) = 1}} S_{a,q,d}(\boldsymbol{z}),$$

(5.46)
$$J_{l,\boldsymbol{z}}(\tilde{\phi}(\theta)) = \int_{|\beta| \le \tilde{\phi}(\theta)} I_{l,\boldsymbol{z}}(\beta) \, d\beta.$$

Si l'on note

(5.47)
$$J_{l,\boldsymbol{z}} = \int_{\mathbb{R}} I_{l,\boldsymbol{z}}(\beta) \, d\beta,$$

on montre comme pour le lemme 5.10 :

LEMME 5.21. Soit $z \in \mathcal{A}_1^{\mu}(\mathbb{Z})$ et $\varepsilon > 0$ arbitrairement petit. Si $d_1 \geq 2$, alors l'intégrale $J_{l,z}$ est absolument convergente, et

$$|J_{l,\boldsymbol{z}}(\tilde{\phi}(\theta)) - J_{l,\boldsymbol{z}}| \ll l^{4d_2/3+\varepsilon} P_1^{-K_1\theta/3+7\theta(d_1-1)/3+\varepsilon}.$$

De plus, $|J_{\mathbf{z}}| \ll l^{4d_2/3+\varepsilon}$.

Des lemmes 5.20, 5.21 et 5.12 on déduit

LEMME 5.22. Soit $\mathbf{z} \in \mathcal{A}_{1}^{\mu}(\mathbb{Z}), \ \theta \in [0,1]$ et $P_{1} \geq 1$ tels que $l^{2d_{2}}P_{1}^{-d_{1}+3\theta(d_{1}-1)}$ < 1. Si de plus $K_{1} > 7(d_{1}-1)$ et $d_{1} \geq 2$, alors

$$N_{d,l,\mathbf{z}}(P_1) = \mathfrak{S}_{d,\mathbf{z}} J_{l,\mathbf{z}} d^{m-r-d_1} l^{m-r} P_1^{m+1-d_1} + O(E_2) + O(E_3)$$

avec

$$E_{2} = d^{m-r+3-d_{1}} l^{4d_{2}+m-r} P^{m+1-d_{1}-\eta(\theta)},$$

$$E_{3} = d^{m-r+(d_{1}-1)(r+1)/2^{d_{1}-1}+\varepsilon} l^{10d_{2}/3+m-r+\varepsilon} P_{1}^{m+1-d_{1}+7\theta(d_{1}-1)/3-K_{1}\theta/3+\varepsilon}$$

et $\varepsilon > 0$ arbitrairement petit.

COROLLAIRE 5.23. Soit $z \in \mathcal{A}_1^{\mu}(\mathbb{Z})$. Si $K_1 > 7(d_1-1)$ et $d_1 \geq 2$, il existe un réel $\delta > 0$ arbitrairement petit tel que

$$N_{d,l,\boldsymbol{z}}(P_1) = \mathfrak{S}_{d,\boldsymbol{z}} J_{l,\boldsymbol{z}} d^{m-r-d_1} l^{m-r} P_1^{m+1-d_1} + O\left(d^{m-r} \max\{d^{\frac{(d_1-1)(r+1)}{2^{d_1-1}}+\varepsilon}, d^{3-d_1}\} l^{m-r+4d_2} P_1^{m+1-d_1-\delta}\right)$$

uniformément pour tout $l < P_1^{(d_1-1)/(2d_2)}$.

On pose à présent $P_1 = P_2^b$ avec $b \ge 1$, et on introduit la fonction

(5.48)
$$g'_1(b,\delta) = \left(1 - \frac{5d_2}{b} - \delta\right)^{-1} 5(d_1 - 1)\left(\frac{10d_2}{3b} + 2\delta\right),$$

ainsi que

(5.49)
$$\widetilde{N}_{d,1}^{(2)}(P_1, P_2) = \operatorname{card}\left\{ (\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z}) \in \mathbb{Z}^{n+2} \middle| \boldsymbol{z} \in \mathcal{A}_1^{\mu}(\mathbb{Z}), \, |\boldsymbol{x}| \le P_1, \\ |\boldsymbol{y}| \le d|\boldsymbol{x}|P_2, \, |\boldsymbol{z}| \le P_2, \, \left\lfloor \frac{|\boldsymbol{y}|}{d|\boldsymbol{x}|} \right\rfloor \ge |\boldsymbol{z}|, \, F(d\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z}) = 0 \right\}.$$

On a alors la proposition suivante qui est l'analogue de la proposition 5.15 :

Proposition 5.24. Si $K_1 > 7(d_1 - 1), d_1 \ge 2, P_1 = P_2^b$ et

$$K_1/3 - \frac{7}{3}(d_1 - 1) > g_1'(b, \delta),$$

alors

$$\widetilde{N}_{d,1}^{(2)}(P_1, P_2) = d^{m-r-d_1} \Big(\sum_{l=1}^{P_2} \sum_{\substack{\boldsymbol{z} \in P_2 \mathcal{B}_3 \cap \mathcal{A}_1^{\mu}(\mathbb{Z}) \\ |\boldsymbol{z}| \le l}} \mathfrak{S}_{\boldsymbol{z}} J_{l, \boldsymbol{z}} l^{m-r} \Big) P_1^{m+1-d_1} + O\Big(d^{m-r} \max\{ d^{\frac{(d_1-1)(r+1)}{2^{d_1-1}} + \varepsilon}, d^{3-d_1} \} P_1^{m+1-d_1-\delta} P_2^{n-r+1-d_2} \Big)$$

pour $\delta > 0$ arbitrairement petit.

T. Mignot

6. Quatrième étape. L'objectif est à présent de regrouper les résultats obtenus pour en déduire une formule asymptotique pour $N_d(P_1, P_2)$ avec n assez grand et P_1, P_2 quelconques.

On définit dans un premier temps b_1 comme le réel minimisant la fonction

(6.1)
$$b \mapsto \max\{2^{\tilde{d}}(bd_1 + d_2), 2^{\tilde{d}}(5b + 2)(\tilde{d} + 1), \\ 2^{d_1 - 1}(4(d_1 - 1) + 2g_1(b, \delta) + \lceil bd_1 + d_2 + \delta \rceil) \\ \times 2^{d_1 - 1}(7(d_1 - 1) + 3g'_1(b, \delta) + \lceil bd_1 + d_2 + \delta \rceil)\}$$

et on notera \mathfrak{m}_1 le minimum correspondant. On définit de même u_1 le réel minimisant

(6.2)
$$u \mapsto \max\{2^d(d_1 + ud_2), 7.2^d(\tilde{d} + 1), 2^{d_2 - 1}(2(d_2 - 1) + g_2(u, \delta) + \lceil d_1 + ud_2 + \delta \rceil)\}$$

et \mathfrak{m}_2 le minimum correspondant. On note $\mathfrak{m} = \max\{\mathfrak{m}_1, \mathfrak{m}_2\}$. Un calcul en $b = 10d_2$ et $u = 10d_1$ montre que

(6.3)
$$2^{d_1+d_2} \le \mathfrak{m} \le 13d_2(d_1+d_2)2^{d_1+d_2}.$$

À partir d'ici on fixe

(6.4)
$$\mu = \lceil b_1 d_1 + d_2 + \delta \rceil, \quad \lambda = \lceil d_1 + u_1 d_2 + \delta \rceil.$$

On commence par établir le lemme suivant :

LEMME 6.1. Si $n+2-\max\{\dim V_1^*, \dim V_2^*\} > \mathfrak{m}$, alors pour tout $P_2 \ge 1$,

$$\sum_{\boldsymbol{z}\in P_{2}\mathcal{B}_{3}\cap\mathcal{A}_{1}^{\mu}(\mathbb{Z})}\mathfrak{S}_{d,\boldsymbol{z}}J_{\boldsymbol{z}}d^{m-r-d_{1}}|\boldsymbol{z}|^{m-r} + \sum_{l=1}^{P_{2}}\sum_{\substack{\boldsymbol{z}\in P_{2}\mathcal{B}_{3}\cap\mathcal{A}_{1}^{\mu}(\mathbb{Z})\\|\boldsymbol{z}|\leq l}}\mathfrak{S}_{d,\boldsymbol{z}}J_{l,\boldsymbol{z}}d^{m-r-d_{1}}l^{m-r}$$
$$= d^{m-r-d_{1}}\mathfrak{S}_{d}JP_{2}^{n-r+1-d_{2}} + O\left(d^{m-r}\max\{d^{\frac{(r+1)(d_{1}-1)}{2^{d_{1}-1}}+\varepsilon}, d^{3-d_{1}}\}P_{2}^{n-r+1-d_{2}-\delta}\right).$$

 $D\acute{e}monstration.$ On choisit P_1 tel que $P_1=P_2^{b_1}.$ D'après les propositions 5.15 et 5.24, on a

(6.5)
$$\widetilde{N}_{d,1}^{(1)}(P_1, P_2) + \widetilde{N}_{d,1}^{(2)}(P_1, P_2) = \left(\sum_{\boldsymbol{z} \in P_2 \mathcal{B}_3 \cap \mathcal{A}_1^{\mu}(\mathbb{Z})} \mathfrak{S}_{d, \boldsymbol{z}} J_{\boldsymbol{z}} |\boldsymbol{z}|^{m-r} + \sum_{l=1}^{P_2} \sum_{\boldsymbol{z} \in P_2 \mathcal{B}_3 \cap \mathcal{A}_1^{\mu}(\mathbb{Z})} \mathfrak{S}_{d, \boldsymbol{z}} J_{l, \boldsymbol{z}} l^{m-r} \right) \times d^{m-r-d_1} P_1^{m+1-d_1} + O\left(d^{m-r} \max\{d^{\frac{(r+1)(d_1-1)}{2^{d_1-1}} + \varepsilon}, d^{3-d_1}\}P_1^{m+1-d_1-\delta}P_2^{n-r+1-d_2}\right).$$
Notons à présent

(6.6)
$$\tilde{N}_{d,1}(P_1, P_2) = \operatorname{card}\left\{ (\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z}) \in \mathbb{Z}^{n+2} \mid \boldsymbol{z} \in \mathcal{A}_1^{\mu}(\mathbb{Z}), \, |\boldsymbol{x}| \le P_1, \\ \max\left(\left\lfloor \frac{|\boldsymbol{y}|}{d|\boldsymbol{x}|} \right\rfloor, |\boldsymbol{z}| \right) \le P_2, \, F(d\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z}) = 0 \right\}$$

 et

(6.7)
$$N_{d,1}(P_1, P_2) = \operatorname{card}\left\{ (\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z}) \in \mathbb{Z}^{n+2} \mid \boldsymbol{z} \in \mathcal{A}_1^{\mu}(\mathbb{Z}), \, |\boldsymbol{x}| \le P_1, \\ \max\left(\frac{|\boldsymbol{y}|}{d|\boldsymbol{x}|}, |\boldsymbol{z}|\right) \le P_2, \, F(d\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z}) = 0 \right\}$$

On remarque d'une part que

(6.8)
$$N_{d,1}(P_1, P_2) \le \widetilde{N}_{d,1}^{(1)}(P_1, P_2) + \widetilde{N}_{d,1}^{(2)}(P_1, P_2) = \widetilde{N}_{d,1}(P_1, P_2) \\ \le N_{d,1}(P_1, P_2 + 1),$$

et d'autre part, en utilisant la proposition 5.4,

$$N_{d,1}(P_1, P_2) = N_d(P_1, P_2) + O\left(\sum_{\boldsymbol{z} \in P_2 \mathcal{B}_3 \cap (\mathcal{A}_1^{\mu})^c(\mathbb{Z})} d^{m-r} P_1^{m+1} P_2^{m-r}\right)$$
$$= N_d(P_1, P_2) + O(d^{m-r} P_1^{m+1-d_1} P_2^{n-r+1-d_2-\delta}),$$

par définition de μ .

Par ailleurs, comme $n+2-\max\{\dim V_1^*,\dim V_2^*\}>2^{\tilde{d}}(5b_1+2)(\tilde{d}+1),$ la proposition 3.19 donne

$$N_d(P_1, P_2) = \sigma_d d^{m-r-d_1} P_1^{m+1-d_1} P_2^{n-r+1-d_2} + O(d^{m-r} \max\{d^{d_1(r+1)/2^{\tilde{d}}} + \varepsilon, d^{3-d_1}\} P_1^{m+1-d_1-\delta} P_2^{n-r+1-d_2-\delta}).$$

On a donc

$$\begin{split} |\tilde{N}_{d,1}^{(1)}(P_1,P_2) + \tilde{N}_{d,1}^{(2)}(P_1,P_2) - N_d(P_1,P_2)| \\ &\ll N_d(P_1,P_2+1) - N_d(P_1,P_2) + O(d^{m-r}P_1^{m+1-d_1}P_2^{n-r+1-d_2-\delta}) \\ &\ll \sigma_d P_1^{m+1-d_1}((P_2+1)^{n-r+1-d_2} - P_2^{n-r+1-d_2}) \\ &+ O(d^{m-r}\max\{d^{d_1(r+1)/2^{\tilde{d}}} + \varepsilon, d^{3-d_1}\}P_1^{m+1-d_1}P_2^{n-r+1-d_2-\delta}) \\ &\ll d^{m-r}\max\{d^{d_1(r+1)/2^{\tilde{d}}} + \varepsilon, d^{3-d_1}\}P_1^{m+1-d_1}P_2^{n-r+1-d_2-\delta}, \end{split}$$

étant donné que $\sigma_d = d^{m-r-d_1} \mathfrak{S}_d J \ll d^{m-r-d_1} \max\{d^{d_1(r+1)/2^{\tilde{d}}}, d^2\}$, d'après la remarque 3.18.

