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Less than one implies zero

by

Felix L. Schwenninger (Enschede and Wuppertal)
and Hans Zwart (Enschede)

Abstract. In this paper we show that from an estimate of the form supt≥0 ‖C(t) −
cos(at)I‖ < 1, we can conclude that C(t) equals cos(at)I. Here (C(t))t≥0 is a strongly
continuous cosine family on a Banach space.

1. Introduction. Let (T (t))t≥0 denote a strongly continuous semigroup
on the Banach space X with infinitesimal generator A. It is well-known that

(1.1) lim sup
t→0+

‖T (t)− I‖ < 1

implies that A is a bounded operator (see e.g. [14, Remark 3.1.4]). That the
stronger assumption of having

(1.2) sup
t≥0
‖T (t)− I‖ < 1

implies that T (t) = I for all t ≥ 0 seems not to be equally well-known
among researchers working in the area of strongly continuous semigroups.
The result was proved in the sixties (see e.g. Wallen [15] and Hirschfeld [10]).
We refer the reader to [3, Lemma 10] for a more detailed listing of related
references.

In this paper we investigate a similar question for cosine families (C(t))t≥0.
Recently, Bobrowski and Chojnacki showed in [3, Theorem 4] that

(1.3) sup
t≥0
‖C(t)− cos(at)I‖ < 1/2

implies C(t) = cos(at)I for all t ≥ 0. They used this to conclude that scalar
cosine families are isolated points within the space of bounded strongly con-
tinuous cosine families acting on a fixed Banach space, equipped with the
supremum norm.
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The purpose of this note is to extend the result of [3] by showing that the
half in (1.3) may be replaced by one. More precisely, we prove the following.

Theorem 1.1. Let (C(t))t≥0 be a strongly continuous cosine family on
the Banach space X and let a ≥ 0. If

(1.4) sup
t≥0
‖C(t)− cos(at)I‖ < 1,

then C(t) = cos(at)I for all t ≥ 0.

Between the first draft (arXiv:1310.6202, version 1) and this version
of the manuscript, Chojnacki showed in [6] that Theorem 1.1 even holds
for cosine families on normed algebras indexed by general abelian groups
and without assuming strong continuity. Furthermore, Bobrowski, Choj-
nacki and Gregosiewicz [4] and independently Esterle [7] extended Theorem
1.1 to

sup
t≥0
‖C(t)− cos(at)I‖ < 8

3
√

3
≈ 1.54 ⇒ C(t) = cos(at)I ∀t ≥ 0.

This is optimal as supt≥0 |cos(3t) − cos(t)| = 8/(3
√

3). Again, their results
do not require the strong continuity assumption and hold for cosine families
on general normed algebras with a unity element.

Let us remark that the case a = 0 is special. In a three-line-proof [1],
Arendt showed that supt≥0 ‖C(t)− I‖ < 3/2 still implies that C(t) = I for
all t ≥ 0. In [13], we proved that for (C(t))t≥0 strongly continuous,

(1.5) sup
t≥0
‖C(t)− I‖ < 2 ⇒ C(t) = I ∀t ≥ 0.

Moreover, we were able to show the following zero-two law :

(1.6) lim sup
t→0+

‖C(t)− I‖ < 2 ⇒ lim
t→0+

‖C(t)− I‖ = 0,

which can be seen as the cosine families version of (1.1). Recently, Chojnacki
[5] and Esterle [8] also extended (1.5) and (1.6), allowing for, not necessarily
strongly continuous, cosine familes on general Banach algebras with a unity
element (in [5], even general normed algebras with a unity are considered).
In the next section we prove Theorem 1.1 for a 6= 0 using elementary tech-
niques, which seem to be less involved than the technique used in [3]. As
mentioned, the case a = 0 can be found in [13] (see also [3, 4, 5, 6]).

2. Proof of Theorem 1.1. Let (C(t))t≥0 be a strongly continuous
cosine family on the Banach space X with infinitesimal generator A with
domain D(A) and spectrum σ(A). For λ ∈ C that lies in the resolvent set
ρ(A), we define R(λ,A) = (λI−A)−1. For an introduction to cosine families
we refer to e.g. [2, 9].
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Let us assume that for some r > 0,

(2.1) sup
t≥0
‖C(t)− cos(at)I‖ = r.

If a > 0 we may apply scaling on t. Hence in that situation, without loss of
generality we can take a = 1, thus

(2.2) sup
t≥0
‖C(t)− cos(t)I‖ = r.

The following lemma is essential in proving Theorem 1.1.

Lemma 2.1. Let (C(t))t≥0 be a cosine family such that (2.1) holds for
r < 1 and a ≥ 0. Then the spectrum of its generator A satisfies σ(A) ⊆
{−a2}.

Proof. The case r = 0 is trivial, thus let r > 0. From (2.1) it follows
in particular that the cosine family (C(t))t≥0 is bounded. Using [9, Lemma
5.4] we conclude that for every s ∈ C with positive real part, s2 lies in the
resolvent set of A. Thus the spectrum of A lies on the non-positive real axis.

