Gaps between primes in Beatty sequences

by
Roger C. Baker (Provo, UT) and Liangyi Zhao (Sydney)

1. Introduction. Let p_{n} denote the nth prime and t a natural number with $t \geq 2$. It has long been conjectured that

$$
\liminf _{n \rightarrow \infty}\left(p_{n+t-1}-p_{n}\right)<\infty
$$

This was established recently for $t=2$ by Y. Zhang [12], and shortly after for all t by J. Maynard [9]. Maynard showed that for $N>C(t)$, the interval $[N, 2 N)$ contains a set \mathcal{S} of t primes of diameter

$$
D(\mathcal{S}) \ll t^{3} \exp (4 t)
$$

where

$$
D(\mathcal{S}):=\max \{n: n \in \mathcal{S}\}-\min \{n: n \in \mathcal{S}\}
$$

In the present paper, we adapt Maynard's method to prove a similar result where \mathcal{S} is contained in a prescribed set \mathcal{A} (see Theorem11). We then work out applications (Theorems 2 and 3) to a section of a Beatty sequence, so that

$$
\mathcal{A}=\{[\alpha m+\beta]: m \geq 1\} \cap[N, 2 N)
$$

The number α is assumed to be irrational with $\alpha>1$, while β is a given real number. We require an auxiliary result (Theorem 4) for the estimation of errors of the form

$$
\sum_{\substack{N \leq n<N^{\prime} \\ \gamma n \in I \bmod 1 \\ n \equiv a \bmod q}} \Lambda(n)-\frac{\left(N-N^{\prime}\right)|I|}{\varphi(q)}
$$

where I is an interval of length $|I|<1$ and $\gamma=\alpha^{-1}$. Theorem 4 is of "Bombieri-Vinogradov type"; for completeness, we include a result of Barban-Davenport-Halberstam type for these errors (Theorem 5).

[^0]We note that Chua, Park and Smith [5] have already used Maynard's method to prove the existence of infinitely many sets of k primes of diameter at most $C=C(\alpha, k)$ in a Beatty sequence $[\alpha n]$, where α is irrational and of finite type. However, no explicit bound for C is given.

Now we introduce some notation to be used throughout this paper. We suppose that $t \in \mathbb{N}, N \geq C(t)$ and write $\mathcal{L}=\log N$,

$$
D_{0}=\frac{\log \mathcal{L}}{\log \log \mathcal{L}} .
$$

Moreover, (d, e) and $[d, e]$ stand for the greatest common divisor and the least common multiple of d and e, respectively; $\tau(q)$ and $\tau_{k}(q)$ are the usual divisor functions; and $\|x\|$ is the distance of between $x \in \mathbb{R}$ and the nearest integer. Set

$$
P(z)=\prod_{p<z} p \quad \text { with } z \geq 2 \quad \text { and } \quad \psi(n, z)= \begin{cases}1 & \text { if }(n, P(z))=1 \\ 0 & \text { otherwise }\end{cases}
$$

$X(E ; n)$ stands for the indicator function of a set E, and \mathbb{P} for the set of primes. Let ε be a positive constant, sufficiently small in terms of t. The constant implied in " $<$ ", when it appears, may depend on ε and on A (if A appears in the statement of the result). " $F \asymp G$ " means both $F \ll G$ and $G \ll F$ hold. As usual, $e(y)=\exp (2 \pi i y)$, and $o(1)$ indicates a quantity tending to 0 as N tends to infinity. Furthermore,

$$
\sum_{\chi \bmod q}, \sum_{\chi \bmod q}^{\prime}, \quad \sum_{\chi \bmod q}^{\star}
$$

denote, respectively, a sum over all Dirichlet characters modulo q, a sum over non-principal characters modulo q, and a sum restricted to primitive characters, other than $\chi=1$, modulo q. We write $\hat{\chi}$ for the primitive character that induces χ. A set $\mathcal{H}=\left\{h_{1}, \ldots, h_{k}\right\}$ of distinct non-negative integers is admissible if for every prime p, there is an integer a_{p} such that $a_{p} \not \equiv h$ $(\bmod p)$ for all $h \in \mathcal{H}$.

In Sections 1 and 2, let θ be a positive constant. Let \mathcal{A} be a subset of $[N, 2 N) \cap \mathbb{N}$. Suppose that $Y>0$ and Y / q_{0} is an approximation to $\# \mathcal{A}$, the cardinality of \mathcal{A}. Let q_{0}, q_{1} be given natural numbers not exceeding N with $\left(q_{1}, q_{0} P\left(D_{0}\right)\right)=1$ and $\varphi\left(q_{1}\right)=q_{1}(1+o(1))$. Suppose that $n \equiv a_{0}\left(\bmod q_{0}\right)$ for all $n \in \mathcal{A}$ with $\left(a_{0}, q_{0}\right)=1$. An admissible set \mathcal{H} is given with

$$
h \equiv 0\left(\bmod q_{0}\right) \quad(h \in \mathcal{H})
$$

and

$$
\begin{equation*}
p \mid h-h^{\prime} \quad \text { with } h, h^{\prime} \in \mathcal{H}, h \neq h^{\prime}, p>D_{0} \quad \text { implies } \quad p \mid q_{0} \tag{1.1}
\end{equation*}
$$

We now state "regularity conditions" on \mathcal{A} :
(I) We have

$$
\begin{align*}
& \quad \sum_{\substack{q \leq N^{\theta} \\
\left(q, q_{0} q_{1}\right)=1}} \mu(q)^{2} \tau_{3 k}(q)\left|\sum_{n \equiv a_{q} \bmod q q_{0}} X(\mathcal{A} ; n)-\frac{Y}{q q_{0}}\right| \ll \frac{Y}{q_{0} \mathcal{L}^{k+\varepsilon}} \tag{1.2}\\
& \left(\text { for any } a_{q} \equiv a_{0}\left(\bmod q_{0}\right)\right) .
\end{align*}
$$

(II) There are non-negative functions $\varrho_{1}, \ldots, \varrho_{s}$ defined on $[N, 2 N$) (with s constant, $0<a \leq s)$ such that

$$
\begin{equation*}
X(\mathbb{P} ; n) \geq \varrho_{1}(n)+\cdots+\varrho_{a}(n)-\left(\varrho_{a+1}(n)+\cdots+\varrho_{s}(n)\right) \tag{1.3}
\end{equation*}
$$

for $n \in[N, 2 N)$. There are positive $Y_{g, m}(g=1, \ldots, s$ and $m=$ $1, \ldots, k$) with

$$
Y_{g, m}=Y\left(b_{g, m}+o(1)\right) \mathcal{L}^{-1}
$$

where the positive constants $b_{g, m}$ satisfy

$$
\begin{equation*}
b_{1, m}+\cdots+b_{a, m}-\left(b_{a+1, m}+\cdots+b_{s, m}\right) \geq b>0 \tag{1.4}
\end{equation*}
$$

for $m=1, \ldots, k$. Moreover, for $m \leq k, g \leq s$ and any $a_{q} \equiv a_{0}$ $\left(\bmod q_{0}\right)$ with $\left(a_{q}, q\right)=1$ defined for $q \leq x^{\theta},\left(q, q_{0} q_{1}\right)=1$, we have

$$
\begin{array}{r}
\left.\left.\sum_{\substack{q \leq N^{\theta} \\
\left(q, q_{0} q_{1}\right)=1}} \mu(q)^{2} \tau_{3 k}(q)\right|_{n \equiv a_{q} \bmod q q_{0}} \varrho_{g}(n) X\left(\left(\mathcal{A}+h_{m}\right) \cap \mathcal{A} ; n\right)-\frac{Y_{g, m}}{\varphi\left(q_{0} q\right)} \right\rvert\, \tag{1.5}\\
\end{array}<\frac{Y}{\varphi\left(q_{0}\right) \mathcal{L}^{k+\varepsilon}} .
$$

Finally, $\varrho_{g}(n)=0$ unless $\left(n, P\left(N^{\theta / 2}\right)\right)=1$.
Theorem 1. Under the above hypotheses on \mathcal{H} and \mathcal{A}, there is a set \mathcal{S} of t primes in \mathcal{A} with diameter not exceeding $D(\mathcal{H})$, provided $k \geq k_{0}(t, b, \theta)$ (k_{0} is defined at the end of this section).

In proving Theorem 2, we shall take $s=a=1, q_{0}=q_{1}=1, \rho_{1}(n)=$ $X(\mathbb{P} ; n)$. A more complicated example with $s=5$, of the inequality 1.3 , occurs in proving Theorem 3, but again $q_{0}=q_{1}=1$. We shall consider elsewhere a result in which q_{0}, q_{1} are large. Maynard's Theorem 3.1 in [10] overlaps with our Theorem 1, but neither subsumes the other.

Theorem 2. Let $\alpha>1, \gamma=\alpha^{-1}$ and $\beta \in \mathbb{R}$. Suppose that

$$
\begin{equation*}
\|\gamma r\| \gg r^{-3} \tag{1.6}
\end{equation*}
$$

for all $r \in \mathbb{N}$. Then for any $N>c_{1}(t, \alpha, \beta)$, there is a set of t primes of the form $[\alpha m+\beta]$ in $[N, 2 N)$ having diameter

$$
<C_{2} \alpha(\log \alpha+t) \exp (8 t)
$$

where C_{2} is an absolute constant.

Theorem 3. Let α be irrational with $\alpha>1$ and $\beta \in \mathbb{R}$. Let $r \geq C_{3}(\alpha, \beta)$ and

$$
\left|\frac{1}{\alpha}-\frac{b}{r}\right|<\frac{1}{r^{2}}, \quad b \in \mathbb{N},(b, r)=1 .
$$

Let $N=r^{2}$. There is a set of t primes of the form $[\alpha n+\beta]$ in $[N, 2 N)$ having diameter

$$
<C_{4} \alpha(\log \alpha+t) \exp (7.743 t)
$$

where C_{4} is an absolute constant.
Theorem 3 improves Theorem 2 in that α can be any irrational number in $(1, \infty)$ and $7.743<8$, but we lose the arbitrary placement of N.

Turning our attention to our theorem of Bombieri-Vinogradov type, we write

$$
E\left(N, N^{\prime}, \gamma, q, a\right)=\sup _{I}\left|\sum_{\substack{N \leq n<N^{\prime} \\ \gamma n \in I \bmod 1 \\ n \equiv a \bmod q}} \Lambda(n)-\frac{\left(N^{\prime}-N\right)|I|}{\varphi(q)}\right| .
$$

Here, I runs over intervals of length $|I|<1$.
Theorem 4. Let $A>0, \gamma$ be a real number and b / r a rational approximation to γ,

$$
\begin{equation*}
\left|\gamma-\frac{b}{r}\right| \leq \frac{1}{r N^{3 / 4}}, \quad N^{\varepsilon} \leq r \leq N^{3 / 4},(b, r)=1 \tag{1.7}
\end{equation*}
$$

Then for $N<N^{\prime} \leq 2 N$ and any $A>0$, we have

$$
\begin{equation*}
\sum_{q \leq \min \left(r, N^{1 / 4}\right) N^{-\varepsilon}} \max _{(a, q)=1} E\left(N, N^{\prime}, \gamma, q, a\right) \ll N \mathcal{L}^{-A} \tag{1.8}
\end{equation*}
$$

Our Barban-Davenport-Halberstam type result is the following.
Theorem 5. Let $A>0$ and γ be an irrational number. Suppose that for each $\eta>0$ and sufficiently large $r \in \mathbb{N}$, we have

$$
\begin{equation*}
\|\gamma r\|>\exp \left(-r^{\eta}\right) \tag{1.9}
\end{equation*}
$$

Let $N \mathcal{L}^{-A} \leq R \leq N$. Then for $N<N^{\prime} \leq 2 N$,

$$
\begin{equation*}
\sum_{q \leq R} \sum_{\substack{a=1 \\(a, q)=1}}^{q} E\left(N, N^{\prime}, \gamma, q, a\right)^{2} \ll N R \mathcal{L}(\log \mathcal{L})^{2} \tag{1.10}
\end{equation*}
$$

There are weaker results overlapping with Theorems 4 and 5, due to W. D. Banks and I. E. Shparlinski 4].

Let γ be irrational, $\eta>0$ and suppose that

$$
\|\gamma r\| \leq \exp \left(-r^{\eta}\right)
$$

for infinitely many $r \in \mathbb{N}$. Then 1.10 fails (so Theorem 5 is optimal in this sense). To see this, take $N=\exp \left(r^{\eta / 2}\right), N^{\prime}=2 N$ and $R=N \mathcal{L}^{-8 / \eta}$. We have, for some $u \in \mathbb{Z}$,

$$
\left|\gamma n-\frac{u n}{r}\right| \leq 2 N r^{-1} \exp \left(-r^{\eta}\right)<\frac{1}{4 r} \quad(n \leq 2 N)
$$

From this, we infer that

$$
\gamma n \notin\left(\frac{1}{4 r}, \frac{3}{4 r}\right)(\bmod 1) \quad(n \leq 2 N)
$$

So

$$
E(N, 2 N, \gamma, q, a)^{2} \geq \frac{N^{2}}{4 r^{2} \varphi(q)} \quad(q \leq R,(a, q)=1)
$$

Therefore,

$$
\sum_{q \leq R} \sum_{\substack{a=1 \\(a, q)=1}}^{q} E(N, 2 N, \gamma, q, a)^{2} \geq \frac{N^{2}}{4 r^{2}} \sum_{q \leq R} \frac{1}{\varphi(q)}>\frac{N^{2}}{r^{2}}=N R \mathcal{L}^{4 / \eta}
$$

We now turn to the definition of $k_{0}(t, b, \theta)$. For a smooth function F supported on

$$
\mathcal{R}_{k}=\left\{\left(x_{1}, \ldots, x_{k}\right) \in[0,1]^{k}: \sum_{i=1}^{k} x_{i} \leq 1\right\}
$$

set

$$
\begin{aligned}
I_{k}(F) & =\int_{0}^{1} \ldots \int_{0}^{1} F\left(t_{1}, \ldots, t_{k}\right)^{2} d t_{1} \cdots d t_{k} \\
J_{k}^{(m)}(F) & =\int_{0}^{1} \ldots \int_{0}^{1}\left(\int_{0}^{1} F\left(t_{1}, \ldots, t_{k}\right) d t_{m}\right)^{2} d t_{1} \cdots d t_{m-1} d t_{m+1} \cdots d t_{k}
\end{aligned}
$$

for $m=1, \ldots, k$. Let

$$
M_{k}=\sup _{F} \frac{\sum_{m=1}^{k} J_{k}^{(m)}(F)}{I_{k}(F)}
$$

where the sup is taken over all functions F specified above and subject to the conditions $I_{k}(F) \neq 0$ and $J_{k}^{(m)}(F) \neq 0$ for each m. Sharpening a result of Maynard [9], D. H. J. Polymath [11] gives the lower bound

$$
\begin{equation*}
M_{k} \geq \log k+O(1) \tag{1.11}
\end{equation*}
$$

Now let $k_{0}(t, b, \theta)$ be the least integer k for which

$$
\begin{equation*}
M_{k}>\frac{2 t-2}{b \theta} \tag{1.12}
\end{equation*}
$$

2. Deduction of Theorem 1 from two propositions. We first write down some lemmas that we shall need later.

Lemma 1. Let $\kappa, A_{1}, A_{2}, L>0$. Suppose that γ is a multiplicative function satisfying

$$
0 \leq \frac{\gamma(p)}{p} \leq 1-A_{1}
$$

for all prime p, and

$$
-L \leq \sum_{w \leq p \leq z} \frac{\gamma(p) \log p}{p}-\kappa \log \frac{z}{w} \leq A_{2}
$$

for any w and z with $2 \leq w \leq z$. Let g be the totally multiplicative function defined by

$$
g(p)=\frac{\gamma(p)}{p-\gamma(p)}
$$

Suppose that $G:[0,1] \rightarrow \mathbb{R}$ is a piecewise differentiable function with

$$
|G(y)|+\left|G^{\prime}(y)\right| \leq B
$$

for $0 \leq y \leq 1$ and

$$
\begin{equation*}
S=\prod_{p}\left(1-\frac{\gamma(p)}{p}\right)^{-1}\left(1-\frac{1}{p}\right)^{\kappa} . \tag{2.1}
\end{equation*}
$$