Par conséquent,

$$\Big(\sum_{\boldsymbol{z} \in P_2 \mathcal{B}_3 \cap \mathcal{A}_1^{\mu}(\mathbb{Z})} \mathfrak{S}_{d, \boldsymbol{z}} J_{\boldsymbol{z}} |\boldsymbol{z}|^{m-r} + \sum_{l=1}^{P_2} \sum_{\substack{\boldsymbol{z} \in P_2 \mathcal{B}_3 \cap \mathcal{A}_1^{\mu}(\mathbb{Z}) \\ |\boldsymbol{z}| \le l}} \mathfrak{S}_{d, \boldsymbol{z}} J_{l, \boldsymbol{z}} l^{m-r} \Big) d^{m-r-d_1} P_1^{m+1-d_1}$$

$$= \sigma_d P_1^{m+1-d_1} P_2^{n-r+1-d_2}$$

$$+ O\Big(d^{m-r} \max\{ d^{\frac{(r+1)(d_1-1)}{2^{d_1-1}} + \varepsilon}, d^{3-d_1} \} P_1^{m+1-d_1} P_2^{n-r+1-d_2-\delta} \Big)$$

et en simplifiant par $P_1^{m+1-d_1}$ on obtient le résultat. \blacksquare

On démontre de même :

LEMME 6.2. Si $n+2-\max\{\dim V_1^*, \dim V_2^*\} > \mathfrak{m}$, alors pour tout $P_1 \ge 1$ et $d_2 \ge 2$,

$$\sum_{\boldsymbol{x}\in P_{1}\mathcal{B}_{1}\cap\mathcal{A}_{2}^{\lambda}(\mathbb{Z})}\mathfrak{S}_{d,\boldsymbol{x}}J_{d,\boldsymbol{x}}d^{m-r}|\boldsymbol{x}|^{m-r}$$
$$=\sigma_{d}P_{1}^{m+1-d_{1}}+O(d^{m-r}\max\{d^{d_{1}(r+1)/2^{\tilde{d}}+\varepsilon},d^{4d_{1}}\}P_{1}^{m+1-d_{1}-\delta}).$$

Pour le cas $d_2 = 1$, en notant $u'_1 = d_1 + \delta$, $\mathfrak{m}'_2 = 7d_12^{d_1-1}$ et $\lambda' = \lceil d_1 + u'_1 + \delta \rceil$ on trouve :

LEMME 6.3. Si $n + 2 - \max\{\dim V_1^*, \dim V_2^*\} > \mathfrak{m}' = \max\{\mathfrak{m}_1, \mathfrak{m}'_2\}, d_2 = 1 \text{ et } P_1 \ge 1, \text{ alors}$

$$\sum_{\boldsymbol{x}\in P_{1}\mathcal{B}_{1}\cap\mathcal{A}_{2}^{\lambda}(\mathbb{Z})} \frac{\operatorname{Vol}(C_{d,\boldsymbol{x}})}{\det(\Lambda_{d,\boldsymbol{x}})} = \sigma_{d}P_{1}^{m+1-d_{1}} + O(d^{m-r}\max\{d^{d_{1}(r+1)/2^{d_{1}-1}+\varepsilon}, d^{3-d_{1}}\}P_{1}^{m+1-d_{1}-\delta}).$$

Nous sommes en mesure de démontrer la proposition suivante :

PROPOSITION 6.4. Si $d_1 \ge 2$, $P_1 \ge P_2$ et $n + 2 - \max\{\dim V_1^*, \dim V_2^*\} > \mathfrak{m}$, alors

$$\widetilde{N}_{d,1}(P_1, P_2) = \sigma_d P_1^{m+1-d_1} P_2^{n-r+1-d_2} + O\left(d^{m-r} \max\{d^{\frac{(r+1)(d_1-1)}{2^{d_1-1}}+\varepsilon}, d^{3-d_1}\} P_1^{m+1-d_1} P_2^{n-r+1-d_2-\delta}\right).$$

Démonstration. On suppose dans un premier temps que $b \ge b_1$. Alors, puisque $n + 2 - \max\{\dim V_1^*, \dim V_2^*\} > \mathfrak{m}$ et puisque les fonctions g_1 et g'_1 sont décroissantes en b,

$$K_1/2 - 2(d_1 - 1) > g_1(b_1, \delta) > g_1(b, \delta),$$

$$K_1/3 - \frac{7}{3}(d_1 - 1) > g_1'(b_1, \delta) > g_1'(b, \delta).$$

Par conséquent, on peut appliquer les propositions 5.15 et 5.24 et on a

$$\begin{split} N_{d,1}^{(1)}(P_1,P_2) &+ \widetilde{N}_{d,1}^{(2)}(P_1,P_2) \\ &= \Big(\sum_{\boldsymbol{z}\in P_2\mathcal{B}_3\cap\mathcal{A}_1^{\mu}(\mathbb{Z})} \mathfrak{S}_{d,\boldsymbol{z}} J_{\boldsymbol{z}} |\boldsymbol{z}|^{m-r} + \sum_{l=1}^{P_2} \sum_{\boldsymbol{z}\in P_2\mathcal{B}_3\cap\mathcal{A}_1^{\mu}(\mathbb{Z})} \mathfrak{S}_{d,\boldsymbol{z}} J_{l,\boldsymbol{z}} l^{m-r} \Big) \\ &+ O\Big(d^{m-r} \max\{d^{\frac{(r+1)(d_1-1)}{2^{d_1-1}} + \varepsilon}, d^{3-d_1}\} P_1^{m+1-d_1-\delta} P_2^{n-r+1-d_2} \Big) \\ &= \sigma_d P_1^{m+1-d_1} P_2^{n-r+1-d_2} \\ &+ O\Big(d^{m-r} \max\{d^{\frac{(r+1)(d_1-1)}{2^{d_1-1}} + \varepsilon}, d^{3-d_1}\} P_1^{m+1-d_1} P_2^{n-r+1-d_2-\delta} \Big) \end{split}$$

par le lemme précédent. En utilisant l'égalité apparaissant dans (6.8), on a $\widetilde{N}_{d,1}(P_1, P_2) = \sigma_d P_1^{m+1-d_1} P_2^{n-r+1-d_2} + O(d^{m-r} \max\{d^{\frac{(r+1)(d_1-1)}{2^{d_1-1}} + \varepsilon}, d^{3-d_1}\} P_1^{m+1-d_1} P_2^{n-r+1-d_2-\delta}).$

$$+ O(d^{m-r} \max\{d^{\frac{1}{2^{d_1-1}}} + \varepsilon, d^{3-d_1}\}P_1^{m+1-d_1}P_2^{n-r+1-d_2}$$

Si l'on suppose à présent $b < b_1$, on a

$$K > \max\{b_1d_1 + d_2, (5b_1 + 2)(\tilde{d} + 1) > \max\{bd_1 + d_2, (5b + 2)(\tilde{d} + 1)\}.$$

Par la proposition 3.19, on a donc

$$N_d(P_1, P_2) = \sigma_d P_1^{m+1-d_1} P_2^{n-r+1-d_2} + O\left(d^{m-r} \max\{d^{\frac{(r+1)(d_1-1)}{2^{d_1-1}} + \varepsilon}, d^{3-d_1}\} P_1^{m+1-d_1-\delta} P_2^{n-r+1-d_2-\delta}\right)$$

Or comme dans la démonstration du lemme 6.1,

$$\widetilde{N}_{d,1}(P_1, P_2) = N_d(P_1, P_2) + O\left(d^{m-r} \max\{d^{\frac{(r+1)(d_1-1)}{2^{d_1-1}} + \varepsilon}, d^{3-d_1}\}P_1^{m+1-d_1}P_2^{n-r+1-d_2-\delta}\right).$$

Si l'on note

(6.9)
$$\tilde{N}_{d,2}(P_1, P_2) = \operatorname{card}\left\{ (\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z}) \in \mathbb{Z}^{n+2} \mid \boldsymbol{x} \in \mathcal{A}_2^{\lambda}(\mathbb{Z}), \, |\boldsymbol{x}| \le P_1, \\ \max\left(\left\lfloor \frac{|\boldsymbol{y}|}{d|\boldsymbol{x}|} \right\rfloor, |\boldsymbol{z}| \right) \le P_2, \, F(d\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z}) = 0 \right\},$$

on a un résultat analogue :

PROPOSITION 6.5. Si $d_1, d_2 \ge 2, P_1 \le P_2 et n+2-\max\{\dim V_1^*, \dim V_2^*\} > \mathfrak{m}, alors$

$$\widetilde{N}_{d,2}(P_1, P_2) = \sigma_d P_1^{m+1-d_1} P_2^{n-r+1-d_2} + O(d^{m-r} \max\{d^{d_1(r+1)/2^{\tilde{d}}+\varepsilon}, d^{5d_1}\} P_1^{m+1-d_1-\delta} P_2^{n-r+1-d_2}).$$

Si
$$d_1 \ge 2$$
, $d_2 = 1$, $P_1 \le P_2$ et $n + 2 - \max\{\dim V_1^*, \dim V_2^*\} > \mathfrak{m}'$, alors
 $\widetilde{N}_{d,2}(P_1, P_2) = \sigma_d P_1^{m+1-d_1} P_2^{n-r} + O(d^{m-r} \max\{d^{d_1(r+1)/2^{d_1-1}}+\varepsilon, d^{3-d_1}\} P_1^{m+1-d_1-\delta} P_2^{n-r})$

Considérons à présent l'ouvert de Zariski

(6.10)
$$U = \mathcal{A}_2^{\lambda} \times \mathbb{A}_{\mathbb{C}}^{m-r} \times \mathcal{A}_1^{\mu} \subset \mathbb{A}_{\mathbb{C}}^{n+2}$$

On note alors

(6.11)
$$\widetilde{N}_{d,U}(P_1, P_2) = \operatorname{card} \left\{ (\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z}) \in \mathbb{Z}^{n+2} \cap U \ \middle| \ |\boldsymbol{x}| \le P_1, \\ \max\left(\left\lfloor \frac{|\boldsymbol{y}|}{d|\boldsymbol{x}|} \right\rfloor, |\boldsymbol{z}| \right) \le P_2, \ F(d\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z}) = 0 \right\},$$

On en déduit :

PROPOSITION 6.6. Si $d_1, d_2 \ge 2$ et $n + 2 - \max\{\dim V_1^*, \dim V_2^*\} > \mathfrak{m}$, alors

$$\widetilde{N}_{d,U}(P_1, P_2) = \sigma_d P_1^{m+1-d_1} P_2^{n-r+1-d_2} + O_{\delta} \left(d^{m-r} \max\{ d^{\frac{(r+1)(d_1-1)}{2^{d_1-1}} + \varepsilon}, d^{5d_1} \} P_1^{m+1-d_1} P_2^{n-r+1-d_2} \min\{P_1, P_2\}^{-\delta} \right)$$

pour $\delta > 0$ arbitrairement petit. Pour $d_1 \ge 2$, $d_2 = 1$, $P_1 \le P_2$ et $n + 2 - \max\{\dim V_1^*, \dim V_2^*\} > \mathfrak{m}'$, on a

$$\widetilde{N}_{d,U}(P_1, P_2) = \sigma_d P_1^{m+1-d_1} P_2^{n-r} + O_{\delta} \left(d^{m-r} \max\{ d^{\frac{d_1(r+1)}{2^{d_1-1}} + \varepsilon}, d^{3-d_1} \} P_1^{m+1-d_1} P_2^{n-r} \min\{P_1, P_2\}^{-\delta} \right).$$

Démonstration. On suppose $P_1 \ge P_2$. On évalue le terme d'erreur :

$$|\tilde{N}_{d,U}(P_1, P_2) - \tilde{N}_{d,1}(P_1, P_2)| \ll d^{m-r} P_1^{m+1-d_1-\delta} P_2^{n-r+1-d_2}$$

car $u_1 \ge 1$. Si $P_1 \le P_2$, on obtient le même résultat pour $|\tilde{N}_{d,U}(P_1, P_2) - \tilde{N}_{d,2}(P_1, P_2)|$.

7. Cinquième étape

7.1. Un résultat intermédiaire. Nous allons à présent utiliser la formule obtenue pour $\widetilde{N}_{d,U}(P_1, P_2)$ dans la proposition 6.6 pour trouver une formule asymptotique pour $N_{d,U}(B)$. Pour cela, nous allons appliquer une version légèrement modifiée (tenant compte de la dépendance en d des fonctions de comptage) de la méthode développée par Blomer et Brüdern [B-B] pour le cas des hypersurfaces diagonales des espaces multiprojectifs, et reprise dans [Sch2, §9]. Pour tout $d \in \mathbb{N}^*$, on considère une fonction $f_d : \mathbb{N}^2 \to [0, \infty[$. Conformément aux notations de [B-B], on dira que f_d est une $(\beta_1, \beta_2, C_d, D, \alpha, \upsilon, \delta)$ fonction si elle vérifie les conditions suivantes :

(1) On a

$$\sum_{\leq K, l \leq L} f_d(k, l) = C_d K^{\beta_1} L^{\beta_2} + O(d^{\upsilon} K^{\beta_1} L^{\beta_2} \min\{K, L\}^{-\delta})$$

pour tous $K, L \ge 1$.

k

(2) Il existe des fonctions $c_{1,d}, c_{2,d} : \mathbb{N} \to [0, \infty]$ telles que

$$\sum_{l \le L} f_d(k, l) = c_{d,1}(k) L^{\beta_2} + O(k^D d^v L^{\beta_2 - \delta})$$

uniformément pour tous $L \ge 1$ et $k \le d^{-1}L^{\alpha}$, et

$$\sum_{k\leq K}f_d(k,l)=c_{d,2}(l)K^{\beta_1}+O(l^Dd^{\upsilon}K^{\beta_1-\delta})$$

uniformément pour tous $K \ge 1$ et $l \le d^{-1}K^{\alpha}$.

