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The order topology for a von Neumann algebra

by
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Abstract. The order topology τo(P ) (resp. the sequential order topology τos(P )) on
a poset P is the topology that has as its closed sets those that contain the order limits
of all their order convergent nets (resp. sequences). For a von Neumann algebra M we
consider the following three posets: the self-adjoint part Msa, the self-adjoint part of the
unit ball M1

sa, and the projection lattice P (M). We study the order topology (and the
corresponding sequential variant) on these posets, compare the order topology to the other
standard locally convex topologies on M , and relate the properties of the order topology
to the underlying operator-algebraic structure of M .

1. Introduction. Order convergence has been studied in the context of
posets and lattices by various authors [6, 7, 17] (see also [15, 20, 19]). The
order topology on a poset is defined to be the finest topology preserving
order convergence.

In [22, 9] the order topology for the lattice of projections acting on
a Hilbert space was studied. It is the aim of the present paper to give a
first systematic treatment of various order topologies associated with a von
Neumann algebra. We show that the properties of these topologies are nicely
connected with the inner structure of the underlying algebra and with the
locally convex topologies living on it.

We first consider the self-adjoint part Msa of a von Neumann algebra
M and study the order topology τo(Msa) induced by the standard operator
order. We prove that when M is σ-finite, sequential convergence with re-
spect to τo(Msa) coincides with sequential convergence with respect to the
σ-strong topology. The proof is based on the Noncommutative Egoroff The-
orem. As a consequence, one finds that on bounded parts of Msa the order
topology coincides with any of the locally convex topologies on M that is
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compatible with the duality 〈M,M∗〉 where M∗ is the unique predual of M .
Our result is sharp in the sense that the σ-strong topology coincides with
the order topology τo(Msa) if and only if M is finite-dimensional.

The fact that the order topology on ordered vector spaces is in gen-
eral far from being a linear topology makes this coincidence rather surpris-
ing. Another interesting feature of this result is the possibility to recover
(on bounded parts) the locally convex topologies arising from the duality
〈M,M∗〉 (a component of the von Neumann structure) only from the order
(a component of the C∗-structure). More precisely, we are saying that if
M and N are σ-finite von Neumann algebras such that Msa and Nsa are
order-isomorphic (i.e. there exists a bijection preserving the order in both
directions), then the unit balls M1 and N1 are homeomorphic with respect
to the σ-strong topologies.

We then compare the Mackey topology τ(M,M∗) with the order topol-
ogy τo(Msa) and the sequential variant τos(Msa). The Mackey topology is
coarser than τos(Msa) and we characterize von Neumann algebras for which
τ(M,M∗) = τos(Msa). Indeed, we prove that this happens if and only if M
is ∗-isomorphic to a countable direct sum of finite-dimensional full matrix
algebras. From a topological point of view this happens exactly when any
of the following conditions is satisfied:

(i) M is σ-finite and M1 is compact with respect to the σ-strong∗

topology,
(ii) the Mackey topology is sequential,

(iii) M is σ-finite and τo(Msa) is a linear topology.

The proofs of these results rest heavily on the technique of mixed topologies.
That is why we study mixed topologies and develop results that we believe
can be of independent interest. Using [2] we show that the Mackey topology
is equal to the mixed topology of the norm topology and the σ-strong∗

topology. This is in fact a noncommutative extension of the interesting result
of M. Nowak [21] saying that the Mackey topology on L∞ coincides with the
mixed topology of the norm topology and the topology of convergence in
measure. Although not investigated here, we believe that this equality can
contribute to the problem studied by J. F. Aarnes [1] of whether the Mackey
topology of a von Neumann subalgebra coincides with the restriction of the
Mackey topology of the ambient algebra.

In the last section we consider as posets the projection lattice P (M) and
the self-adjoint part of the unit ball M1

sa. Unless the algebra is abelian, the
order topology on neither of these posets coincides with the restriction of
the global order topology τo(Msa). In fact, we show that if M is σ-finite
then the following conditions are equivalent:
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(i) M is of finite type,
(ii) the order topology on M1

sa and the σ-strong operator topology re-
stricted to M1

sa have the same null sequences (1),
(iii) the order topology on the projection lattice P (M) and the σ-strong

operator topology restricted to P (M) have the same null sequences.

This gives a new characterization of finite von Neumann algebras.

The paper is organized as follows. Section 2 collects basic facts on the or-
der topology on posets and ordered vector spaces needed later. In Section 3
results on mixed topologies are isolated. Section 4 deals with the relation-
ship between the standard locally convex topologies and the order topology
on Msa. Section 5 deals with the order topologies of the projection lattice
and the unit ball of a von Neumann algebra.

2. Preliminary results

2.1. The order topology and sequential order topology. Let (P,≤)
be a partially ordered set. A net (xγ)γ∈Γ is said to order converge to x in

(P,≤) (in symbols xγ
o−→ x) if there exist nets (yγ)γ∈Γ and (zγ)γ∈Γ in P such

that yγ ≤ xγ ≤ zγ for all γ ∈ Γ , yγ ↑ x and zγ ↓ x; i.e. (yγ) is increasing,
(zγ) is decreasing and (2)

∨
γ∈Γ yγ = x =

∧
γ∈Γ zγ .

It is easy to see that the order limit of an order convergent net is uniquely
determined. A subset X of P is called order closed (resp. sequentially order
closed) if no net (resp. sequence) in X order converges to a point outside
of X. The collection of all order closed sets (resp. sequentially order closed
sets) comprises the closed sets for some topology, the order topology τo(P )
(resp. the sequential order topology τos(P )) of P . The order topology of P
is the finest topology on P that preserves order convergence of nets; i.e. if τ
is a topology on P such that xγ

o−→ x in P implies xγ
τ−→ x, then τ ⊆ τo(P ).

The sequential order topology of P is the finest topology on P that preserves
order convergence of sequences. Clearly, τo(P ) ⊆ τos(P ) and we recall that
both topologies satisfy T1 but in general are not Hausdorff [12, 13].

Although convergence with respect to τo(P ) does not necessarily imply
order convergence, for a sequence converging with respect to τos(P ) we have
the following useful observation (well-known in a less general setting).

Proposition 2.1 ([9, Proposition 2]). Let (P,≤) be a partially ordered
set, x ∈ P and (xn)n∈N a sequence in P . Then (xn)n∈N converges to x with

(1) A sequence in a topological vector space is said to be a null sequence if it is
convergent to 0.

(2) For a subset X = {xγ : γ ∈ Γ} of P we shall denote by
∨
γ∈Γ xγ and

∧
γ∈Γ xγ

the least upper bound and the greatest lower bound of X, respectively.
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respect to τos(P ) if and only if any subsequence of (xn)n∈N has a subsequence
order converging to x.

The sequential order topology is in general strictly finer than the order
topology; however, the two topologies coincide when P is monotone order
separable. We call (P,≤) monotone order separable if for every increasing (or
decreasing) net (xγ)γ∈Γ in P that has a supremum (resp. infimum) in P there
exists an increasing sequence (γn)n∈N in Γ such that

∨
n∈N xγn =

∨
γ∈Γ xγ

(resp.
∧
n∈N xγn =

∧
γ∈Γ xγ).

Proposition 2.2 ([9, Proposition 3]). Let (P,≤) be a partially ordered
set. Then τos(P ) = τo(P ) if and only if (P,≤) is monotone order separable.

Every order convergent sequence is order bounded, and every order con-
vergent net is eventually order bounded. Therefore in the definition of or-
der closed sets it is enough to consider order bounded nets. We recall that
(P,≤) is Dedekind complete if every subset having an upper bound (or a
lower bound) has a supremum (resp. an infimum). (P,≤) is conditional
monotone complete if every monotone increasing net (or monotone decreas-
ing net) having an upper bound (resp. a lower bound) has a supremum
(resp. an infimum). Dedekind σ-completeness (resp. conditional monotone
σ-completeness) is defined analogously, requiring the condition to hold for
countable subsets (resp. sequences). It is easily seen that when (P,≤) is
Dedekind complete, an order bounded net (xγ)γ∈Γ order converges to x
in (P,≤) if and only if lim supγ xγ = lim infγ xγ = x. When (P,≤) is only
assumed to be Dedekind σ-complete, a similar assertion holds for sequences.

If P0 is a subset of P it can very well happen that τo(P0) and τ(P )|P0

are incomparable. However, we have the following easily seen observations
which we state as a proposition for better reference.

Proposition 2.3. Let (P,≤) be a partially ordered set and let P0 be a
subset of P .

(i) If (P,≤) is conditional monotone complete and P0 is τo(P )-closed
then τo(P )|P0 ⊆ τo(P0).

(ii) If (P,≤) is Dedekind complete and P0 is a τo(P )-closed sublattice
of P then τo(P )|P0 = τo(P0).

An analogous proposition holds for the sequential order topology: Propo-
sition 2.3 remains true if one replaces the order topology by the sequen-
tial order topology, conditional monotone completeness by monotone σ-
completeness and Dedekind completeness by Dedekind σ-completeness.