Then for $z>1$, we have

$$
\sum_{d<z} \mu(d)^{2} g(d) G\left(\frac{\log d}{\log z}\right)=\frac{S(\log z)^{\kappa}}{\Gamma(\kappa)} \int_{0}^{1} t^{\kappa-1} G(t) d t+O\left(S L B(\log z)^{\kappa-1}\right)
$$

The implied constant above depends on A_{1}, A_{2}, κ, but is independent of L.
Proof. This is [7, Lemma 4].
Throughout this section, we assume that the hypotheses of Theorem 1 hold. Moreover, we write

$$
W_{1}=\prod_{p \leq D_{0} \text { or } p \mid q_{0} q_{1}} p, \quad W_{2}=\prod_{\substack{p \leq D_{0} \\ p \nmid q_{0}}} p, \quad R=N^{\theta / 2-\varepsilon} .
$$

Recalling the definition of admissible set, we pick a natural number ν_{0} with

$$
\left(\nu_{0}+h_{m}, W_{2}\right)=1 \quad(m=1, \ldots, k) .
$$

Lemma 2. Suppose that $\gamma(p)=1+O\left(p^{-1}\right)$ if $p \nmid W_{1}$, and $\gamma(p)=0$ if $p \mid W_{1}$. Let $\kappa=1$ and S be as defined in 2.1). Then

$$
S=\frac{\varphi\left(W_{1}\right)}{W_{1}}\left(1+O\left(D_{0}^{-1}\right)\right) .
$$

Proof. We have

$$
\begin{aligned}
S & =\prod_{p \mid W_{1}}\left(1-\frac{1}{p}\right) \prod_{p \nmid W_{1}}\left(1-\frac{1}{p}+O\left(\frac{1}{p^{2}}\right)\right)^{-1}\left(1-\frac{1}{p}\right) \\
& =\frac{\varphi\left(W_{1}\right)}{W_{1}} \prod_{\substack{p>D_{0} \\
p \nmid q_{0} q_{1}}}\left(1+O\left(p^{-2}\right)\right),
\end{aligned}
$$

from which the statement of the lemma can be readily obtained.
Lemma 3. Let $H>1$ and

$$
T_{1}=\sum_{\substack{d \leq R \\\left(d, W=1 \\ W_{1}\right)=1}} \frac{\mu(d)^{2}}{d} \sum_{a \mid d} \frac{4^{\omega(a)}}{a}, \quad T_{2}=\sum_{H<d \leq R} \frac{\mu(d)^{2}}{d^{2}} \sum_{a \mid d} a^{-1 / 2} .
$$

Then

$$
\begin{align*}
& T_{1} \ll \frac{\varphi\left(W_{1}\right)}{W_{1}} \mathcal{L} \tag{2.2}\\
& T_{2} \ll H^{-1} \tag{2.3}
\end{align*}
$$

Proof. Let $\gamma(p)=0$ if $p \mid W_{1}$, and

$$
\gamma(p)=\frac{p^{2}+4 p}{p^{2}+p+4}
$$

if $p \nmid W_{1}$. Then $g(p)$, as defined in the statement of Lemma 1 , is

$$
g(p)=\frac{1}{p}+\frac{4}{p^{2}}
$$

if $p \nmid W_{1}$. Therefore, if d is square-free and $\left(d, W_{1}\right)=1$, then

$$
\frac{1}{d} \sum_{a \mid d} \frac{4^{\omega(a)}}{a}=\frac{1}{d} \prod_{p \mid d}\left(1+\frac{4}{p}\right)=g(d)
$$

Otherwise, if $\left(d, W_{1}\right) \neq 1$, then $g(d)=0$. Using Lemma 1 with $G(y)=1$ and Lemma 2, we have

$$
\begin{aligned}
T_{1} & =\sum_{d \leq R} \mu(d)^{2} g(d) G\left(\frac{\log d}{\log R}\right) \\
& =\frac{\varphi\left(W_{1}\right)}{W_{1}}\left(1+O\left(D_{0}^{-1}\right)\right) \log R+O\left(\frac{\varphi\left(W_{1}\right)}{W_{1}} L\right),
\end{aligned}
$$

where we can take

$$
L=\sum_{p \mid W_{1}} \frac{\log p}{p} \ll \log D_{0}+\log \omega\left(q_{0}\right) \ll \log \mathcal{L}
$$

Combining everything, we get 2.2 .

To prove (2.3), we interchange the summations and get

$$
T_{2} \leq \sum_{a \leq R} a^{-5 / 2} \sum_{H a^{-1}<k \leq R a^{-1}} k^{-2} \ll \sum_{a \leq R} a^{-3 / 2} H^{-1} \ll H^{-1}
$$

Lemma 4. Let f_{0}, f_{1} be multiplicative functions with $f_{0}(p)=f_{1}(p)+1$. Then for square-free d and e,

$$
\frac{1}{f_{0}([d, e])}=\frac{1}{f_{0}(d) f_{0}(e)} \sum_{k \mid d, e} f_{1}(k)
$$

Proof. We have

$$
\begin{aligned}
\frac{1}{f_{0}(d) f_{0}(e)} \sum_{k \mid d, e} f_{1}(k) & =\frac{1}{f_{0}(d) f_{0}(e)} \prod_{p \mid(d, e)}\left(1+f_{1}(p)\right) \\
& =\frac{1}{f_{0}(d) f_{0}(e)} \prod_{p \mid(d, e)} f_{0}(p)=\prod_{p \mid[d, e]}\left(f_{0}(p)\right)^{-1}
\end{aligned}
$$

The lemma follows from this.
We now present two propositions that readily yield Theorem 1 when combined. To state them, we define weights $y_{\mathbf{r}}$ and $\lambda_{\mathbf{r}}$ for tuples

$$
\mathbf{r}=\left(r_{1}, \ldots, r_{k}\right) \in \mathbb{N}^{k}
$$

having the properties

$$
\begin{equation*}
\left(\prod_{i=1}^{k} r_{i}, W_{1}\right)=1, \quad \mu\left(\prod_{i=1}^{k} r_{i}\right)^{2}=1 \tag{2.4}
\end{equation*}
$$

We set $y_{\mathbf{r}}=\lambda_{\mathbf{r}}=0$ for all other tuples. Let F be a smooth function with $|F| \leq 1$ and the properties given at the end of Section 1. Let

$$
\begin{align*}
y_{\mathbf{r}} & =F\left(\frac{\log r_{1}}{\log R}, \ldots, \frac{\log r_{k}}{\log R}\right) \tag{2.5}\\
\lambda_{\mathbf{d}} & =\prod_{i=1}^{k} \mu\left(d_{i}\right) d_{i} \sum_{\substack{\mathbf{r} \\
d_{i} \mid r_{i} \forall i}} \frac{y_{\mathbf{r}}}{\prod_{i=1}^{k} \varphi\left(r_{i}\right)} . \tag{2.6}
\end{align*}
$$

We have

$$
\begin{equation*}
\lambda_{\mathbf{r}} \ll \mathcal{L}^{k} \tag{2.7}
\end{equation*}
$$

(see [9, (5.9)]). For $n \equiv \nu_{0}\left(\bmod W_{2}\right)$, let

$$
w_{n}=\left(\sum_{d_{i} \mid n+h_{i} \forall i} \lambda_{\mathbf{d}}\right)^{2}
$$

and $w_{n}=0$ for all other natural numbers n.

Proposition 1. Let

$$
S_{1}=\sum_{N \leq n<2 N} w_{n} X(\mathcal{A} ; n) .
$$

Then

$$
S_{1}=\frac{(1+o(1)) \varphi\left(W_{1}\right)^{k} Y(\log R)^{k} I_{k}(F)}{q_{0} W_{1}^{k} W_{2}} .
$$

Proposition 2. Let

$$
S_{2}(g, m)=\sum_{\substack{N \leq n<2 N \\ n \in \mathcal{A} \cap\left(\mathcal{A}-h_{m}\right)}} w_{n} \varrho_{g}\left(n+h_{m}\right) .
$$

Then for $1 \leq g \leq s$ and $1 \leq m \leq k$,

$$
S_{2}(g, m)=\frac{b_{g, m}(1+o(1)) \varphi\left(W_{1}\right)^{k+1} Y(\log R)^{k+1} J_{k}^{(m)}(F)}{\varphi\left(q_{0}\right) \varphi\left(W_{2}\right) W_{1}^{k+1} \mathcal{L}} .
$$

Before proving the above propositions, we shall deduce Theorem 1 from them.

Proof of Theorem 1. Let

$$
\begin{aligned}
Z & =\frac{Y \varphi\left(W_{1}\right)^{k}}{q_{0} W_{1}^{k} W_{2}}(\log R)^{k}, \\
S(N) & =\sum_{\substack{N \leq n<2 N \\
n \in \mathcal{A}}} w_{n}\left(\sum_{m=1}^{k} X\left(\mathbb{P} \cap \mathcal{A} ; n+h_{m}\right)-(t-1)\right) .
\end{aligned}
$$

Since $w_{n} \geq 0$, (1.3) gives

$$
S(N) \geq \sum_{m=1}^{k}\left(\sum_{g=1}^{a} S_{2}(g, m)-\sum_{g=a+1}^{s} S_{2}(g, m)\right)-(t-1) S_{1} .
$$

By Propositions 1 and 2, the right-hand side of the above is

$$
(1+o(1)) Z\left(\sum_{m=1}^{k}\left(\sum_{g=1}^{a} b_{g, m}-\sum_{g=a+1}^{s} b_{g, m}\right) J_{k}^{(m)}(F)\left(\frac{\theta}{2}-\varepsilon\right)-(t-1) I_{k}(F)\right) .
$$

Here we have used

$$
\frac{\varphi\left(q_{0}\right) \varphi\left(q_{1}\right) \varphi\left(W_{2}\right)}{q_{0} q_{1} W_{2}} \frac{W_{1}}{\varphi\left(W_{1}\right)}=1 \quad \text { and } \quad \frac{\varphi\left(q_{1}\right)}{q_{1}}=1+o(1) .
$$

Therefore, from (1.4) we get

$$
S(N) \geq(1+o(1)) Z\left(b \sum_{m=1}^{k} J_{k}^{(m)}(F)\left(\frac{\theta}{2}-\varepsilon\right)-(t-1) I_{k}(F)\right)>0
$$

for a suitable choice of F. The positivity of the above expression is a consequence of 1.12). Therefore, there must be at least one $n \in \mathcal{A}$ for which

$$
\sum_{m=1}^{k} X\left(\mathbb{P} \cap \mathcal{A} ; n+h_{m}\right)>t-1
$$

For this n, there is a set of t primes $n+h_{m_{1}}, \ldots, n+h_{m_{t}}$ in \mathcal{A}.

3. Proof of Propositions 1 and 2

Proof of Proposition 1. We first show that

$$
\begin{equation*}
S_{1}=\frac{Y}{q_{0} W_{2}} \sum_{\mathbf{r}} \frac{y_{\mathbf{r}}^{2}}{\prod_{i=1}^{k} \varphi\left(r_{i}\right)}+O\left(\frac{Y \varphi\left(W_{1}\right)^{k} \mathcal{L}^{k}}{q_{0} W_{2} W_{1}^{k} D_{0}}\right) \tag{3.1}
\end{equation*}
$$

From the definition of w_{n}, we get

$$
\begin{equation*}
S_{1}=\sum_{\mathbf{d}, \mathbf{e}} \lambda_{\mathbf{d}} \lambda_{\mathbf{e}} \sum_{\substack{N \leq n<2 N \\ n \equiv \nu_{0} \bmod W_{2} \\\left[d_{i}, e_{i}\right] \mid n+h_{i} \forall i}} X(\mathcal{A} ; n) \tag{3.2}
\end{equation*}
$$

Recall that $n \equiv a_{0}\left(\bmod q_{0}\right)$ for all $n \in \mathcal{A}$. The inner sum of the above takes the form

$$
\sum_{\substack{N \leq n<2 N \\ n \equiv a_{q} \bmod q q_{0}}} X(\mathcal{A} ; n), \quad \text { where } \quad q=W_{2} \prod_{i=1}^{k}\left[d_{i}, e_{i}\right]
$$

provided that $W_{2},\left[d_{1}, e_{1}\right], \ldots,\left[d_{k}, e_{k}\right]$ are pairwise coprime. The latter restriction reduces to

$$
\begin{equation*}
\left(d_{i}, e_{j}\right)=1 \tag{3.3}
\end{equation*}
$$

for all $i \neq j$, and we exhibit this condition on the summation by writing

$$
\sum_{\mathbf{d}, \mathbf{e}}^{\prime}
$$

Outside of $\sum_{\mathbf{d}, \mathbf{e}}^{\prime}$, the inner sum is empty. To see this, suppose that $p \mid d_{i}$, $p \mid e_{j}$ with $i \neq j$; then the conditions

$$
\left[d_{i}, e_{i}\right] \mid n+h_{i} \quad \text { and } \quad\left[d_{j}, e_{j}\right] \mid n+h_{j}
$$

imply that $p \mid h_{i}-h_{j}$. This means that either $p \leq D_{0}$ or $p \mid q_{0}$, both contrary to $p \mid d_{i}$.