Nous allons alors démontrer, en nous inspirant des arguments de [Sch2, \S 9], la proposition suivante qui est une adaptation de [B-B, Théorème 2.1] pour le cas d'une famille de fonctions dépendant d'un paramètre d:

PROPOSITION 7.1. Si $(f_d)_{d \in \mathbb{N}^*}$ est une famille de $(\beta_1, \beta_2, C_d, D, \alpha, \upsilon, \delta)$ fonctions avec $(C_d)_{d \in \mathbb{N}^*}$ telle que $C_d \ll d^{\upsilon}$, alors, pour tout d,

$$\sum_{k^{\beta_1}l^{\beta_2} \le P} f_d(k,l) = C_d P \log(P) + O(d^{\nu+\delta} \log(d)P).$$

On considère $(f_d)_{d\in\mathbb{N}^*}$ une famille de $(\beta_1, \beta_2, C_d, D, \alpha, \upsilon, \delta)$ -fonctions avec $C_d \ll d^{\upsilon}$, et on définit

$$F_d(K,L) = \sum_{k \le K} \sum_{l \le L} f_d(k,l).$$

LEMME 7.2. Pour tout $d \in \mathbb{N}^*$,

$$\sum_{k \le K} c_{d,1}(k) = C_d K^{\beta_1} + O(d^{\upsilon} K^{\beta_1 - \delta}), \qquad \sum_{l \le L} c_{d,2}(l) = C_d L^{\beta_2} + O(d^{\upsilon} L^{\beta_2 - \delta}).$$

Démonstration. D'après la condition (1),

(7.1)
$$F_d(K,L) = C_d K^{\beta_1} L^{\beta_2} + O(d^{\upsilon} K^{\beta_1} L^{\beta_2} \min\{K,L\}^{-\delta}).$$

Pour $L \ge 1$ et $K \le L^{\alpha}$, la condition (2) implique

$$F_d(K,L) = \sum_{k \le K} \left(\sum_{l \le L} f_d(k,l) \right) = \sum_{k \le K} (c_{d,1}(k)L^{\beta_2} + O(k^D d^v L^{\beta_2 - \delta}))$$
$$= L^{\beta_2} \sum_{k \le K} c_{d,1}(k) + O(d^v K^{D+1} L^{\beta_2 - \delta}).$$

En choisissant L tel que $K \leq L^{\alpha}$ et $K^{D+1}L^{-\delta} = O(K^{\beta_1-\delta})$, on obtient alors, en utilisant la formule (7.1),

$$\sum_{k \le K} c_{d,1}(k) = C_d K^{\beta_1} + O(d^{\upsilon} K^{\beta_1 - \delta}).$$

LEMME 7.3. On fixe un réel μ tel que

(7.2)
$$0 < \beta_1 \mu < 1/2,$$

(7.3)
$$\mu\left(1+\alpha\frac{\beta_1}{\beta_2}\right) \le \frac{\alpha}{\beta_2},$$

(7.4)
$$\mu\left(D-\beta_1+1+\delta\frac{\beta_1}{\beta_2}\right) < \frac{\delta}{2\beta_2}.$$

 $On \ pose$

$$T_{d,1} = \sum_{k \le d^{-1} P^{\mu}} \sum_{P^{1/2} < l^{\beta_2} \le P/k^{\beta_1}} f_d(k,l).$$

A lors

$$T_{d,1} = \beta_1 \mu C_d P \log(P) + O(d^{\nu+\delta} \log(d)P).$$

Démonstration. On remarque dans un premier temps que

$$T_{d,1} = \sum_{k \le d^{-1}P^{\mu}} \sum_{k^{\beta_1} l^{\beta_2} \le P} f_d(k,l) - F_d(d^{-1}P^{\mu}, P^{1/(2\beta_2)})$$

avec

$$F_d(d^{-1}P^{\mu}, P^{1/(2\beta_2)}) = O(d^{\nu}P^{\beta_1\mu + 1/2}) = O(d^{\nu}P).$$

D'autre part, par l'hypothèse (7.3), pour tout $k \leq d^{-1}P^{\mu},$

$$k^{1+\alpha\beta_1/\beta_2} \le d^{-(1+\alpha\beta_1/\beta_2)}P^{(1+\alpha\beta_1/\beta_2)\mu} \le d^{-1}P^{\alpha/\beta_2}$$

et donc $k \leq d^{-1} (P^{1/\beta_2}/k^{\beta_1/\beta_2})^{\alpha}$. La condition (2) donne alors $\sum_{k=1}^{\infty} (P^{1/\beta_2}/k^{\beta_1/\beta_2})^{\alpha} = O(k^D d^{\nu} (P^{1/\beta_2}/k^{\beta_1/\beta_2})^{\beta_2-\delta})$

$$\begin{split} T_{d,1} &= \sum_{k \leq d^{-1}P^{\mu}} \left(c_{d,1}(k) (P^{1/\beta_2}/k^{\beta_1/\beta_2})^{\beta_2} + O\left(k^D d^{\upsilon}(P^{1/\beta_2}/k^{\beta_1/\beta_2})^{\beta_2 - \delta}\right) \right) \\ &+ O(d^{\upsilon}P) \\ &= \left(\sum_{k \leq d^{-1}P^{\mu}} \frac{c_{d,1}(k)}{k^{\beta_1}} \right) P + O\left(\left(\sum_{k \leq d^{-1}P^{\mu}} k^{D - \beta_1 + \delta\beta_1/\beta_2} \right) d^{\upsilon}P^{1 - \delta/\beta_2} \right) \\ &+ O(d^{\upsilon}P) \\ &= \left(\sum_{k \leq d^{-1}P^{\mu}} \frac{c_{d,1}(k)}{k^{\beta_1}} \right) P + O(P^{\mu(D - \beta_1 + 1 + \delta\beta_1/\beta_2)}) d^{\upsilon}P^{1 - \delta/\beta_2} \\ &+ O(d^{\upsilon}P) \\ &= \left(\sum_{k \leq d^{-1}P^{\mu}} \frac{c_{d,1}(k)}{k^{\beta_1}} \right) P + O(d^{\upsilon}P). \end{split}$$

78

Il nous faut à présent évaluer $\sum_{k \le d^{-1}P^{\mu}} c_{d,1}(k)/k^{\beta_1}$. Par sommation par parties, et en utilisant le lemme précédent, on a

$$\begin{split} \sum_{k \leq d^{-1}P^{\mu}} \frac{c_{d,1}(k)}{k^{\beta_1}} &= d^{\beta_1}P^{-\mu\beta_1} \sum_{k \leq d^{-1}P^{\mu}} c_{d,1}(k) + \beta_1 \int_{1}^{d^{-1}P^{\mu}} t^{-\beta_1 - 1} \sum_{k \leq t} c_{d,1}(k) \, dt \\ &= d^{\beta_1}P^{-\mu\beta_1} (C_d d^{-\beta_1}P^{\mu\beta_1} + O(d^{\upsilon - \beta_1 + \delta}P^{\mu\beta_1 - \delta\mu})) \\ &+ \beta_1 \int_{1}^{d^{-1}P^{\mu}} t^{-\beta_1 - 1} (C_d t^{\beta_1} + O(d^{\upsilon}t^{\beta_1 - \delta})) \, dt \\ &= C_d + O(d^{\upsilon + \delta}P^{-\delta\mu}) + \beta_1 C_d \log(P^{\mu}) + O(d^{\upsilon}\log(d)) \\ &= \beta_1 C_d \log(P^{\mu}) + O(d^{\upsilon + \delta}). \quad \bullet \end{split}$$

LEMME 7.4. On suppose $0 < \mu < \min\left\{\frac{1}{2\beta_1}, \frac{1}{2\beta_2}\right\}$, et on définit

$$T_{d,2} = \sum_{d^{-1}P^{\mu} < k \le P^{1/(2\beta_1)}} \sum_{P^{1/2} < l^{\beta_2} \le P/k^{\beta_1}} f_d(k,l).$$

Alors

$$T_{d,2} = (1/2 - \beta_1 \mu) C_d P \log(P) + O(d^{\nu+\delta} \log(d)P).$$

 $D\acute{e}monstration.$ On fixe $d\in\mathbb{N}^*.$ On considère un entier J assez grand et on définit $\theta>0$ via

$$(1+\theta)^J = dP^{1/(2\beta_1)-\mu}$$

On considère alors des réels $d^{-1}P^{\mu} \leq K < K' \leq P^{1/(2\beta_1)}$ avec $K' = K(1+\theta).$ On définit

$$V(K) = \sum_{K < k \le K'} \sum_{P^{1/2} < l^{\beta_2} \le P/k^{\beta_1}} f_d(k, l),$$

$$V_-(K) = \sum_{K < k \le K'} \sum_{P^{1/2} < l^{\beta_2} \le P/(K')^{\beta_1}} f_d(k, l),$$

$$V_+(K) = \sum_{K < k \le K'} \sum_{P^{1/2} < l^{\beta_2} \le P/K^{\beta_1}} f_d(k, l),$$

et on remarque que

$$V_{-}(K) \le V(K) \le V_{+}(K).$$

Par ailleurs,

$$V_{+}(K) = F_{d}(K', P^{1/\beta_{2}}/K^{\beta_{1}/\beta_{2}}) - F_{d}(K, P^{1/\beta_{2}}/K^{\beta_{1}/\beta_{2}}) - F_{d}(K', P^{1/(2\beta_{2})}) + F_{d}(K, P^{1/(2\beta_{2})}).$$

 Or

$$\begin{split} F_d(K', P^{1/\beta_2}/K^{\beta_1/\beta_2}) &- F_d(K, P^{1/\beta_2}/K^{\beta_1/\beta_2}) \\ &= C_d((K')^{\beta_1} - K^{\beta_1})PK^{-\beta_1} + O(d^{\upsilon}(K')^{\beta_1}PK^{-\beta_1}\min\{K', P^{1/\beta_2}K^{-\beta_1/\beta_2}\}^{-\delta}) \\ &= C_d((1+\theta)^{\beta_1} - 1)P + O(d^{\upsilon+\delta}(1+\theta)^{\beta_1}P^{1-\mu\delta}), \end{split}$$

d'après (7.2). En remarquant que $(1 + \theta)^{\beta_1} = 1 + \beta_1 \theta + O(\theta^2)$, on obtient

$$F_d(K', P^{1/\beta_2}/K^{\beta_1/\beta_2}) - F_d(K, P^{1/\beta_2}/K^{\beta_1/\beta_2}) = C_d\beta_1\theta P + O(d^{\nu+\delta}P^{1-\mu\delta}) + O(d^{\nu}\theta^2 P).$$

De la même manière on trouve

$$\begin{aligned} F_d(K', P^{1/(2\beta_2)}) - F_d(K, P^{1/(2\beta_2)}) \\ &= C_d \beta_1 \theta K^{\beta_1} P^{1/2} + O(d^{\upsilon} P^{1-\mu\delta}) + O(d^{\upsilon} \theta^2 P). \end{aligned}$$

On en déduit

$$V_{+}(K) = C_{d}\beta_{1}\theta P + C_{d}\beta_{1}\theta K^{\beta_{1}}P^{1/2} + O(d^{\upsilon}P^{1-\mu\delta}) + O(d^{\upsilon}\theta^{2}P).$$

Par des arguments analogues, on obtient la même estimation pour $V_-(K)$, et donc

$$V(K) = C_d \beta_1 \theta P + C_d \beta_1 \theta K^{\beta_1} P^{1/2} + O(d^{\nu+\delta} P^{1-\mu\delta}) + O(d^{\nu} \theta^2 P).$$

On pose à présent, pour tout entier j tel que $0 \leq j < J,$

$$K_j = d^{-1} P^\mu (1+\theta)^j$$

Alors

$$T_{d,2} = \sum_{0 \le j < J} V(K_j)$$

= $C_d \beta_1(J\theta) P + C_d \beta_1 \theta P^{1/2} \sum_{j=0}^{J-1} K_j^{\beta_1} + O(d^{\nu+\delta} J P^{1-\mu\delta}) + O(d^{\nu} J \theta^2 P).$

Or

$$\begin{split} \theta \sum_{j=0}^{J-1} K_j^{\beta_1} &= \theta d^{-\beta_1} P^{\beta_1 \mu} \frac{(1+\theta)^{J\beta_1} - 1}{(1+\theta)^{\beta_1} - 1} = d^{-\beta_1} P^{\beta_1 \mu} \frac{d^{\beta_1} P^{1/2 - \beta_1 \mu} - 1}{\beta_1 + O(\theta)} \\ &= \frac{1}{\beta_1} P^{1/2} + O(d^{-\beta_1} P^{\beta_1 \mu}) + O(P^{1/2} \theta). \end{split}$$