We shall now consider the case when the underlying poset carries also
a linear structure. Let X be an ordered vector space with positive cone
X+ = {x ∈ X : x ≥ 0}. For basic results and terminology on ordered vector
spaces the reader may wish to consult [4, 18, 24]. It is clear that the order
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topology τo(X) and the sequential order topology τos(X) are translation
invariant and homogeneous, i.e. if A is a subset of X closed with respect to
τo(X) (or τos(X)) then A+x and λA are closed with respect to τo(X) (resp.
τos(X)) for every x ∈ X and λ ∈ R. In general, however, these topologies
fail to be linear topologies, as the following example shows: Let A be the
complete Boolean algebra of all regular open subsets of [0, 1], and B(A) be
the closed linear span of the set of characteristic functions χA, A ∈ A, in
the space (B[0, 1], ‖ · ‖∞) of all bounded real functions on [0, 1] with respect
to the supremum norm ‖ · ‖∞. Then B(A) is a monotone order separable,
Dedekind complete Riesz space. Thus τos(B(A)) = τo(B(A)). Since τo(B(A))
satisfies T1 and τo(B(A)) is not Hausdorff, it follows that τo(B(A)) is not a
group topology (3).

Proposition 2.4. Let X be an ordered vector space, let (an)n∈N and

(bn)n∈N be sequences in X such that an
τos(X)−−−−→ a and bn

τos(X)−−−−→ b, and let
(λn)n∈N be a sequence in R such that λn → λ. Then:

(i) an + bn
τos(X)−−−−→ a+ b.

(ii) If (n−1a)n∈N order converges to 0 (in particular if X is an Archi-

median Riesz space), then λnan
τos(X)−−−−→ λa.

Proof. We will apply Proposition 2.1. Passing to suitable subsequences
we may assume that (an)n∈N and (bn)n∈N order converge to a and b, respec-
tively, and moreover that |λ − λn| ≤ 1/n and either λn − λ ≥ 0 for each
n or λn − λ < 0 for each n. Let (xn)n∈N, (yn)n∈N, (un)n∈N and (vn)n∈N be
sequences in X such that

xn ≤ an ≤ yn, un ≤ bn ≤ vn, for all n ∈ N,
and xn ↑ a, yn ↓ a, un ↑ b and vn ↓ b. Then xn + un ≤ an + bn ≤ yn + vn,
xn + un ↑ a+ b and yn + vn ↓ a+ b; thus (an + bn) order converges to a+ b.

To prove (ii) first suppose that µn := λn − λ ≥ 0 for every n. Observing
that

xn − a ≤ µn(xn − a) ≤ µn(an − a) ≤ µn(yn − a) ≤ yn − a,
we deduce that (µn(an−a))n∈N order converges to 0. The additional assump-
tion that (n−1a)n∈N order converges to 0 implies that there exist sequences
(sn)n∈N and (tn)n∈N satisfying sn ≤ n−1a ≤ tn for every n ∈ N, sn ↑ 0 and
tn ↓ 0. Observing that

sn − tn ≤ nµn(sn − tn) ≤ µna ≤ nµn(tn − sn) ≤ tn − sn,
we deduce that (µna)n∈N order converges to 0. Thus λnan = µn(an − a) +
µna+ λan order converges to λa.

(3) In [12] it is shown that τo(A) is not Hausdorff.
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If λn−λ < 0 for every n, then the above implies that (−λnan)n∈N order
converges to −λa and thus (λnan)n∈N order converges to λa.

Let us recall that a linear functional f on X is said to be positive if x ≥ 0
implies f(x) ≥ 0. If f(x) > 0 for every nonzero positive element x of X then
f is said to be a faithful positive linear functional. A linear functional f is

said to be normal (or order continuous) if f(xγ) → f(x) whenever xγ
o−→ x

in X. Clearly, a positive linear functional f on X is normal if and only if
xγ ↓ 0 implies f(xγ) ↓ 0.

In the proof of the following proposition we use the fact that an ordered
vector space X is monotone order separable if and only if for every net
(xγ)γ∈Γ in X satisfying xγ ↓ 0 there exists an increasing sequence (γn)n∈N
in Γ such that

∧
n∈N xγn = 0.

Proposition 2.5. Let X be a conditional monotone σ-complete ordered
vector space admitting a faithful normal positive linear functional f . Then
X is monotone order separable and therefore τos(X) = τo(X).

Proof. Let (xγ)γ∈Γ be a net in X satisfying xγ ↓ 0. The normality of f
implies that f(xγ)→ 0. Thus we can select an increasing sequence (γn)n∈N
in Γ such that f(xγn)→ 0. Then s := infn∈N xγn ≥ 0 and by the normality of
f we deduce that f(s) = limn f(xγn) = 0. Faithfulness of f implies s = 0.

For Riesz spaces the mere existence of a faithful positive linear functional
(without assuming normality) is sufficient for the order topology and the
sequential order topology to coincide.

Proposition 2.6. Let X be a Riesz space admitting a faithful posi-
tive linear functional f . Then X is monotone order separable and therefore
τos(X) = τo(X).

Proof. Let (xγ)γ∈Γ be a net inX satisfying xγ ↓ 0. Set α := infγ∈Γ f(xγ).
Note that for all γ, γ′ ∈ Γ there is a γ′′ ∈ Γ with γ′′ ≥ γ and γ′′ ≥ γ′, hence
f(xγ ∧xγ′) ≥ f(xγ′′) ≥ α. Choose an increasing sequence (γn)n∈N in Γ such
that f(xγn)→ α. We show that 0 =

∧
n∈N xγn . To this end let x be a lower

bound of {xγn : n ∈ N} and let γ ∈ Γ . Then

0 ≤ x ∨ xγ − xγ ≤ xγn ∨ xγ − xγ = xγn − xγn ∧ xγ ,
and therefore

0 ≤ f(x ∨ xγ − xγ) ≤ f(xγn)− f(xγn ∧ xγ) ≤ f(xγn)− α→ 0

as n → ∞, i.e. f(x ∨ xγ − xγ) = 0. Faithfulness of f implies xγ = x ∨ xγ
and so x ≤ xγ . We conclude that x is a lower bound for {xγ : γ ∈ Γ}.
Consequently, x ≤ infγ∈Γ xγ = 0. It follows that

∧
n∈N xγn = 0. This proves

that X is monotone order separable and hence by Proposition 2.2 we deduce
that τo(X) = τos(X).



Order topology for a von Neumann algebra 101

Our main interest in this paper will be the ordered vector space X given
by the self-adjoint part of a von Neumann algebra. In general this is far
from being a Riesz space. However, it is interesting to note that in this case
the assertion of Propositions 2.5 and 2.6 holds under the hypothesis that X
admits a faithful positive linear functional. Indeed, if X admits a faithful
positive linear functional then any family of pairwise orthogonal projections
is necessarily countable, i.e. the corresponding von Neumann algebra must
be σ-finite. As such it must admit a faithful normal positive linear functional
and therefore Proposition 2.5 applies.

2.2. Preliminaries on von Neumann algebras. We first recall a few
notions and fix the notation. We refer to [8, 16, 23, 26, 27] for more details.
Let us recall that a C∗-algebra A is a complex Banach ∗-algebra satisfying
‖x∗x‖ = ‖x‖2 for every x ∈ A. We denote by Asa the self-adjoint part of
A, that is, Asa = {x ∈ A : x = x∗}. Asa is a real vector space, and when
endowed with the partial order ≤ induced by the cone A+ := {x∗x : x ∈ A},
it gets the structure of an ordered vector space. In general Asa is far from
being a Riesz space. In [25] it is shown that if Asa is a lattice then A is
abelian. Let A1 denote the closed unit ball of A and let A1

sa := Asa ∩ A1.
An element p of a C∗-algebra is called a projection if p = p∗ = p2. A C∗-al-
gebra may have no nontrivial projections. A linear functional ϕ on A is
positive (resp. faithful) if ϕ|Asa is positive (resp. faithful) in the sense of
Subsection 2.1.

A von Neumann algebra M is a C∗-algebra that is simultaneously a
dual as a Banach space. In this case M is the dual of a unique Banach
space, called the predual of M and denoted by M∗. A linear functional
ϕ on M is normal if ϕ|Msa is normal in the sense described for ordered
vector spaces (4). It is known that we can identify the elements of M∗ with
the normal linear functionals in the continuous dual M∗. The set of normal
positive linear functionals on M is denoted by M+

∗ . M always has an identity
element 1 and this element is an order-unit for Msa. We recall that (Msa,≤)
is conditional monotone order complete. A von Neumann algebra is always
rich in projections. In fact, a von Neumann algebra is the closure of the
span of its projections. The set P (M) of all projections in M is a complete
orthomodular lattice under the partial order ≤ inherited from Msa. M is
called σ-finite if every set of nonzero pairwise orthogonal projections in M
is at most countable. M is σ-finite if and only if it admits a faithful normal
positive linear functional. For a Hilbert space H we denote by B(H) the
von Neumann algebra of all bounded operators acting on H.

(4) Note that this is equivalent to requiring that ϕ(xγ) → ϕ(x) for every net (xγ)
in Msa satisfying xγ ↑ x. This follows because every normal linear functional can be
expressed as a linear combination of four normal positive linear functionals.
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For the rest of the paper M is always a von Neumann algebra. We
shall primarily consider the order topology (and the corresponding sequen-
tial variant) on the following three posets: Msa, M

1
sa and P (M). We shall

study the properties of the order topology of these posets, compare the
order topology to other standard locally convex topologies on M and relate
the properties of the order topology to the underlying algebraic structure
of M .