Counting the number of times a given q can arise, we get

$$
\begin{align*}
& S_{1}-\frac{Y}{q_{0} W_{2}} \sum_{\mathbf{d}, \mathbf{e}}^{\prime} \frac{\lambda_{\mathbf{d}} \lambda_{\mathbf{e}}}{\prod_{i=1}^{k}\left[d_{i}, e_{i}\right]} \tag{3.4}\\
& \left.<\left.\left(\max _{\mathbf{d}}\left|\lambda_{\mathbf{d}}\right|\right)^{2} \sum_{\substack{q \leq R^{2} W_{2} \\
\left(q, q_{0}\right)=1}} \mu(q)^{2} \tau_{3 k}(q)\right|_{n \equiv a_{q} \bmod q q_{0}} X(\mathcal{A} ; n)-\frac{Y}{q q_{0}} \right\rvert\,
\end{align*}
$$

Since $R^{2} W_{2} \leq N^{\theta}$, we can appeal to $\sqrt{1.2}$ and 2.7 to majorize the righthand side of (3.4) by

$$
\ll \frac{Y}{q_{0}} \mathcal{L}^{2 k-(k+\varepsilon)} \ll \frac{\varphi\left(W_{1}\right)^{k} Y \mathcal{L}^{k}}{q_{0} W_{2} W_{1}^{k} D_{0}} .
$$

Applying Lemma 4 with $f_{1}=\varphi$, we see that

$$
S_{1}=\frac{Y}{q_{0} W_{2}} \sum_{\mathbf{u}} \prod_{i=1}^{k} \varphi\left(u_{i}\right) \sum_{\substack{\mathbf{d}, \mathbf{e} \\ u_{i} \mid d_{i}, e_{i} \forall i}}^{\prime} \frac{\lambda_{\mathbf{d}} \lambda_{\mathbf{e}}}{\prod_{i=1}^{k} d_{i} e_{i}}+O\left(\frac{\varphi\left(W_{1}\right)^{k} Y \mathcal{L}^{k}}{q_{0} W_{2} W_{1}^{k} D_{0}}\right)
$$

Now we follow [9] verbatim to transform this equation into

$$
\begin{align*}
S_{1}= & \frac{Y}{q_{0} W_{2}} \sum_{\mathbf{u}} \prod_{i=1}^{k} \varphi\left(u_{i}\right) \sum_{s_{1,2}, \ldots, s_{k, k-1}}^{*} \prod_{\substack{1 \leq i, j \leq k \\
i \neq j}} \mu\left(s_{i, j}\right) \tag{3.5}\\
& \times \sum_{\substack{\mathbf{d}, \mathbf{e} \\
u_{i}\left|d_{i}, e_{i} \forall i \\
s_{i, j}\right| d_{i}, e_{j} \forall i \neq j}}
\end{align*} \frac{\lambda_{\mathbf{d}} \lambda_{\mathbf{e}}}{\prod_{i=1}^{k} d_{i} e_{i}}+O\left(\frac{\varphi\left(W_{1}\right)^{k} Y \mathcal{L}^{k}}{q_{0} W_{2} W_{1}^{k} D_{0}}\right) . .
$$

Here \sum^{*} indicates that $\left(s_{i, j}, u_{i} u_{j}\right)=1$ and $\left(s_{i, j}, s_{i, c}\right)=1=\left(s_{i, j}, s_{d, j}\right)$ for $c \neq j$ and $d \neq i$. Now define

$$
\begin{equation*}
a_{j}=u_{j} \prod_{i \neq j} s_{j, i}, \quad b_{j}=u_{j} \prod_{i \neq j} s_{i, j} \tag{3.6}
\end{equation*}
$$

As in (9), we recast (3.5) as

$$
\begin{align*}
S_{1}= & \frac{Y}{q_{0} W_{2}} \sum_{\mathbf{u}} \prod_{i=1}^{k} \frac{\mu\left(u_{i}\right)^{2}}{\varphi\left(u_{i}\right)^{s_{1,2}, \ldots, s_{k, k-1}} \sum_{\substack{1 \leq i, j \leq k \\
i \neq j}}^{*} \mu\left(s_{i, j}\right)} \prod_{\substack{\mathbf{d}, \mathbf{e} \\
u_{i}\left|d_{i}, e_{i} \forall i \\
s_{i}\right| d_{i}, e_{j} \forall i \neq j}} \frac{\mu\left(s_{i, j}\right)}{\varphi\left(s_{i, j}\right)^{2}} y_{\mathbf{a}} y_{\mathbf{b}}+O\left(\frac{\varphi\left(W_{1}\right)^{k} Y \mathcal{L}^{k}}{q_{0} W_{2} W_{1}^{k} D_{0}}\right) . \tag{3.7}
\end{align*}
$$

For the non-zero terms on the right-hand side of (3.7), either $s_{i, j}=1$ or $s_{i, j}>D_{0}$. The terms of the latter kind (for given i, j with $i \neq j$) contribute

$$
\begin{align*}
& \ll \frac{Y}{q_{0} W_{2}}\left(\sum_{\substack{u<R \\
\left(u, W_{1}\right)=1}} \frac{\mu(u)^{2}}{\varphi(u)}\right)^{k}\left(\sum_{s_{i, j}>D_{0}} \frac{\mu\left(s_{i, j}\right)^{2}}{\varphi\left(s_{i, j}\right)^{2}}\right)\left(\sum_{s \geq 1} \frac{\mu(s)}{\varphi(s)^{2}}\right)^{k^{2}-k-1} \tag{3.8}\\
& =\frac{Y}{q_{0} W_{2}} U_{1} U_{2} U_{3}
\end{align*}
$$

say. Clearly, $U_{3} \ll 1$. Now if u is square-free, we have

$$
\frac{1}{\varphi(u)}=\frac{1}{u} \prod_{p \mid u}\left(1-\frac{1}{p}\right)^{-1} \ll \frac{1}{u} \sum_{a \mid u} \frac{1}{a}
$$

and

$$
\frac{1}{\varphi(u)^{2}} \ll \frac{1}{u^{2}} \prod_{p \mid u}\left(1+\frac{2}{p}\right)=\frac{1}{u^{2}} \sum_{a \mid u} \frac{2^{\omega(a)}}{a} \ll \frac{1}{u^{2}} \sum_{a \mid u} a^{-1 / 2} .
$$

So (2.2) and (2.3) give, respectively,

$$
U_{1} \ll\left(\frac{\varphi\left(W_{1}\right)}{W_{1}} \mathcal{L}\right)^{k} \quad \text { and } \quad U_{2} \ll \frac{1}{D_{0}} .
$$

Hence, the right-hand side of (3.8) is

$$
\ll \frac{\varphi\left(W_{1}\right)^{k} Y \mathcal{L}^{k}}{q_{0} W_{2} W_{1}^{k} D_{0}}
$$

and we arrive at (3.1).
Now, we shall deduce Proposition 1 from (3.1). Mindful of (2.6), we have

$$
\begin{aligned}
S_{1}= & \frac{Y}{q_{0} W_{2}} \sum_{\substack{\left(u_{l}, u_{j}\right)=1 \forall l \neq j \\
\left(u_{l}, W_{1}\right)=1 \forall l}} \prod_{i=1}^{k} \frac{\mu\left(u_{i}\right)^{2}}{\varphi\left(u_{i}\right)} F\left(\frac{\log u_{1}}{\log R}, \ldots, \frac{\log u_{k}}{\log R}\right)^{2} \\
& +O\left(\frac{\varphi\left(W_{1}\right)^{k} Y \mathcal{L}^{k}}{q_{0} W_{2} W_{1}^{k} D_{0}}\right) .
\end{aligned}
$$

Note that the common prime factors of two integers both coprime to W_{1} are strictly greater than D_{0}. Thus, we may drop the condition $\left(u_{l}, u_{j}\right)=1$ in the above expression at the cost of an error of size

$$
\begin{aligned}
& \ll \frac{Y}{q_{0} W_{2}} \sum_{p>D_{0}} \sum_{\substack{u_{1}, \ldots u_{k}<R \\
\text { p } \\
\left(u_{l}, u_{j} \\
\left(u_{l}, W_{1}\right)=1 \forall l\right.}} \prod_{i=1}^{k} \frac{\mu\left(u_{i}\right)^{2}}{\varphi\left(u_{i}\right)} \\
& \ll \frac{Y}{q_{0} W_{2}} \sum_{p>D_{0}} \frac{1}{(p-1)^{2}}\left(\sum_{\substack{u<R \\
\left(u, W_{1}\right)=1}} \frac{\mu(u)^{2}}{\varphi(u)}\right)^{k} \ll \frac{\varphi\left(W_{1}\right)^{k} Y \mathcal{L}^{k}}{q_{0} W_{2} W_{1}^{k} D_{0}},
\end{aligned}
$$

by virtue of (2.2).

It remains to evaluate the sum

$$
\begin{equation*}
\sum_{\left(u_{l}, W_{1}\right)=1 \forall l} \prod_{i=1}^{k} \frac{\mu\left(u_{i}\right)^{2}}{\varphi\left(u_{i}\right)} F\left(\frac{\log u_{1}}{\log R}, \ldots, \frac{\log u_{k}}{\log R}\right)^{2} . \tag{3.9}
\end{equation*}
$$

This requires applying Lemma $1 k$ times with

$$
\gamma(p)= \begin{cases}0, & p \mid W_{1}, \\ 1, & p \nmid W_{1} .\end{cases}
$$

We take A_{1} and A_{2} to be suitable constants and

$$
L \ll 1+\sum_{p \mid W_{1}} \frac{\log p}{p} \ll \log \mathcal{L}
$$

as noted earlier. In the j th application, we replace the summation over u_{j} by the integral over $[0,1]$. Ultimately, we express the sum in (3.9) in the form

$$
\frac{\varphi\left(W_{1}\right)^{k}}{W_{1}^{k}}(\log R)^{k} I_{k}(F)+O\left(\frac{\varphi\left(W_{1}\right)(\log \mathcal{L}) \mathcal{L}^{k-1}}{W_{1}^{k}}\right)
$$

and Proposition 1 follows at once.
We shall need the following lemma in the proof of Proposition 2.
Lemma 5. Let $1 \leq m \leq k$ and suppose that $r_{m}=1$. Let

$$
y_{\mathbf{r}}^{(m)}=\prod_{i=1}^{k} \mu\left(r_{i}\right) g\left(r_{i}\right) \sum_{\substack{\mathbf{d} \\ r_{i} \mid d_{i} \forall i \\ d_{m}=1}} \frac{\lambda_{\mathbf{d}}}{\prod_{i=1}^{k} \varphi\left(d_{i}\right)} .
$$

Then

$$
y_{\mathbf{r}}^{(m)}=\sum_{a_{m}} \frac{y_{r_{1}, \ldots, r_{m-1}, a_{m}, r_{m+1}, \ldots, r_{k}}}{\varphi\left(a_{m}\right)}+O\left(\frac{\varphi\left(W_{1}\right) \mathcal{L}}{W_{1} D_{0}}\right)
$$

Proof. Following [9] verbatim, we have

$$
\begin{equation*}
y_{\mathbf{r}}^{(m)}=\prod_{i=1}^{k} \mu\left(r_{i}\right) g\left(r_{i}\right) \sum_{\substack{\mathbf{a} \\ r_{i} \mid a_{i} \forall i}} \frac{y_{\mathbf{a}}}{\prod_{i=1}^{k} \varphi\left(a_{i}\right)} \prod_{i \neq m} \frac{\mu\left(a_{i}\right) r_{i}}{\varphi\left(a_{i}\right)} \tag{3.10}
\end{equation*}
$$

Fix j with $1 \leq j \leq k$. In (3.10), the non-zero terms will have either $a_{j}=r_{j}$ or $a_{j}>D_{0} r_{j}$. The contribution from the terms with $a_{j} \neq r_{j}$ is

$$
\begin{equation*}
\ll \prod_{i=1}^{k} g\left(r_{i}\right) r_{i}\left(\sum_{\substack{a_{j}>D_{0} r_{j} \\ r_{j} \mid a_{j}}} \frac{\mu\left(a_{j}\right)^{2}}{\varphi\left(a_{j}\right)^{2}}\right)\left(\sum_{\substack{a_{m}<R \\\left(a_{m}, W_{1}\right)=1}} \frac{\mu\left(a_{m}\right)^{2}}{\varphi\left(a_{m}\right)}\right) \prod_{\substack{1 \leq i \leq k \\ i \neq j, m}} \sum_{r_{i} \mid a_{i}} \frac{\mu\left(a_{i}\right)^{2}}{\varphi\left(a_{i}\right)^{2}} . \tag{3.11}
\end{equation*}
$$

Now, as before, from (2.2) and (2.3), we have

$$
\sum_{\substack{a_{j}>D_{0} r_{j} \\ r_{j} \mid a_{j}}} \frac{\mu\left(a_{j}\right)^{2}}{\varphi\left(a_{j}\right)^{2}} \ll \frac{1}{D_{0} \varphi\left(r_{j}\right)^{2}}, \quad \sum_{\substack{a_{m}<R \\\left(a_{m}, W_{1}\right)=1}} \frac{\mu\left(a_{m}\right)^{2}}{\varphi\left(a_{m}\right)} \ll \frac{\varphi\left(W_{1}\right)}{W_{1}} \mathcal{L}
$$

and

$$
\sum_{r_{i} \mid a_{i}} \frac{\mu\left(a_{i}\right)^{2}}{\varphi\left(a_{i}\right)^{2}} \leq \frac{\mu\left(r_{i}\right)^{2}}{\varphi\left(r_{i}\right)^{2}} \sum_{k} \frac{\mu(k)}{\varphi(k)^{2}} \ll \frac{1}{\varphi\left(r_{i}\right)^{2}}
$$

majorizing 3.11 by

$$
\ll \prod_{i=1}^{k} \frac{g\left(r_{i}\right) r_{i}}{\varphi\left(r_{i}\right)^{2}} \frac{\varphi\left(W_{1}\right)}{W_{1} D_{0}} \mathcal{L} \ll \frac{\varphi\left(W_{1}\right) \mathcal{L}}{W_{1} D_{0}}
$$

Hence (3.10) becomes

$$
y_{\mathbf{r}}^{(m)}=\prod_{i=1}^{k} \frac{g\left(r_{i}\right) r_{i}}{\varphi\left(r_{i}\right)^{2}} \sum_{a_{m}} \frac{y_{r_{1}, \ldots, r_{m-1}, a_{m}, r_{m+1}, \ldots, r_{k}}}{\varphi\left(a_{m}\right)}+O\left(\frac{\varphi\left(W_{1}\right) \mathcal{L}}{W_{1} D_{0}}\right)
$$

and the proof is completed by applying Lemma 2 .
Proof of Proposition 2. Let

$$
y_{\max }^{(m)}=\max _{\mathbf{r}}\left|y_{\mathbf{r}}^{(m)}\right|,
$$

where $y_{\mathbf{r}}^{(m)}$ is defined in Lemma 5. We shall first show that

$$
\begin{equation*}
S_{2}(g, m) \tag{3.12}
\end{equation*}
$$

$$
=\frac{Y_{g, m}}{\varphi\left(q_{0}\right) \varphi\left(W_{2}\right)} \sum_{\mathbf{u}} \frac{\left(y_{\mathbf{u}}^{(m)}\right)^{2}}{\prod_{i=1}^{k} g\left(u_{i}\right)}+O\left(\frac{Y \mathcal{L}^{k-2} \varphi^{k-1}\left(W_{1}\right)\left(y_{\max }^{(m)}\right)^{2}}{\varphi\left(q_{0}\right) \varphi\left(W_{2}\right) W_{1}^{k-1} D_{0}}+\frac{Y \mathcal{L}^{k-\varepsilon}}{\varphi\left(q_{0}\right)}\right)
$$

From the definition of w_{n}, we have

$$
\begin{equation*}
S_{2}(g, m)=\sum_{\mathbf{d}, \mathbf{e}} \lambda_{\mathbf{d}} \lambda_{\mathbf{e}} \sum_{\substack{n \in \mathcal{A} \cap\left(\mathcal{A}-h_{m}\right) \\ N \leq n<2 N, n \equiv \nu_{0} \bmod W_{2} \\\left[d_{i}, e_{i}\right] \mid n+h_{i} \forall i}} \varrho_{g}\left(n+h_{m}\right) \tag{3.13}
\end{equation*}
$$

As in the proof of Proposition 1, $\sum_{\mathbf{d}, \mathbf{e}}$ reduces to $\sum_{\mathbf{d}, \mathbf{e}}^{\prime}$. Let $n^{\prime}=n+h_{m}$. Since $n+h_{m} \equiv a_{0}\left(\bmod q_{0}\right)$ for $n \in \mathcal{A}$, the inner sum of 3.13 reduces to

$$
T(\mathbf{d}, \mathbf{e}):=\sum_{\substack{n^{\prime} \equiv \nu_{0}+h_{m} \bmod W_{2} \\ n^{\prime}=a_{0} \bmod q_{0} \\ n^{\prime} \equiv h_{m}-h_{i} \bmod \left[d_{i}, e_{i}\right] \forall i}} X\left(\mathcal{A} \cap\left(\mathcal{A}+h_{m}\right), n^{\prime}\right) \varrho_{g}\left(n^{\prime}\right) .
$$

Recall that $\varrho_{g}\left(n^{\prime}\right)=0$ if n^{\prime} is divisible by a prime divisor of $\left[d_{i}, e_{i}\right]$. Since one condition of the summation is $\left[d_{m}, e_{m}\right] \mid n^{\prime}$, we have $T(\mathbf{d}, \mathbf{e})=0$ unless
$d_{m}=e_{m}=1$. When $d_{m}=e_{m}=1$,

$$
T(\mathbf{d}, \mathbf{e})=\sum_{n \equiv a_{q} \bmod q q_{0}} X\left(\mathcal{A} \cap\left(\mathcal{A}+h_{m}\right), n\right) \varrho_{g}(n)
$$

Here we have

$$
q=W_{2} \prod_{i=1}^{k}\left[d_{i}, e_{i}\right], \quad\left(a_{q}, q\right)=1, \quad a_{q} \equiv a_{0}\left(\bmod q_{0}\right)
$$

For $\left(a_{q}, q\right)=1$, we need $\left(h_{m}-h_{i},\left[d_{i}, e_{i}\right]\right)=1$ whenever $m \neq i$, which was noted earlier.