On obtient alors

$$\begin{split} T_{d,2} &= C_d \beta_1 (J\theta) P + C_d P + O(d^{\upsilon - \beta_1} P^{1/2 + \beta_1 \mu}) \\ &+ O(d^{\upsilon} \theta^2 P) + O(d^{\upsilon + \delta} J P^{1 - \mu \delta}) + O(d^{\upsilon} J \theta^2 P) \\ &= C_d \beta_1 (J\theta) P + O(d^{\upsilon} J \theta^2 P) + O(d^{\upsilon} P) + O(d^{\upsilon + \delta} J P^{1 - \mu \delta}). \end{split}$$

On choisit à présent

$$J = \left\lfloor P^{\mu\delta/2} \left(\left(\frac{1}{2\beta_1} - \mu \right) \log(P) + \log(d) \right) \right\rfloor.$$

Par définition de θ on a

$$J\log(\theta+1) = \left(\frac{1}{2\beta_1} - \mu\right)\log(P) + \log(d),$$

et donc

$$\theta = J^{-1} \left(\left(\frac{1}{2\beta_1} - \mu \right) \log(P) + \log(d) \right)$$
$$+ O\left(J^{-2} \left(\left(\frac{1}{2\beta_1} - \mu \right) \log(P) + \log(d) \right)^2 \right).$$

On en déduit

$$J\theta = \left(\left(\frac{1}{2\beta_1} - \mu \right) \log(P) + \log(d) \right) \\ + O\left(P^{-\mu\delta/2} \left(\left(\frac{1}{2\beta_1} - \mu \right) \log(P) + \log(d) \right) \right).$$

Par conséquent

$$T_{d,2} = C_d \beta_1 \left(\frac{1}{2\beta_1} - \mu\right) P \log(P) + C_d \beta_1 \log(d) P$$
$$+ O(d^{\nu+\delta} \log(d) P^{1-\mu\delta/2} \log(P)) + O(d^{\nu}P),$$

et le lemme est démontré. \blacksquare

Démonstration de la proposition 7.1. On écrit

$$\begin{split} \sum_{k^{\beta_1}l^{\beta_2} \leq P} & f_d(k,l) = \sum_{\substack{k^{\beta_1}l^{\beta_2} \leq P \\ P^{1/2} < l^{\beta_2}}} & f_d(k,l) + \sum_{\substack{k^{\beta_1}l^{\beta_2} \leq P \\ P^{1/2} < k^{\beta_1}}} & f_d(k,l) + F_d(P^{1/(2\beta_1)}, P^{1/(2\beta_2)}) \\ & = \sum_{\substack{k^{\beta_1}l^{\beta_2} \leq P \\ P^{1/2} < l^{\beta_2}}} & f_d(k,l) + \sum_{\substack{k^{\beta_1}l^{\beta_2} \leq P \\ P^{1/2} < k^{\beta_1}}} & f_d(k,l) + O(d^{\upsilon}P). \end{split}$$

On remarque alors que

$$\sum_{\substack{k^{\beta_1}l^{\beta_2} \le P\\P^{1/2} < l^{\beta_2}}} f_d(k,l) = T_{d,1} + T_{d,2} = \frac{1}{2} C_d P \log(P) + O(d^{\upsilon+\delta} \log(d)P),$$

d'après les deux lemmes précédents. Par symétrie, on obtient exactement le même résultat pour $\sum_{k^{\beta_1}l^{\beta_2} \leq P, P^{1/2} < k^{\beta_1}} f_d(k,l)$, et la proposition est démontrée. \blacksquare

REMARQUE 7.5. Par les mêmes arguments et sous les mêmes hypothèses,

$$\sum_{k^{\beta_1}(l+1)^{\beta_2} \le P} f_d(k,l) = C_d P \log(P) + O(d^{\nu+\delta} \log(d)P).$$

Cette remarque nous sera utile dans ce qui va suivre.

7.2. Formule asymptotique pour $N_{d,U}(B)$. L'idée est d'appliquer la proposition 7.1 à la fonction $h_d(k, l)$ définie en (3.1). Pour cela nous allons montrer que cette fonction est bien une $(\beta_1, \beta_2, C_d, D, \alpha, v, \delta)$ -fonction (pour des constantes $C_d, \delta, \beta_1, \beta_2, \alpha, v, D$ que nous préciserons).

Remarquons avant tout que, d'après la proposition 6.6, la fonction h vérifie bien la condition (1) avec $\beta_1 = m + 1 - d_1$, $\beta_2 = n - r + 1 - d_2$, $C_d = \sigma_d$ et $\upsilon = m - r + \max\{(r+1)(d_1-1)/2^{d_1-1} + \varepsilon, 5d_1\}$. D'autre part, par les corollaires 5.14 et 5.23, pour tout $\boldsymbol{z} \in \mathcal{A}_1^{\mu}(\mathbb{Z})$ et $P_2 \leq P_1$, on a

$$N_{d,\boldsymbol{z}}(P_1) = \mathfrak{S}_{d,\boldsymbol{z}} J_{\boldsymbol{z}} d^{m-r-d_1} l^{m-r} P_1^{m+1-d_1} + O(d^v l^{m-r+4d_2} P_1^{m+1-d_1-\delta}),$$

$$N_{d,l,\boldsymbol{z}}(P_1) = \mathfrak{S}_{d,\boldsymbol{z}} J_{l,\boldsymbol{z}} d^{m-r-d_1} l^{m-r} P_1^{m+1-d_1} + O(d^v l^{m-r+4d_2} P_1^{m+1-d_1-\delta})$$

uniformément pour tout $\boldsymbol{z}, l < P_1^{(d_1-1)/(2d_2)}$ et $\boldsymbol{z} \in \mathcal{A}_1^{\mu}(\mathbb{Z})$. En notant

(7.5)
$$\widetilde{N}_{d,U,l}(P_1) = \operatorname{card}\left\{ (\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z}) \in \mathbb{Z}^{n+2} \cap U \ \middle| \ F(d\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z}) = 0, \ \middle| \boldsymbol{x} \middle| \le P_1, \\ l = \max\left(\left\lfloor \frac{|\boldsymbol{y}|}{d|\boldsymbol{x}|} \right\rfloor, |\boldsymbol{z}| \right) \right\},$$

on a alors

$$\widetilde{N}_{d,U,l}(P_{1}) = \sum_{k \leq P_{1}} h_{d}(k,l) = \sum_{\substack{\boldsymbol{z} \in \mathcal{A}_{1}^{\mu}(\mathbb{Z}) \\ |\boldsymbol{z}| = l}} N_{d,\boldsymbol{z}}(P_{1}) + \sum_{\substack{\boldsymbol{z} \in \mathcal{A}_{1}^{\mu}(\mathbb{Z}) \\ |\boldsymbol{z}| \leq l}} N_{d,l,\boldsymbol{z}}(P_{1}) \\ + O(d^{m-r}l^{n-r+1}P_{1}^{m+1-\lambda}) \\ = \left(\sum_{\substack{\boldsymbol{z} \in \mathcal{A}_{1}^{\mu}(\mathbb{Z}) \\ |\boldsymbol{z}| = l}} \mathfrak{S}_{d,\boldsymbol{z}}J_{\boldsymbol{z}} + \sum_{\substack{\boldsymbol{z} \in \mathcal{A}_{1}^{\mu}(\mathbb{Z}) \\ |\boldsymbol{z}| \leq l}} \mathfrak{S}_{d,\boldsymbol{z}}J_{l,\boldsymbol{z}}\right) l^{m-r}d^{m-r-d_{1}}P_{1}^{m+1-d_{1}} \\ + O(d^{\upsilon}l^{n-r+1+4d_{2}}P_{1}^{m+1-d_{1}-\delta})$$

uniformément pour tout $l < P_1^{(d_1-1)/(2d_2)}$. De même, d'après le corollaire 4.15, $N_{d,\boldsymbol{x}}(P_2) = \mathfrak{S}_{d,\boldsymbol{x}} J_{d,\boldsymbol{x}} d^{m-r} k^{m-r} P_2^{n-r+1-d_2} + O(d^v k^{m-r+4d_1} P_2^{n-r+1-d_2-\delta})$

uniformément pour tout $k < P_2^{(d_2-1)/(2d_1)}$ et $\boldsymbol{x} \in \mathcal{A}_2^{\lambda}(\mathbb{Z})$. En notant

(7.6)
$$\widetilde{N}_{d,U,k}(P_2) = \operatorname{card}\left\{ (\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z}) \in \mathbb{Z}^{n+2} \cap U \ \middle| \ F(\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z}) = 0, \ |\boldsymbol{x}| = k, \\ \max\left(\left\lfloor \frac{|\boldsymbol{y}|}{d|\boldsymbol{x}|} \right\rfloor, |\boldsymbol{z}| \right) \leq P_2 \right\},$$

on voit que

$$\widetilde{N}_{d,U,k}(P_2) = \sum_{l \le P_2} h_d(k,l) = \sum_{\substack{\boldsymbol{x} \in \mathcal{A}_2^{\lambda}(\mathbb{Z}) \\ |\boldsymbol{x}| = k}} N_{d,\boldsymbol{x}}(P_2) + O(d^{m-r}k^{m+1}P_2^{n-r+1-\mu})$$
$$= \sum_{\substack{\boldsymbol{x} \in \mathcal{A}_2^{\lambda}(\mathbb{Z}) \\ |\boldsymbol{x}| = k}} \mathfrak{S}_{d,\boldsymbol{x}} J_{d,\boldsymbol{x}} k^{m-r} d^{m-r} P_2^{n-r+1-d_2}$$
$$+ O(d^{\upsilon}k^{m+1+4d_1} P_2^{n-r+1-d_2-\delta})$$

uniformément pour tout $k < d^{-1}P_2^{(d_2-1)/(2d_1)}.$ Par conséquent, h_d vérifie bien la condition (2) avec

$$\begin{split} c_{d,1}(k) &= \sum_{\substack{\boldsymbol{x} \in \mathcal{A}_{2}^{\lambda}(\mathbb{Z}) \\ |\boldsymbol{x}| = k}} \mathfrak{S}_{d,\boldsymbol{x}} J_{d,\boldsymbol{x}} k^{m-r} d^{m-r}, \\ c_{d,2}(l) &= \Big(\sum_{\substack{\boldsymbol{z} \in \mathcal{A}_{1}^{\mu}(\mathbb{Z}) \\ |\boldsymbol{z}| = l}} \mathfrak{S}_{d,\boldsymbol{z}} J_{\boldsymbol{z}} + \sum_{\substack{\boldsymbol{z} \in \mathcal{A}_{1}^{\mu}(\mathbb{Z}) \\ |\boldsymbol{z}| \leq l}} \mathfrak{S}_{d,\boldsymbol{z}} J_{l,\boldsymbol{z}} \Big) l^{m-r} d^{m-r-d_{1}}, \\ D &= \max\{m+1+4d_{1}, n-r+1+4d_{2}\}, \\ \alpha &= \min\left\{\frac{d_{2}-1}{2d_{1}}, \frac{d_{1}-1}{2d_{2}}\right\}. \end{split}$$

On a donc montré que h_d est une $(m+1-d_1,n-r+1-d_2,\sigma_d,D,\alpha,\upsilon,\delta)$ -fonction, et donc en notant

$$\begin{split} \tilde{N}_{d,U}^{(1)}(B) &= \operatorname{card} \left\{ (\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z}) \in \mathbb{Z}^{n+2} \cap U \ \middle| \ \boldsymbol{x} \neq \boldsymbol{0}, \ (\boldsymbol{y}, \boldsymbol{z}) \neq (\boldsymbol{0}, \boldsymbol{0}), \\ F(d\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z}) &= 0, \ |\boldsymbol{x}|^{m+1-d_1} \max\left(\left\lfloor \frac{|\boldsymbol{y}|}{d|\boldsymbol{x}|} \right\rfloor, |\boldsymbol{z}| \right)^{n-r+1-d_2} \leq B \right\} \end{split}$$

 et

$$\begin{split} \tilde{N}_{d,U}^{(2)}(B) &= \operatorname{card} \left\{ (\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z}) \in \mathbb{Z}^{n+2} \cap U \ \middle| \ \boldsymbol{x} \neq \boldsymbol{0}, \ (\boldsymbol{y}, \boldsymbol{z}) \neq (\boldsymbol{0}, \boldsymbol{0}), \\ F(d\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z}) &= 0, \ |\boldsymbol{x}|^{m+1-d_1} \max\left(\left\lfloor \frac{|\boldsymbol{y}|}{d|\boldsymbol{x}|} \right\rfloor + 1, |\boldsymbol{z}| + 1 \right)^{n-r+1-d_2} \leq B \right\}, \end{split}$$

la proposition 7.1 et la remarque 7.5 donnent

$$\tilde{N}_{d,U}^{(i)}(B) = \sigma_d B \log(B) + O\left(d^{\nu} \log(d)B\right)$$

pour $i \in \{1, 2\}$. Par ailleurs, on observe que $\tilde{N}_{d,U}^{(2)}(B) \leq N_{d,U}(B) \leq \tilde{N}_{d,U}^{(1)}(B)$, et on en déduit finalement :

PROPOSITION 7.6. Si $d_1, d_2 \ge 2$ et $n + 2 - \max\{\dim V_1^*, \dim V_2^*\} > \mathfrak{m}$, ou si $d_1 \ge 2$, $d_2 = 1$ et $n + 2 - \max\{\dim V_1^*, \dim V_2^*\} > \mathfrak{m}'$, alors pour tout $B \geq 1$, on a

$$N_{d,U}(B) = \sigma_d B \log(B) + O(d^{\nu+\delta} \log(d)B)$$

pour un certain $\delta > 0$ arbitrairement petit.