We recall that the weak∗ topology σ(M,M∗) on M is the coarsest locally
convex topology compatible with the duality 〈M∗,M〉. The finest locally
convex topology on M compatible with this duality is the Mackey topology
τ(M,M∗). Lying between these topologies we have the σ-strong topology
s(M,M∗) determined by the family of seminorms {%ψ : ψ ∈M+

∗ } where

%ψ(x) =
√
ψ(x∗x), and the σ-strong∗ topology s∗(M,M∗) determined by

the family {ηψ : ψ ∈M+
∗ } of seminorms where ηψ(x) =

√
ψ(x∗x) + ψ(xx∗).

M can be faithfully represented on a Hilbert space H, i.e. M can be iden-
tified with a subalgebra of B(H) closed with respect to the weak operator
topology, and therefore one can endow M with the strong operator topology
τs and the weak operator topology τw. These are the topologies of point-
wise convergence with respect to the norm topology or the weak topology
on H, respectively. Note however that τs and τw in general depend on the
particular representation. It is well known that

σ(M,M∗) ⊆ s(M,M∗) ⊆ s∗(M,M∗) ⊆ τ(M,M∗),(2.1)

τw ⊆ τs, τw ⊆ σ(M,M∗), τs ⊆ s(M,M∗).

By the uniform boundedness principle it follows that if A is a set of
bounded linear operators on a Hilbert space that is bounded with respect
to the weak operator topology then A is uniformly bounded. Hence, in view
of (2.1) a subset K of M that is bounded with respect to any of the above
locally convex topologies is uniformly bounded. Furthermore, we recall that
if x, y ∈Msa then:

(i) −y ≤ x ≤ y implies ‖x‖ ≤ ‖y‖;
(ii) −‖x‖1 ≤ x ≤ ‖x‖1;

i.e. if K ⊆Msa then K is bounded (with respect to any of the above locally
convex topologies) if and only if it is order bounded.

On bounded parts of M the σ-strong topology coincides with the strong
operator topology, and the weak∗ topology coincides with the weak operator
topology. Moreover, a deep classical result by C. Akemann [2] says that

(2.2) s∗(M,M∗)|K = τ(M,M∗)|K

for every bounded subset K of M . Since s(M,M∗) and s∗(M,M∗) coincide
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on Msa, it follows that

(2.3) τs|K = s(M,M∗)|K = τ(M,M∗)|K
for every bounded subset K of Msa.

Let τu denote the uniform topology (i.e. ‖ · ‖-topology) on M . We show
that τu|Msa is finer than the sequential order topology (and hence than the
order topology) of Msa. Suppose that (xn)n∈N is a sequence in Msa such
that ‖xn‖ → 0. If we set λn := supk≥n ‖xk‖ then

−λn1 ≤ −‖xn‖1 ≤ xn ≤ ‖xn‖1 ≤ λn1

and λn1 ↓ 0 in Msa, i.e. xn
o−→ 0 in Msa.

We shall now compare the order topology τo(Msa) with the σ-strong

topology s(M,M∗). If (xγ)γ∈Γ is a net in M+
sa and xγ

o−→ 0 in Msa then
ψ(xγ) → 0 for every ψ ∈ M+

∗ . The Cauchy–Schwarz inequality yields

ψ(x2γ) ≤
√
ψ(xγ)ψ(x3γ) and therefore one obtains xγ

s(M,M∗)−−−−−−→ 0 by observ-

ing that the net (xγ)γ∈Γ is eventually bounded. Now suppose that yγ
o−→ y

in Msa. Let (aγ)γ∈Γ and (bγ)γ∈Γ be nets in Msa such that aγ ≤ yγ ≤ bγ ,

aγ ↑ y and bγ ↓ y. Then yγ − aγ ≥ 0 for every γ ∈ Γ and yγ − aγ
o−→ 0. The

above observation implies that yγ − aγ
s(M,M∗)−−−−−−→ 0 and y − aγ

s(M,M∗)−−−−−−→ 0.

The linearity of s(M,M∗) implies yγ
s(M,M∗)−−−−−−→ y. Thus, we conclude that

(2.4) s(M,M∗)|Msa ⊆ τo(Msa).

In particular τo(Msa) is Hausdorff and M1
sa is τo(Msa)-closed. The inclu-

sion in (2.4) together with the equality of (2.3) imply that τ(M,M∗)|K ⊆
τo(Msa)|K for every bounded subset K of Msa. Using the fact that an or-
der convergent net of Msa is eventually bounded, it is easy to see that a
subset X of Msa is closed with respect to τo(Msa) if and only if X ∩ rM1

sa

is closed with respect to τo(Msa) for every r > 0. Hence, if X ⊆ Msa is
τ(M,M∗)-closed then X ∩ rM1

sa is τ(M,M∗)-closed and therefore X ∩ rM1
sa

is s(M,M∗)-closed, by applying (2.3) to the s(M,M∗)-closed set K := rM1
sa.

Then (2.4) implies that X ∩ rM1
sa is τo(Msa)-closed. This holds for every

r > 0 and therefore

(2.5) τ(M,M∗)|Msa ⊆ τo(Msa).

We summarize the above observations in (2.6) below. Since M1
sa and

P (M) are s(M,M∗)-closed, (2.7)–(2.9) follow from (2.4) and Proposi-
tion 2.3(i).

Proposition 2.7. The following inclusions hold:

s(M,M∗)|Msa ⊆ τ(M,M∗)|Msa ⊆ τo(Msa) ⊆ τos(Msa) ⊆ τu|Msa,(2.6)

τo(Msa)|M1
sa ⊆ τo(M1

sa),(2.7)
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τo(M
1
sa)|P (M) ⊆ τo(P (M)),(2.8)

τo(Msa)|P (M) ⊆ τo(P (M)).(2.9)

Lemma 2.8. Let 0 ≤ x ≤ 1 in M .

(i) If p is a projection, then x ≥ p if and only if px = xp = p.
(ii) If {pλ : λ ∈ Λ} is a set in P (M) and x ∈ M1

sa satisfies x ≥ pλ for
every λ ∈ Λ, then x ≥ p where p =

∨
λ∈Λ pλ in P (M).

Proof. Suppose that M acts on a Hilbert space H.
(i) If x ≥ p then for any unit vector ξ in H that lies in the range of the

projection p we have 1 ≥ (xξ, ξ) ≥ (ξ, ξ) = 1. So by the Cauchy–Schwarz
inequality we deduce that xξ = ξ. Consequently, xp = p. Conversely, if
xp = p then p and x commute and therefore (1−p)x = (1−p)x(1−p) ≥ 0.
Hence x = p+ (1− p)x ≥ p.

(ii) If x ≥ pλ for every λ ∈ Λ, then xξ = ξ for every ξ in the range of p.
Hence xp = p = px and thus x ≥ p by (i).

Proposition 2.9. The following statements are equivalent:

(i) M is abelian.
(ii) τo(Msa)|P (M) = τo(M

1
sa)|P (M).

(iii) τo(Msa)|P (M) = τo(P (M)).
(iv) τo(Msa)|M1

sa = τo(M
1
sa).

Proof. When M is abelian, (Msa,≤) is a Dedekind complete lattice,
and since M1

sa and P (M) are s(M,M∗)-closed sublattices of Msa, it fol-
lows by (2.4) and Proposition 2.3(ii) that τo(Msa)|M1

sa = τo(M
1
sa) and

τo(Msa)|P (M) = τo(M
1
sa)|P (M) = τo(P (M)).

When M is not abelian, it contains a von Neumann subalgebra N (not
necessarily unital) that is ∗-isomorphic to B(H2) where H2 is a two-dimen-
sional Hilbert space. We will identify N with B(H2). We show that
τo(M

1
sa)|P (N) is discrete. To this end we suppose that (pγ)γ∈Γ is a net

of projections in N that order converges in (M1
sa,≤), say to p. (Note that p

is also a projection in N because P (N) is s(M,M∗)-closed and order con-
vergence in M1

sa implies convergence with respect to s(M,M∗).) Suppose,
for contradiction, that (pγ)γ∈Γ is not eventually constant. The inclusions

τo(Msa)|Nsa ⊇ s(M,M∗)|Nsa = τu|Nsa

and (2.7) imply that pγ
τu−→ p and therefore p /∈ {0,1N}. We can thus assume

that the range of pγ is one-dimensional for every γ ∈ Γ . Lemma 2.8 implies
that if x ∈ M1

sa satisfies x ≥ pγ for every γ ≥ γ′ then x ≥
∨
γ≥γ′ pγ = 1N .

This implies that p = 1N , a contradiction. Thus, every subset of P (N) is
τo(M

1
sa)-closed, i.e. τo(M

1
sa)|P (N) is discrete. On the other hand, observe

that τo(Msa)|P (N) ⊆ τu|P (N), i.e. τo(Msa)|P (N) is not discrete. Thus, we
have proved that if (ii) is true then M is abelian.
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If (iii) is true, then we combine (2.7) and (2.8) to obtain

τo(P (M)) = τo(Msa)|P (M) ⊆ τo(M1
sa)|P (M) ⊆ τo(P (M)),

i.e. (iii) implies (ii). The implication (iv)⇒(ii) is trivial.