To determine the spectrum, we use the following identity (see [11, Lem-
ma 4]). For λ ∈ C, s ∈ R and x ∈ D(A) we have

1

λ

s�

0

sinh(t− s)C(t)(λ2I −A)x dt = (cosh(λs)I − C(s))x.

By this and the definition of the approximate point spectrum,

σap(A) =
{
λ ∈ C

∣∣∣ ∃(xn)n∈N ⊂ D(A), ‖xn‖ = 1, lim
n→∞

‖(A− λI)xn‖ = 0
}
,

it follows that if λ2 ∈ σap(A), then cosh(λs) ∈ σap(C(s)). Hence,

(2.3) cosh(s
√
σap(A)) ⊂ σap(C(s)), ∀s ∈ R.

Since σ(A) ⊂ R−0 , the boundary of the spectrum equals the spectrum.
Combining this with the fact that the boundary of the spectrum is con-
tained in the approximate point spectrum, we see that σ(A) = σap(A). Let
−λ2 ∈ σ(A) for λ ≥ 0. Then, by (2.3),

cosh(±siλ) = cos(sλ) ∈ σap(C(s)), ∀s ∈ R.

If λ 6= a, we can find s̃ > 0 such that |cos(s̃λ) − cos(as̃)| ≥ 1 (see Lemma
2.2). Since cos(s̃λ) ∈ σap(C(s̃)), we find a sequence (xn)n∈N ⊂ X such that
‖xn‖ = 1 and limn→∞ ‖(C(s̃)− cos(s̃λ)I)xn‖ = 0. Since

‖(C(s̃)− cos(as̃)I)xn‖ ≥ |cos(s̃λ)− cos(as̃)| − ‖(C(s̃)− cos(s̃λ)I)xn‖,
we conclude that ‖C(s̃)− cos(as̃)I‖ ≥ 1. This contradicts assumption (2.1)
as r < 1.

Lemma 2.2. If a, b ≥ 0 and a 6= b, then supt≥0 |cos(at)− cos(bt)| > 1.
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Proof. If a = 0, the assertion is clear as cos(π) = −1. Hence, let a, b > 0.
By scaling, it suffices to prove that

∀a ∈ (0, 1) ∃s ≥ 0 : |cos(as)− cos(s)| > 1.

Since cos(2kπ) = 1 for k ∈ Z and cos(as) < 0 for t ∈ π
a

(
1
2 + 2m, 32 + 2m

)
,

m ∈ Z, we are done if we find (k,m) ∈ Z× Z such that

k ∈ 1

a

(
1

4
+m,

3

4
+m

)
.

This is equivalent to ka −m ∈ (1/4, 3/4). It is easy to check that for a ∈
(2−n−1, 2−n]∪ [1−2−n−1, 1−2−n) we can choose k = 2n−1 and m = bkac.

As mentioned before, we may assume that a = 1, and thus we consider
equation (2.2) and assume that r < 1. Hence we know that the norm of the
difference e(t) = C(t)−cos(t)I is uniformly below one, and we want to show
that it equals zero. The idea is to use the following inequality:

(2.4)
∥∥∥∞�

0

hn(q, t)e(t) dt
∥∥∥ ≤ r∞�

0

|hn(q, t)| dt,

with hn(q, t) = e−qt cos(t)2n+1, n ∈ N, where q > 0 is an auxiliary variable
to be dealt with later.

Since (C(t))t≥0 is bounded, it is well-known (see e.g. [9, Lemma 5.4])
that for s with <(s) > 0, s2 ∈ ρ(A) and we can define E(s) as the Laplace
transform of e(t),

(2.5) E(s) :=

∞�

0

e−ste(t) dt = s(s2I −A)−1 − s

s2 + 1
I.

To calculate the left-hand side of (2.4) we need the following two results.
We omit the proof of the first as it can easily be checked by the reader.

Lemma 2.3. Let n ∈ N. Then, for all t ∈ R,

cos(t)2n+1 =

n∑
k=0

a2k+1,2n+1 cos((2k + 1)t),

where a2k+1,2n+1 = 2−2n
(
2n+1
n−k

)
.

Proposition 2.4. For hn(q, t) = −2e−qt cos(t)2n+1 and q > 0 we have
∞�

0

hn(q, t)e(t) dt = a1,2n+1
g(q)

q
I + a1,2n+1B(A, q) +G(A, q),

where an is as in Lemma 2.3, g(q) = 2q2+4
q2+4

,

B(A, q) = R((q + i)2, A)2q[A− (q2 + 1)I]R((q − i)2, A),

and G(A, q) is such that limq→0+ q ·G(A, q) = 0 in the operator norm.
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Proof. By Lemma 2.3, we have
∞�

0

hn(q, t)e(t) dt = −
n∑
k=0

a2k+1,2n+12

∞�

0

e−qt cos((2k + 1)t) e(t) dt

= −
n∑
k=0

a2k+1,2n+1[E(q + (2k + 1)i) + E(q − (2k + 1)i)].