Arguing as in the proof of Proposition 1 and using 1.5 now gives

$$
S_{2}(g, m)=\frac{Y_{g, m}}{\varphi\left(q_{0}\right) \varphi\left(W_{2}\right)} \sum_{\substack{\mathbf{d}, \mathbf{e} \\ d_{m}=e_{m}=1}}^{\prime} \frac{\lambda_{\mathbf{d}} \lambda_{\mathbf{e}}}{\prod_{i=1}^{k} \varphi\left(\left[d_{i}, e_{i}\right]\right)}+O\left(\frac{Y \mathcal{L}^{k-\varepsilon}}{\varphi\left(q_{0}\right)}\right)
$$

With a_{j} and b_{j} as in (3.6), we follow [9] to obtain

$$
\begin{align*}
S_{2}(g, m)= & \frac{Y_{g, m}}{\varphi\left(q_{0}\right) \varphi\left(W_{2}\right)} \sum_{\mathbf{u}} \prod_{i=1}^{k} \frac{\mu\left(u_{i}\right)^{2}}{g\left(u_{i}\right)} \sum_{s_{1,2}, \ldots, s_{k, k-1}}^{*} \tag{3.14}\\
& \times \prod_{\substack{1 \leq i, j \leq k \\
i \neq j}} \frac{\mu\left(s_{i, j}\right)^{2}}{g\left(s_{i, j}\right)^{2}} y_{\mathbf{a}}^{(m)} y_{\mathbf{b}}^{(m)}+O\left(\frac{Y \mathcal{L}^{k-\varepsilon}}{\varphi\left(q_{0}\right)}\right)
\end{align*}
$$

Here g is the totally multiplicative function with $g(p)=p-2$ for all p and we have used Lemma 4 with $f_{1}=g$.

The contribution to the sum in (3.14) from $s_{i, j} \neq 1$ (for given i, j) is

$$
\begin{align*}
& \ll \frac{Y\left(y_{\max }^{(m)}\right)^{2}}{\varphi\left(q_{0}\right) \varphi\left(W_{2}\right) \mathcal{L}}\left(\sum_{\substack{u<R \\
\left(u, W_{1}\right)=1}} \frac{\mu(u)^{2}}{g(u)}\right)^{k-1} \tag{3.15}\\
& \quad \times\left(\sum_{s} \frac{\mu(s)^{2}}{g(s)^{2}}\right)^{k(k-1)-1}\left(\sum_{s_{i, j}>D_{0}} \frac{\mu\left(s_{i, j}\right)^{2}}{g\left(s_{i, j}\right)^{2}}\right) \\
& =\frac{Y\left(y_{\max }^{(m)}\right)^{2}}{\varphi\left(q_{0}\right) \varphi\left(W_{2}\right) \mathcal{L}} V_{1} V_{2} V_{3},
\end{align*}
$$

say. Clearly, $V_{2} \ll 1$. Using (2.2) while mindful of the estimate

$$
\frac{1}{g(s)} \ll \frac{1}{s} \sum_{a \mid s} \frac{2^{\omega(a)}}{a}
$$

yields

$$
V_{1} \ll\left(\frac{\varphi\left(W_{1}\right)}{W_{1}} \mathcal{L}\right)^{k-1}
$$

From (2.3) and the observation that, for s square-free,

$$
\frac{1}{g^{2}(s)} \ll \frac{1}{s^{2}} \sum_{a \mid s} \frac{4^{\omega(a)}}{a} \ll \frac{1}{s^{2}} \sum_{a \mid s} a^{-1 / 2}
$$

we get

$$
V_{3} \ll D_{0}^{-1}
$$

Note the bound in (3.15) is

$$
\ll \frac{Y\left(y_{\max }^{(m)}\right)^{2} \mathcal{L}^{k-2}}{\varphi\left(q_{0}\right) \varphi\left(W_{2}\right)}\left(\frac{\varphi\left(W_{1}\right)}{W_{1}}\right)^{k-1} \frac{1}{D_{0}}
$$

and we have established (3.12).
Now we use Lemma 5 in (3.12), recalling (2.5). When $r_{m}=1$, we have

$$
\begin{align*}
y_{\mathbf{r}}^{(m)}= & \sum_{\left(u, W_{1} \prod_{i=1}^{k} r_{i}\right)=1} \frac{\mu(u)^{2}}{\varphi(u)} \tag{3.16}\\
& \times F\left(\frac{\log r_{1}}{\log R}, \ldots, \frac{\log r_{m-1}}{\log R}, \frac{\log u}{\log R}, \frac{\log r_{m+1}}{\log R}, \ldots, \frac{\log r_{k}}{\log R}\right) \\
+ & O\left(\frac{\varphi\left(W_{1}\right) \mathcal{L}}{W_{1} D_{0}}\right)
\end{align*}
$$

From this, we find that

$$
y_{\max }^{(m)} \ll \frac{\varphi\left(W_{1}\right)}{W_{1}} \mathcal{L} .
$$

We shall apply Lemma 1 to 3.16 with $\kappa=1$,

$$
\gamma(p)= \begin{cases}1, & p \nmid W_{1} \prod_{i=1}^{k} r_{i} \\ 0, & \text { otherwise }\end{cases}
$$

A_{1}, A_{2} suitably chosen and

$$
L \ll \log \mathcal{L}
$$

(similar to the proof of (2.2)). Define

$$
F_{\mathbf{r}}^{(m)}=\int_{0}^{1} F\left(\frac{\log r_{1}}{\log R}, \ldots, \frac{\log r_{m-1}}{\log R}, t_{m}, \frac{\log r_{m+1}}{\log R}, \ldots, \frac{\log r_{k}}{\log R}\right) d t_{m}
$$

We obtain

$$
y_{\mathbf{r}}^{(m)}=\log R \frac{\varphi\left(W_{1}\right)}{W_{1}}\left(\prod_{i=1}^{k} \frac{\varphi\left(r_{i}\right)}{r_{i}}\right) F_{\mathbf{r}}^{(m)}+O\left(\frac{\varphi\left(W_{1}\right) \mathcal{L}}{W_{1} D_{0}}\right)
$$

Inserted into (3.12), the above produces the main term

$$
\begin{equation*}
\frac{(\log R)^{2} Y_{g, m} \varphi\left(W_{1}\right)^{2}}{\varphi\left(q_{0}\right) \varphi\left(W_{2}\right) W_{1}^{2}} \sum_{\substack{\mathbf{r} \\\left(r_{i}, W_{1}\right)=1 \forall i \\\left(r_{i}, r_{j}\right)=1 \forall i \neq j \\ r_{m}=1}} \prod_{i=1}^{k} \frac{\varphi\left(r_{i}\right) \mu\left(r_{i}\right)^{2}}{g\left(r_{i}\right) r_{i}^{2}}\left(F_{\mathbf{r}}^{(m)}\right)^{2} \tag{3.17}
\end{equation*}
$$

and an error term of size

$$
\begin{aligned}
& \ll \frac{Y_{g, m}}{\varphi\left(q_{0}\right) \varphi\left(W_{2}\right)} \sum_{\underset{\mathbf{r}}{r_{m}=1}} \frac{\varphi\left(W_{1}\right)^{2} \mathcal{L}^{2}}{W_{1}^{2} D_{0} \prod_{i=1}^{k} g\left(r_{i}\right)} \\
& \ll \frac{Y \varphi\left(W_{1}\right)^{2} \mathcal{L}^{2}}{\varphi\left(q_{0}\right) \varphi\left(W_{2}\right) W_{1}^{2} D_{0}}\left(\sum_{\substack{r<R \\
\left(r, W_{1}\right)=1}} \frac{1}{g(r)}\right)^{k-1} \ll \frac{Y \varphi\left(W_{1}\right)^{k+1} \mathcal{L}^{k}}{\varphi\left(q_{0}\right) \varphi\left(W_{2}\right) W_{1}^{k+1} D_{0}} .
\end{aligned}
$$

Recall that $Y_{g, m} \ll Y \mathcal{L}^{-1}$. Now we remove the condition $\left(r_{i}, r_{j}\right)=1$ from (3.17). As before, this introduces an error of size

$$
\begin{aligned}
& \ll \frac{\mathcal{L}^{2} Y \varphi\left(W_{1}\right)^{2}}{\varphi\left(q_{0}\right) \varphi\left(W_{2}\right) W_{1}^{2}}\left(\sum_{p>D_{0}} \frac{\varphi(p)^{2}}{g(p)^{2} p^{2}}\right)\left(\sum_{\substack{r<R \\
\left(r, W_{1}\right)=1}} \frac{\mu(r)^{2} \varphi(r)}{g(r) r}\right)^{k-1} \\
& \ll \frac{Y \mathcal{L}^{k} \varphi\left(W_{1}\right)^{k+1}}{\varphi\left(q_{0}\right) \varphi\left(W_{2}\right) W_{1}^{k+1} D_{0}}
\end{aligned}
$$

by an application of Lemma 3. Combining all our results, we get

$$
\begin{aligned}
S_{2}(g, m)= & \frac{(\log R)^{2} Y_{g, m} \varphi\left(W_{1}\right)^{2}}{\varphi\left(q_{0}\right) \varphi\left(W_{2}\right) W_{1}^{2}} \sum_{\substack{\mathbf{r} \\
\left(r_{i}, W_{1}\right)=1 \forall i \\
r_{m}=1}} \prod_{i=1}^{k} \frac{\varphi\left(r_{i}\right)^{2} \mu\left(r_{i}\right)^{2}}{g\left(r_{i}\right) r_{i}^{2}}\left(F_{\mathbf{r}}^{(m)}\right)^{2} \\
& +O\left(\frac{Y \varphi\left(W_{1}\right)^{k+1} \mathcal{L}^{k}}{\varphi\left(q_{0}\right) \varphi\left(W_{2}\right) W_{1}^{k+1} D_{0}}\right)
\end{aligned}
$$

The last sum is evaluated by applying Lemma 1 to each summation variable in turn, taking

$$
\gamma(p)= \begin{cases}\frac{p^{3}-2 p^{2}+p}{p^{3}-p^{2}-2 p+1}, & p \nmid W_{1}, \\ 0, & p \mid W_{1}\end{cases}
$$

to produce the right value of $\gamma(p) /(p-\gamma(p))$. Of course,

$$
S=\frac{\varphi\left(W_{1}\right)}{W_{1}}\left(1+O\left(D_{0}^{-1}\right)\right)
$$

by Lemma 2, while $L \ll \log \mathcal{L}$. Our final conclusion is that

$$
S_{2}(g, m)=\frac{(\log R)^{k+1} Y_{g, m} \varphi\left(W_{1}\right)^{k+1} J_{k}^{(m)}}{\varphi\left(q_{0}\right) \varphi\left(W_{2}\right) W_{1}^{k+1}}(1+o(1))
$$

completing the proof of Proposition 2.
4. Further lemmas. Let $\gamma=\alpha^{-1}$. As noted in [4], the set of $[\alpha m+\beta]$ in $[N, 2 N)$ may be written as

$$
\{n \in[N, 2 N): \gamma n \in(\gamma \beta-\gamma, \beta \gamma](\bmod 1)\} .
$$

Lemma 6. Let $I=(a, b)$ be an interval of length l with $0<l<1$, and let h be a natural number satisfying

$$
0<-h \gamma<2 \varepsilon(\bmod 1)
$$

where $2 \varepsilon<l$. Let

$$
\mathcal{A}=\{n \in[N, 2 N): \gamma n \in I(\bmod 1)\} .
$$

Then

$$
\mathcal{A} \cap(\mathcal{A}+h)=\{n \in[N+h, 2 N): \gamma n \in J(\bmod 1)\},
$$

where J is an interval of length l^{\prime} with

$$
l-2 \varepsilon<l^{\prime}<l .
$$

Proof. Let $t \equiv-h \gamma(\bmod 1), 0<t<2 \varepsilon$. Clearly $\mathcal{A} \cap(\mathcal{A}+h)$ consists of the integers in $[N+h, 2 N)$ for which

$$
\gamma n \in(a, b)(\bmod 1), \quad \gamma n+t \in(a, b)(\bmod 1) .
$$

The lemma follows with $J=(a, b-t)$.
Lemma 7. Let I be an interval of length $l, 0<l<1$. Let x_{1}, \ldots, x_{N} be real. Then:
(i) There exists z such that

$$
\#\left\{j \leq N: x_{j} \in z+I(\bmod 1)\right\} \geq N l .
$$

(ii) We have (for $a_{j} \geq 0, j=1, \ldots, N$, and $L \geq 1$)

$$
\sum_{\substack{j=1 \\ x_{j} \in I \bmod 1}}^{N} a_{j}-l \sum_{j=1}^{N} a_{j} \ll L^{-1} \sum_{j=1}^{N} a_{j}+\sum_{h=1}^{L} h^{-1}\left|\sum_{j=1}^{N} a_{j} e\left(h x_{j}\right)\right| .
$$

Proof. We leave (i) as an exercise; (ii) is a slight variant of [1, Theorem 2.1].

Lemma 8. Let $1 \leq Q \leq N$ and F a non-negative function defined on Dirichlet characters. Then for some $Q_{1}, 1 \leq Q_{1} \leq Q$,

$$
\sum_{q \leq Q} \sum_{\chi \bmod q}^{\prime} F(\hat{\chi}) \ll \frac{\mathcal{L Q}}{Q_{1}} \sum_{Q_{1} \leq q_{1}<2 Q_{1}} \sum_{\psi \bmod q_{1}}^{\star} F(\psi) .
$$

Proof. We recall that $\hat{\chi}$ is the primitive character that induces χ, so that $F(\hat{\chi})$ may be quite different from $F(\chi)$.