REMARQUE 7.7. Nous avons vu (dans (6.3)) que $\mathfrak{m} \leq 13d_2(d_1+d_2)2^{d_1+d_2}$. De la même manière on montre que $\mathfrak{m}' \leq 13d_2(d_1+d_2)2^{d_1+d_2}$. Par conséquent, la formule asymptotique ci-dessus est en particulier vraie lorsque $n+2-\max\{\dim V_1^*, \dim V_2^*\}>13d_2(d_1+d_2)2^{d_1+d_2}.$

8. Conclusion et interprétation des constantes. Nous sommes à présent en mesure de donner une formule asymptotique pour

$$\mathcal{N}_U(B) = \frac{1}{4} \operatorname{card}\{(\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z}) \in U \cap \mathbb{Z}^{n+2} \mid \operatorname{pgcd}(\boldsymbol{x}) = 1, \operatorname{pgcd}(\boldsymbol{y}, \boldsymbol{z}) = 1, \\ F(\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z}) = 0, H(\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z}) \leq B\}.$$

On remarque en effet que si
$$N_{d,e}(B)$$
 désigne
 $\operatorname{card}\{(d\boldsymbol{x}, e\boldsymbol{y}, e\boldsymbol{z}) \in U \cap (d\mathbb{Z}^{r+1} \times e\mathbb{Z}^{n-r+1}) \mid F(d\boldsymbol{x}, e\boldsymbol{y}, e\boldsymbol{z}) = 0,$
 $H(d\boldsymbol{x}, e\boldsymbol{y}, e\boldsymbol{z}) \leq B\}$
 $= \operatorname{card}\left\{(\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z}) \in U \cap (\mathbb{Z}^{r+1} \times \mathbb{Z}^{n-r+1}) \mid F(d\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z}) = 0,$
 $|\boldsymbol{x}|^{m+1-d_1} \max\left\{\frac{|\boldsymbol{y}|}{d|\boldsymbol{x}|}, |\boldsymbol{z}|\right\}^{n-r+1-d_2} \leq B/(d^{m+1-d_1}e^{n-r+1-d_2})\right\}$
 $= N_{d,U}(B/(d^{m+1-d_1}e^{n-r+1-d_2}))$

 et

 \cap

$$\tilde{N}_{k,l}(B) = \operatorname{card}\{(k\boldsymbol{x}, l\boldsymbol{y}, l\boldsymbol{z}) \in U \cap (k\mathbb{Z}^{r+1} \times l\mathbb{Z}^{m-r} \times l\mathbb{Z}^{n-m+1}) \mid \operatorname{pgcd}(\boldsymbol{x}) = 1, \\ \operatorname{pgcd}(\boldsymbol{y}, \boldsymbol{z}) = 1, \ F(k\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z}) = 0, \ H(k\boldsymbol{x}, l\boldsymbol{y}, l\boldsymbol{z}) \leq B\}$$

(pour $d, e, k, l \in \mathbb{N}$), alors

$$N_{d,e}(B) = \sum_{d|k} \sum_{e|l} \tilde{N}_{k,l}(B).$$

Par inversions de Möbius successives, et en utilisant la proposition 7.6, on obtient .

$$\mathcal{N}_{U}(B) = \frac{1}{4}\tilde{N}_{1,1}(B) = \frac{1}{4}\sum_{d\in\mathbb{N}^{*}}\mu(d)\sum_{e\in\mathbb{N}^{*}}\mu(e)N_{d,e}(B)$$
$$= \frac{1}{4}\sum_{d,e\in\mathbb{N}^{*}}\mu(d)\mu(e)N_{d,U}(B/(d^{m+1-d_{1}}e^{n-r+1-d_{2}}))$$

$$= \frac{1}{4} \sum_{d,e \in \mathbb{N}^*} \frac{\mu(d)\mu(e)}{d^{m+1-d_1}e^{n-r+1-d_2}} \sigma_d B \log(B) + O\left(\sum_{d,e \in \mathbb{N}^*} \frac{\mu(d)\mu(e)}{d^{m+1-d_1}e^{n-r+1-d_2}} d^{\nu+\delta} \log(d)B\right) = \frac{1}{4} \left(\sum_{e \in \mathbb{N}^*} \frac{\mu(e)}{e^{n-r+1-d_2}}\right) \left(\sum_{d \in \mathbb{N}^*} \frac{\mu(d)}{d^{m+1-d_1}} \sigma_d\right) B \log(B) + O(B),$$

car $v = m - r + \max\{(r+1)(d_1 - 1)/2^{d_1 - 1} + \varepsilon, 5d_1\} < (m+1-d_1) + 2$, pour r choisi assez grand, i.e. pour $r \ge 6d_1 - 3$. Par ailleurs on peut réécrire

$$\sum_{e \in \mathbb{N}^*} \frac{\mu(e)}{e^{n-r+1-d_2}} = \prod_{p \in \mathcal{P}} \left(1 - \frac{1}{p^{n-r+1-d_2}} \right)$$

 et

$$\sum_{d\in\mathbb{N}^*} \frac{\mu(d)}{d^{m+1-d_1}} \sigma_d = J \sum_{d\in\mathbb{N}^*} \frac{\mu(d)}{d^{m+1-d_1}} \mathfrak{S}_d d^{m-r-d_1} = J\mathfrak{S}$$

pour

(8.1)
$$\mathfrak{S} = \sum_{d \in \mathbb{N}^*} \frac{\mu(d)}{d^{r+1}} \mathfrak{S}_d.$$

On obtient donc finalement

 $\begin{aligned} & \text{PROPOSITION 8.1. } Pour \, d_1 \geq 2, \, d_2 \geq 1, \, n+2 - \max\{\dim V_1^*, \dim V_2^*\} > \\ & 13d_2(d_1+d_2)2^{d_1+d_2} \, \text{ et } r \geq 6d_1-3, \text{ on } a \end{aligned}$

$$\mathcal{N}_U(B) = \sigma B \log(B) + O(B)$$

lorsque $B \to \infty$, où l'on a noté $\sigma = \frac{1}{4}J\mathfrak{S}\prod_{p\in\mathcal{P}}(1-1/p^{n-r+1-d_2}).$

Nous allons à présent donner une interprétation des constantes introduites, et démontrer que l'expression obtenue est bien en accord avec les formules conjecturées par Peyre [Pe]; nous aurons ainsi démontré le théorème 1.1.

Rappelons que l'on a noté $\pi : X_0 \to X$ la projection du torseur universel $X_0 = (\mathbb{A}^{r+1} \setminus \{\mathbf{0}\}) \times (\mathbb{A}^{n-r+1} \setminus \{\mathbf{0}\})$ sur la variété torique ambiante X. On considère un point $(\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z}) \in Y_0$ tel que $\frac{\partial F}{\partial t_i}(\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z}) \neq \mathbf{0}$, où

$$t_j = \begin{cases} x_j & \text{si } j \in \{0, \dots, r\}, \\ y_j & \text{si } j \in \{r+1, \dots, m\}, \\ z_j & \text{si } j \in \{m+1, \dots, n+1\} \end{cases}$$

et on note $P = \pi(\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z})$. La forme de Leray ω_L sur un voisinage de $(\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z})$ sur lequel $\frac{\partial F}{\partial t_j} \neq \mathbf{0}$ est alors donnée par

$$\omega_L(\boldsymbol{x},\boldsymbol{y},\boldsymbol{x}) = \frac{(-1)^{n+2-j}}{\frac{\partial F}{\partial t_j}(\boldsymbol{x},\boldsymbol{y},\boldsymbol{z})} dt_0 \wedge \cdots \wedge \widehat{dt_j} \wedge \cdots \wedge dt_{n+1}(\boldsymbol{x},\boldsymbol{y},\boldsymbol{z}).$$

Pour toute place $\nu \in \operatorname{Val}(\mathbb{Q})$ la forme de Leray induit une mesure locale $\omega_{L,\nu}$.

T. Mignot

On suppose à présent que le point $(\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z})$ est tel que, par exemple, $x_0 \neq 0, z_{m+1} \neq 0$ et $\frac{\partial F}{\partial z_{n+1}}(\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z}) \neq 0$. Pour toute place ν de \mathbb{Q} , on considère le morphisme

$$\rho: X_{\mathbb{Q}_{\nu}} \to \mathbb{A}_{\mathbb{Q}_{\nu}}^{n-1},$$

$$\pi(\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z}) \mapsto \left(\frac{x_1}{x_0}, \dots, \frac{x_r}{x_0}, \frac{y_{r+1}}{x_0 z_{m+1}}, \dots, \frac{y_m}{x_0 z_{m+1}}, \frac{z_{m+2}}{z_{m+1}}, \dots, \frac{z_n}{z_{m+1}}\right).$$

Par le théorème d'inversion locale, il existe un voisinage ouvert de P, noté V, sur lequel ρ est bien défini et induit un difféomorphisme analytique sur $\rho(V)$. On pose $W = \pi^{-1}(V)$. Si l'on note

$$u = (1, u_1, \dots, u_r), \quad v = (v_{r+1}, \dots, v_m), \quad w = (1, w_{m+2}, \dots, w_{n+1}),$$

la mesure de Tamagawa ω_{ν} est définie par

$$\rho_*\omega_{\nu} = \frac{du_{1,\nu}\dots du_{r,\nu}dv_{r+1,\nu}\dots dv_{m,\nu}dw_{m+2,\nu}\dots dw_{n,\nu}}{h_{\nu}(\boldsymbol{u},\boldsymbol{v},\boldsymbol{w})\big|\frac{\partial F}{\partial z_{n+1}}(\boldsymbol{u},\boldsymbol{v},\boldsymbol{w})\big|_{\nu}},$$

où w_{n+1} est implicitement défini par $F(\boldsymbol{u}, \boldsymbol{v}, \boldsymbol{w}) = 0$, et

$$h_{\nu}(\boldsymbol{u},\boldsymbol{v}) = h_{\nu}^{(1)}(\boldsymbol{u})h_{\nu}^{(2)}(\boldsymbol{u},\boldsymbol{v},\boldsymbol{w})$$

pour

$$h_{\nu}^{(1)}(\boldsymbol{u}) = |\boldsymbol{u}|_{\nu}^{m+1-d_1}, \quad h_{\nu}^{(2)}(\boldsymbol{u}, \boldsymbol{v}, \boldsymbol{w}) = \max\left(\frac{|\boldsymbol{v}|_{\nu}}{|\boldsymbol{u}|_{\nu}}, |\boldsymbol{w}|_{\nu}
ight)^{n-r+1-d_2},$$

où pour tout vecteur $\boldsymbol{x} = (x_1, \ldots, x_N),$

$$|\boldsymbol{x}|_{\nu} = \max_{1 \le i \le N} |x_i|_{\nu}.$$

8.1. Étude de l'intégrale singulière J. Rappelons que l'intégrale J est définie par

$$J = \int_{\mathbb{R}} \int_{\substack{|\boldsymbol{y}| \leq |\boldsymbol{x}| \leq 1 \\ |\boldsymbol{z}| \leq 1}} e(\beta F(\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z})) \, d\boldsymbol{x} \, d\boldsymbol{y} \, d\boldsymbol{z} \, d\beta$$

et cette intégrale est absolument convergente. Nous allons montrer que ${\cal J}$ coïncide avec

$$\sigma_{\infty}(Y) = \int_{\pi^{-1}(Y) \cap \{|\boldsymbol{y}| \le |\boldsymbol{x}| \le 1, |\boldsymbol{z}| \le 1\}} \omega_{L,\infty}.$$

Il nous suffit de le vérifier localement, i.e. de montrer que pour tout ouvert V' de $\{(\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z}) \mid |\boldsymbol{y}| \leq |\boldsymbol{x}| \leq 1, |\boldsymbol{z}| \leq 1\}$ sur lequel, par exemple, $\frac{\partial F}{\partial z_{n+1}}(\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z}) \neq 0$, l'intégrale

$$\int_{V'\cap\pi^{-1}(Y)}\omega_{L,\infty} = \int_{V'\cap\pi^{-1}(Y)} \frac{1}{\left|\frac{\partial F}{\partial z_{n+1}}(\boldsymbol{x},\boldsymbol{y},\boldsymbol{z})\right|} \, d\boldsymbol{x} \, d\boldsymbol{y} \, d\hat{\boldsymbol{z}}$$

(avec $d\hat{\boldsymbol{z}} = dz_{m+1} \cdots dz_n$) coïncide avec

$$J_{V'} = \int_{\mathbb{R}} \int_{V'} e(\beta F(\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z})) \, d\boldsymbol{x} \, d\boldsymbol{y} \, d\boldsymbol{z} \, d\beta$$

Considérons donc un tel ouvert V'. On note $t = F(\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z})$, et z_{n+1} est alors défini implicitement par $\boldsymbol{x}, \boldsymbol{y}, \hat{\boldsymbol{z}}, t$ sur V'. On note $z_{n+1} = g(\boldsymbol{x}, \boldsymbol{y}, \hat{\boldsymbol{z}}, t)$. Par changement de variables, on a alors

$$J_{V'} = \iint_{\mathbb{R}\,\mathbb{R}\,[-1,1]^{n+1}} \frac{\chi(t,\boldsymbol{x},\boldsymbol{y},\hat{\boldsymbol{z}})e(\beta t)}{\left|\frac{\partial F}{\partial z_{n+1}}(\boldsymbol{x},\boldsymbol{y},g(\boldsymbol{x},\boldsymbol{y},\hat{\boldsymbol{z}},t))\right|} \, d\boldsymbol{x} \, d\boldsymbol{y} \, d\hat{\boldsymbol{z}} \, dt \, d\beta$$

où

$$\chi(t, \boldsymbol{x}, \boldsymbol{y}, \hat{\boldsymbol{z}}) = \begin{cases} 1 & \text{si } (\boldsymbol{x}, \boldsymbol{y}, \hat{\boldsymbol{z}}, g(\boldsymbol{x}, \boldsymbol{y}, \hat{\boldsymbol{z}}, t)) \in V', \\ 0 & \text{sinon.} \end{cases}$$

La fonction $t \mapsto \chi(t, \boldsymbol{x}, \boldsymbol{y}, \hat{\boldsymbol{z}}) e(\beta t) / \left| \frac{\partial F}{\partial z_{n+1}}(\boldsymbol{x}, \boldsymbol{y}, g(\boldsymbol{x}, \boldsymbol{y}, \hat{\boldsymbol{z}}, t)) \right|$ est à variations bornées, donc, par application des résultats d'analyse de Fourier (voir [W-W, 9.43]) on a

$$J_{V'} = \int_{[-1,1]^{n+1}} \frac{\chi(0,\boldsymbol{x},\boldsymbol{y},\hat{\boldsymbol{z}})}{\left|\frac{\partial F}{\partial z_{n+1}}(\boldsymbol{x},\boldsymbol{y},g(\boldsymbol{x},\boldsymbol{y},\hat{\boldsymbol{z}},0))\right|} \, d\boldsymbol{x} \, d\boldsymbol{y} \, d\hat{\boldsymbol{z}} = \int_{V'\cap\pi^{-1}(Y)} \omega_{L,\infty}.$$

Remarquons que ces calculs constituent un équivalent du travail effectué par Igusa [Ig, §IV.6] pour le cas des intégrales de fonctions indicatrices.

