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Modified log-Sobolev inequalities for convex functions
on the real line. Sufficient conditions

by

Radosław Adamczak and Michał Strzelecki (Warszawa)

Abstract. We provide a mild sufficient condition for a probability measure on the
real line to satisfy a modified log-Sobolev inequality for convex functions, interpolating
between the classical log-Sobolev inequality and a Bobkov–Ledoux type inequality. As a
consequence we obtain dimension-free two-level concentration results for convex functions
of independent random variables with sufficiently regular tail decay.

We also provide a link between modified log-Sobolev inequalities for convex functions
and weak transport-entropy inequalities, complementing recent work by Gozlan, Roberto,
Samson, and Tetali.

1. Introduction and main results

1.1. Background. Over the past few decades the concentration of mea-
sure phenomenon has become one of the main themes of high dimensional
probability and geometric analysis, with applications to limit theorems, non-
asymptotic confidence bounds or random constructions of geometric objects
with extremal properties. While initial results on concentration of measure
concerned mostly deviation bounds for Lipschitz functions of highly regular
random variables, the seminal work by Talagrand [22] has revealed that if
one restricts attention to convex Lipschitz functions, dimension-free concen-
tration of measure holds under much weaker conditions, e.g. for all prod-
uct probability measures with bounded support. Talagrand’s approach re-
lied on his celebrated convex distance inequality related to the analysis of
isoperimetric problems for product measures. In subsequent papers other
authors adapted tools from the classical concentration of measure theory,
such as Poincaré and log-Sobolev inequalities or transportation and infimum-
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convolution inequalities [15, 4, 18, 17, 19, 20, 1] to prove tail inequalities for
convex functions. More recent work [11, 13] presents deep connections be-
tween various approaches.

Talagrand’s inequality provides a subgaussian tail estimate for convex
Lipschitz functions of independent uniformly bounded random variables
(with dimension-independent constants). It is natural to ask whether such
a result can hold under weaker assumptions on the tails of the underlying
random variables. One can easily see that it is not enough to assume uniform
subgaussian tail decay, and some stronger regularity is necessary [14, 1]. In
[4] Bobkov and Götze show that for a probability measure on the real line
dimension-free concentration for convex functions is equivalent to the convex
Poincaré inequality and further to a certain regularity of the tail (see also [11]
for a refinement of this result in the setting of abstract metric spaces). More-
over the concentration rate in this case is at least exponential. In [1] a related
assumption on the tail is shown to imply the convex log-Sobolev inequality
which allows us to obtain dimension-free deviation bounds on the upper tail
of convex functions.

The goal of this article is to show that tail conditions interpolating be-
tween those considered in [4] and [1] lead to modified log-Sobolev inequali-
ties for convex functions (convex counterparts of inequalities introduced by
Bobkov–Ledoux [5] and Gentil–Guillin–Miclo [8, 9]) and thus also two-level
deviation bounds interpolating between the subexponential and subgaussian
tail decay, in the spirit of Talagrand’s inequalities for the exponential or
Weibull distribution [21, 18]. Furthermore we demonstrate a connection of
modified log-Sobolev inequalities with weak transportation inequalities. In
the case of the classical log-Sobolev inequality such a link has been recently
discovered by Gozlan, Roberto, Samson, and Tetali [13].

1.2. Main results. To formulate our results we need to introduce the
following

Definition 1.1. For β ∈ [0, 1], m > 0 and σ ≥ 0 let Mβ(m,σ
β+1)

denote the class of probability distributions µ on R for which

∀x≥m ν+([x,∞)) ≤ σβ+1µ([x,∞)),

∀x≤−m ν−((−∞, x]) ≤ σβ+1µ((−∞, x]),

where ν+ is the measure on [m,∞) with density xβµ([x,∞)) and ν− is the
measure on (−∞,−m] with density |x|βµ((−∞, x]).

As one can easily see, the condition defining the class Mβ(m,σ
β+1) is

equivalent to some type of regular tail decay. More precisely, we have the
following proposition, the proof of which is deferred to Section 2.
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Proposition 1.2. Let µ be a probability measure on R. For β ∈ [0, 1]
and m > 0 the following conditions are equivalent:

(i) There exists σ ≥ 0 such that µ ∈Mβ(m,σ
β+1).

(ii) For some h > 0, α < 1 and all x > m,

µ([x+ h/xβ,∞)) ≤ αµ([x,∞)),

µ((−∞,−x− h/xβ]) ≤ αµ((−∞,−x]).
Moreover, the constants in (i) depend only on the constants in (ii) and vice
versa. For instance, if (i) holds, we can take h = 2σβ+1 and α = 1/2.

Let us recall that a probability measure µ on Rn satisfies the Poincaré
inequality with constant C for the class A of real valued functions on Rn if
for all f ∈ A,

Var f(X) ≤ CE|∇f(X)|2,
where X is a random vector with law µ. The measure µ satisfies the log-
Sobolev inequality with constant C for the class A if for all f ∈ A,
(1.1) Ent ef(X) ≤ CE|∇f(X)|2ef(X),

where EntY denotes the usual entropy of a nonnegative random variable Y ,
i.e.

EntY = EY log Y − EY logEY
if EY log Y <∞ and EntY =∞ otherwise.

We remark that if A consists of all smooth functions, one usually states
the log-Sobolev inequality in the equivalent form

(1.2) Ent f(X)2 ≤ DE|∇f(X)|2,
where D = 4C. We have decided to use the form (1.1), since our main
motivation is the study of concentration properties for convex functions (note
that for A being the class of convex functions, (1.1) and (1.2) are no longer
equivalent).