The left-hand side of the claimed inequality is

$$
\sum_{q_{1} \leq Q} \sum_{\psi \bmod q_{1}}^{\star} F(\psi) \sum_{\substack{\chi \bmod q \\ q \leq Q, q_{1} \mid q \\ \psi \text { induces } \chi}} 1 \leq \sum_{q_{1} \leq Q} \sum_{\psi \bmod q_{1}}^{\star} F(\psi) \frac{Q}{q_{1}}
$$

The lemma follows on applying a splitting-up argument to q_{1}.
Lemma 9. Let $f(j)(j \geq 1)$ be a periodic function with period q,

$$
S(f, n)=\sum_{j=1}^{n} f(j) e\left(-\frac{n j}{q}\right)
$$

$F>0$, and $R \geq 1$. Let $H(y)$ be a real function with $H^{\prime}(y)$ monotonic and

$$
\left.\mid H^{\prime}(y)\right) \mid \leq F y^{-1}
$$

for $R \leq y \leq 2 R$. Then for $J=\left[R, R^{\prime}\right]$ with $R<R^{\prime} \leq 2 R$,

$$
\begin{aligned}
& \sum_{m \in J} f(m) H(m)-q^{-1} \sum_{1 \leq|n| \leq 2 F q R^{-1}} S(f, n) \int_{J} e\left(\frac{n y}{q}+H(y)\right) d y \\
& \ll \frac{R|S(f, 0)|}{q F}+\sum_{|n| \in J^{\prime}} \frac{|S(f, n)|}{n}
\end{aligned}
$$

where

$$
J^{\prime}=\left[\min \left\{2 F q R^{-1}, q / 2\right\}, \max \left\{2 F q R^{-1}, q\right\}+q\right] .
$$

Proof. This is [2, Theorem 8].
For a finite sequence $\left\{a_{k}: K \leq k<K^{\prime}\right\}$, set

$$
\|a\|_{2}=\left(\sum_{K \leq k<K^{\prime}}\left|a_{k}\right|^{2}\right)^{1 / 2}
$$

Lemma 10. Let $R, M, H \geq 1$. Let β be real and

$$
\begin{equation*}
\left|\beta-\frac{u_{1}}{r_{1}}\right| \leq \frac{H}{r_{1}^{2}} \tag{4.1}
\end{equation*}
$$

where $r_{1} \geq H$ and $\left(u_{1}, r_{1}\right)=1$. Then for $M_{1} \in \mathbb{N}$,

$$
\begin{equation*}
\sum_{m=M_{1}+1}^{M_{1}+M} \min \left(R, \frac{1}{\|m \beta\|}\right) \ll\left(\frac{H M}{r_{1}}+1\right)\left(R+r_{1} \log r_{1}\right) \tag{4.2}
\end{equation*}
$$

If $M<r_{1}$ and

$$
M\left|\beta-\frac{u_{1}}{r_{1}}\right| \leq \frac{1}{2 r_{1}},
$$

then

$$
\begin{equation*}
\sum_{m=1}^{M} \frac{1}{\|m \beta\|} \ll r_{1} \log 2 r_{1} \tag{4.3}
\end{equation*}
$$

Proof. For (4.2), it suffices to show that a block of $\left[r_{1} / H\right]$ consecutive m 's contributes

$$
\ll R+\sum_{l=1}^{r_{1}} \frac{r_{1}}{l}
$$

Writing $m=m_{0}+j, 1 \leq j \leq\left[r_{1} / H\right]$, yields

$$
\left|\left(m_{0}+j\right) \beta-m_{0} \beta-\frac{j u_{1}}{r_{1}}\right| \leq \frac{j H}{r_{1}^{2}} \leq \frac{1}{r_{1}},
$$

so there are $O(1)$ values of j for which the bound

$$
\left\|\left(m_{0}+j\right) \beta\right\| \geq \frac{1}{2}\left\|m_{0} \beta+\frac{j u_{1}}{r_{1}}\right\|
$$

fails. Our block estimate follows immediately.
The argument for 4.3 is similar. In this case,

$$
\left|m \beta-\frac{m u_{1}}{r_{1}}\right| \leq \frac{1}{2 r_{1}}
$$

if $1 \leq m \leq M$. Therefore, the left-hand side of 4.3) can be estimated by $\sum_{l=1}^{r_{1}} r_{1} / l$.

Lemma 11. Let $N<N^{\prime} \leq 2 N, M K \asymp N$ and $N \geq K \geq M \geq 1$. Suppose that

$$
\begin{equation*}
\left|\gamma-\frac{u}{r}\right| \leq \frac{H}{r^{2}}, \quad(u, r)=1, H \leq r \leq N \tag{4.4}
\end{equation*}
$$

Let $\left(a_{m}\right)_{M \leq m<2 M}$ and $\left(b_{k}\right)_{K \leq k<2 K}$ be sequences of complex numbers. Then

$$
\begin{equation*}
S:=\sum_{Q \leq q<2 Q} \sum_{\chi \bmod q}\left|\sum_{\substack{M \leq m<2 M \\ N \leq m k<N^{\prime}}} \sum_{\substack{ \\N \leq k<2 K}} a_{m} b_{k} \chi(m k) e(\gamma m k)\right| \tag{4.5}
\end{equation*}
$$

satisfies the bound

$$
\begin{aligned}
S \ll & \|a\|_{2}\|b\|_{2} \mathcal{L}^{3 / 2} D^{1 / 2} \\
& \times\left(Q^{2} M^{1 / 2}+\frac{Q^{3 / 2} H^{1 / 2} N^{1 / 2}}{r^{1 / 2}}+Q^{3 / 2} H^{1 / 2} K^{1 / 2}+Q^{3 / 2} r^{1 / 2}\right)
\end{aligned}
$$

where

$$
D=\max _{n<N} \#\{q \in[Q, 2 Q): n=l q\}
$$

Proof. Let S^{\prime} be the sum obtained from S by removing the condition $N \leq m k<N^{\prime}$. It suffices to prove the same bound, with $\mathcal{L}^{1 / 2}$ in place
of $\mathcal{L}^{3 / 2}$, for S^{\prime}, since the condition can be restored at the cost of a factor of \mathcal{L}. See [8, Section 3.2].

We have

$$
S^{\prime} \leq \sum_{Q \leq q<2 Q} \sum_{\chi \bmod } \sum_{q \leq m<2 M}\left|a_{m}\right|\left|\sum_{K \leq k<2 K} b_{k} \chi(k) e(\gamma m k)\right|=\sum_{q} S_{q},
$$

say. We may also assume that $b_{k}=0$ if $(k, q)>1$. By Cauchy's inequality, and with summations subject to the obvious restrictions on m, k_{1} and k_{2},

$$
S_{q}^{2} \leq \varphi(q)\|a\|_{2}^{2} \sum_{\chi \bmod } \sum_{m} \sum_{k_{1}} \sum_{k_{2}} b_{k_{1}} \bar{b}_{k_{2}} \chi\left(k_{1}\right) \bar{\chi}\left(k_{2}\right) e\left(\gamma m\left(k_{1}-k_{2}\right)\right)
$$

Bringing the sum over χ inside we see that the right-hand side of the above is

$$
\begin{aligned}
\varphi(q)^{2}\|a\|_{2}^{2} \sum_{\substack{k_{1}, k_{2} \\
k_{1} \equiv k_{2} \bmod q}} b_{k_{1}} \bar{b}_{k_{2}} \sum_{m} e\left(\gamma m\left(k_{1}-k_{2}\right)\right) \\
\leq \varphi(q)^{2}\|a\|_{2}^{2} \sum_{k_{1}}\left|b_{k_{1}}\right|^{2} \sum_{k_{1} \equiv k_{2} \bmod q}\left|\sum_{m} e\left(\gamma m\left(k_{1}-k_{2}\right)\right)\right|
\end{aligned}
$$

upon using the parallelogram rule

$$
\left|b_{k_{1}} b_{k_{2}}\right| \leq \frac{1}{2}\left(\left|b_{k_{1}}\right|^{2}+\left|b_{k_{2}}\right|^{2}\right)
$$

Now summing the geometric sum over m and then summing over q, we see that

$$
\begin{equation*}
\sum_{Q \leq q<2 Q} S_{q}^{2} \ll Q^{3}\|a\|_{2}^{2}\|b\|_{2}^{2} M+Q^{2}\|a\|_{2}^{2}\|b\|_{2}^{2} \sum_{Q \leq q<2 Q} \sum_{1 \leq l<K / q} \min \left(M, \frac{1}{\|\gamma l q\|}\right) . \tag{4.6}
\end{equation*}
$$

Now we combine the variables l and q and then apply 4.2), which leads to

$$
\begin{aligned}
\sum_{Q \leq q<2 Q} S_{q}^{2} & \ll Q^{3}\|a\|_{2}^{2}\|b\|_{2}^{2} M+Q^{2}\|a\|_{2}^{2}\|b\|_{2}^{2} D\left(\frac{H K}{r}+1\right)(M+r \log r) \\
& \ll\|a\|_{2}^{2}\|b\|_{2}^{2}\left(Q^{3} M+\mathcal{L} Q^{2} D\left(\frac{H N}{r}+H K+M+r\right)\right)
\end{aligned}
$$

The desired bound for S^{\prime} follows by another application of Cauchy's inequality.

Lemma 12. Under the hypotheses of Lemma 11, suppose that $4 M Q<N$, $b_{k}=1$ for $K \leq k<2 K$ and $\left|a_{m}\right| \leq 1$ for $M \leq m<2 M$. Define D as in Lemma 11. Then:
(i) We have

$$
S \ll Q^{3 / 2} \mathcal{L} D\left(\frac{Q M H}{r}+1\right)\left(\frac{K}{Q}+r\right)
$$

(ii) If $4 M Q<r$ and

$$
4 M Q\left|\gamma-\frac{u}{r}\right| \leq \frac{1}{2 r}
$$

then

$$
S \ll \mathcal{L} D Q^{3 / 2} r
$$

Proof. Let I_{m} (here and after) denote a subinterval of $\left[N / m, N^{\prime} / m\right)$. We have

$$
S \leq Q S^{*}+S^{* *}
$$

where, for a suitably chosen non-principal $\chi_{q}(\bmod q)$,

$$
\begin{aligned}
S^{*} & =\sum_{Q \leq q<2 Q} \sum_{M \leq m<2 M}\left|\sum_{k \in I_{m}} \chi_{q}(k) e(\gamma m k)\right|, \\
S^{* *} & =\sum_{Q \leq q<2 Q} \sum_{M \leq m<2 M}\left|\sum_{k \in I_{m}} \chi_{0}(k) e(\gamma m k)\right|
\end{aligned}
$$

To prove part (1), it suffices to show that

$$
\begin{aligned}
S^{*} & \ll Q^{1 / 2} \mathcal{L} D\left(\frac{Q M H}{r}+1\right)\left(\frac{K}{Q}+r\right), \\
S^{* *} & \ll Q \mathcal{L} D\left(\frac{Q M H}{r}+1\right)\left(\frac{K}{Q}+1\right) .
\end{aligned}
$$

We give the proof for S^{*}; the proof for $S^{* *}$ is similar.
Given q and m, Lemma 9 together with

$$
|S(\chi, q)| \leq \sqrt{q}
$$

(see [6, Chapter 9]) gives

$$
\begin{aligned}
& \sum_{k \in I_{m}} \chi_{q}(k) e(\gamma m k)-\frac{1}{q} \sum_{1 \leq|n| \ll M q} S\left(\chi_{q}, n\right) \int_{I_{m}} e\left(\left(\frac{n}{q}+\gamma m\right) y\right) d y \\
& \ll q^{-1 / 2} M^{-1}+q^{1 / 2} \sum_{1 \leq n \ll M q} n^{-1} \ll q^{1 / 2} \mathcal{L}
\end{aligned}
$$

Therefore

$$
\sum_{k \in I_{m}} \chi_{q}(k) e(\gamma m k) \ll q^{1 / 2} \mathcal{L}+q^{-1 / 2} \sum_{1 \leq|n| \ll M q} \min \left(K, \frac{1}{|\gamma m-n / q|}\right)
$$

Summing over m and q, we get

$$
S^{*} \ll M Q^{3 / 2} \mathcal{L}+Q^{1 / 2} \sum_{Q \leq q<2 Q} \sum_{M \leq m<2 M} \sum_{1 \leq|n| \ll M q} \min \left(\frac{K}{Q}, \frac{1}{|\gamma m q-n|}\right)
$$

The contribution to the right-hand side from n 's with $|n-\gamma m q|>1 / 2$ is

$$
\ll M Q^{3 / 2} \mathcal{L}
$$

Combining the variables m and q, we see that

$$
\begin{equation*}
S^{*} \ll M Q^{3 / 2} \mathcal{L}+Q^{1 / 2} D \sum_{M Q \leq m^{\prime}<4 M Q} \min \left(\frac{K}{Q}, \frac{1}{\left\|\gamma m^{\prime}\right\|}\right) \tag{4.7}
\end{equation*}
$$

We deduce the desired bound for S^{*} by applying 4.2 .
Now for part (2), we note that (4.3) is applicable to the reciprocal sum in 4.7) with $4 M Q$ and γ in place of M and β. Hence

$$
S^{*} \ll M Q^{3 / 2} \mathcal{L}+Q^{1 / 2} D r \log 2 r \ll D \mathcal{L} Q^{1 / 2} r
$$

since $4 M Q<r$. Similarly $S^{* *} \ll D \mathcal{L} Q r$, and part (2) follows.
Lemma 13. Suppose that

$$
\left|\gamma-\frac{u}{r}\right| \leq \frac{\mathcal{L}^{A+1}}{r^{2}}
$$

with $(u, r)=1$, and that $r^{2} \leq N \leq r^{2} \mathcal{L}^{2 A+2}$. Then:
(i) For $Q<N^{2 / 7-\varepsilon}, N^{4 / 7} \ll K \ll N^{5 / 7}$ and any a_{m}, b_{k} with $\left|a_{m}\right| \leq$ $\tau(m)^{B},\left|b_{k}\right| \leq \tau(k)^{B}$, where B is an absolute constant, the sum S in (4.5) satisfies the bound

$$
\begin{equation*}
S \ll Q N^{1-\varepsilon / 4} . \tag{4.8}
\end{equation*}
$$

(ii) For $Q \leq N^{2 / 7-\varepsilon}, M \ll N^{4 / 7}$ and $b_{k}=1$ for $K \leq k<2 K,\left|a_{m}\right| \leq 1$ for $M \leq m<2 M$, the sum S in 4.5 satisfies 4.8.

Proof. In order to prove (i), we use Lemma 11. As $D \ll N^{\varepsilon / 15}$,

$$
\begin{aligned}
S Q^{-1} N^{-1+\varepsilon / 4} & \ll Q^{-1} N^{-1 / 2+\varepsilon / 3}\left(Q^{2} N^{3 / 14}+Q^{3 / 2} N^{5 / 14}\right) \\
& \ll N^{-1 / 2+\varepsilon / 2}\left(Q N^{3 / 14}+Q^{1 / 2} N^{5 / 14}\right) \ll 1
\end{aligned}
$$

To prove (ii), we consider two cases. If $K<N^{1-\varepsilon}$, then by Lemma 12 (i),

$$
\begin{aligned}
S Q^{-1} N^{-1+\varepsilon / 4} & \ll Q^{1 / 2} N^{-1+\varepsilon / 2}\left(N^{1 / 2}+M Q+\frac{N^{1-\varepsilon}}{Q}\right) \\
& \ll N^{1 / 7-1 / 2+\varepsilon}+N^{3 / 7+4 / 7-1-\varepsilon}+N^{-\varepsilon / 2} \ll 1
\end{aligned}
$$

If $K \geq N^{1-\varepsilon}$, then $M \ll N^{\varepsilon}$ and Lemma 12 (ii) is applicable since

$$
4 M Q\left|\gamma-\frac{u}{r}\right| \ll N^{-1+2 / 7+\varepsilon}
$$

Hence

$$
S Q^{-1} N^{-1+\varepsilon / 4} \ll Q^{1 / 2} N^{-1 / 2+\varepsilon} \ll 1
$$

giving the desired majorant.