Proposition 2.9 implies that the inclusions in (2.7) and (2.9) are proper
for nonabelian von Neumann algebras. In contrast, in the proof of Proposi-
tion 2.9 it is shown that when M = B(H2) then the inclusion in (2.8) is an
equality. The question of when we get an equality in (2.8) will be dealt with
in Section 5; in fact, we shall prove that for σ-finite von Neumann algebras
this characterizes finiteness.

Remark 2.10. When M has an infinite linear dimension, it contains a
sequence of pairwise orthogonal projections (pn)n∈N and then:

(i) Using the fact that every order convergent net is eventually bounded it
is easy to see that the set {

√
n pn : n ∈ N} is closed with respect to τo(Msa).

On the other hand, 0 lies in the s(M,M∗)-closure of {
√
n pn : n ∈ N}. So

s(M,M∗)|Msa ( τo(Msa).
(ii) The sequence (pn)n∈N satisfies lim supn pn = lim infn pn = 0, i.e.

it order converges to 0 in (P (M),≤). Thus, (2.9) implies that (kpn)n∈N
converges to 0 with respect to τo(Msa) for every k ∈ N. For every τo(Msa)-
neighbourhood U of 0 there exists n(k, U) ∈ N such that kpn ∈ U for every
n ≥ n(k, U). Define

N := {(k, U) : k ∈ N, U is a τo(Msa)-neighbourhood of 0}
and equip it with the partial order defined by (k1, U1) ≤ (k2, U2) if and
only if k1 ≤ k2 and U2 ⊆ U1. Then N is an upward directed set. We can
define a net (x(k,U))(k,U)∈N by setting x(k,U) := kpn(k,U). It is clear that this
net is not eventually bounded despite being convergent to 0 with respect to
τo(Msa). Observe further that no subnet of this net is eventually bounded
and therefore no subnet is order convergent in Msa.

In contrast to the example exhibited in (ii) of the previous remark let
us observe that any sequence converging in the order topology is bounded.
Item (ii) of the previous remark suggests (in particular in view of Proposition
2.1) that a favoured case occurs when the sequential order topology coin-
cides with the order topology because in this case—at least for sequences—
convergence with respect to the order topology can be described by order
convergent subsequences. The following proposition says that this occurs
precisely when M is σ-finite.

Proposition 2.11. The following three statements are equivalent:

(i) M is σ-finite.
(ii) τos(Msa) = τo(Msa).

(iii) τos(M
1
sa) = τo(M

1
sa).

(iv) τos(P (M)) = τo(P (M)).
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Proof. We recall that bounded monotone nets in Msa converge with
respect to s(M,M∗) to their supremum/infimum. Since M1

sa and P (M) are
s(M,M∗)-closed, it follows that if Msa is monotone order separable then
M1
sa is monotone order separable; and if M1

sa is monotone order separable
then P (M) is monotone order separable. If M is σ-finite then it admits a
faithful normal positive linear functional and so, by Proposition 2.5, we have
(i)⇒(ii)⇒(iii)⇒(iv). When M is not σ-finite, P (M) contains an uncountable
family of nonzero orthogonal projections and thus it is not monotone order
separable, i.e. (iv)⇒(i).

3. Vector spaces with mixed topology. Now we consider the mixed
topology on a vector space introduced and studied in detail in [28]. We first
list some of its basic known properties and then we add some new facts
needed in what follows.

In this section let X be a real vector space endowed with two linear Haus-
dorff topologies τ and τ ′. For each sequence (U ′n)n∈N of 0-neighbourhoods
in (X, τ ′) and for each 0-neighbourhood U in (X, τ) define

γ((U ′n)n∈N, U) :=
⋃
n∈N

n∑
i=1

(U ′i ∩ iU).

Then the family of these sets is a basis of 0-neighbourhoods for some linear
Hausdorff topology γ[τ, τ ′] called the mixed topology determined by τ and τ ′.
It is clear that if X is a complex vector space and the Hausdorff topologies
τ and τ ′ are linear over C then γ[τ, τ ′] is also linear over C.

Proposition 3.1 ([28, 2.1.1]).

(i) τ ′ ⊆ γ[τ, τ ′].
(ii) If τ ′ ⊆ τ then γ[τ, τ ′] ⊆ τ .
(iii) If τ and τ ′ are locally convex, then γ[τ, τ ′] is locally convex.

Proposition 3.2 ([28, 2.2.1, 2.2.2]).

(i) γ[τ, τ ′]|Z = τ ′|Z for every τ -bounded subset Z of X.
(ii) If (X, τ) is locally bounded, then γ[τ, τ ′] is the finest of all linear

topologies agreeing with τ ′ on every τ -bounded subset of X.

Proposition 3.2(ii) implies that γ[τ, τ1] = γ[τ, τ2] when (X, τ) is locally
bounded and τ1 and τ2 are Hausdorff linear topologies on X such that τ1|Z =
τ2|Z for every τ -bounded subset Z; in particular

γ[τ, τ ′] = γ
[
τ, γ[τ, τ ′]

]
.

Proposition 3.3 ([28, 2.4.1]). If ‖ · ‖ is a norm on X inducing τ and
the unit ball of (X, ‖ · ‖) is τ ′-closed then a set A ⊆ X is γ[τ, τ ′]-bounded if
and only if it is simultaneously ‖ · ‖-bounded and τ ′-bounded.
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The following two theorems will be of great use in Section 4.

Theorem 3.4. Assume that

(i) τ is induced by a norm ‖ · ‖ on X,
(ii) the unit ball X1 of (X, ‖ · ‖) is τ ′-closed, but not τ ′-compact, and

(iii) τ ′|X1 is metrizable and strictly coarser than τ |X1.

Then (X, γ[τ, τ ′]) is not a sequential space.

Proof. By (ii) and (iii) it follows that X1 contains a sequence (an)n∈N
without a τ ′-cluster point. By (iii) there is an integer m0 > 1 and a sequence
(bn)n∈N in X1 converging to 0 with respect to τ ′ such that ‖bn‖ > 1/m0 for
n ∈ N.

We will show that

F :=

{
1

m
an +mbn : n,m ∈ N, m ≥ m0

}
is sequentially closed, but not closed in (X, γ[τ, τ ′]).

We have 0 /∈ F since ‖m−1an‖ < 1 < ‖mbn‖ for n,m ∈ N with m ≥ m0.
We show that on the other hand 0 is a γ[τ, τ ′]-limit point of F . Let
W := γ

(
(U ′k)k∈N, U

)
be a 0-neighbourhood in γ[τ, τ ′] where U ′k and U

are 0-neighbourhoods in τ ′ and τ , respectively. By (i) and (iii) it follows
that τ ′ ⊆ τ . Since B :=

⋃
n∈N{an, bn} ⊆ X1, we have m−1B ⊆ U ′1 ∩ U for

some m ≥ m0. Then m−1an ∈ U ′1 ∩ U for every n ∈ N. Now, let l ∈ N be
such that (m/l)B ⊆ U . Then mbn ∈ lU for every n ∈ N. Since (mbn)n∈N
converges to 0 with respect to τ ′, there exists n0 ∈ N such that mbn0 ∈ U ′l .
Then m−1an0 +mbn0 ∈ U ′1 ∩ U + U ′l ∩ lU ⊆W .

We now show that F is sequentially closed with respect to γ[τ, τ ′]. Let
(gj)j∈N be a sequence in F converging to g with respect to γ[τ, τ ′]. We
can write gj = m−1j anj + mjbnj where mj , nj ∈ N and mj ≥ m0. The

set {gj : j ∈ N} is γ[τ, τ ′]-bounded and therefore τ -bounded in virtue of
Proposition 3.3. Hence {mjbnj : j ∈ N} is τ -bounded. But since ‖bn‖ ≥
1/m0 for all n ∈ N, this can only happen if {mj : j ∈ N} is finite. Thus,
passing to a subsequence, we may assume that mj is constant (= m), i.e.
gnj = m−1anj + mbnj . Suppose that {nj : j ∈ N} is not finite. Passing to
a subsequence we may assume that the sequence nj is strictly increasing.

Since bnj
τ ′−→ 0 and τ ′ ⊆ γ[τ, τ ′] we deduce that

anj = mgnj −m2bnj
τ ′−→ mg as j →∞,

in contradiction to the fact that (an)n∈N has no τ ′-cluster point. Therefore
{nj : j ∈ N} is finite. But this implies that g belongs to F .
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Theorem 3.5. Let τ ′ be induced by a pointwise bounded family {ρλ :
λ ∈ Λ} of seminorms on X and let τ be the topology induced by the norm

‖x‖ := sup
λ∈Λ

ρλ(x).

Assume further that the unit ball X1 of (X, ‖ · ‖) is τ ′-compact. Then a
subset C of X is γ[τ, τ ′]-closed if and only if C ∩ rX1 is γ[τ, τ ′]-closed for
every r > 0.

Proof. Let C be γ[τ, τ ′]-closed and r > 0. Since rX1 is τ ′-compact, it
is τ ′-closed, hence γ[τ, τ ′]-closed since τ ′ ⊆ γ[τ, τ ′]. Therefore C ∩ rX1 is
γ[τ, τ ′]-closed.

The proof of the reverse implication is based on the following two lem-
mas. We use therein the notation

B(f) := {x ∈ X : ρλ(x) ≤ f(λ) for all λ ∈ Λ} if f : Λ→ (0,∞].