Let us first consider the term in the sum corresponding to k = 0. By (2.5),

(2.6) E(q ± i) =
q ± i

q(q ± 2i)
[q(q ± 2i)R((q ± i)2)− I],

where R(λ) abbreviates R(λ,A). Hence,

E(q + i) + E(q − i) = − g(q)

q
+ (q + i)R((q + i)2) + (q − i)R((q − i)2)

= − g(q)

q
+R((q + i)2)[(q + i)((q − i)2 −A)

+ ((q − i)2 −A)(q − i)]R((q − i)2)

= − g(q)

q
+R((q + i)2)2q[q2I + I −A]R((q − i)2)

= − g(q)

q
−B(A, q).

Thus, it remains to show that qG(A, q) with

G(A, q) := −
n∑
k=1

a2k+1,2n+1[E(q + (2k + 1)i)− E(q − (2k + 1)i)]

goes to 0 as q → 0+. Let dk = (2k + 1)i. By (2.5),

E(q ± (2k + 1)i) = (q ± dk)R((q ± dk)2)−
q ± dk

(q ± dk)2 + 1
I.

Thus, since d2k ∈ ρ(A) for k 6= 0 by Lemma 2.1,

lim
q→0+

E(q ± (2k + 1)i) = ±dkR(d2k)±
dk

d2k + 1
,

for k 6= 0, hence, limq→0+ q ·G(A, q) = 0. Therefore, the assertion follows.

Lemma 2.5. For any n ∈ N and a1,2n+1 chosen as in Lemma 2.3 we
have:

• bn := limq→0+ q ·
	∞
0 e−qt|cos(t)n| dt exists and bn ≥ bn+1,

• a1,2n+1 = 2b2n+2,

• limn→∞
a1,2n+1

2b2n+1
= 1.
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Proof. Because t 7→ |cos(t)n| is π-periodic,

q

∞�

0

e−qt|cos(t)n| dt =
q
	π
0 e
−qt|cos(t)n| dt
1− e−qπ

,

which goes to 1
π

	π
0 |cos(t)n| dt as q → 0+. Furthermore,

2b2n+2 =
2

π

π�

0

|cos(t)2n+2| dt =
1

π

2π�

0

cos(t)2n+1 cos(t) dt

equals a1,2n+1 by the Fourier series of cos(t)2n+1 (see Lemma 2.3). By the
same lemma we find that for n ≥ 1,

a1,2n−1
a1,2n+1

=
2−2n+2

(
2n−1
n

)
2−2n

(
2n+1
n

) =
(2n+ 1)2n

4(n+ 1)n
,

which goes to 1 as n→∞. This implies that
a1,2n+1

2b2n+1
goes to 1 because

a1,2n+1 = 2b2n+2 ≤ 2b2n+1 ≤ 2b2n = a1,2n−1, n ∈ N.

Proof of Theorem 1.1. Let r = 1− 2ε for some ε > 0. By Lemma 2.5 we
can choose n ∈ N such that

(2.7) r
2b2n+1

a1,2n+1
< 1− ε.

Let us abbreviate a1,2n+1 by a2n+1. By (2.4) and Proposition 2.4, for q > 0,

‖a2n+1[g(q)I + qB(A, q)] +G(A, q)‖ ≤ 2rq

∞�

0

e−qt|cos(t)2n+1| dt,

hence,∥∥∥∥I +
q

g(q)

(
B(A, q) +

1

a2n+1
G(A, q)

)∥∥∥∥ ≤ 2rq

g(q)a2n+1

∞�

0

e−qt|cos(t)2n+1| dt.

For q → 0+, we have g(q) → 1+, qG(A, q) → 0 by Proposition 2.4, and
Lemma 2.5 yields q

	∞
0 e−qt|cos(t)2n+1| dt→ b2n+1. Thus, there exists q0 > 0

(depending only on ε and n) such that∥∥∥∥I +
q

g(q)
B(A, q)

∥∥∥∥ ≤ r2b2n+1

a2n+1
+ ε =: δ, ∀q ∈ (0, q0),

Since δ < 1 by (2.7), B(A, q) is invertible for q ∈ (0, q0). Moreover,

‖B(A, q)−1‖ ≤ q

g(q)
· 1

1− δ
.

Since for x ∈ D(A),

B(A, q)−1x =
1

2
((q − i)2 −A)q−1[A− (q2 + 1)I]−1((q + i)2 −A)x,
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we conclude that

‖((q − i)2 −A)R(q2 + 1, A)((q + i)2 −A)x‖ ≤ q2

g(q)
· 2

1− δ
‖x‖.

As q → 0+, the right-hand side goes to 0, whereas the left-hand side tends
to ‖(I + A)[A − I]−1(I + A)x‖ as 1 ∈ ρ(A). Since −1 ∈ ρ(A), we derive
(I +A)x = 0. Therefore, A = −I, since D(A) is dense in X.

Remark 2.6. A related question is if condition (1.4) can be replaced by

lim sup
t→∞

‖C(t)− cos(at)‖ = r,

for some r < 1 (or even some r ≥ 1) such that Theorem 1.1 still holds.
For a = 0, an affirmative answer was given in [12] for r = 2. There, the
techniques used rely on the results obtained by Esterle [8]. For a > 0, it
seems that a similar approach might work. This is the subject of ongoing
work.
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