Lemma 14. Let f be an arbitrary complex function on $[N, 2 N)$. Let $N<$ $N^{\prime} \leq 2 N$. The sum

$$
S=\sum_{N \leq n<N^{\prime}} \Lambda(n) f(n)
$$

can be decomposed into $O\left(\mathcal{L}^{2}\right)$ sums of the form

$$
\sum_{M<m \leq 2 M} a_{m} \sum_{\substack{K \leq k<2 K \\ N \leq m k<N^{\prime}}} f(m k) \quad \text { or } \int_{N}^{N} \sum_{M \leq m<2 M} a_{m} \sum_{\substack{k \geq w \\ K \leq k<2 K \\ N \leq m k<N^{\prime}}} f(m k) \frac{d w}{w}
$$

with $M \leq N^{1 / 4}$ and $\left|a_{m}\right| \leq 1$, together with $O(\mathcal{L})$ sums of the form

$$
\sum_{M<m \leq 2 M} a_{m} \sum_{\substack{K \leq k<2 K \\ N \leq m k<N^{\prime}}} b_{k} f(m k)
$$

with $N^{1 / 2} \leq K \ll N^{3 / 4}$ and $\|a\|_{2}\|b\|_{2} \ll N^{1 / 2} \mathcal{L}^{2}$.
Proof. This follows from the arguments in [6, Chapter 24] by taking $U=V=N^{1 / 4}$.

We record a special case of [3, Lemma 14]. For more background on the "Harman sieve", see 8].

LEMmA 15. Let $W(n)$ be a complex function with support in $(N, 2 N] \cap \mathbb{Z}$, $|W(n)| \leq N^{1 / \varepsilon}$. For $r \in \mathbb{N}, z \geq 2$, let

$$
\begin{equation*}
S^{*}(r, z)=\sum_{(n, P(z))=1} W(r n) \tag{4.9}
\end{equation*}
$$

Suppose that for some constant $c>0,0 \leq d \leq 1 / 2$, and for some $Y>0$, we have, for any coefficients a_{m}, b_{k} with $\left|a_{m}\right| \leq 1,\left|b_{k}\right| \leq \tau(k)$,

$$
\begin{equation*}
\sum_{m \leq 2 N^{c}} a_{m} \sum_{k} W(m k) \ll Y \tag{4.10}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{N^{c} \leq m \leq 2 N^{c+d}} a_{m} \sum_{k} b_{k} W(m k) \ll Y \tag{4.11}
\end{equation*}
$$

Let $u_{r}\left(r \leq N^{c}\right)$ be complex numbers such that $\left|u_{r}\right| \leq 1$ and $u_{r}=0$ for $\left(r, P\left(N^{\varepsilon}\right)\right)>1$. Then

$$
\sum_{r \leq(2 N)^{c}} u_{r} S^{*}\left(r,(2 N)^{d}\right) \ll Y \mathcal{L}^{3}
$$

The following application of Lemma 15 will be used in the proof of Theorem 3, We take

$$
\begin{equation*}
W(n)=\sum_{Q \leq q<2 Q} \sum_{\chi \bmod q} \eta_{\chi} \chi(n) e(\gamma n) \tag{4.12}
\end{equation*}
$$

for $N \leq n<N^{\prime}$; otherwise, $W(n)=0$. Here η_{χ} is arbitrary with $\left|\eta_{\chi}\right| \leq 1$.
Lemma 16. Suppose that

$$
\left|\gamma-\frac{u}{r}\right| \leq \frac{\mathcal{L}^{A+1}}{r^{2}}, \quad(u, r)=1, \quad N=r^{2}, \quad 1 \leq Q \leq N^{2 / 7-\varepsilon}
$$

Define $S^{*}(r, z)$ as above with W defined in 4.12). Then

$$
\sum_{r \leq(2 N)^{4 / 7}} u_{r} S^{*}\left(r,(2 N)^{1 / 7}\right) \ll N \mathcal{L}^{-A}
$$

for every $A>0$, provided that $\left|u_{r}\right| \leq 1$ and $u_{r}=0$ for $\left(r, P\left(N^{\varepsilon}\right)\right)>1$.
Proof. We need to verify (4.10 and 4.11 with $c=4 / 7, d=1 / 7$ and $Y=N \mathcal{L}^{-A-3}$. This is an application of Lemma 13 .

We now introduce some subsets of \mathbb{R}^{j} needed in the proof of Theorem 3 . Write E_{j} for the set of j-tuples $\boldsymbol{\alpha}_{j}=\left(\alpha_{1}, \ldots, \alpha_{j}\right)$ satisfying

$$
1 / 7 \leq \alpha_{j}<\alpha_{j-1}<\cdots<\alpha_{1} \leq 1 / 2 \quad \text { and } \quad \alpha_{1}+\cdots+\alpha_{j-1}+2 \alpha_{j} \leq 1
$$

A tuple $\boldsymbol{\alpha}_{j}$ is said to be good if some subsum of $\alpha_{1}+\cdots+\alpha_{j}$ is in $[2 / 7,3 / 7] \cup$ $[4 / 7,5 / 7]$, and bad otherwise.

We use the notation $p_{j}=(2 N)^{\alpha_{j}}$. For instance, the sum

$$
\sum_{\substack{p_{1} p_{2} n_{3}=k \\(2 N)^{1 / 7} \leq p_{2}<p_{1}<(2 N)^{1 / 2}}} \psi\left(n_{3}, p_{2}\right)
$$

will be written as

$$
\sum_{\substack{p_{1} p_{2} n_{3}=k \\ \alpha_{2} \in E_{2}}} \psi\left(n_{3}, p_{2}\right)
$$

Lemma 17. Let $\gamma, u / r, N, Q$ be as in Lemma 16, and E be a subset of E_{j} defined by a bounded number of inequalities of the form

$$
\begin{equation*}
c_{1} \alpha_{1}+\cdots+c_{j} \alpha_{j}<c_{j+1} \quad\left(\text { or } \leq c_{j+1}\right) \tag{4.13}
\end{equation*}
$$

Suppose that all points in E are good and that throughout E, z_{j} is either the function $z_{j}=(2 N)^{\alpha_{j}}$ or the constant $z_{j}=(2 N)^{1 / 7}$. Then for arbitrary η_{χ} with $\left|\eta_{\chi}\right| \leq 1$,

$$
\sum_{Q \leq q<2 Q} \sum_{\chi \bmod q} \eta_{\chi} \sum_{\substack{N \leq p_{1} \cdots p_{j} n_{j+1}<N^{\prime} \\ \alpha_{j} \in E}} \chi\left(p_{1} \cdots p_{j} n_{j+1}\right) e\left(\gamma p_{1} \cdots p_{j} n_{j+1}\right) \psi\left(n_{j+1}, z_{j}\right) .
$$

for every $A>0$.

Proof. This is a consequence of Lemma 13 (i). On grouping a subset of the variables as a product $m=\prod_{i \in \mathcal{S}} p_{i}$, with $S \subset\{1, \ldots, j\}$, we obtain a sum S of the form appearing in Lemma 13(i), except that a bounded number of inequalities of the form (4.13) are present. These inequalities may be removed at the cost of a log power, by the mechanism noted earlier. See [3, p. 184] for a few more details of a similar argument. The lemma follows at once.

Lemma 18. Let $D=\left\{\left(\alpha_{1}, \alpha_{2}\right) \in E_{2}:\left(\alpha_{1}, \alpha_{2}\right)\right.$ is bad, $\left.\alpha_{1}+2 \alpha_{2}>5 / 7\right\}$. Then

$$
X(\mathbb{P} ; n)-\sum_{\substack{p_{1} p_{2} n_{3}=n \\ \alpha_{2} \in D}} \psi\left(n_{3}, p_{2}\right)=\varrho_{1}(n)+\varrho_{2}(n)+\varrho_{3}(n)-\varrho_{4}(n)-\varrho_{5}(n) .
$$

Here

$$
\begin{aligned}
& \varrho_{1}(n)=\psi\left(n,(2 N)^{1 / 7}\right), \\
& \varrho_{2}(n)=\sum_{\substack{p_{1} p_{2} n_{3}=n \\
\alpha_{2} \in E_{2} \backslash D}} \psi\left(n_{3},(2 N)^{1 / 7}\right), \quad \varrho_{3}(n)=\sum_{\substack{p_{1} p_{2} p_{3} p_{4} n_{5}=n \\
\alpha_{4} \in E_{4}=n \\
\left(\alpha_{1}, \alpha_{2}\right) \in E_{2} \backslash D}} \psi\left(n_{5}, p_{4}\right), \\
& \varrho_{4}(n)=\sum_{\substack{p_{1} n_{2}=n \\
\alpha_{1} \in E_{1}}} \psi\left(n_{2},(2 N)^{1 / 7}\right), \quad \varrho_{5}(n)=\sum_{\substack{p_{1} p_{2} p_{3} p_{3} n_{4}=n \\
\alpha_{3} \in E_{3} \\
\left(\alpha_{1}, \alpha_{2}\right) \in E_{2} \backslash D}} \psi\left(n_{4},(2 N)^{1 / 7}\right) .
\end{aligned}
$$

Proof. We repeatedly use Buchstab's identity in the form

$$
\psi(m, z)=\psi(m, w)-\sum_{\substack{p h=m \\ w \leq p<z}} \psi(h, p) \quad(2 \leq w<z) .
$$

Thus

$$
\begin{align*}
X(\mathbb{P} ; n) & =\psi\left(n,(2 N)^{1 / 2}\right) \\
& =\psi\left(n,(2 N)^{1 / 7}\right)-\sum_{\substack{(2 N)^{1 / 7} \leq p_{1}<(2 N)^{1 / 2} \\
p_{1} n_{2}=n}} \psi\left(n_{2}, p_{1}\right) \\
& =\varrho_{1}(n)-\varrho_{4}(n)+\sum_{\substack{p_{1} p_{2} n_{3}=n \\
\alpha_{2} \in E_{2}}} \psi\left(n_{3}, p_{2}\right), \tag{4.14}\\
X(\mathbb{P} ; n) & -\sum_{\substack{p_{1} p_{2} n_{3}=n \\
\boldsymbol{\alpha}_{2} \in D}} \psi\left(n_{3}, p_{2}\right)=\varrho_{1}(n)-\varrho_{4}(n)+\sum_{\substack{p_{1} p_{2} n_{3}=n \\
\boldsymbol{\alpha}_{2} \in E_{2} \backslash D}} \psi\left(n_{3}, p_{2}\right) .
\end{align*}
$$

The last sum decomposes as

$$
\begin{equation*}
\sum_{\substack{p_{1} p_{2} n_{3}=n \\ \boldsymbol{\alpha}_{2} \in E_{2} \backslash D}} \psi\left(n_{3}, p_{2}\right)=\sum_{\substack{p_{1} p_{2} n_{3}=n \\ \boldsymbol{\alpha}_{2} \in E_{2} \backslash D}} \psi\left(n_{3},(2 N)^{1 / 7}\right) \tag{4.15}
\end{equation*}
$$

$$
-\sum_{\substack{p_{1} p_{2} p_{3} n_{4}=n \\ \alpha_{3} \in E_{3} \\\left(\alpha_{1}, \alpha_{2}\right) \in E_{2} \backslash D}} \psi\left(n_{4},(2 N)^{1 / 7}\right)+\sum_{\substack{p_{1} p_{2} p_{3} p_{4} n_{5}=n \\ \alpha_{4} \in E_{4} \\\left(\alpha_{1}, \alpha_{2}\right) \in E_{2} \backslash D}} \psi\left(n_{5}, p_{4}\right) .
$$

Combining 4.14 and 4.15, we complete the proof of the lemma.
Lemma 19. Let $r, u / r, N$ and Q be as in Lemma 16 with $\varrho_{1}, \ldots, \varrho_{5}$ as in Lemma 18. Then

$$
\sum_{Q \leq q<2 Q} \sum_{\chi \bmod q} \eta_{\chi} \sum_{N \leq n<N} \varrho_{j}(n) \chi(n) e(\gamma n) \ll Q N \mathcal{L}^{-A}
$$

for arbitrary η_{χ} with $\left|\eta_{\chi}\right| \leq 1$ and any $A>0$.
Proof. This follows from Lemmas 16 and 17 for $j=1,2,4,5$ on noting that $\alpha_{1}+\alpha_{2}+\alpha_{3} \leq \alpha_{1}+2 \alpha_{2} \leq 5 / 7$ for $j=5$, so that either $\boldsymbol{\alpha}_{3}$ is good or $\alpha_{1}+\alpha_{2}+\alpha_{3}<4 / 7$ (similarly for $j=2$). For $j=3$, we need to show that each $\boldsymbol{\alpha}_{4}$ counted is good. Suppose that some $\boldsymbol{\alpha}_{4}$ is bad. Then we have $\alpha_{1}+\alpha_{2}+\alpha_{3}+2 \alpha_{4} \leq 1$. Hence $\alpha_{1}+\alpha_{2}+\alpha_{3} \leq 5 / 7$, from which we infer that $\alpha_{1}+\alpha_{2}+\alpha_{3}<4 / 7$. Therefore, $\alpha_{1}+\alpha_{2}<3 / 7$. But we know that $\alpha_{1}+\alpha_{2}>2 / 7$. This makes $\boldsymbol{\alpha}_{4}$ good, a contradiction.

5. Proof of Theorems 4 and 5

Proof of Theorem 4. With a suitable choice of a_{q} with $\left(a_{q}, q\right)=1$, we have

$$
\begin{aligned}
& \max _{(a, q)=1} E\left(N, N^{\prime}, \gamma, q, a\right) \\
& \quad \leq \sup _{I}\left|\sum_{\substack{N \leq n<N^{\prime} \\
\gamma n \in I \bmod 1 \\
n \equiv a_{q} \bmod q}} \Lambda(n)-|I| \sum_{\substack{N \leq n<N^{\prime} \\
n \equiv a_{q} \bmod q}} \Lambda(n)\right|+\left|\sum_{\substack{N \leq n<N^{\prime} \\
n \equiv a_{q} \bmod q}} \Lambda(n)-\frac{N^{\prime}-N}{\varphi(q)}\right| \\
& =T_{1}(q)+T_{2}(q),
\end{aligned}
$$

say. In view of the Bombieri-Vinogradov theorem, we need only bound $\sum_{q} T_{1}(q)$, which is, by Lemma 7 ,

$$
\begin{aligned}
& \ll \sum_{q \leq N^{1 / 4-\varepsilon}} \mathcal{L}^{-A-1} \sum_{\substack{N \leq n<N^{\prime} \\
n \equiv a_{q} \bmod q}} \Lambda(n) \\
& \quad+\sum_{q \leq \min \left(r, N^{1 / 4}\right) N^{-\varepsilon}} \sum_{h \leq \mathcal{L}^{A+1}} \frac{1}{h}\left|\sum_{\substack{N \leq n<N^{\prime} \\
n \equiv a_{q} \bmod q}} \Lambda(n) e(\gamma n h)\right| .
\end{aligned}
$$

Let $H=\mathcal{L}^{A+1}$. In view of the Brun-Titchmarsh inequality, it remains to show that for $1 \leq h \leq H$,

$$
\sum_{q \leq \min \left(N^{1 / 4}, r\right) N^{-\varepsilon}}\left|\sum_{\substack{N \leq n<N^{\prime} \\ n \equiv a_{q} \bmod q}} \Lambda(n) e(\gamma n h)\right| \ll N \mathcal{L}^{-A-1} .
$$

Reducing $h u / r$ to lowest terms, we need only show that

$$
\sum_{q \leq \min \left(N^{1 / 4}, r\right) N^{-\varepsilon / 2}} \eta_{q} \sum_{\substack{N \leq n<N^{\prime} \\ n \equiv a_{q} \bmod q}} \Lambda(n) e(\gamma n) \ll N \mathcal{L}^{-A-1}
$$

under the modified hypothesis (4.4) on γ (with $H=\mathcal{L}^{A+1}$), whenever $\left|\eta_{q}\right| \leq 1$.

