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1. Introduction. Let k be an algebraic number field, k× its multi-
plicative group of nonzero elements, and h : k× → [0,∞) the absolute,
logarithmic, Weil height. If α belongs to k× and ζ is a root of unity in k×,
then the identity h(ζα) = h(α) is well known. It follows that h is constant
on cosets in the quotient group

Gk = k×/Tor(k×).

Therefore the height is well defined as a map h : Gk → [0,∞).

Let S be a finite set of places of k such that S contains all the archi-
medean places. Then

OS = {γ ∈ k : |γ|v ≤ 1 for all places v /∈ S}

is the ring of S-integers in k, and

(1.1) O×S = {γ ∈ k× : |γ|v = 1 for all places v /∈ S}

is the multiplicative group of S-units in the ring OS . We write

(1.2) Tor(O×S ) = Tor(k×)

for the torsion subgroup of O×S , which is also the torsion subgroup of the
multiplicative group k×. As is well known, (1.2) is a finite, cyclic group of
even order, and

(1.3) US(k) = O×S /Tor(O×S ) ⊆ Gk

is a free abelian group of finite rank r, where |S| = r + 1.
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In this paper we establish simple inequalities between the S-regulator
RegS(k) and products of the form

r∏
j=1

([k : Q]h(αj)),

where α1, . . . , αr are multiplicatively independent elements in US(k).

Theorem 1.1. Assume that O×S has positive rank r, and let α1, . . . , αr be
multiplicatively independent elements in the free group US(k). If A ⊆ US(k)
is the multiplicative subgroup generated by α1, . . . , αr, then

(1.4) RegS(k)[US(k) : A] ≤
r∏

j=1

([k : Q]h(αj)).

A special case of (1.4) occurs when S is the collection of all archimedean
places of k. We write Ok for the ring of algebraic integers in k, and O×k
for the multiplicative group of units in Ok. If k is not Q, and k is not an
imaginary quadratic extension of Q, then the quotient group

U(k) = O×k /Tor(O×k ) ⊆ Gk
is a free abelian group of positive rank r, where r + 1 is the number of
archimedean places of k. It is known from work of Remak [22], [23], and
Zimmert [28] that the regulator Reg(k) is bounded from below by an ab-
solute constant. Further, Friedman [12] has shown that Reg(k) takes its
minimum value at the unique number field k0 having degree 6 over Q, and
having discriminant equal to −10051. Thus by Friedman’s result we have

(1.5) 0.2052 . . . = Reg(k0) ≤ Reg(k)

for all algebraic number fields k. Combining (1.4) and (1.5) leads to the
following explicit lower bound.

Corollary 1.1. Assume that k is not Q, and k is not an imaginary
quadratic extension of Q, so that U(k) has positive rank r. Let α1, . . . , αr be
multiplicatively independent elements in U(k). If A ⊆ U(k) is the subgroup
generated by α1, . . . , αr, then

(1.6) (0.2052 . . .)[U(k) : A] ≤
r∏

j=1

([k : Q]h(αj)).

Let k be an algebraic number field such that O×k has positive rank r. The
inequality (1.6) implies that each collection α1, . . . , αr of multiplicatively
independent units must contain a unit, say α1, that satisfies

(1.7) (0.2052 . . .) ≤ [k : Q]h(α1).
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A result of this sort was proposed by Bertrand [5, comment (iii), p. 210],
who observed that it would follow from an unproved hypothesis related to
Lehmer’s problem.

In a well known paper Lehmer [16] asked, in the language and notation
developed here, whether there exists a positive constant c0 such that

(1.8) c0 ≤ [k : Q]h(γ)

for all γ in k× which are not in Tor(k×). If γ 6= 0 is not a unit, then it is
easy to show that

log 2 ≤ [k : Q]h(γ).

Hence (1.8) is of interest for nontorsion elements γ in O×k , or equivalently,
for a nontrivial coset representative γ in U(k). The inequality (1.6) provides
a solution to a form of Lehmer’s problem on average. Further information
about Lehmer’s problem is given in [6, Section 1.6.15] and in [25].

In Section 3 we give an analogous upper bound for the relative regulator
associated to an extension l/k of algebraic number fields.