Moreover, since the seminorms ρλ are not assumed to be different, we may
assume that Λ is infinite.

Lemma 3.6. Let f : Λ → (0,∞) and supλ∈Λ f(λ) ≤ s < ∞. Assume
that A ⊆ X is such that A∩B(f) = ∅ and A∩ sX1 is τ ′-closed. Then there
exists a finite subset F of Λ such that A ∩ B(g) = ∅ where g(λ) = f(λ) for
λ ∈ F and g(λ) = s for λ ∈ Λ \ F .

Proof. Otherwise for any finite subset F of Λ there exists xF ∈ A with
ρλ(xF ) ≤ f(λ) for λ ∈ F , and ρλ(xF ) ≤ s for all λ ∈ Λ. Since A ∩ sX1 is
τ ′-compact, (xF )F⊆Λ, |F |<∞ has a subnet τ ′-converging to an element x in

A∩sX1. For every fixed λ ∈ Λ we have ρλ(xF ) ≤ f(λ) eventually. Therefore
ρλ(x) ≤ f(λ) for all λ ∈ Λ. It follows x ∈ A ∩B(f), a contradiction.

Lemma 3.7. Let A ⊆ X \{0} be such that A∩ rX1 is τ ′-closed for every
r > 0. Then there is a sequence (λn)n∈N in Λ and a real sequence (an)n∈N
with 0 < an ↑ ∞ such that A ∩ B(g) = ∅ where g(λn) = an for n ∈ N and
g(λ) =∞ otherwise.

Proof. By assumption A∩X1 is τ ′-closed, therefore τ -closed since τ ′ ⊆ τ .
Hence there is an ε > 0 such that A ∩ εX1 = ∅.

Let F0 := ∅. We define inductively a strictly increasing sequence (Fn)n∈N
of finite subsets of Λ such that A ∩B(gn) = ∅ where gn is defined by

gn(λ) =

{
iε if λ ∈ Fi \ Fi−1 and 1 ≤ i ≤ n,

(n+ 1)ε if λ ∈ Λ \ Fn.

By the choice of ε, A∩B(gn) = ∅ is satisfied for n = 0 defining g0(λ) = ε
for all λ ∈ Λ.

For the inductive step [n− 1→ n] we apply Lemma 3.6 with f := gn−1
and s := (n+ 1)ε. Choose F according to Lemma 3.6 and let Fn be a finite
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subset of Λ with F ∪ Fn−1 ⊆ Fn and Fn−1 6= Fn. If we set gn(λ) = gn−1(λ)
for λ ∈ Fn and gn(λ) = (n+ 1)ε for λ ∈ Λ \ Fn then A ∩B(gn) = ∅.

Let g := supn∈N gn. Then g(λ) = nε whenever there exists n ∈ N such
that λ ∈ Fn \ Fn−1. Otherwise g(λ) = ∞. Since the sequence (gn) is in-
creasing and {ρλ : λ ∈ Λ} is pointwise bounded, B(g) =

⋃
n∈NB(gn) and

therefore A ∩B(g) = ∅.
To complete the proof let kn := |Fn|, choose a sequence (λn)n∈N in Λ

with Fn = {λi : i ≤ kn} and set ai := g(λi).

To conclude the proof of Theorem 3.5 first we recall that the sets {x ∈ X :
ρλn(x) ≤ an for all n ∈ N} where λn ∈ Λ and 0 < an ↑ ∞ form a 0-
neighbourhood base of

(
X, γ[τ, τ ′]

)
(see [28, Theorem 3.1.1]). Suppose that

C ⊆ X and C ∩ rX1 is γ[τ, τ ′]-closed for every r > 0. Since γ[τ, τ ′] and τ ′

induce on rX1 the same topology (see Proposition 3.2(i)) and since rX1 is
τ ′-closed, it follows that C∩rX1 is also τ ′-closed. Let x /∈ C and A := C−x.
Then 0 /∈ A. It follows from Lemma 3.7 that 0 does not belong to the
γ[τ, τ ′]-closure A of A, i.e. x /∈ C.

Corollary 3.8. Under the assumptions of Theorem 3.5, if τ ′′ is a (not
necessarily linear) topology on X such that τ ′′|rX1 = τ ′|rX1 for every r > 0
then τ ′′ ⊆ γ[τ, τ ′].

Proof. Let C be a τ ′′-closed subset of X. By τ ′′|rX1 = τ ′|rX1 it follows
that C ∩ rX1 is τ ′|rX1-closed. This implies that C ∩ rX1 is τ ′-closed, since
rX1 is τ ′-closed. Thus, C ∩ rX1 is γ[τ, τ ′]-closed, since τ ′ ⊆ γ[τ, τ ′]. The
assertion now follows by Theorem 3.5.

Corollary 3.9. Under the assumptions of Theorem 3.5, if Λ is count-
able then (X, γ[τ, τ ′]) is a sequential space.

Proof. Let C be a sequentially closed subset of (X, γ[τ, τ ′]) and let r>0.
Then since rX1 is τ ′-closed (and therefore γ[τ, τ ′]-closed), C ∩ rX1 is se-
quentially closed with respect to γ[τ, τ ′]. But on the τ ′-closed subset rX1 the
topology τ ′ agrees with γ[τ, τ ′]. Therefore C∩rX1 is sequentially closed with
respect to τ ′. By our assumption on Λ we see that C ∩ rX1 is closed with
respect to τ ′ and therefore C∩rX1 is γ[τ, τ ′]-closed. Hence C is γ[τ, τ ′]-closed
by Theorem 3.5.

We now give a first application of Theorem 3.4 and Corollary 3.9. Let
(X,Σ, µ) be a σ-finite measure space, τ∞ the topology of the Banach
space (L∞, ‖‖∞) and τµ the topology of convergence in measure (on sets
of finite measure), i.e. the Hausdorff linear topology induced by the fam-
ily of F -seminorms ρF : L∞ 3 [f ] 7→

	
X min(|f |, χF ) dµ (F ∈ Σ with

µ(F ) <∞). (See [14, Proposition 245A, p. 172].) If µ is not purely atomic,
then Theorem 3.4 implies that (L∞, γ[τ∞, τµ]) is not a sequential space. If
µ is purely atomic, then L∞ can be identified with the sequence space `∞,



110 E. Chetcuti et al.

and τµ with the topology of pointwise convergence on `∞, which is generated
by the seminorms pn : `∞ 3 (xi) 7→ xn (n ∈ N). It follows therefore from
Corollary 3.9 that (L∞, γ[τ∞, τµ]) is a sequential space. Combining these two
results with Nowak’s result [21, Theorem 5], saying that the mixed topology
γ[τ∞, τµ] coincides with the Mackey topology τ(L∞, L1) on L∞ induced by
the dual pairing (L∞, L1), we obtain:

Theorem 3.10. Let (X,Σ, µ) be a σ-finite measure space. Then the
space (L∞, τ(L∞, L1)) is sequential if and only if µ is purely atomic.

This theorem will be generalized in Theorem 4.8 for von Neumann al-
gebras.

4. The order topology and the sequential order topology onMsa.
On M we consider the mixed topology γ[τu, s

∗(M,M∗)] determined by τu
and s∗(M,M∗).

Theorem 4.1. The Mackey topology τ(M,M∗) coincides with the mixed
topology γ[τu, s

∗(M,M∗)].

Proof. Proposition 3.2(ii) with τ := τu and τ ′ := s∗(M,M∗) and Ake-
mann’s Theorem (2.2) already imply τ(M,M∗) ⊆ γ[τu, s

∗(M,M∗)]. For the
converse observe that if ϕ is a linear functional on M continuous with re-
spect to γ[τu, s

∗(M,M∗)] then [23, Corollary 1.8.10, p. 21] implies that ϕ
is σ(M,M∗)-continuous. Hence the inclusion γ[τu, s

∗(M,M∗)] ⊆ τ(M,M∗)
follows because τ(M,M∗) is the finest locally convex topology on M com-
patible with the duality (M,M∗).

Remark 4.2. Theorem 4.1 is a generalization of [21, Theorem 5]. Let
(X,Σ, µ) be a localisable measure space. Then L∞ is an abelian von Neu-
mann algebra (see [14, Theorem 243G, p. 154]). It is easy to verify that
on bounded parts of L∞ the topology τµ of convergence in measure agrees
with s∗(L∞, L1) (= s(L∞, L1)) and therefore τ(L∞, L1) = γ[τu, τµ] by The-
orem 4.1. In [21, Theorem 5] it is shown that when (X,Σ, µ) is σ-finite then
τ(L∞, L1) = γ[τu, τµ].

Theorem 4.3. Let (xn)n∈N be a sequence in Msa and let x ∈Msa.

(i) xn
τ(M,M∗)−−−−−→ x ⇔ xn

s(M,M∗)−−−−−→ x ⇐ xn
τo(Msa)−−−−−→ x.

(ii) If M is σ-finite then xn
s(M,M∗)−−−−−→ x ⇔ xn

τos(Msa)−−−−−→ x.

Proof. (i) First we show that xn
τ(M,M∗)−−−−−→ x ⇔ xn

s(M,M∗)−−−−−→ x. One

direction follows from (2.1). For the other direction note that if xn
s(M,M∗)−−−−−→

x then (xn)n∈N is bounded. Hence xn
τ(M,M∗)−−−−−→ x in view of (2.3). The



Order topology for a von Neumann algebra 111

implication xn
τo(Msa)−−−−−→ x ⇒ xn

s(M,M∗)−−−−−→ x follows from the fact that
τo(Msa) is the finest topology that preserves order convergence.