Using Lemma 14, it suffices to show that

$$
\begin{equation*}
\sum_{q \leq \min \left(N^{1 / 4}, r\right) N^{-\varepsilon / 2}} \eta_{q} \sum_{\substack{M \leq m<2 M \\ N \leq m k<N^{\prime} \\ m k \equiv a_{q} \bmod q}} \sum_{K \leq k<2 K} a_{m} b_{k} e(\gamma m k) \ll N \mathcal{L}^{-A-3} \tag{5.1}
\end{equation*}
$$

under either of the following sets of conditions:
(a) $\|a\|_{2}\|b\|_{2} \ll N^{1 / 2} \mathcal{L}^{2}$ and $N^{1 / 2} \leq K \leq N^{3 / 4}$;
(b) $\left|a_{m}\right| \leq 1, b_{k}=1$ for $k \in I_{m} \subset[\bar{K}, 2 K), b_{k}=0$ otherwise, $M \leq N^{1 / 4}$.

We use Dirichlet characters to detect the congruence relation in (5.1), and we require the estimate

$$
\sum_{q \leq \min \left(N^{1 / 4}, r\right) N^{-\varepsilon / 2}} \frac{\eta_{q}}{\varphi(q)} \sum_{\chi \bmod q} \bar{\chi}\left(a_{q}\right) \sum_{\substack{M \leq m<2 M \\ N \leq m k<N^{\prime}}} \sum_{K \leq k<2 K} a_{m} b_{k} \chi(m k) e(\gamma m k)
$$

It suffices to show that

$$
\begin{align*}
S & :=\sum_{Q \leq q<2 Q} \sum_{\bmod q}\left|\sum_{\substack{M \leq m<2 M \\
N \leq m k<N^{\prime}}} \sum_{K \leq k<2 K} a_{m} b_{k} \chi(m k) e(\gamma m k)\right| \tag{5.2}\\
& \ll Q N \mathcal{L}^{-A-6}
\end{align*}
$$

for $Q \leq \min \left(N^{1 / 4}, r\right) N^{-\varepsilon / 2}$.
In case (a), we apply Lemma 11, which gives

$$
\begin{aligned}
S & \ll N^{1 / 2+\varepsilon / 6}\left(Q^{2} M^{1 / 2}+\frac{Q^{3 / 2} N^{1 / 2}}{r^{1 / 2}}+Q^{3 / 2} K^{1 / 2}+Q^{3 / 2} r^{1 / 2}\right) \\
& \ll N^{3 / 4+\varepsilon / 6} Q^{2}+\frac{N^{1+\varepsilon / 6} Q^{3 / 2}}{r^{1 / 2}}+Q^{3 / 2} N^{7 / 8+\varepsilon / 6}
\end{aligned}
$$

Each one of these three terms is $\ll Q N \mathcal{L}^{-A-6}$ as

$$
\begin{aligned}
N^{3 / 4+\varepsilon / 6} Q^{2}\left(Q N \mathcal{L}^{-A-6}\right)^{-1} & \ll Q N^{-1 / 4+\varepsilon / 5} \ll 1 \\
N^{1+\varepsilon / 6} Q^{3 / 2} r^{-1 / 2}\left(Q N \mathcal{L}^{-A-6}\right)^{-1} & \ll Q^{1 / 2} N^{\varepsilon / 4} r^{-1 / 2} \ll 1
\end{aligned}
$$

since $Q \leq r N^{-\varepsilon / 2}$, and

$$
N^{7 / 8+\varepsilon / 6} Q^{3 / 2}\left(Q N \mathcal{L}^{-A-6}\right)^{-1} \ll N^{-1 / 8+\varepsilon / 5} Q^{1 / 2} \ll 1
$$

In case (b), we use Lemma 12. Suppose that $K<N^{1-\varepsilon / 4}$; Lemma 12 (i) gives

$$
S \ll Q^{3 / 2} N^{\varepsilon / 6}\left(\frac{N}{r}+Q M+\frac{K}{Q}+r\right)
$$

Each of the above four terms is $\ll Q N \mathcal{L}^{-A-6}$, since

$$
\begin{aligned}
\frac{Q^{3 / 2} N^{1+\varepsilon / 6}}{r}\left(Q N \mathcal{L}^{-A-6}\right)^{-1} & \ll Q^{1 / 2} r^{-1} N^{\varepsilon / 5} \ll 1 \\
Q^{5 / 2} N^{\varepsilon / 6} M\left(Q N \mathcal{L}^{-A-6}\right)^{-1} & \ll Q^{3 / 2} N^{-3 / 4+\varepsilon / 5} \ll 1 \\
Q^{1 / 2} N^{\varepsilon / 6} K\left(Q N \mathcal{L}^{-A-6}\right)^{-1} & \ll K N^{-1+\varepsilon / 4} \ll 1 \\
Q^{3 / 2} N^{\varepsilon / 6} r\left(Q N \mathcal{L}^{-A-6}\right)^{-1} & \ll Q^{1 / 2} N^{-1 / 4+\varepsilon / 5} \ll 1
\end{aligned}
$$

Now suppose that $K \geq N^{1-\varepsilon / 4}$. Then

$$
4 M Q \ll Q N^{\varepsilon / 4}, \quad \text { thus } \quad 4 M Q<r
$$

and

$$
4 M Q r\left|\gamma-\frac{u}{r}\right| \ll M Q N^{-3 / 4}, \quad \text { hence } \quad 4 M Q r\left|\gamma-\frac{u}{r}\right| \leq \frac{1}{2}
$$

So of Lemma 12 (ii) gives comfortably

$$
S \ll N^{\varepsilon} Q^{3 / 2} r \ll Q N \mathcal{L}^{-A-6}
$$

completing the proof.
Proof of Theorem 5. We first show that the contribution to the sum in (1.10) from $q \leq \mathcal{L}^{A+1}$ is

$$
\ll N^{2} \mathcal{L}^{-A} \ll N R
$$

Since, for some $Q \leq \mathcal{L}^{A+1}$,

$$
\begin{aligned}
\sum_{q \leq \mathcal{L}^{A+1}} \sum_{\substack{a=1 \\
(a, q)=1}}^{q} E^{2} & \ll N \sum_{q \leq \mathcal{L}^{A+1}} \frac{1}{\varphi(q)} \sum_{\substack{a=1 \\
(a, q)=1}}^{q} E\left(N, N^{\prime}, \gamma, q, a\right) \\
& \ll \frac{N \mathcal{L}}{Q} \sum_{Q \leq q<2 Q} \max _{(a, q)=1} E\left(N, N^{\prime}, \gamma, q, a\right)
\end{aligned}
$$

it suffices to show for this Q that

$$
\begin{equation*}
\sum_{Q \leq q<2 Q} \max _{(a, q)=1} E\left(N, N^{\prime}, \gamma, q, a\right) \ll Q N \mathcal{L}^{-A-1} \tag{5.3}
\end{equation*}
$$

We may suppose that A is large. Arguing as in the proof of Theorem 4 , we need only show that (5.2) follows from either (a) or (b). By Dirichlet's theorem, there is a rational approximation b / r to γ satisfying (1.7). For any $\eta>0$,

$$
N^{-3 / 4} \geq\|\gamma r\| \gg \exp \left(-r^{\eta}\right)
$$

hence $r \gg \mathcal{L}^{5 A}$. Now we apply Lemma 11 to prove the desired bound under (a). Since $D \leq Q \leq \mathcal{L}^{A+1}$, the term

$$
\|a\|_{2}\|b\|_{2} \mathcal{L}^{2} D^{1 / 2} Q^{3 / 2} H^{1 / 2} N^{1 / 2} r^{-1 / 2}
$$

presents no difficulty; the other terms are clearly all small enough. For the bound under (b), a similar remark applies to Lemma 12 and the terms

$$
\begin{array}{ll}
Q^{3 / 2} \mathcal{L} D N H r^{-1} & \text { if } K<N^{1-\varepsilon / 4} \\
\mathcal{L} D Q^{3 / 2} r & \text { if } K \geq N^{1-\varepsilon / 4}
\end{array}
$$

This establishes (5.3).
It remains to examine the contribution to the sum in 1.10 from $q \in$ $[Q, 2 Q)$ with $\mathcal{L}^{A+1} \leq Q \leq R$. We have

$$
\begin{aligned}
\sum_{Q \leq q<2 Q} & \sum_{\substack{a=1 \\
(a, q)=1}}^{q} E\left(N, N^{\prime}, \gamma, q, a\right)^{2} \\
& \left.\ll \sum_{q} \sum_{a} \sup _{I}\right|_{\substack{N<n \leq N^{\prime} \\
\{\gamma n\} \in I \\
n \equiv a \bmod q}} \Lambda(n)-\left.|I| \sum_{\substack{N<n \leq N^{\prime} \\
n \equiv a \bmod q}} \Lambda(n)\right|^{2} \\
& \quad+\sum_{q} \sum_{a}\left(\sum_{\substack{N<n \leq N^{\prime} \\
n \equiv a \bmod q}} \Lambda(n)-\frac{N^{\prime}-N}{\varphi(q)}\right)^{2}=T_{1}(Q)+T_{2}(Q)
\end{aligned}
$$

say. Since $T_{2}(Q)$ is covered by a slight variant of the discussion in [6, Chapter 29], we focus our attention on $T_{1}(Q)$. By Lemma 7 ,

$$
\begin{aligned}
T_{1}(Q) \ll & \sum_{Q \leq q<2 Q} \sum_{\substack{a=1 \\
(a, q)=1}}^{q} \mathcal{L}^{-2 A}\left(\sum_{\substack{N<n \leq N^{\prime} \\
n \equiv a \bmod q}} \Lambda(n)\right)^{2} \\
& +\sum_{Q \leq q<2 Q} \sum_{\substack{a=1 \\
(a, q)=1}}^{q}\left(\sum_{h \leq \mathcal{L}^{A}} \frac{1}{h}\left|\sum_{\substack{N<n \leq N^{\prime} \\
n \equiv a \bmod q}} \Lambda(n) e(\gamma n h)\right|\right)^{2} \\
& =T_{3}(Q)+T_{4}(Q),
\end{aligned}
$$

say. The Brun-Titchmarsh theorem gives a satisfactory bound for $T_{3}(Q)$. Applying Cauchy's inequality to $T_{4}(Q)$, we get

$$
\begin{aligned}
T_{4}(Q) & \leq\left(\sum_{h \leq \mathcal{L}^{A}} \frac{1}{h}\right) \sum_{h \leq \mathcal{L}^{A}} \frac{1}{h} \sum_{Q \leq q<2 Q} \sum_{\substack{a=1 \\
(a, q)=1}}^{q}\left|\sum_{\substack{N<n \leq N^{\prime} \\
n \equiv a \bmod q}} \Lambda(n) e(\gamma n h)\right|^{2} \\
& \ll(\log \mathcal{L})^{2} \sum_{Q \leq q<2 Q} \frac{1}{\varphi(q)} \sum_{\chi \bmod q}\left|\sum_{N<n \leq N^{\prime}} \Lambda(n) \chi(n) e(\gamma n h)\right|^{2}
\end{aligned}
$$

for some $h \leq \mathcal{L}^{A}$. From this point, we can conclude the proof by following, with slight changes, the argument in [6, pp. 170-171].

6. Proof of Theorems 2 and 3

Proof of Theorem 2. Let $\gamma=\alpha^{-1}$ and $N \geq C_{1}(\alpha, t), 0<\varepsilon<C_{2}(\alpha, t)$. By Dirichlet's theorem, there is a reduced fraction b / r satisfying (1.7). Our hypothesis on α implies that

$$
N^{-3 / 4} \geq\|\gamma r\| \gg r^{-3}, \quad r \gg N^{1 / 4}
$$

Let $h_{1}^{\prime \prime}, \ldots, h_{l}^{\prime \prime}$ be the first l primes in (l, ∞). Any translate

$$
\mathcal{H}=\left\{h_{1}^{\prime}, \ldots, h_{k}^{\prime}\right\}+h, \quad h \in \mathbb{N}
$$

with $\left\{h_{1}^{\prime}, \ldots, h_{k}^{\prime}\right\} \subset\left\{h_{1}^{\prime \prime}, \ldots, h_{l}^{\prime \prime}\right\}$ is an admissible set. Using Lemma 7 (i), we choose $h_{1}^{\prime}, \ldots, h_{k}^{\prime}$ so that

$$
\begin{equation*}
k \geq \varepsilon \gamma l \tag{6.1}
\end{equation*}
$$

and for some real η,

$$
-\gamma h_{m}^{\prime} \in(\eta, \eta+\varepsilon \gamma)(\bmod 1)
$$

for every $m=1, \ldots, k$. Now choose $h \in \mathbb{N}, h<_{\gamma} 1$, so that

$$
h \gamma \in(\eta-\varepsilon \gamma, \eta)(\bmod 1)
$$

Thus, writing $h_{m}=h_{m}^{\prime}+h$, we have

$$
-\gamma h_{m}=-\gamma h_{m}^{\prime}-\gamma h \in(0,2 \varepsilon \gamma)(\bmod 1)
$$

We apply Theorem 1 to the set

$$
\mathcal{A}=\{n \in[N, 2 N): \gamma m \in I(\bmod 1)\}
$$

where $I=(\gamma \beta-\gamma, \gamma \beta)$, taking $q_{0}=q_{1}=1, s=1, \varrho(n)=X(\mathbb{P} ; n)$, $\theta=1 / 4-\varepsilon, b=1-2 \varepsilon$,

$$
Y=\gamma N, \quad Y_{1, m}=l_{m} \int_{N}^{2 N} \frac{d t}{\log t}=\frac{l_{m} Y}{\mathcal{L} \gamma}(1+o(1))
$$

Here J_{m}, l_{m} are the interval J and its length l in Lemma (with $\varepsilon \gamma$ in place of ε), so that

$$
\gamma>l_{m}>\gamma(1-2 \varepsilon)
$$

Since $\sqrt{1.2}$) can be proved in a similar (but simpler) fashion to 1.5 , we only show that 1.5 holds. We can rewrite this in the form

$$
\begin{equation*}
\sum_{q \leq x^{1 / 4-\varepsilon}} \mu(q)^{2} \tau_{3 k}(q)\left|\sum_{\substack{N+h_{m} \leq p<2 N \\ p \equiv a_{q} \bmod q \\ \gamma p \in J_{m} \bmod 1}} 1-\frac{l_{m}}{\varphi(q)} \int_{N}^{2 N} \frac{d t}{\log t}\right| \ll N \mathcal{L}^{-k-\varepsilon} \tag{6.2}
\end{equation*}
$$

The function $E\left(N, N^{\prime}, \gamma, q, a\right)$ appearing in Theorem 4 is not quite in the form that we need. However, discarding prime powers and using partial summation in the standard way, we readily deduce a variant of 6.2 from Theorem 4, in which $N \mathcal{L}^{-A}$ appears in place of $N \mathcal{L}^{-k-\varepsilon}$, and the weight
$\mu(q)^{2} \tau_{3 k}(q)$ is absent. We then obtain 6.2 by using Cauchy's inequality; see [9, (5.20)] for a very similar computation.