We will show that the inequality (1.4) is sharp up to a constant that
depends only on the rank r of the group US(k), but not on the underly-
ing field k. Related results have been proved by Brindza [7], Bugeaud and
Győry [8], Hajdu [14], and Matveev [18], [19]. More general inequalities that

apply to arbitrary finitely generated subgroups of Q× were obtained in [26,
Theorems 1 and 2]. The inequality (1.9) below is sharper but less general,
as it applies only to subgroups of a group of S-units having maximum rank.

Theorem 1.2. Assume that O×S has positive rank r, and let A ⊆ US(k)
be a subgroup of rank r. Then there exist multiplicatively independent ele-
ments β1, . . . , βr in A such that

(1.9)
r∏

j=1

([k : Q]h(βj)) ≤
2r(r!)3

(2r)!
RegS(k)[US(k) : A].

We note that if r = 2 then (1.4) and (1.9) imply that the multiplicatively
independent elements β1 and β2 contained in A ⊆ US(k) satisfy

RegS(k)[US(k) : A] ≤ ([k : Q]h(β1))([k : Q]h(β2)) ≤
4

3
RegS(k)[US(k) : A].

It follows that β1 and β2 form a basis for the group A. More generally, by
using a well known lemma proved by Mahler [17] and Weyl [27] (see also
[9, Chapter V, Lemma 8]), we obtain the following bound on the product of
the heights of a basis for A ⊆ US(k).

Corollary 1.2. Assume that O×S has positive rank r, and let A ⊆ US(k)
be a subgroup of rank r. Then there exists a basis γ1, . . . , γr for the free
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group A such that

(1.10)
r∏

j=1

([k : Q]h(γj)) ≤
2(r!)4

(2r)!
RegS(k)[US(k) : A].

Bounds for S-regulators play an important role in the effective theory of
Diophantine equations (see, for example, [8] and the references given there).

In this article we use the height h on specific free groups, such as Gk and
U(k). The use of the height on free groups is discussed in [1].

2. Preliminary results. At each place v of k we write kv for the com-
pletion of k at v, so that kv is a local field. We select two absolute values
‖ ‖v and | |v from the place v. The absolute value ‖ ‖v extends the usual
archimedean or nonarchimedean absolute value on the subfield Q. Then | |v
must be a power of ‖ ‖v, and we set

(2.1) | |v = ‖ ‖dv/dv ,

where dv = [kv : Qv] is the local degree of the extension, and d = [k : Q]
is the global degree. With these normalizations the height of an algebraic
number α 6= 0 that belongs to k is given by

(2.2) h(α) =
∑
v

log+ |α|v =
1

2

∑
v

∣∣log |α|v
∣∣,

where log+ x = max(0, log x) for x > 0. Each sum in (2.2) is over the set
of all places v of k, and the equality between the two sums follows from
the product formula. Then h(α) depends on α 6= 0, but not on the number
field k that contains α. We have already noted that the height is well defined
as a map

h : Gk → [0,∞).

Elementary properties of the height show that (α, β) 7→ h(αβ−1) defines
a metric on the group Gk.

Let η1, . . . , ηr be multiplicatively independent elements in US(k) that
form a basis for US(k) as a free abelian group of rank r. Then let

M = (dv log ‖ηj‖v)

denote the (r+1)× r real matrix where v ∈ S indexes rows and j = 1, . . . , r
indexes columns. At each place v̂ in S we write

(2.3) M (v̂) = (dv log ‖ηj‖v)

for the r × r submatrix of M obtained by removing the row indexed by v̂.
Then the S-regulator of O×S (or of US(k)) is the positive number

(2.4) RegS(k) = |detM (v̂)|,
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which is independent of the choice of v̂ in S. Using an inequality proved by
A. Schinzel [24] that bounds the determinant of a real matrix, we will prove
that

(2.5) RegS(k) ≤
r∏

j=1

([k : Q]h(ηj)).

If the better known inequality of Hadamard is used to estimate the determi-
nant that defines the S-regulator on the right of (2.4), we obtain an upper
bound that is larger than (2.5) by a factor of 2r.