Nous allons à présent interpréter cette constante J en termes de mesures de Tamagawa. Plus précisément, en notant $\tau_{\infty} = \omega_{\infty}$, nous allons démontrer :

LEMME 8.2. On a

$$\tau_{\infty} = \frac{(m+1-d_1)(n-r+1-d_2)}{4}\sigma_{\infty}.$$

Démonstration. Il nous suffit de montrer que par exemple pour l'ouvert V défini précédemment on a $\tau_{\infty}(V) = \frac{1}{4}(m+1-d_1)(n-r+1-d_2)\sigma_{\infty}(V)$. Par définition de la mesure de Leray,

$$\sigma_{\infty}(V) = \int_{\pi^{-1}(V) \cap \{|\boldsymbol{x}| \leq 1, |\boldsymbol{y}| \leq |\boldsymbol{x}|, |\boldsymbol{z}| \leq 1\}} \frac{d\boldsymbol{x} \, d\boldsymbol{y} \, d\hat{\boldsymbol{z}}}{\left|\frac{\partial F}{\partial z_{n+1}}(\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z})\right|}.$$

On remarque que

$$\max_{i} |x_i| \le 1 \iff |x_0| \le \left(\max_{i} \frac{|x_i|}{|x_0|}\right)^{-1}$$

On applique alors les changements de variables $x_i = x_0 u_i$, $y_j = z_{m+1} x_0 v_j$ et $z_k = z_{m+1} w_k$ dans l'intégrale ci-dessus. On voit que

$$\begin{cases} |\boldsymbol{y}| \le |\boldsymbol{x}| \le 1 \\ |\boldsymbol{z}| \le 1 \end{cases} \Leftrightarrow \begin{cases} |x_0| \le (|\boldsymbol{u}|)^{-1} \\ |z_{m+1}| |\boldsymbol{v}| \le |\boldsymbol{u}| \\ |z_{m+1}| \le |\boldsymbol{w}|^{-1} \\ \\ |x_0|^{m+1-d_1} \le h_\infty^{(1)}(\boldsymbol{u})^{-1} \\ |z_{m+1}|^{n-r+1-d_2} \le h_\infty^{(2)}(\boldsymbol{u}, \boldsymbol{v}, \boldsymbol{w})^{-1}. \end{cases}$$

Donc

$$\begin{split} \sigma_{\infty}(V) &= \int_{V} \frac{1}{\left|\frac{\partial F}{\partial z_{n+1}}(\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z})\right|} \\ &\times \int_{\substack{|x_{0}|^{m+1-d_{1}} \leq h_{\infty}^{(1)}(\boldsymbol{u})^{-1} \\ |z_{m+1}|^{n-r+1} \leq h_{\infty}^{(2)}(\boldsymbol{u}, \boldsymbol{v}, \boldsymbol{w})^{-1}} \\ &= \frac{4}{(m+1-d_{1})(n-r+1-d_{2})} \int_{\rho(V)} \frac{d\boldsymbol{u} \, d\boldsymbol{v} \, d\hat{\boldsymbol{w}}}{h_{\infty}(\boldsymbol{u}, \boldsymbol{v}, \boldsymbol{w}) \left|\frac{\partial F}{\partial z_{n+1}}(\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z})\right|} \\ &= \frac{4}{(m+1-d_{1})(n-r+1-d_{2})} \int_{V} \omega_{\infty}. \quad \bullet \end{split}$$

8.2. Étude de la série singulière \mathfrak{S} . Rappelons que \mathfrak{S} est définie par

$$\mathfrak{S} = \sum_{d \in \mathbb{N}^*} \frac{\mu(d)}{d^{r+1}} \mathfrak{S}_d \quad \text{avec} \quad \mathfrak{S}_d = \sum_{q=1}^\infty A_d(q)$$

où

$$A_d(q) = q^{-(n+2)} \sum_{a \in (\mathbb{Z}/q\mathbb{Z})^*} \sum_{(\boldsymbol{b}_1, \boldsymbol{b}_2, \boldsymbol{b}_3) \in (\mathbb{Z}/q\mathbb{Z})^{n+2}} e\left(\frac{a}{q} F(d\boldsymbol{b}_1, \boldsymbol{b}_2, \boldsymbol{b}_3)\right).$$

Nous avons le résultat classique ci-dessous :

LEMME 8.3. Pour tout $d \in \mathbb{N}^*$, la fonction A_d est multiplicative.

Puisque \mathfrak{S}_d est de plus absolument convergente (cf. lemme 3.17), on a

$$\mathfrak{S}_d = \prod_{p \in \mathcal{P}} \sigma_{d,p}$$
 où $\sigma_{d,p} = \sum_{k=0}^{\infty} A_d(p^k).$

On remarque par ailleurs que pour tous $d,k\in\mathbb{N}^*$

$$\sum_{(\boldsymbol{b}_1, \boldsymbol{b}_2, \boldsymbol{b}_3) \in (\mathbb{Z}/p^k \mathbb{Z})^{n+2}} e\left(\frac{a}{p^k} F(d\boldsymbol{b}_1, \boldsymbol{b}_2, \boldsymbol{b}_3)\right)$$
$$= \sum_{(\boldsymbol{b}_1, \boldsymbol{b}_2, \boldsymbol{b}_3) \in (\mathbb{Z}/p^k \mathbb{Z})^{n+2}} e\left(\frac{a}{p^k} F(p^{v_p(d)} \boldsymbol{b}_1, \boldsymbol{b}_2, \boldsymbol{b}_3)\right)$$

et donc

$$A_d(p^k) = A_{p^{v_p(d)}}(p^k).$$

Par conséquent, pour tout $d \in \mathbb{N}^*$, on a

$$\frac{\mu(d)}{d^{r+1}}\mathfrak{S}_d = \prod_{p \in \mathcal{P}} B_{p^{v_p(d)}}$$

où pour tout $\nu \in \mathbb{N}^*$,

$$B_{p^{\nu}} = \frac{\mu(p^{\nu})}{p^{\nu(r+1)}} \sum_{k=0}^{\infty} A_{p^{\nu}}(p^k).$$

Remarquons que $B_{p^{\nu}} = 0$ pour tout $\nu \geq 2$. La série $\sum_{d \in \mathbb{N}^*} \frac{\mu(d)}{d^{r+1}} \mathfrak{S}_d$ étant absolument convergente, on a alors

$$\sum_{d\in\mathbb{N}^*} \frac{\mu(d)}{d^{r+1}} \mathfrak{S}_d = \prod_{p\in\mathcal{P}} \left(\sum_{\nu=0}^\infty B_{p^\nu} \right) = \prod_{p\in\mathcal{P}} \left(\sum_{\nu=0}^1 B_{p^\nu} \right)$$
$$= \prod_{p\in\mathcal{P}} \underbrace{\left(\sum_{k=0}^\infty \left(A_1(p^k) - \frac{A_p(p^k)}{p^{r+1}} \right) \right)}_{\sigma'_p}.$$

Notons à présent

(8.2)
$$M_p(k) = \operatorname{card}\{(\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z}) \in (\mathbb{Z}/p^k \mathbb{Z})^{n+2} \mid \boldsymbol{x} \neq \boldsymbol{0} \ (p),$$
$$F(\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z}) \equiv 0 \ (p^k)\}.$$

LEMME 8.4. Pour tout entier N > 0, on a

$$\sum_{k=0}^{N} \left(A_1(p^k) - \frac{A_p(p^k)}{p^{r+1}} \right) = \frac{M_p(N)}{p^{N(n+1)}},$$

 $et \ donc$

$$\sigma'_p = \lim_{N \to \infty} \frac{M_p(N)}{p^{N(n+1)}}.$$

 $D\acute{e}monstration.$ On pose $q=p^N.$ Il est immédiat que

$$q^{-1} \sum_{t=0}^{q-1} \sum_{(\boldsymbol{b}_1, \boldsymbol{b}_2, \boldsymbol{b}_3) \in (\mathbb{Z}/q\mathbb{Z})^{n+2}} e\left(\frac{t}{q} F(\boldsymbol{b}_1, \boldsymbol{b}_2, \boldsymbol{b}_3)\right)$$
$$= \operatorname{card}\{(\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z}) \in (\mathbb{Z}/q\mathbb{Z})^{n+2} \mid F(\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z}) \equiv 0 \ (q)\},\$$

et de même

$$q^{-1} \sum_{t=0}^{q-1} \sum_{(\boldsymbol{b}_1, \boldsymbol{b}_2, \boldsymbol{b}_3) \in (\mathbb{Z}/q\mathbb{Z})^{n+2}} e\left(\frac{t}{q} F(p\boldsymbol{b}_1, \boldsymbol{b}_2, \boldsymbol{b}_3)\right)$$

= $p^{r+1} \operatorname{card}\{(\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z}) \in (\mathbb{Z}/q\mathbb{Z})^{n+2} \mid \boldsymbol{x} \equiv \boldsymbol{0} \ (p), \ F(\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z}) \equiv 0 \ (q)\}.$

On a donc

$$\begin{split} M_p(N) &= q^{-1} \sum_{t=0}^{q-1} \sum_{(\mathbf{b}_1, \mathbf{b}_2, \mathbf{b}_3) \in (\mathbb{Z}/q\mathbb{Z})^{n+2}} \left(e\Big(\frac{t}{q} F(\mathbf{b}_1, \mathbf{b}_2, \mathbf{b}_3)\Big) \\ &\quad - \frac{1}{p^{r+1}} e\Big(\frac{t}{q} F(p\mathbf{b}_1, \mathbf{b}_2, \mathbf{b}_3)\Big) \Big) \\ &= q^{-1} \sum_{q_1|q} \sum_{\substack{0 \le a < q_1 \\ p \text{gcd}(a, q_1) = 1}} \sum_{(\mathbf{b}_1, \mathbf{b}_2, \mathbf{b}_3) \in (\mathbb{Z}/q\mathbb{Z})^{n+2}} \left(e\Big(\frac{a}{q_1} F(\mathbf{b}_1, \mathbf{b}_2, \mathbf{b}_3)\Big) \\ &\quad - \frac{1}{p^{r+1}} e\Big(\frac{a}{q_1} F(p\mathbf{b}_1, \mathbf{b}_2, \mathbf{b}_3)\Big) \Big) \\ &= p^{-N} \sum_{k=1}^{N} \frac{p^{N(n+2)}}{p^{k(n+2)}} \sum_{a \in (\mathbb{Z}/p^k\mathbb{Z})^* (\mathbf{b}_1, \mathbf{b}_2, \mathbf{b}_3) \in (\mathbb{Z}/p^k\mathbb{Z})^{n+2}} \left(e\Big(\frac{a}{p^k} F(\mathbf{b}_1, \mathbf{b}_2, \mathbf{b}_3)\Big) \\ &\quad - \frac{1}{p^{r+1}} e\Big(\frac{a}{p^k} F(p\mathbf{b}_1, \mathbf{b}_2, \mathbf{b}_3)\Big) \right) \\ &= p^{N(n+1)} \sum_{k=0}^{N} \left(A_1(p^k) - \frac{A_p(p^k)}{p^{r+1}} \right). \bullet$$

Nous allons à présent interpréter les constantes σ'_p en termes de mesures de Tamagawa τ_p définies par

$$\tau_p = \left(1 - \frac{1}{p}\right)^2 \omega_p.$$

Pour cela nous commençons par établir deux lemmes intermédiaires :