(ii) In virtue of Propositions 2.11 and 2.1, it suffices to prove that for ev-
ery sequence (xn)n∈N converging to x with respect to s(M,M∗) it is possible
to extract a subsequence that order converges to x in (Msa,≤). By the trans-
lation invariance of τo(Msa) we can suppose that x = 0, and since (xn)n∈N
is necessarily bounded we can further suppose that (xn)n∈N is a sequence
in M1

sa. The proof is based on a recursive application of the Noncommuta-
tive Egoroff Theorem [26, Theorem 4.13, p. 85]: Let (an)n∈N be a sequence
in a von Neumann algebra M converging to 0 with respect to s(M,M∗).
Then, for every projection e in M , and all ϕ ∈ M+

∗ and ε > 0, there exists
a projection e0 ≤ e and a subsequence (ank)k∈N such that ϕ(e− e0) < ε and
‖anke0‖ < 2−k−1.

First we suppose that the sequence (xn)n∈N is positive. SinceM is σ-finite,
it admits a faithful normal state ψ. Applying Egoroff’s Theorem with e := 1,

ϕ := ψ and ε = 2−1, we obtain a projection e1 and a subsequence (x
(1)
k )k∈N

of (xn)n∈N such that ‖x(1)k e1‖ < 2−k−1 for each k ∈ N and ψ(1− e1) < 2−1.

The sequence (x
(1)
k )k∈N converges to 0 with respect to s(M,M∗), and so we

can apply Egoroff’s Theorem again for this sequence with e := 1−e1, ϕ := ψ

and ε = 2−2 to obtain a projection e2 ≤ 1− e1, and a subsequence (x
(2)
k )k∈N

of (x
(1)
k )k∈N such that ‖x(2)k e2‖ < 2−k−2 and ψ(1− e1 − e2) < 2−2.

An inductive application of Egoroff’s Theorem yields a sequence of or-
thogonal projections (en)n∈N satisfying ψ(1−

∑n
i=1 ei) < 2−n; and a nested

sequence of subsequences (x
(j)
k )k∈N of (xn)n∈N where (x

(j+1)
k )k∈N is a subse-

quence of (x
(j)
k )k∈N such that ‖x(j)k ej‖ < 2−k−j .

Let pn :=
∑n

i=1 ei. Then (1− pn)n∈N is a decreasing sequence of projec-
tions and ψ(

∧
(1− pn)) = 0 and thus, since ψ is faithful, 1− pn ↓ 0.

From the way the nested array (x
(j)
k )k∈N is constructed, one can check

that if j ≥ i then x
(j)
j = x

(i)
p for some p ≥ j. Thus ‖x(j)j ei‖ = ‖x(i)p ei‖ <

2−p−i ≤ 2−j−i.

The sequence (x
(j)
j )j∈N is a subsequence of (xn)n∈N. We claim that

(x
(j)
j )j∈N order converges to 0. To this end we observe that

x
(j)
j = x

(j)
j pj + pjx

(j)
j (1− pj) + (1− pj)x(j)j (1− pj)

≤ ‖x(j)j pj + pjx
(j)
j (1− pj)‖1 + 1− pj ≤ (1 + 2‖x(j)j pj‖)1− pj

≤
(

1 + 2

j∑
i=1

‖x(j)j ei‖
)
1− pj ≤ (1 + 2−j+1)1− pj .

Since (1 + 2−j+1)1− pj ↓ 0, it follows that (x
(j)
j )j∈N order converges to 0.
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To complete the proof we consider the case when (xn)n∈N is not assumed

to be in M+. If xn
s(M,M∗)−−−−−−→ 0 then |xn|

s(M,M∗)−−−−−−→ 0 (where |xn| =
√
x2n) and

therefore (|xn|)n∈N converges to 0 with respect to τos(Msa) by the above.
Thus (|xn|)n∈N has a subsequence (|xnk |)k∈N that order converges to 0, i.e.
one can find a sequence (yk)k∈N in M+ such that 0 ≤ |xnk | ≤ yk and yk ↓ 0.
The result then follows from −yk ≤ −|xnk | ≤ xnk ≤ |xnk | ≤ yk.

Corollary 4.4. Assume that M is σ-finite and K is a bounded subset
of Msa. Then the s(M,M∗)-closure of K coincides with the τos(Msa)-closure
of K.

Proof. Let r > 0 be such that K ⊆ rM1. When M is σ-finite, the
topology s(M,M∗)|rM1 is metrisable. Since rM1 is s(M,M∗)-closed, the
assertion follows by Theorem 4.3.

Corollary 4.5. Assume that M is σ-finite. Then

τs|K = s(M,M∗)|K = τ(M,M∗)|K = τo(Msa)|K = τos(Msa)|K
for every bounded subset K of Msa.

Note that s(M,M∗)|Msa and τo(Msa) are different unless M is finite-
dimensional (see Remark 2.10(i)). The aim of the rest of this section is to
study when the order topology τo(Msa) coincides with τ(M,M∗)|Msa.

Lemma 4.6. γ[τu|Msa, s(M,M∗)|Msa] = γ[τu, s
∗(M,M∗)]|Msa.

Proof. To simplify the notation let γ := γ[τu|Msa, s(M,M∗)|Msa]. Since
s(M,M∗)|K = γ[τu, s

∗(M,M∗)]|K for every bounded subset K of Msa we
get γ[τu, s

∗(M,M∗)]|Msa ⊆ γ by Proposition 3.2(ii). For the reverse inclu-
sion we consider M̃ := Msa × Msa as a real vector space. The mapping

M̃ 3 (x, y) 7→ x + iy ∈ M is an isomorphism of M̃ onto M (as real vector
spaces). (M̃, γ × γ) is a Hausdorff topological vector space over R. Denote
by τ the Hausdorff real-linear topology induced on M by γ×γ. Then τ |K =
s∗(M,M∗)|K for every bounded subset K of M . Hence τ ⊆ γ[τu, s

∗(M,M∗)]
by Proposition 3.2(ii) and therefore τ |Msa ⊆ γ[τu, s

∗(M,M∗)]|Msa. Finally,
observe that τ |Msa = γ, and hence the required inclusion holds.

Let p be a nonzero projection in M . We recall that p is said to be a min-
imal projection if whenever e is a nonzero projection such that 0 6= e ≤ p
then e = p. Equivalently, p is minimal if pMp = Cp. If pMp is abelian then
p is said to be an abelian projection. Every minimal projection is obviously
abelian. M is said to be of type I if every nonzero central projection of
M majorizes a nonzero abelian projection. We recall that every type I fac-
tor is ∗-isomorphic to a B(H) for some Hilbert space H. A von Neumann
algebra M is said to be atomic if every nonzero projection majorizes a min-
imal projection. Obviously if M is atomic then M is of type I. Moreover,
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we say that M is purely atomic if every von Neumann subalgebra of M is
atomic. (When talking about subalgebras we do not require that a subalge-
bra contains the unit of its superalgebra.) Observe that M can be atomic
without being purely atomic. For example, when H is infinite-dimensional
and separable, B(H) is atomic but not purely atomic because L∞[0, 1] can
be identified with a von Neumann subalgebra of B(H).

Theorem 4.7. The following statements are equivalent:

(i) The unit ball M1 is s∗(M,M∗)-compact (and therefore on bounded
parts of M the σ-strong∗ topology coincides with the weak∗ topology).

(ii) M is purely atomic.
(iii) M is ∗-isomorphic to a direct sum of finite-dimensional matrix

algebras.

Proof. (i)⇒(ii). Suppose that M is not purely atomic and let N be a von
Neumann subalgebra of M that is not atomic. Without any loss of generality
we can assume that N has no minimal projections and that it is σ-finite.
Let ϕ be a faithful normal state on N . Using the noncommutative version
of the Lyapunov Theorem [3] (or [11, 5]) it is possible to define projections
like the Rademacher functions: {pn,i : n ∈ N, i = 1, . . . , 2n} such that
1N = p1,1 + p1,2 and pn−1,i = pn,2i−1 + pn,2i; and moreover ϕ(pn,i) = 2−n.

Set en =
∑2n

i=1(−1)ipn,i. Then (en)n∈N is a sequence of self-adjoint elements
in the unit ball of N and ηϕ(en−em) = 2 for every n 6= m. This implies that
the unit ball of N is not s∗(N,N∗)-compact and thus the result follows.

(ii)⇒(iii). Let Z (M) denote the centre ofM . If z is a minimal projection
of Z (M) then zM is a type I factor and therefore zM is ∗-isomorphic to
B(H) for some Hilbert space H. Note that H cannot be infinite-dimensional
because M is purely atomic. The result then follows by taking a family of
pairwise orthogonal minimal projections in Z (M), say {zλ : λ ∈ Λ}, such
that

∑
λ∈Λ zλ = 1.

(iii)⇒(i). Let M =
∑

λ∈Λ⊕B(Hnλ) where Λ is an indexing set and
nλ ∈ N for every λ ∈ N. Denote by ‖ · ‖λ the norm on B(Hnλ) and by Bλ
its unit ball. Then (Bλ, ‖ · ‖λ) is compact for every λ ∈ Λ and therefore
the product space

∏
λ∈Λ(Bλ, ‖ · ‖λ) is compact by the Tychonoff Theorem.