Assume more generally that α1, . . . , αr are multiplicatively independent
elements in US(k), but not necessarily a basis for the free group US(k). It
follows that there exists an r × r nonsingular matrix B = (bij) with entries
in Z such that

(2.6) log ‖αj‖v =

r∑
i=1

bij log ‖ηi‖v

for each place v in S and each j = 1, . . . , r. Alternatively, (2.6) can be
written as the matrix identity

(2.7) (dv log ‖αj‖v) = (dv log ‖ηj‖v)B.

If

(2.8) A = 〈α1, . . . , αr〉 ⊆ US(k)

is the multiplicative subgroup generated by α1, . . . , αr, we find that

(2.9) [US(k) : A] = |detB|.

This will lead to the more general inequality (1.4).

3. Relative regulators. Throughout this section we suppose that k
and l are algebraic number fields with k ⊆ l. We write r(k) for the rank of
the unit group O×k , and similarly for r(l). Then k has r(k) + 1 archimedean
places, and l has r(l) + 1 archimedean places. In general r(k) ≤ r(l), and
we recall (see [21, Proposition 3.20]) that r(k) = r(l) if and only if l is a
CM-field, and k is the maximal totally real subfield of l.

The norm is a homomorphism of multiplicative groups

Norml/k : l× → k×.

If v is a place of k, then each element α in l× satisfies

(3.1) [l : k]
∑
w|v

log |α|w = log |Norml/k(α)|v,

where | |v and | |w are normalized as in (2.1). It follows from (3.1) that the
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norm restricted to O×l is a homomorphism

Norml/k : O×l → O×k ,

and the norm restricted to the torsion subgroup in O×l is also a homomor-
phism

Norml/k : Tor(O×l )→ Tor(O×k ).

Therefore we get a homomorphism

norml/k : O×l /Tor(O×l )→ O×k /Tor(O×k ),

well defined by

norml/k(αTor(O×l )) = Norml/k(α) Tor(O×k ).

To simplify notation we write

Fk = O×k /Tor(O×k ) and Fl = O×l /Tor(O×l ),

and we write the elements of Fk and Fl as coset representatives rather than
cosets. Obviously Fk and Fl are free abelian groups of rank r(k) and r(l),
respectively.

Following Costa and Friedman [10], we define the subgroup of relative
units in O×l as

{α ∈ O×l : Norml/k(α) ∈ Tor(O×k )}.
Alternatively, we work in the free group Fl, where the image of the subgroup
of relative units is the kernel of norml/k. That is, we define the subgroup of
relative units in Fl to be

(3.2) El/k = {α ∈ Fl : norml/k(α) = 1}.
We also write

Il/k = {norml/k(α) : α ∈ Fl} ⊆ Fk

for the image of norml/k. If β in Fl represents a coset in Fk, then

norml/k(β) = β[l:k].

Therefore Il/k ⊆ Fk is a subgroup of rank r(k), and

(3.3) [Fk : Il/k] <∞.
It follows that El/k ⊆ Fl is a subgroup of rank r(l/k) = r(l)− r(k), and we
restrict our attention to extensions l/k such that r(l/k) is positive.

Let η1, . . . , ηr(l/k) be a collection of multiplicatively independent relative
units that form a basis for the subgroup El/k. At each archimedean place v of
k we select a place ŵv of l such that ŵv | v. Then we define an r(l/k)×r(l/k)
real matrix

(3.4) Ml/k = ([lw : Qw] log ‖ηj‖w),
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where w is an archimedean place of l, but w 6= ŵv for each v |∞, and
j = 1, . . . , r(l/k). We write lw for the completion of l at the place w, Qw

for the completion of Q at the place w, and we write [lw : Qw] for the local
degree. Of course Qw is isomorphic to R in the situation considered here.
As in [10], we define the relative regulator of l/k to be the positive number

(3.5) Reg(El/k) = |detMl/k|.

It follows, as in the proof of [10, Theorem 1] (see also [11]), that the deter-
minant on the right of (3.5) does not depend on the choice of places ŵv for
each archimedean place v of k.