LEMME 8.5. Pour tout $N \in \mathbb{N}^*$, on note

$$W_p^*(N) = \{ (\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z}) \in (\mathbb{Z}_p/p^N)^{n+2} \mid \boldsymbol{x} \neq \boldsymbol{0} \ (p), \ (\boldsymbol{y}, \boldsymbol{z}) \neq \boldsymbol{0} \ (p), \\ F(\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z}) \equiv 0 \ (p^r) \}$$

ainsi que $M_p^*(N) = \operatorname{card} W_p^*(N)$. Il existe alors un entier N_0 tel que pour tout $N \ge N_0$,

$$\int_{\substack{(\boldsymbol{x},\boldsymbol{y},\boldsymbol{z})\in\mathbb{Z}_p^{n+2}\\\boldsymbol{x\neq0}(p),(\boldsymbol{y},\boldsymbol{z})\neq\boldsymbol{0}(p)\\F(\boldsymbol{x},\boldsymbol{y},\boldsymbol{z})=0}}\omega_{L,p}=\frac{M_p^*(N)}{p^{N(n+1)}}.$$

90

Démonstration. Soit $(\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z}) \in \mathbb{Z}_p^{n+2}$. On note

$$[\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z}]_N = (\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z}) \mod p^N.$$

Alors

$$\int_{\substack{(\boldsymbol{x},\boldsymbol{y},\boldsymbol{z})\in\mathbb{Z}_p^{n+2},\,\boldsymbol{x}\neq\boldsymbol{0}\,(p)\\(\boldsymbol{y},\boldsymbol{z})\neq\boldsymbol{0}\,(p),\,F(\boldsymbol{x},\boldsymbol{y},\boldsymbol{z})=0}} & \sum_{\substack{(\boldsymbol{x},\boldsymbol{y},\boldsymbol{z})\,\mathrm{mod}\,p^N\\\boldsymbol{x}\neq\boldsymbol{0}\,(p),\,(\boldsymbol{y},\boldsymbol{z})\neq\boldsymbol{0}\,(p)\,[\boldsymbol{u},\boldsymbol{v},\boldsymbol{w})\in\mathbb{Z}_p^{n+2}\\F(\boldsymbol{x},\boldsymbol{y},\boldsymbol{z})\equiv\boldsymbol{0}\,(p^N)} & F(\boldsymbol{u},\boldsymbol{v},\boldsymbol{w})=0} \\ &= \sum_{\substack{(\boldsymbol{x},\boldsymbol{y},\boldsymbol{z})\in W_p^*(N)\\(\boldsymbol{u},\boldsymbol{y},\boldsymbol{z})\in W_p^*(N)}} & \int_{\substack{(\boldsymbol{u},\boldsymbol{v},\boldsymbol{w})\in\mathbb{Z}_p^{n+2}\\(\boldsymbol{u},\boldsymbol{v},\boldsymbol{w})=0}} & \omega_{L,p}(\boldsymbol{u},\boldsymbol{v},\boldsymbol{w}). \end{aligned}$$

Puisque Y est lisse, il existe un N > 0 assez grand tel que, pour tout $(\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z}) \in (\mathbb{Z}_p/p^N)^{n+2}$ tel que $\boldsymbol{x} \neq \boldsymbol{0}$ $(p), (\boldsymbol{y}, \boldsymbol{z}) \neq \boldsymbol{0}$ (p), et $F(\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z}) = 0$,

$$c = \inf_{i,j,k} \left\{ v_p \left(\frac{\partial F}{\partial x_i}(\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z}) \right), v_p \left(\frac{\partial F}{\partial y_j}(\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z}) \right), v_p \left(\frac{\partial F}{\partial z_k}(\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z}) \right) \right\}$$

soit non nul et constant sur la classe définie par $(\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z})$. On peut supposer que N > c et que $c = v_p \left(\frac{\partial F}{\partial z_{n+1}}(\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z})\right)$. On considère $(\boldsymbol{u}, \boldsymbol{v}, \boldsymbol{w}) \in \mathbb{Z}_p^{n+2}$ tel que $[\boldsymbol{u}, \boldsymbol{v}, \boldsymbol{w}]_N = (\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z})$, et $(\boldsymbol{u}', \boldsymbol{v}', \boldsymbol{w}') \in \mathbb{Z}_p^{n+2}$ quelconque. On a alors

$$F(\boldsymbol{u} + \boldsymbol{u}', \boldsymbol{v} + \boldsymbol{v}', \boldsymbol{w} + \boldsymbol{w}') = F(\boldsymbol{u}, \boldsymbol{v}, \boldsymbol{w}) + \sum_{i=0}^{r} \frac{\partial F}{\partial x_i}(\boldsymbol{u}, \boldsymbol{v}, \boldsymbol{w})u'_i$$
$$+ \sum_{j=r+1}^{m} \frac{\partial F}{\partial y_j}(\boldsymbol{u}, \boldsymbol{v}, \boldsymbol{w})v'_j + \sum_{k=m+1}^{n+1} \frac{\partial F}{\partial z_k}(\boldsymbol{u}, \boldsymbol{v}, \boldsymbol{w})w'_k + G(\boldsymbol{u}, \boldsymbol{v}, \boldsymbol{w}, \boldsymbol{u}', \boldsymbol{v}', \boldsymbol{w}'),$$

où $G(\boldsymbol{u}, \boldsymbol{v}, \boldsymbol{w}, \boldsymbol{u}', \boldsymbol{v}', \boldsymbol{w}')$ est une somme de termes contenant au moins deux facteurs u'_i, v'_j ou w'_k . Donc, si $(\boldsymbol{u}', \boldsymbol{v}', \boldsymbol{w}') \in (p^N \mathbb{Z}_p)^{n+2}$,

$$F(\boldsymbol{u}+\boldsymbol{u}',\boldsymbol{v}+\boldsymbol{v}',\boldsymbol{w}+\boldsymbol{w}')\equiv F(\boldsymbol{u},\boldsymbol{v},\boldsymbol{w})\,(p^{N+c}).$$

Par conséquent, l'image de $F(\boldsymbol{u}, \boldsymbol{v}, \boldsymbol{w})$ dans \mathbb{Z}_p/p^{N+c} dépend uniquement de $(\boldsymbol{u}, \boldsymbol{v}, \boldsymbol{w}) \mod p^N = (\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z})$; on note alors $F^*(\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z})$ cette image.

Si $F^*(\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z}) \neq 0$, alors l'intégrale

$$\int_{\substack{(\boldsymbol{u},\boldsymbol{v},\boldsymbol{w})\in\mathbb{Z}_p^{n+2}\\ [\boldsymbol{u},\boldsymbol{v},\boldsymbol{w}]_N=(\boldsymbol{x},\boldsymbol{y},\boldsymbol{z})\\ F(\boldsymbol{u},\boldsymbol{v},\boldsymbol{w})=0}} \omega_{L,p}(\boldsymbol{u},\boldsymbol{v},\boldsymbol{w})$$

est nulle, et l'ensemble

{ $(\boldsymbol{u}, \boldsymbol{v}, \boldsymbol{w}) \mod p^{N+c} \mid [\boldsymbol{u}, \boldsymbol{v}, \boldsymbol{w}]_N = (\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z}), F(\boldsymbol{u}, \boldsymbol{v}, \boldsymbol{w}) \equiv 0 \ (p^{N+c})$ } est vide.

T. Mignot

Si $F^*(\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z}) = 0$, par le lemme de Hensel, les applications coordonnées $X_0, \ldots, X_r, Y_{r+1}, \ldots, Y_m, Z_{m+1}, \ldots, Z_n$ définissent un difféomorphisme de

$$\{(u, v, w) \in \mathbb{Z}_p^{n+2} \mid [u, v, w]_N = (x, y, z), F(u, v, w) = 0\}$$

sur $(\boldsymbol{x}, \boldsymbol{y}, \hat{\boldsymbol{z}}) + (p^N \mathbb{Z}_p)^{n+1}$, où $\hat{\boldsymbol{z}} = (z_{m+1}, \dots, z_n)$. Par conséquent,

$$\int_{\substack{(\boldsymbol{u},\boldsymbol{v},\boldsymbol{w})\in\mathbb{Z}_p^{n+2}\\[\boldsymbol{u},\boldsymbol{v},\boldsymbol{w}]_N=(\boldsymbol{x},\boldsymbol{y},\boldsymbol{z})\\F(\boldsymbol{u},\boldsymbol{v},\boldsymbol{w})=0}} \omega_{L,p}(\boldsymbol{u},\boldsymbol{v},\boldsymbol{w})$$

$$=\sum_{\substack{(\boldsymbol{x},\boldsymbol{y},\hat{\boldsymbol{z}})+(p^N\mathbb{Z}_p)^{n+1}\\=p^{c-N(n+1)}}p^c du_{0,p}\cdots du_{r,p} dv_{r+1,p}\cdots dv_{m,p} dw_{m+1,p}\cdots dw_{n,p}$$

D'autre part, puisque $F(\boldsymbol{u}, \boldsymbol{v}, \boldsymbol{w}) \mod p^{N+c}$ ne dépend que de $(\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z})$,

$$p^{-(N+c)(n+1)} \operatorname{card}\{(\boldsymbol{u}, \boldsymbol{v}, \boldsymbol{w}) \mod p^{N+c} \mid [\boldsymbol{u}, \boldsymbol{v}, \boldsymbol{w}]_N = (\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z}), F(\boldsymbol{u}, \boldsymbol{v}, \boldsymbol{w}) \equiv 0 \ (p^{N+c})\} = p^{-(N+c)(n+1)} p^{(n+1)c} = p^{c-N(n+1)}.$$

Finalement

$$\int_{\substack{(\boldsymbol{x},\boldsymbol{y},\boldsymbol{z})\in\mathbb{Z}_{p}^{n+2},\,\boldsymbol{x}\neq\boldsymbol{0}\,(p)\\(\boldsymbol{y},\boldsymbol{z})\neq\boldsymbol{0}\,(p),\,F(\boldsymbol{x},\boldsymbol{y},\boldsymbol{z})=0}} \omega_{L,p} = \sum_{\substack{(\boldsymbol{x},\boldsymbol{y},\boldsymbol{z})\in W_{p}^{*}(N)\\F^{*}(\boldsymbol{x},\boldsymbol{y},\boldsymbol{z})=0}} p^{c-N(n+1)}$$

$$= \sum_{\substack{(\boldsymbol{x},\boldsymbol{y},\boldsymbol{z})\in W_{p}^{*}(N)\\(\boldsymbol{x},\boldsymbol{y},\boldsymbol{z})\in W_{p}^{*}(N)}} p^{-(N+c)(n+1)}\operatorname{card}\{(\boldsymbol{u},\boldsymbol{v},\boldsymbol{w}) \bmod p^{N+c} \mid [\boldsymbol{u},\boldsymbol{v},\boldsymbol{w}]_{N} = (\boldsymbol{x},\boldsymbol{y},\boldsymbol{z}),\,F(\boldsymbol{u},\boldsymbol{v},\boldsymbol{w})\equiv 0\,(p^{N+c})\}$$

$$= \frac{M_{p}^{*}(N+c)}{p^{(N+c)(n+1)}},$$

d'où le résultat. \blacksquare

LEMME 8.6. On a

$$\int_{\substack{(\boldsymbol{x},\boldsymbol{y},\boldsymbol{z})\in\mathbb{Z}_p^{n+2}\\\boldsymbol{x}\neq\mathbf{0}(p),(\boldsymbol{y},\boldsymbol{z})\neq\mathbf{0}(p)\\F(\boldsymbol{x},\boldsymbol{y},\boldsymbol{z})=0}} \omega_{L,p} = \left(1 - \frac{1}{p^{n-r+1-d_2}}\right) \int_{\substack{(\boldsymbol{x},\boldsymbol{y},\boldsymbol{z})\in\mathbb{Z}_p^{n+2}\\\boldsymbol{x}\neq\mathbf{0}(p),F(\boldsymbol{x},\boldsymbol{y},\boldsymbol{z})=0}} \omega_{L,p},$$

et d'autre part

$$\lim_{N \to \infty} \frac{M_p^*(N)}{p^{N(n+1)}} = \left(1 - \frac{1}{p^{n-r+1-d_2}}\right) \sigma_p'.$$

Démonstration. La première partie du lemme résulte du fait que $\omega_{L,p}(\boldsymbol{x}, p\boldsymbol{y}, p\boldsymbol{z}) = p^{-(n-r+1-d_2)}\omega_{L,p}(\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z}).$ Pour la deuxième partie, on considère un entier j tel que $N \geq jd_2 + 1$ et on considère l'ensemble

$$\begin{split} \tilde{N}(j) &= \operatorname{card}\{\boldsymbol{x} \in (\mathbb{Z}_p/p^N \mathbb{Z}_p)^{r+1}, \, (\boldsymbol{y}, \boldsymbol{z}) \in (p^j \mathbb{Z}_p/p^N \mathbb{Z}_p)^{n-r+1} \mid \boldsymbol{x} \neq \boldsymbol{0} \, (p), \\ & (\boldsymbol{y}, \boldsymbol{z}) \neq \boldsymbol{0} \, (p^{j+1}), F(\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z}) \equiv 0 \, (p^N) \}. \end{split}$$

On remarque que, pour tout $N > jd_2$,

$$\begin{split} \tilde{N}(j) &= \operatorname{card} \{ \boldsymbol{x} \in (\mathbb{Z}/p^N \mathbb{Z})^{r+1}, \, (\boldsymbol{y}, \boldsymbol{z}) \in (\mathbb{Z}/p^{N-j} \mathbb{Z})^{n-r+1} \mid \boldsymbol{x} \neq \boldsymbol{0} \, (p), \\ & (\boldsymbol{y}, \boldsymbol{z}) \neq \boldsymbol{0} \, (p), F(\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z}) \equiv 0 \, (p^{N-jd_2}) \} \\ &= p^{(r+1)jd_2 + (n-r+1)(jd_2 - j)} M^*(N - jd_2). \end{split}$$

Soit N_0 comme dans le lemme précédent, et soit $j_0 = \lceil (N - N_0)/d_2 \rceil$. Alors

$$M_p(N) = \sum_{0 \le jd_2 \le N - N_0} \tilde{N}(j) + O(\operatorname{card}\{(\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z}) \in (\mathbb{Z}/p^N \mathbb{Z})^{n+2} \mid (\boldsymbol{y}, \boldsymbol{z}) \equiv \boldsymbol{0} \ (p^{j_0})\}) \\ = \sum_{0 \le jd_2 \le N - N_0} p^{(r+1)jd_2 + (n-r+1)(jd_2-j)} M_p^*(N - jd_2) + O(p^{N(n+2)-j_0(n-r+1)}).$$

Or, d'après le lemme précédent,

$$\frac{M_p^*(N-jd_2)}{p^{(N-jd_2)(n+1)}} = \frac{M_p^*(N)}{p^{N(n+1)}},$$

 donc

$$M_p(N) = \sum_{0 \le j \le N - N_0} p^{-j(n-r+1)+jd_2} M_p^*(N) + O(p^{N(n+2)-j_0(n-r+1)})$$

= $M_p^*(N) \frac{1 - p^{-(N-N_0+1)(n-r+1-d_2)}}{1 - p^{-(n-r+1-d_2)}} + O(p^{N(n+2)-j_0(n-r+1)}),$

et puisque $\sigma'_p = \lim_{N \to \infty} M_p(N) / p^{N(n+1)}$, on obtient le résultat.