Observe that (M1, s∗(M,M∗)|M1) is homeomorphic to
∏
λ∈Λ(Bλ, ‖·‖λ) and

therefore the result follows.

Theorem 4.8. The following statements are equivalent:

(i) τ(M,M∗)|Msa = τos(Msa).
(ii) τ(M,M∗)|Msa is sequential.

(iii) τ(M,M∗) is sequential.
(iv) M is σ-finite and τo(Msa) is a linear topology.
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(v) M is σ-finite and satisfies one (and therefore all) of the equivalent
conditions of Theorem 4.7.

Proof. (i)⇒(ii). If τos(Msa) = τ(M,M∗)|Msa then τ(M,M∗)|Msa is se-
quential since τos(Msa) is obviously sequential.

(ii)⇒(v). Suppose that τ(M,M∗)|Msa is sequential. Observe that M
must be σ-finite because otherwise it contains an uncountable family {pγ :
γ ∈ Γ} of nonzero orthogonal projections, and then the set

N :=
{
x ∈Msa : ∃Γ0 ⊆ Γ, |Γ0| ≤ ℵ0, 0 ≤ x ≤

∨
γ∈Γ0

pγ

}
is sequentially τ(M,M∗)-closed but not τ(M,M∗)-closed. We recall that
s(M,M∗)|M1

sa is metrisable when M is σ-finite. Let us show that M1 is
s∗(M,M∗)-compact. Since M1 ⊆M1

sa+ iM1
sa is s∗(M,M∗)-closed, it suffices

to show that M1
sa is s(M,M∗)-compact. If M1

sa is not s(M,M∗)-compact
then we can apply Theorem 3.4 with X := Msa, τ

′ := s(M,M∗)|Msa and
τ := τu|Msa to deduce that the mixed topology γ

[
τu|Msa, s(M,M∗)|Msa] is

not sequential and therefore (v) follows by Lemma 4.6 and Theorem 4.1.
(v)⇒(iii). Assume that M is σ-finite and ∗-isomorphic to a direct sum

of finite-dimensional matrix algebras, say M =
∑

λ∈Λ⊕B(Hnλ) where Λ is
countable. We can apply Corollary 3.9 with X := M and (ρλ)λ∈Λ defined by
ρλ(x) := ‖xλ‖λ where x = (xλ)λ∈Λ and ‖ · ‖λ denotes the norm on B(Hnλ)
to deduce that γ[τ, τ ′] is sequential. Obviously τ coincides with τu and it is
easily seen that on bounded parts of M the topology τ ′ (= product topology)
coincides with s∗(M,M∗). Hence (see the comment following Proposition
3.2) γ[τ, τ ′] = γ

[
τu, s

∗(M,M∗)
]
. Thus (iii) follows by Theorem 4.1.

(iii)⇒(i). If τ(M,M∗) is sequential then τ(M,M∗)|Msa is sequential and
therefore M is σ-finite. Therefore we get τ(M,M∗)|Msa = τos(Msa) in virtue
of Theorem 4.3.

(i)⇔(iv). The implication (i)⇒(iv) is trivial. In virtue of Lemma 4.6 and
Theorem 4.1 we have

τ(M,M∗)|Msa = γ[τu, s
∗(M,M∗)]|Msa = γ[τu|Msa, s(M,M∗)|Msa],

i.e. τ(M,M∗)|Msa is the finest linear topology on Msa that agrees with
s(M,M∗)|Msa on bounded subsets of Msa. Thus in view of Corollary 4.5 we
get τos(Msa) ⊆ τ(M,M∗)|Msa when τo(Msa) is linear.

5. The order topology and the sequential order topology on
M1
sa and P (M). The order topology on the projection lattice of a Hilbert

space was studied in [22] and [9]. Let L denote the lattice of projections
on a separable Hilbert space H. Using (2.4) and (2.9) we immediately get
τs|L ⊆ τo(L ). [22, Example 2.4] shows that if dimH ≥ 2 then τo(L ) *
τu|L and therefore τs|L 6= τo(L ). (This is in contrast with Corollary 4.5.)
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In this connection we mention that in [9, Theorem 20] the authors show that
when B is a maximal Boolean sublattice of L then τo(L )|B = τs|B. Let us
point out that in fact this follows from Proposition 2.9 and Corollary 4.5.
Indeed, if B is a maximal Boolean sublattice of L then B is the projection
lattice of a maximal abelian ∗-subalgebra M of B(H) and therefore

τs|B = s(M,M∗)|B = τo(Msa)|B = τo(B).

When dimH < ∞ the order topology on L coincides with the discrete
topology and therefore it is finer than the restriction of the uniform topology,
but [22, Example 2.3] shows that if dimH =∞ then τu|L * τo(L ). In [22]
V. Palko conjectured that τs|L = τo(L ) ∩ τu|L . This is obviously true
when dimH <∞, and in full agreement with the conjecture he proved that
a sequence of atoms in L converges to 0 with respect to τs if and only if it
converges to 0 with respect to τu|L ∩τo(L ). [9, Example 16] however shows
that τs|L = τo(L ) ∩ τu|L only when dimH <∞.

In this section we study the order topology and the sequential order
topology on M1

sa and P (M). Proposition 2.7 already implies τo(Msa)|M1
sa

⊆ τo(M1
sa) and τo(Msa)|P (M) ⊆ τo(P (M)). (Similar inclusions hold for the

sequential order topology in view of the comment following Proposition 2.3.)
We shall now exhibit an example that will be used later. It is in fact a

construction given in [9, Example 26].

Example 5.1. Let (ξn)n∈N be an orthonormal basis of a separable Hilbert
space H. For each n let pn denote the projection of H onto span{n−1ξ1 +
ξn, ξn+1, ξn+2, . . .}. Let M = B(H). Then:

(i) (pn)n∈N converges to 0 with respect to τs,
(ii) (pn)n∈N converges to 0 with respect to τos(Msa),

(iii) (pn)n∈N does not converge to 0 with respect to τos(M
1
sa),

(iv) (pn)n∈N does not converge to 0 with respect to τos(P (M)).

Proof. (i) and (iv) were proved in [9, Example 26]. (ii) follows from
Theorem 4.3 and (2.3). To prove (iii) suppose that (ank)k∈N is a decreasing
sequence in M1

sa such that pnk ≤ ank for every k ∈ N. Then Lemma 2.8(ii)
yields ank ≥

∨
i≥k pni ≥ p for every k ∈ N where p denotes the projection of

H onto the one-dimensional subspace spanned by ξ1.

We recall that two projections e and f in M are said to be equivalent
(in symbols e ∼ f) if there exists u ∈M such that uu∗ = e and u∗u = f . A
projection e is said to be finite if whenever f is a projection such that e ∼ f
and f ≤ e then e = f . If e is not finite then it is infinite. Moreover, e is
said to be properly infinite if ze is infinite or 0 for every z ∈ Z (M). M is
said to be finite, infinite or properly infinite according to the property of
the identity projection 1. Moreover, there are two orthogonal projections zf
and zi in Z (M) such that zf is finite, zi is properly infinite and zf +zi = 1.
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We further recall that if M is properly infinite then there is a sequence
(en)n∈N of mutually equivalent and pairwise orthogonal projections such
that

∨
n∈N en = 1. These projections, together with the partial isometries

implementing their equivalence, generate a type I subfactor (i.e. a unital von
Neumann subalgebra that is a factor) N of M that is ∗-isomorphic to B(H)
for some separable infinite-dimensional Hilbert space H. Observing that
τo(P (M))|P (N) = τo(P (N)) = τos(P (N)), it follows by Example 5.1 that a
properly infinite von Neumann algebra M contains a sequence of projections
which is σ-strongly null but not τo(P (M))-null. This observation is in part
a motivation for Theorem 5.3 in which we give a new characterization of
finite von Neumann algebras.

We further recall that in the proof of Proposition 2.9 we have seen that
when N = B(H2) then τo(N

1
sa)|P (N) = τo(P (N)), i.e. unlike (2.7) and

(2.9), in (2.8) we can have an equality without the algebra being abelian.

Lemma 5.2. Let (pi) be a decreasing sequence of projections in M . Then
the sequence (2−i(1− pi) + pi) is decreasing.

Proof. Indeed,

2−i−1(1− pi+1) + pi+1 = 2−1(2−i(1− pi)) + pi − (1− 2−i−1)(pi − pi+1)

≤ 2−i(1− pi) + pi.

Let us recall that if p and q are projections in M then p∨q−p ∼ q−p∧q
[26, p. 292, Proposition V.1.6]. Hence, if a state ψ on M is tracial (i.e.
ψ(x∗x) = ψ(xx∗) for all x ∈M), then its restriction to P (M) is a valuation,
i.e. ψ(p ∨ q) + ψ(p ∧ q) = ψ(p) + ψ(q) for any p, q ∈ P (M). Consequently,
ψ is subadditive, i.e. ψ(p∨ q) ≤ ψ(p)+ψ(q) for any p, q ∈ P (M); if moreover
ψ is normal, then it is even σ-subadditive, i.e. ψ

(∨
n pn

)
≤
∑

n ψ(pn) for
every sequence (pn)n∈N in P (M). (In [10] it is shown that, conversely, every
subadditive probability measure on P (M) arises in this way.)