Theorem 3.1. Let k ⊆ l be algebraic number fields such that the group
El/k has positive rank r(l/k) = r(l)− r(k). Let ε1, . . . , εr(l/k) be a collection
of multiplicatively independent relative units in El/k. If E ⊆ El/k is the
multiplicative subgroup generated by ε1, . . . , εr(l/k), then

(3.6) Reg(El/k)[El/k : E] ≤
r(l/k)∏
j=1

([l : Q]h(εj)).

The relative regulator can also be expressed as a ratio of the (ordinary)
regulators Reg(k) and Reg(l) by using the basic identity

(3.7) [Fk : Il/k] Reg(k) Reg(El/k) = Reg(l),

established in [10, Theorem 1]. A slightly different definition of a relative
regulator was considered by Bergé and Martinet [2]–[4]. We have used the
definition proposed by Costa and Friedman [10], [11], as it leads more nat-
urally to (3.6). Further lower bounds for the product on the right of (3.6)
follow from inequalities for the relative regulator obtained by Friedman and
Skoruppa [13].

4. Schinzel’s norm. For a real number x we write

x+ = max{0, x} and x− = max{0,−x},

so that x = x+ − x− and |x| = x+ + x−. If x = (xn) is a (column) vector
in RN , we define δ : RN → [0,∞) by

(4.1) δ(x) = max
{ N∑
m=1

x+m,
N∑

n=1

x−n

}
.

The following inequality was proved by A. Schinzel [24].

Theorem 4.1. If x1, . . . ,xN are column vectors in RN , then

(4.2) |det(x1 · · ·xN )| ≤ δ(x1) · · · δ(xN ).
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A slightly sharper upper bound was established by C. R. Johnson and
M. Newman [15]. However, their bound does not lead to a significant im-
provement of the results we obtain here.

If a and b are nonnegative real numbers then

2 max{a, b} = |a+ b|+ |a− b|.
This leads to the identity

(4.3) δ(x) = max
{ N∑
m=1

x+m,
N∑

n=1

x−n

}
=

1

2

∣∣∣ N∑
n=1

xn

∣∣∣+
1

2

N∑
n=1

|xn|.

It follows easily from (4.3) that x 7→ δ(x) is a continuous, symmetric dis-
tance function, or norm, on RN . Let

(4.4) KN = {x ∈ RN : δ(x) ≤ 1}
be the associated unit ball. Then KN is a compact, convex, symmetric subset
of RN with nonempty interior.

Lemma 4.1. Let δ : RN → [0,∞) be the continuous distance function
defined by (4.3), and let KN be the unit ball defined by (4.4). Then

(4.5) VolN (KN ) =
(2N)!

(N !)3
.

Proof. We write J for the (N + 1)×N matrix

J =
1

2


1 · · · 0
...

...

0 · · · 1

−1 · · · −1

 .

Then it is obvious that J has rank N . Let

DN = {y ∈ RN+1 : y0 + y1 + · · ·+ yN = 0}
be the N -dimensional subspace of RN+1 spanned by the columns of J . Fur-
ther, let

BN+1 = {y ∈ RN+1 : ‖y‖1 = |y0|+ |y1|+ · · ·+ |yN | ≤ 1}
denote the unit ball in RN+1 with respect to the ‖ ‖1-norm. If x is a (column)
vector in RN , we find that δ(x) = ‖Jx‖1, and therefore

KN = {x ∈ RN : ‖Jx‖1 ≤ 1}.
It follows that

(4.6) VolN (KN ) =
�

RN

χBN+1
(Jx) dx = |detU |

�

RN

χBN+1
(JUx) dx,
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where y 7→ χBN+1
(y) is the characteristic function of BN+1, and U is an

arbitrary N ×N nonsingular real matrix.
We select U so that the columns of JU form an orthonormal basis forDN .

With this choice we find that

(4.7)
�

RN

χBN+1
(JUx) dx = VolN (DN ∩ BN+1) =

√
N + 1(2N)!

2N (N !)3
,

where the second equality follows from a result of Meyer and Pajor [20,
Proposition II.7]. Because the columns of JU are orthonormal, we get

(4.8) 1N = (JU)T (JU).