We are now in a position to use Theorem 1, obtaining a set \mathcal{S} of t primes in $\mathcal{A} \cap[N, 2 N)$, which of course have the form $[\alpha n+\beta]$, with

$$
D(\mathcal{S}) \leq h_{k}-h_{1} \leq h_{l}^{\prime \prime}
$$

provided that

$$
\begin{equation*}
M_{k}>\frac{2 t-2}{(1-2 \varepsilon)(1 / 4-\varepsilon)} \tag{6.3}
\end{equation*}
$$

We take l to be the least integer with

$$
\log (\varepsilon \gamma l) \geq \frac{2 t-2}{(1-2 \varepsilon)(1 / 4-\varepsilon)}+C
$$

for a suitable absolute constant C, so that (6.3) follows from (6.1) and (1.11). Therefore, $\gamma l \ll \exp (8 t), \quad l \ll \alpha \exp (8 t), \quad D(\mathcal{S}) \ll l \log l \ll \alpha(t+\log \alpha) \exp (8 t)$.

In the proof of Theorem 3, we shall need the following.
Lemma 20. Let D be as in Lemma 18 and let $\omega_{0}(t)$ denote Buchstab's function.
(i) The points of D lie in two triangles A_{1}, A_{2}, where A_{1} has vertices

$$
(5 / 21,5 / 21),(2 / 7,3 / 14),(2 / 7,2 / 7)
$$

and A_{2} has vertices

$$
(1 / 2,3 / 14), \quad(3 / 7,2 / 7), \quad(1 / 2,1 / 4)
$$

(ii) For $j=1,2$, let

$$
I_{j}=\int_{A_{j}} \frac{1}{\alpha_{1} \alpha_{2}^{2}} \omega_{0}\left(\frac{1-\alpha_{1}-\alpha_{2}}{\alpha_{2}}\right) d \alpha_{1} d \alpha_{2}
$$

Then $I_{1}<0.03925889$ and $I_{2}<0.0566295$.
Proof. Let $\left(\alpha_{1}, \alpha_{2}\right) \in D$. If $\alpha_{1}+\alpha_{2}>5 / 7$, then

$$
\alpha_{1}+\alpha_{2}>5 / 7, \quad \alpha_{1}+2 \alpha_{2} \leq 1, \quad \alpha_{1} \leq 1 / 2
$$

This defines a triangle which is easily verified to be A_{2}. If $\alpha_{1}+\alpha_{2} \leq 5 / 7$, then as $\boldsymbol{\alpha}_{2}$ is bad, we have in turn

$$
\alpha_{1}+\alpha_{2}<4 / 7, \quad \alpha_{1}<3 / 7, \quad \alpha_{1}<2 / 7
$$

Altogether, we have

$$
\alpha_{1}+2 \alpha_{2}>5 / 7, \quad \alpha_{1}<2 / 7, \quad \alpha_{2}<\alpha_{1}
$$

This defines a triangle which we can verify to be A_{1}. This proves (1).
Part (2) requires a computer calculation, which was kindly carried out by Andreas Weingartner.

Proof of Theorem 3. With a different value of l, we choose $h_{1}^{\prime \prime}, \ldots, h_{l}^{\prime \prime}$ and h_{1}, \ldots, h_{k} exactly as in the proof of Theorem 2. In applying Theorem1.
we also take $I, \mathcal{A}, q_{0}, q_{1}, Y, J_{m}, l_{m}$ as in that proof, but now $\theta=2 / 7-\varepsilon$, $s=5, a=3$; the functions $\varrho_{1}(n), \ldots, \varrho_{5}(n)$ are given in Lemma 18 .

There is little difficulty in verifying (1.2) by a similar but simpler version of the proof of (1.5). So we concentrate on (1.5). We recall that this can be rewritten as

$$
\begin{equation*}
\sum_{q \leq x^{\theta}} \mu(q)^{2} \tau_{3 k}(q)\left|\sum_{\substack{n \equiv a_{q} \bmod q \\ \gamma n \in J_{m} \bmod 1 \\ N+h_{m} \leq n<2 N}} \varrho_{g}(n)-\frac{Y_{g, m}}{\varphi(q)}\right| \ll N \mathcal{L}^{-k-\varepsilon} \tag{6.4}
\end{equation*}
$$

We define $Y_{g, m}$ by

$$
Y_{g, m}=l_{m} \sum_{N \leq n<2 N} \varrho_{g}(n)
$$

It is well known that

$$
\begin{equation*}
Y_{g, m}=\frac{l_{m} c_{g} N}{\mathcal{L}}(1+o(1)) \tag{6.5}
\end{equation*}
$$

where c_{g} is given by a multiple integral. In fact,

$$
c_{1}+c_{2}+c_{3}-c_{4}-c_{5}=1-\int_{\alpha_{2} \in D} \frac{1}{\alpha_{1} \alpha_{2}^{2}} \omega_{0}\left(\frac{1-\alpha_{1}-\alpha_{2}}{\alpha_{2}}\right) d \alpha_{1} d \alpha_{2}
$$

Similar calculations are found in [8, Chapter 1].
Fix m and g. By analogy with the proof of Theorem 4, we can obtain (1.5) by showing

$$
\begin{equation*}
\sum_{q \leq N^{2 / 7-\varepsilon}}\left|\sum_{\substack{N \leq n<N^{\prime} \\ n \equiv a_{q} \bmod q}} \varrho_{g}(n)-\frac{1}{\varphi(q)} \sum_{N \leq n<N^{\prime}} \varrho_{g}(n)\right| \ll N \mathcal{L}^{-A} \tag{6.6}
\end{equation*}
$$

for every $A>0$, and

$$
\begin{equation*}
\sum_{q \leq N^{2 / 7-\varepsilon}}\left|\sum_{\substack{N \leq n<N^{\prime} \\ n \equiv a_{q} \bmod q}} \varrho_{g}(n) e(\gamma n h)\right| \ll N \mathcal{L}^{-A} \tag{6.7}
\end{equation*}
$$

for $1 \leq h \leq \mathcal{L}^{A+1}$ and for every $A>0$. Again adapting the argument of Theorem 4 , we see that (6.7) is a consequence of Lemma 19 .

For 6.6, it suffices to show, recalling Lemma 8 , that for arbitrary $\eta_{\chi} \ll 1$ and $Q \leq N^{2 / 7-\varepsilon}$,

$$
\begin{equation*}
\sum_{Q \leq q<2 Q} \sum_{\chi \bmod q}^{\star} \eta_{\chi} \sum_{N \leq n<N^{\prime}} \varrho_{g}(n) \chi(n) \ll Q N \mathcal{L}^{-A} \tag{6.8}
\end{equation*}
$$

for every $A>0$. This can be readily deduced from the Siegel-Walfisz theorem for $Q \leq \mathcal{L}^{2 A}$, so we assume that $Q>\mathcal{L}^{2 A}$.

We apply Lemma 15 with

$$
W(n)=\sum_{Q \leq q<2 Q} \sum_{\chi \bmod q}^{\star} \eta_{\chi} \chi(n)
$$

if $N \leq n<N^{\prime}$, and $W(n)=0$ otherwise.

For example, when $g=3$, the left-hand side of (6.8) is

$$
\sum_{\substack{N \leq p_{1} p_{2} p_{3} n_{4}<N^{\prime} \\\left(n_{4}, P\left((2 N)^{1 / 7}\right)\right)=1 \\\left(\boldsymbol{\alpha}_{3} \in E_{3} \\\left(\alpha_{1}, \alpha_{2}\right) \in E_{2} \backslash D\right.}} W\left(p_{1} p_{2} p_{3} n_{4}\right)=\sum_{\substack{\boldsymbol{\alpha}_{3} \in E_{3} \\\left(\alpha_{1}, \alpha_{2}\right) \in E_{2} \backslash D}} S^{*}\left(p_{1} p_{2} p_{3},(2 N)^{1 / 7}\right) .
$$

We shall show that (4.10) and 4.11) hold with $Y=Q N \mathcal{L}^{-A-3}, c=4 / 7$ and $d=1 / 7$. (We could reduce the constraints on c and d, but that would not be useful in the present context.) Once we have done this, we can follow the proof of Lemma 19 to deduce (6.8).

To prove 4.10, we use the Pólya-Vinogradov bound for character sums to obtain

$$
\begin{aligned}
\sum_{m \leq 2 N^{4 / 7}} \sum_{k} W(n k) & =\sum_{m \leq 2 N^{4 / 7}} a_{m} \sum_{\substack{Q \leq q<2 Q}} \sum_{\substack{\chi \bmod q \\
N \leq m k<N^{\prime}}}^{\star} \eta_{\chi} \chi(m k) \\
& \ll \mathcal{L} \sum_{m \leq 2 N^{4 / 7}} \sum_{Q \leq q<2 Q} q^{1 / 2} \ll \mathcal{L} Q^{3 / 2} N^{4 / 7-\varepsilon} \ll Q N \mathcal{L}^{-A-3} .
\end{aligned}
$$

Now to prove (4.11), we note that by the method of [8, Section 3.2] mentioned earlier, it suffices to show that

$$
\sum_{M \leq m<2 M} a_{m} \sum_{K \leq k<2 K} b_{k} W(m k) \ll Q N \mathcal{L}^{-A}
$$

whenever $\left|a_{m}\right| \leq 1$ and $\left|b_{k}\right| \leq \tau(k), N^{4 / 7} \ll M \ll N^{5 / 7}, M K \asymp N$. That is, it suffices to show that

$$
\begin{equation*}
\sum_{Q \leq q<2 Q} \sum_{\chi \bmod q}^{\star}\left|\sum_{M \leq m<2 M} a_{m} \chi(m)\right|\left|\sum_{K \leq k<2 K} b_{k} \chi(k)\right| \ll Q N \mathcal{L}^{-A} . \tag{6.9}
\end{equation*}
$$

Following the proof of (6) in [6, Chapter 28], we find that the left-hand side of (6.9) is

$$
\begin{aligned}
& \ll \mathcal{L}\left(M+Q^{2}\right)^{1 / 2}\left(K+Q^{2}\right)^{1 / 2}\|a\|_{2}\|b\|_{2} \ll \mathcal{L}^{3}\left(N^{1 / 2}+M^{1 / 2} Q+Q^{2}\right) N^{1 / 2} \\
& \ll Q N \mathcal{L}^{-A},
\end{aligned}
$$

since $\mathcal{L}^{3} Q^{-1} N \ll \mathcal{L}^{3-A} N, \mathcal{L}^{3} M^{1 / 2} N^{1 / 2} \ll \mathcal{L}^{3} N^{6 / 7} \ll N \mathcal{L}^{-A}$ and $\mathcal{L}^{3} Q N^{1 / 2}$ $\ll \mathcal{L}^{3} N^{11 / 14} \ll N \mathcal{L}^{-A}$. This proves 1.5) with the present choice of $\mathcal{A}, Y_{g, m}$, etc.

Applying Theorem 1, we find that there is a set \mathcal{S} of t primes in \mathcal{A} (and thus of the form $[\alpha m+\beta]$) having diameter

$$
D(\mathcal{S}) \leq h_{k}-h_{1} \ll l \log l
$$

provided that

$$
M_{k}>\frac{2 t-2}{b(2 / 7-\varepsilon)} .
$$

Here b must have the property

$$
b_{1, m}+b_{2, m}+b_{3, m}-b_{4, m}-b_{5, m} \geq b>0
$$

that is,

$$
l_{m}\left(c_{1}+c_{2}+c_{3}-c_{4}-c_{5}\right) \geq b \gamma>0
$$

We can choose

$$
b=(1-2 \varepsilon)\left(1-\int_{\alpha_{2} \in D} \frac{1}{\alpha_{1} \alpha_{2}^{2}} \omega_{0}\left(\frac{1-\alpha_{1}-\alpha_{2}}{\alpha_{2}}\right) d \alpha_{1} d \alpha_{2}\right)
$$

Using Lemma 20, we see that

$$
b>0.90411
$$

Now we proceed just as in the proof of Theorem 2. We may choose any l for which

$$
\log (\varepsilon \gamma l) \geq \frac{2 t-2}{0.90411(2 / 7-\varepsilon)}+C
$$

for a suitable constant C, and now it is a simple matter to deduce that

$$
D(\mathcal{S})<C_{4} \alpha(\log \alpha+t) \exp (7.743 t)
$$

where C_{4} is an absolute constant.
Acknowledgements. This work was done while L.Z. held a visiting position at the Department of Mathematics of Brigham Young University (BYU). He wishes to thank the warm hospitality of BYU during his thoroughly enjoyable stay in Provo.

References

[1] R. C. Baker, Diophantine Inequalities, London Math. Soc. Monogr. (N.S.) 1, Oxford Univ. Press, Oxford, 1986.
[2] R. C. Baker and W. D. Banks, Character sums with Piatetski-Shapiro sequences, Quart. J. Math. 66 (2015), 393-416.
[3] R. C. Baker and A. Weingartner, A ternary Diophantine inequality over primes, Acta Arith. 162 (2014), 159-196.
[4] W. D. Banks and I. E. Shparlinski, Prime numbers with Beatty sequences, Colloq. Math. 115 (2009), 147-157.
[5] L. Chua, S. Park, and G. D. Smith, Bounded gaps between primes in special sequences, Proc. Amer. Math. Soc. 143 (2015), 4597-4611.
[6] H. Davenport, Multiplicative Number Theory, 3rd ed., Grad. Texts in Math. 74, Springer, New York, 2000.
[7] D. A. Goldston, S. W. Graham, J. Pintz, and C. Y. Yıldırım, Small gaps between products of two primes, Proc. London Math. Soc. (3) 98 (2009), 741-774.
[8] G. Harman, Prime Detecting Sieves, London Math. Soc. Monogr. Ser. 33, Princeton Univ. Press, Princeton, NJ, 2007.
[9] J. Maynard, Small gaps between primes, Ann. of Math. (2) 181 (2015), 383-413.
[10] J. Maynard, Dense clusters of primes in subsets, arXiv:1405.2593 (2014).
[11] D. H. J. Polymath, Variants of the Selberg sieve, and bounded intervals containing many primes, Res. Math. Sci. 1 (2014), art. 12.
[12] Y. Zhang, Bounded gaps between primes, Ann. of Math. (2) 179 (2014), 1121-1174.

Roger C. Baker
Department of Mathematics
Brigham Young University Provo, UT 84602, U.S.A.
E-mail: baker@math.byu.edu

Liangyi Zhao
School of Mathematics and Statistics University of New South Wales Sydney, NSW 2052, Australia E-mail: l.zhao@unsw.edu.au

[^0]: 2010 Mathematics Subject Classification: 11B05, 11L20, 11N35.
 Key words and phrases: Beatty sequences, bounded gaps in the primes, GPY sieve, Harman sieve.
 Received 11 November 2014; revised 16 October 2015.
 Published online 14 January 2016.