On déduit des lemmes 8.5 et 8.6 que

(8.3)
$$\sigma'_p = \int_{\substack{(\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z}) \in \mathbb{Z}_p^{n+2} \\ \boldsymbol{x} \neq \boldsymbol{0}(p), F(\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z}) = 0}} \omega_{L, p}.$$

On conclut alors en utilisant le lemme ci-dessous :

LEMME 8.7. On pose

$$a(p) = \left(1 - \frac{1}{p}\right)^2 \left(1 - \frac{1}{p^{n-r+1-d_2}}\right)^{-1}$$

Alors

$$egin{aligned} &\int &\omega_{L,p} = \int &\omega_{L,p} = \int &\omega_{L,p}(oldsymbol{x},oldsymbol{y},oldsymbol{z}) & \{oldsymbol{x}_{p}|_{p}=1,h_{p}^{2}(oldsymbol{x},oldsymbol{y},oldsymbol{z}) \leq 1\} \ oldsymbol{x}
eq oldsymbol{0}(p),F(oldsymbol{x},oldsymbol{y},oldsymbol{z}) = 0 \ &= a(p)\omega_{p}(Y(\mathbb{Q}_{p})). \end{aligned}$$

Démonstration. Il suffit de montrer que pour tout ouvert V de $\mathbb{A}_{\mathbb{Q}_p}^{n-1} \subset X(\mathbb{Q}_p)$ tel que pour tout $P = \pi(\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z}) \in V$ on a (par exemple) $x_0 z_{m+1} \neq 0$ et $\frac{\partial F}{\partial z_{n+1}}(\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z}) \neq 0$ (les autres cas se traitant de façon analogue), l'égalité

$$\int_{\substack{\pi^{-1}(V)\cap\pi^{-1}(Y)\\\cap\{|\boldsymbol{x}|_p=1,h_p^2(\boldsymbol{x},\boldsymbol{y},\boldsymbol{z})\leq 1\}}} \omega_{L,p}(\boldsymbol{x},\boldsymbol{y},\boldsymbol{z}) = a(p)\omega_p(V\cap Y)$$

est vérifiée. Remarquons que, pour un tel ouvert V,

$$\begin{pmatrix} 1 - \frac{1}{p} \end{pmatrix} \omega_p(V \cap Y)$$

= $\left(1 - \frac{1}{p}\right) \int_{V \cap Y} \frac{du_{1,p} \dots du_{r,p} dv_{r+1,p} \dots dv_{m,p} dw_{m+2,p} \dots dw_{n,p}}{\left|\frac{\partial F}{\partial z_{n+1}}(\boldsymbol{u}, \boldsymbol{v}, \boldsymbol{w})\right|_p h_p^1(\boldsymbol{u}) h_p^2(\boldsymbol{u}, \boldsymbol{v}, \boldsymbol{w})}.$

En appliquant deux fois le lemme 5.4.5 de [Pe], on obtient alors

$$\left(1 - \frac{1}{p}\right)^2 \left(1 - \frac{1}{p^{m+1-d_1}}\right)^{-1} \left(1 - \frac{1}{p^{n-r+1-d_2}}\right)^{-1} \omega_p(V)$$

$$= \int_{\substack{\pi^{-1}(V) \cap \pi^{-1}(Y) \\ \cap \{h_p^{(1)}(\boldsymbol{x}) \le 1, h_p^2(\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z}) \le 1\}}} \frac{d\boldsymbol{x} \, d\boldsymbol{y} \, d\hat{\boldsymbol{z}}}{\left|\frac{\partial F}{\partial z_{n+1}}(\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z})\right|_p}$$

$$= \int_{\substack{\pi^{-1}(V) \cap \pi^{-1}(Y) \\ \cap \{h_p^{(1)}(\boldsymbol{x}) \le 1, h_p^2(\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z}) \le 1\}}} \omega_{L,p}(\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z}).$$

Or, étant donné que $\omega_{L,p}(p\boldsymbol{x},p\boldsymbol{y},\boldsymbol{z}) = p^{-(m+1-d_1)}\omega_{L,p}(\boldsymbol{x},\boldsymbol{y},\boldsymbol{z})$, on a

$$\int_{\substack{(\boldsymbol{x},\boldsymbol{y},\boldsymbol{z})\in\pi^{-1}(V)\cap\pi^{-1}(Y)\\\cap\{h_p^{(1)}(\boldsymbol{x})\leq 1, h_p^2(\boldsymbol{x},\boldsymbol{y},\boldsymbol{z})\leq 1\} \\ = \left(1 - \frac{1}{p^{m+1-d_1}}\right)^{-1} \int_{\substack{X_0(\mathbb{Q}_p)\cap\pi^{-1}(Y)\\\cap\{|\boldsymbol{x}|_p = 1, h_p^2(\boldsymbol{x},\boldsymbol{y},\boldsymbol{z})\leq 1\}} \omega_{L,p}(\boldsymbol{x},\boldsymbol{y},\boldsymbol{z}),$$

et on obtient le résultat souhaité.

94

On déduit de ce lemme et de la formule (8.3) que

$$\left(1 - \frac{1}{p^{n-r+1-d_2}}\right)\sigma'_p = \left(1 - \frac{1}{p}\right)^2 \omega_p(Y(\mathbb{Q}_p)) = \tau_p(Y(\mathbb{Q}_p)).$$

8.3. Conclusion. Rappelons que la formule asymptotique conjecturée par Peyre [Pe], dans sa version corrigée par Batyrev et Tschinkel [B-T], pour le nombre $\mathcal{N}_U(B)$ de points de hauteur bornée par B sur l'ouvert U de Zariski de la variété Y (pour la hauteur associée au fibré anticanonique ω_Y^{-1}) est

$$\alpha(Y)\beta(Y)\tau_H(Y)B\log(B)^{\operatorname{rg}(\operatorname{Pic}(Y))-1}$$

où

$$\begin{aligned} \alpha(Y) &= \frac{1}{(\operatorname{rg}(\operatorname{Pic}(Y)) - 1)!} \int_{\Lambda_{\operatorname{eff}}^1(Y)^{\vee}} e^{-\langle \omega_Y^{-1}, y \rangle} \, dy, \\ \Lambda_{\operatorname{eff}}^1(Y)^{\vee} &= \{ y \in \operatorname{Pic}(Y) \otimes \mathbb{R}^{\vee} \, | \, \forall x \in \Lambda_{\operatorname{eff}}^1(Y), \, \langle x, y \rangle \ge 0 \}, \\ \beta(Y) &= \operatorname{card}(H^1(\mathbb{Q}, \operatorname{Pic}(\overline{Y}))), \\ \tau_H(Y) &= \prod_{\nu \in \operatorname{Val}(\mathbb{Q})} \tau_{\nu}(Y(\mathbb{Q}_{\nu})). \end{aligned}$$

Dans le cas présent on a

$$\operatorname{Pic}(Y) = \mathbb{Z}[\tilde{D}_0] \oplus \mathbb{Z}[\tilde{D}_{n+1}] \simeq \mathbb{Z}^2, \quad \operatorname{rg}(\operatorname{Pic}(Y)) = 2,$$

$$-[K_Y] = (m+1-d_1)[\tilde{D}_0] + (n-r+1-d_2)[\tilde{D}_{n+1}],$$

$$\Lambda^1_{\operatorname{eff}}(Y) = \mathbb{R}^+[\tilde{D}_0] + \mathbb{R}^+[\tilde{D}_{n+1}] \simeq (\mathbb{R}^+)^2.$$

Par conséquent,

$$\begin{aligned} \alpha(Y) &= \int_{[0,\infty]^2} e^{-(m+1-d_1)t_1 - (n-r+1-d_2)t_2} \, dt_1 \, dt_2 \\ &= \frac{1}{(m+1-d_1)(n-r+1-d_2)}. \end{aligned}$$

D'autre part, $\operatorname{Pic}(\overline{Y}) \simeq \mathbb{Z}^2$, et le groupe de Galois $\operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$ agit trivialement sur $\operatorname{Pic}(\overline{Y})$, donc

$$\beta(Y) = 1.$$

Par ailleurs, d'après ce qui a été vu dans les sections précédentes,

$$\prod_{p \in \mathcal{P}} \tau_p(Y(\mathbb{Q}_p)) = \mathfrak{S} \prod_{p \in \mathcal{P}} \left(1 - \frac{1}{p^{n-r+1-d_2}} \right)$$

 et

$$\tau_{\infty}(Y(\mathbb{R})) = \frac{(m+1-d_1)(n-r+1-d_2)}{4}J.$$

Ainsi,

$$\begin{aligned} \alpha(Y)\beta(Y)\tau_H(Y)B\log(B)^{\operatorname{rg}(\operatorname{Pic}(Y))-1} \\ &= \frac{1}{4}\mathfrak{S}J\prod_{p\in\mathcal{P}}\left(1-\frac{1}{p^{n-r+1-d_2}}\right)B\log(B), \end{aligned}$$

et on retrouve bien la formule de la proposition 8.1. Nous avons donc démontré le théorème 1.1.

Remerciements. Je tiens à remercier vivement Emmanuel Peyre, mon directeur de thèse, pour ses remarques et ses conseils avisés qui ont été d'une aide précieuse pour la rédaction de cet article.

Références

- [B-B] V. Blomer and J. Brüdern, Counting in hyperbolic spikes: the diophantine analysis of multihomogeneous diagonal equations, arXiv:1402.1122v1 (2014).
- [B-T] V. V. Batyrev and Yu. Tschinkel, Tamagawa numbers of polarized algebraic varieties, Astérisque 251 (1998), 299–340.
- [Bi] B. J. Birch, Forms in many variables, Proc. Roy. Soc. London Ser. A Math. Phys. Sci. 265 (1962), 245–263.
- [Br] T. D. Browning, Quantitative Arithmetic of Projective Varieties, Progr. Math. 277, Birkhäuser, 2009.
- [Da] H. Davenport, Analytic Methods for Diophantine Equations and Diophantine Inequalities, 2nd ed., Cambridge Univ. Press, 2005.
- [F] W. Fulton, Introduction to Toric Varieties, Ann. of Math. Stud. 131, Princeton Univ. Press, 1993.
- [G-D] A. Grothendieck et J. Dieudonné, Éléments de géométrie algébrique. IV. Étude locale des schémas et des morphismes de schémas (troisième partie), Inst. Hautes Études Sci. Publ. Math. 28 (1966), 5–248.
- [Ig] J.-I. Igusa, Lectures on Forms of Higher Degree, Tata Inst. Fund. Res., Bombay, and Springer, Berlin, 1978.
- [K] P. Kleinschmidt, A classification of toric varieties with few generators, Aequationes Math. 35 (1988), 254–266.
- [M-V] D. Masser and J. D. Vaaler, Counting algebraic numbers with large height II, Trans. Amer. Math. Soc. 359 (2007), 427–445.
- [Pe] E. Peyre, Hauteurs et mesures de Tamagawa sur les variétés de Fano, Duke Math. J. 79 (1995), 101–218.
- [Sa] P. Salberger, Tamagawa measures on universal torsors and points of bounded height on Fano varieties, Astérisque 251 (1998), 91–258.
- [Sch1] D. Schindler, Bihomogeneous forms in many variables, J. Théor. Nombres Bordeaux 26 (2014), 483–506.
- [Sch2] D. Schindler, Manin's conjecture for certain biprojective hypersurfaces, J. Reine Angew. Math. (2014) (online).
- [Schm] W. M. Schmidt, The density of integer points on homogeneous varieties, Acta Math. 154 (1985), 243–296.

96

- [W-W] E. T. Whittaker and G. N. Watson, Modern Analysis, Cambridge Univ. Press, 1927.
- [Wi] M. Widmer, Counting primitive points of bounded height, Trans. Amer. Math. Soc. 362 (2010), 4793–4829.

Teddy Mignot

Institut Fourier, UMR 5582

UFR de Mathématiques, Université de Grenoble I

BP 74, 38402 Saint-Martin d'Hères Cedex, France

E-mail: teddy.mignot@ujf-grenoble.fr