For each m = 1, . . . , N + 1 let J (m) be the N ×N submatrix of J obtained
by removing the mth row. From (4.8) and the Cauchy–Binet formula,

1 = det((JU)T (JU)) = (detU)2 det(JTJ) = (detU)2
N+1∑
m=1

(det J (m))2

= (detU)24−N (N + 1),

and therefore

(4.9) |detU | = 2N√
N + 1

.

The identity (4.5) follows by combining (4.6), (4.7) and (4.9).

Next let
A = (a1 · · · aN )

be an N × N nonsingular matrix with columns a1, . . . ,aN . Obviously the
columns of A form a basis for the lattice

(4.10) L = {Aξ : ξ ∈ ZN} ⊆ RN .

By Schinzel’s inequality,

|detA| ≤
N∏

n=1

δ(an).

Using the geometry of numbers, we will establish the existence of linearly
independent points `1, . . . , `N in L for which

∏N
n=1 δ(`n) is not much larger

than |detA|. An explicit bound on such a product follows immediately from
Minkowski’s theorem on successive minima and our formula (4.5) for the
volume of KN .

Theorem 4.2. Let L ⊆ RN be defined by (4.10). Then there exist linearly
independent points `1, . . . , `N in L such that

(4.11)

N∏
n=1

δ(`n) ≤ 2N (N !)3

(2N)!
|detA|.
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Proof. Let 0 < λ1 ≤ · · · ≤ λN < ∞ be the successive minima of L
with respect to the convex symmetric set KN . Then there exist linearly
independent points `1, . . . , `N in L such that

δ(`n) = λn for each n = 1, . . . , N .

By Minkowski’s theorem on successive minima (see [9, Section VIII.4.3]),

VolN (KN )λ1 · · ·λN ≤ 2N |detA|.
From Lemma 4.1 we get (4.11).

5. Proof of Theorems 1.1 and 1.2. We require the following lemma,
which connects the Schinzel norm (4.1) with the Weil height.

Lemma 5.1. Let v̂ be a place of the algebraic number field k, and let
α ∈ k× \ {0}. Then

(5.1) max
{∑
v 6=v̂

log+ |α|v,
∑
v 6=v̂

log− |α|v
}

= h(α).

Proof. The product formula implies that

h(α) =
∑
v

log+ |α|v =
∑
v

log− |α|v.

If log |α|v̂ ≤ 0 then

max
{∑
v 6=v̂

log+ |α|v,
∑
v 6=v̂

log− |α|v
}

=
∑
v

log+ |α|v = h(α).

On the other hand, if log |α|v̂ ≥ 0 then

max
{∑
v 6=v̂

log+ |α|v,
∑
v 6=v̂

log− |α|v
}

=
∑
v

log− |α|v = h(α).

Proof of Theorem 1.1. First we combine (2.3), (2.4), (2.7) and (2.9) to
obtain

(5.2) RegS(k)[US(k) : A] = [k : Q]r|det(log |αj |v)|,
where v in S \{v̂} indexes rows and j = 1, . . . , r indexes columns in the ma-
trix on the right of (5.2). We estimate the determinant in (5.2) by applying
Schinzel’s inequality (4.2). Using (4.1) and (5.1) we get

(5.3) |det(log |αj |v)| ≤
r∏

j=1

max
{∑
v 6=v̂

log+ |αj |v,
∑
v 6=v̂

log− |αj |v
}

=
r∏

j=1

h(αj).

The inequality (1.4) follows from (5.2) and (5.3).

Proof of Theorem 1.2. Let η1, . . . , ηr be multiplicatively independent el-
ements that form a basis for US(k) as a free abelian group of rank r. Let v̂
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be a place of k contained in S, and

M (v̂) = (dv log ‖ηj‖v)

the r×r real matrix defined in (2.3). By hypothesis, A ⊆ US(k) is a subgroup
of rank r. Let α1, . . . , αr be multiplicatively independent elements in A that
form a basis for A. As in (2.6), there exists an r × r nonsingular matrix
B =

(
bij
)

with entries in Z such that

(5.4) log ‖αj‖v =
r∑

i=1

bij log ‖ηi‖v

for each place v in S and each j = 1, . . . , r. Alternatively, if we define the
r × r real matrix

A(v̂) = (dv log ‖αj‖v),

where v ∈ S \ {v̂} and j = 1, . . . , r, then (5.4) is equivalent to the matrix
identity

(5.5) A(v̂) = M (v̂)B.