Theorem 5.3. Let M be a σ-finite von Neumann algebra. Then the
following statements are equivalent:

(i) M is finite.
(ii) Every sequence (xn)n∈N in M1

sa converging σ-strongly to 0 converges
to 0 with respect to τos(M

1
sa).

(iii) If (pn)n∈N is a sequence in P (M) converging σ-strongly to 0, then
there exists a subsequence (pni) such that

lim sup
i

pni = 0.

(iv) τo(M
1
sa)|P (M) = τo(P (M)).

Proof. (i)⇒(ii). Let (xn)n∈N be a sequence in M1
sa converging σ-strongly

to 0. We shall first suppose that xn ≥ 0 for each n. We need to exhibit a
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subsequence (xni)i∈N of (xn)n∈N that order converges to 0. Since M is finite
and σ-finite, M admits a faithful, normal, tracial state ψ. Since ψ(x2n) =
ρψ(xn)2 → 0, we can extract a subsequence (xni)i∈N of (xn)n∈N such that

ψ(xni) ≤
√
ψ(x2ni) < 4−i. For each i ∈ N and λ ∈ R, let ei(λ) be the

projection in M corresponding to the characteristic function associated with
sp(xni) ∩ (−∞, λ], i.e. {ei(λ)}λ∈R is the spectral resolution of xni . Then

0 ≤ xni ≤ 2−iei(2−i) + (1− ei(2−i))

= 2−i
(∧
j≥i

ej(2−j) + ei(2−i)−
∧
j≥i

ej(2−j)
)

+ (1− ei(2−i))

≤ 2−i
∧
j≥i

ej(2−j) + ei(2−i)−
∧
j≥i

ej(2−j) + 1− ei(2−i)

= 2−i
∧
j≥i

ej(2−j) +
∨
j≥i

(1− ej(2−j)).

Let
yi = 2−i

∧
j≥i

ej(2−j) +
∨
j≥i

(1− ej(2−j)).

Then 0 ≤ xni ≤ yi ≤ 1 and by Lemma 5.2 the sequence (yi)i∈N is decreasing.
Thus,

∧
i∈N yi exists in Msa and

∧
i∈N yi ≥ 0. The normality of ψ entails that

ψ
(∧

i∈N yi
)

= limi→∞ ψ(yi). Since 2−j(1 − ej(2−j)) ≤ xnj , it follows that

ψ(1− ej(2−j)) ≤ 2jψ(xnj ) < 2−j .
Since ψ is σ-subadditive we can estimate

ψ(yi) ≤ 2−i +
∑
j≥i

ψ(1− ej(2−j)) < 2−i +
∑
j≥i

2−j = 3 · 2−i.

Thus, ψ(
∧
i∈N yi) = 0 and therefore, since ψ is faithful, it follows that∧

i∈N yi = 0, i.e. (xni)i∈N is order convergent to 0.
If not every element xn is positive, then we can consider the sequence

(|xn|)n∈N which is again σ-strongly convergent to 0. Then (|xn|)n∈N has a
subsequence (|xni |)i∈N that order converges to 0, i.e. there is a sequence
(yi)i∈N in M1

+ such that 0 ≤ |xni | ≤ yi and yi ↓ 0. The result then follows
from

−1 ≤ −yi ≤ −|xni | ≤ xni ≤ |xni | ≤ yi ≤ 1 (for all i ∈ N).

(ii)⇒(iii). If (pn)n∈N is a sequence of projections that converges σ-strongly

to 0 then pn
τos(M1

sa)−−−−−→ 0 by (ii). Therefore, by Proposition 2.1, (pn)n∈N
has a subsequence (pni)i∈N order converging to 0 in (M1

sa,≤). Thus there
is a sequence (yi)i∈N in M1

sa such that 0 ≤ pni ≤ yi and yi ↓ 0. From
Lemma 2.8 we deduce that

∨
j≥i pnj ≤ yi for every i ∈ N and therefore

0 ≤
∧
i∈N
∨
j≥i pnj ≤

∧
i∈N yi = 0, i.e. lim supi pni = 0.

(iii)⇒(i). This follows from Example 5.1 and the discussion that follows it.
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(iv)⇒(i). IfN is aW ∗-subalgebra ofM thenN1
sa and P (N) are s(M,M∗)-

closed. The hypothesis together with Propositions 2.3 and 2.7 implies that

τo(N
1
sa)|P (N) ⊇ τo(M1

sa)|P (N) = τo(P (M))|P (N)

= τo(P (N)) ⊇ τo(N1
sa)|P (N).

Hence, in view of the discussion in the paragraph before Lemma 5.2 it is
enough to show that τo(M

1
sa)|P (M) 6= τo(P (M)) when M = B(H) for a

separable infinite-dimensional Hilbert space H.
Let (θn)n∈N be a sequence in (π/4, π/2) such that θn ↑ π/2, and let

σn := sin θn and γn := cos θn. Fix an orthonormal basis (ξn)n∈N of H and
define ηn := σnξ1 + γnξn. Denote by en the projection of H onto span{ξn},
qn the projection of H onto span{ηn}, and fn the projection of H onto
span{ξn, ξn+1, . . . }.

We show that σ4ne1 − en ≤ qn for every n ∈ N. It is enough to consider
vectors in the two-dimensional subspace spanned by ξ1 and ξn. Thus we can
express e1, en, qn in matrix form (relative to the vectors ξ1 and ξn). Writing
qn − σ4ne1 + en in matrix form:(

σ2n − σ4n γnσn

γnσn γ2n + 1

)
=

(
γ2nσ

2
n γnσn

γnσn γ2n + 1

)
one sees that σ4ne1 − en ≤ qn. Thus

xn := σ4ne1 − fn ≤ qn + fn+1 ≤ e1 + fn =: yn,

the sequences (xn)n∈N and (yn)n∈N are in M1
sa, xn ↑ e1 and yn ↓ e1. Hence

pn := qn + fn+1 → e1 with respect to τo(M
1
sa). On the other hand, observe

that if (pni)i∈N is a subsequence of (pn)n∈N and p ∈ P (M) satisfies p ≤ pni
for every i ∈ N, then p = 0. In view of Proposition 2.1, this shows that
pn 9 e1 with respect to τos(P (M)) (= τo(P (M)) by Proposition 2.11).

(i)⇒(iv). As observed before,M admits a faithful, normal, tracial stateψ.
Then ψ|(P (M) is a valuation. Thus d(p, q) := ψ(p∨q)−ψ(p∧q) defines by [7,
p. 230, Theorem X.1.1] a metric on P (M). We first prove the following esti-
mate: If x, y ∈Msa and p, q ∈ P (M) with x ≤ p ≤ y ≤ 1 and x ≤ q ≤ y, then

d(p, q) ≤ 2ψ(y − x).

In fact,

d(p, q) = (ψ(p ∨ q)− ψ(p)) + (ψ(p)− ψ(p ∧ q))
= (ψ(p ∨ q)− ψ(p)) + (ψ(p ∨ q)− ψ(q))

≤ 2(ψ(y)− ψ(x)) = 2ψ(y − x).

In the last inequality we have used the fact that p ∨ q ≤ y by Lemma 2.8.
In view of (2.8) and Propositions 2.11 and 2.1, for the proof of (iv) it

suffices to show that any sequence (pn)n∈N in P (M) order converging in
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(M1
sa,≤) to p ∈ P (M) has a subsequence order converging in (P (M),≤).

Let now pn, p ∈ P (M) and xn, yn ∈ M1
sa be such that xn ↑ p, yn ↓ p and

xn ≤ pn ≤ yn. Then yn − xn ↓ 0 and d(pn, p) ≤ 2ψ(yn − xn)→ 0. Therefore
(pn)n∈N converges to p in the metric lattice (P (M), d). It follows from the
proof of [7, p. 246, Theorem X.10.16] that (pn)n∈N has a subsequence order
converging to p in (P (M),≤).

We remark that Theorem 5.3 does not imply that for finite, σ-finite
algebras the restriction of s(M,M∗) to M1

sa (resp. P (M)) coincides with the
order topology τo(M

1
sa) (resp. τo(P (M)))—see Proposition 2.9. We also note

that in the proof of the implications (ii)⇒(iii), (iii)⇒(i) and (iv)⇒(i) the
assumption that M is σ-finite is not used.
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Università degli Studi di Udine
1-33100 Udine, Italy
E-mail: hans.weber@uniud.it

Jan Hamhalter
Faculty of Electrical Engineering

Czech Technical University in Prague
Technicka 2

166 27, Praha 6, Czech Republic
E-mail: hamhalte@math.feld.cvut.cz

http://dx.doi.org/10.1090/S0002-9947-1942-0006496-X
http://dx.doi.org/10.1090/S0002-9939-1967-0203675-6
http://dx.doi.org/10.2140/pjm.1989.140.155
http://dx.doi.org/10.2307/2372173

	1 Introduction
	2 Preliminary results
	2.1 The order topology and sequential order topology
	2.2 Preliminaries on von Neumann algebras

	3 Vector spaces with mixed topology
	4 The order topology and the sequential order topology on Msa
	5 The order topology and the sequential order topology on Msa1 and P(M)
	References