We use the nonsingular r×r real matrix A(v̂) to define a lattice L(v̂) ⊆ Rr by

L(v̂) = {A(v̂)ξ : ξ ∈ Zr}.
Then (2.4), (2.9) and (5.5) imply that

(5.6) RegS(k)[US(k) : A] = |detM (v̂)| |detB| = |detA(v̂)|,
which is independent of the choice of v̂ in S, and is also the determinant
of L(v̂). By Theorem 4.2 and (5.6), there exist linearly independent vectors
`1, . . . , `r in L(v̂) such that

(5.7)

r∏
j=1

δ(`j) ≤
2r(r!)3

(2r)!
RegS(k)[US(k) : A].

As each (column) vector `j belongs to L(v̂), it has rows indexed by v ∈ S\{v̂}.
Thus `j can be written as

`j =
(
dv

r∑
i=1

fij log ‖αi‖v
)

= (dv log ‖βj‖v),

where F = (fij) is an r × r nonsingular matrix with entries in Z, and
β1, . . . , βr are multiplicatively independent elements in A. By Lemma 5.1,

δ(`j) = max
{∑
v 6=v̂

dv log+ ‖βj‖v,
∑
v 6=v̂

dv log− ‖βj‖v
}

(5.8)

= [k : Q] max
{∑
v 6=v̂

log+ |βj |v,
∑
v 6=v̂

log− |βj |v
}

= [k : Q]h(βj).

The inequality (1.9) follows from (5.7) and (5.8).
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6. Proof of Theorem 3.1. Let η1, . . . , ηr(l/k) be a basis for the free
abelian group El/k. Then there exists a nonsingular r(l/k) × r(l/k) matrix
C = (cij) with entries in Z such that

(6.1) log ‖εj‖w =

r(l/k)∑
i=1

cij log ‖ηi‖w

at each archimedean place w of l. As in our derivation of (2.7) and (2.9),
the equations (6.1) can be written as the matrix equation

(6.2) ([lw : Qw] log ‖εj‖w) = ([lw : Qw] log ‖ηj‖w)C,

where w is an archimedean place of l, and w indexes the rows of the ma-
trices on both sides of (6.2). Let E be the subgroup of El/k generated by
ε1, . . . , εr(l/k). It follows from (6.2) that

(6.3) [El/k : E] = |detC|.
At each archimedean place v of k let ŵv be a place of l such that ŵv | v.

As in (3.4), we write

Ml/k = ([lw : Qw] log ‖ηj‖w),

for the r(l/k) × r(l/k) matrix where w is an archimedean place of l, but
w 6= ŵv for each v |∞, and j = 1, . . . , r(l/k). Let

L(E) = ([lw : Qw] log ‖εj‖w)

be the analogous r(l/k) × r(l/k) matrix where again w is an archimedean
place of l, but w 6= ŵv for each v |∞, and j = 1, . . . , r(l/k). From (6.2),

(6.4) L(E) = Ml/kC.

Then we combine (3.5) and (6.2)–(6.4) to conclude that

(6.5) Reg(El/k)[El/k : E] = |detL(E)|.
To complete the proof we apply Schinzel’s inequality (4.2) to the deter-

minant on the right of (6.5). We find that

(6.6) [l : Q]−r(l/k)|detL(E)|

≤
r(l/k)∏
j=1

{
1

2

∣∣∣ ∑
w 6=ŵv

log |εj |w
∣∣∣+

1

2

∑
w 6=ŵv

∣∣log |εj |w
∣∣}

=

r(l/k)∏
j=1

{
1

2

∣∣∣∑
v|∞

log |εj |ŵv

∣∣∣+
1

2

∑
w 6=ŵv

∣∣log |εj |w
∣∣}

≤
r(l/k)∏
j=1

{
1

2

∑
v|∞

∣∣log |εj |ŵv

∣∣+
1

2

∑
w 6=ŵv

∣∣log |εj |w
∣∣} =

r(l/k)∏
j=1

h(εj).

Combining (6.5) and (6.6) leads to (3.6).
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