Using Proposition 1.2 and the results from [4] one easily finds that the
condition µ ∈M0(m,σ) for some m,σ is equivalent to the Poincaré inequal-
ity for convex functions and further to dimension-free subexponential concen-
tration for convex Lipschitz functions on Rn equipped with the measure µ⊗n.
On the other hand, as shown in [1] the conditionM1(m,σ

2) implies the log-
Sobolev inequality for convex functions and a dimension-free subgaussian
inequality for upper tails of convex Lipschitz functions on (Rn, µ⊗n)—see
Corollary 1.7 below.

In what follows, ‖·‖p denotes the `np norm, i.e. for x = (x1, . . . , xn) ∈ Rn,
‖x‖p = (|x1|p + · · · + |xn|p)1/p. For p = 2 we will write simply |x| instead
of ‖x‖p. The symbol L(X) stands for the law of a random variable X.

Our main result is the following theorem.
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Theorem 1.3. Let X1, . . . , Xn be independent random variables such
that L(Xi) ∈Mβ(m,σ

β+1) and let ϕ : Rn → R be a smooth convex function.
Then, for β ∈ (0, 1],

(1.3) Ent eϕ(X1,...,Xn)

≤ C(β,m, σ)E
(
|∇ϕ(X1, . . . , Xn)|2 ∨ ‖∇ϕ(X1, . . . , Xn)‖(β+1)/β

(β+1)/β

)
eϕ(X1,...,Xn).

If β = 0 and |∂iϕ(x)| ≤ 1/(2(m + 3σ)) for i ∈ {1, . . . , n} and all x ∈ Rn,
then

(1.4) Ent eϕ(X1,...,Xn) ≤ C(β = 0,m, σ)E|∇ϕ(X1, . . . , Xn)|2eϕ(X1,...,Xn).

Remark 1.4. Note that in the case β = 1, (1.3) reduces to the classical
log-Sobolev inequality

Ent eϕ(X1,...,Xn) ≤ C(m,σ)E|∇ϕ(X1, . . . , Xn)|2eϕ(X1,...,Xn).

The case β ∈ (0, 1) corresponds to the modified log-Sobolev inequality intro-
duced and studied by Gentil, Guillin and Miclo [8] for the class of smooth
(not necessarily convex) functions. The inequality (1.4) for smooth functions
was introduced and studied by Bobkov and Ledoux [5].

Remark 1.5. In the above theorem and the following corollaries the as-
sumption about convexity of ϕ can be relaxed to separate convexity (cf. [15]).

By a version of Herbst’s argument we obtain the following corollary,
concerning the tail behaviour of smooth convex functions. Below C denotes
the constant C(β,m, σ) from Theorem 1.3.

Corollary 1.6. Let X1, . . . , Xn be independent random variables such
that L(Xi) ∈Mβ(m,σ

β+1) and let ϕ : Rn → R be a smooth convex Lipschitz
function. Then, for β ∈ (0, 1] and all t ≥ 0,

P
(
ϕ(X1, . . . , Xn) ≥ Eϕ(X1, . . . , Xn) + t

)
≤ exp

(
− 3

16
min

{
t2

C sup |∇ϕ|2
,

t1+β

Cβ sup ‖∇ϕ‖1+β(β+1)/β

})
.

If β = 0, then for all t ≥ 0,

P
(
ϕ(X1, . . . , Xn) ≥ Eϕ(X1, . . . , Xn) + t

)
≤ exp

(
−1

4
min

{
t2

C sup |∇ϕ|2
,

t

(m+ 3σ) sup ‖∇ϕ‖∞

})
.

Using standard smoothing arguments one can also obtain a result for not
necessarily smooth functions, expressed in terms of their Lipschitz constants
with respect to the `n2 and `n1+β norms.
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Corollary 1.7. Let X1, . . . , Xn be independent random variables such
that L(Xi) ∈ Mβ(m,σ

β+1) and let ϕ : Rn → R be a convex function such
that

|ϕ(x)− ϕ(y)| ≤ L2‖x− y‖2
and

|ϕ(x)− ϕ(y)| ≤ L1+β‖x− y‖1+β
for all x, y ∈ Rn and some L2, L1+β <∞. Then, for β ∈ (0, 1] and all t ≥ 0,

P
(
ϕ(X1, . . . , Xn) ≥ Eϕ(X1, . . . , Xn) + t

)
≤ exp

(
− 3

16
min

{
t2

CL2
2

,
t1+β

CβL1+β
1+β

})
.

If β = 0, then for all t ≥ 0,

P
(
ϕ(X1, . . . , Xn) ≥ Eϕ(X1, . . . , Xn) + t

)
≤ exp

(
−1

4
min

{
t2

CL2
2

,
t

(m+ 3σ)L1

})
.

Finally, we can express concentration in terms of enlargements of convex
sets. The proof of the corollary below is a modification of the argument for
smooth functions, taking into account some additional difficulties related to
the fact that in the convex situation one cannot truncate the function (as
this operation destroys convexity).

Corollary 1.8. Let X1, . . . , Xn be independent random variables such
that L(Xi) ∈Mβ(m,σ

β+1) and let A ∈ Rn be a convex set with

P((X1, . . . , Xn) ∈ A) ≥ 1/2.

Then, for all r ≥ 0,

P
(
(X1, . . . , Xn) /∈ A+ r1/2B2 + r1/(1+β)B1+β

)
≤ e−C′r

for some constant C ′ depending only on β and C(β,m, σ) from Theorem 1.3
(and additionally on m+ 3σ in the case β = 0).

The reader may compare the above corollaries with a general result stated
in [2, Proposition 26, Theorem 27] about consequences of inequalities similar
to (1.3) in the classical setting of smooth functions (see also [2, Example 29]).

1.3. Relation to other results, and further questions. Recently,
the classical log-Sobolev inequality for convex functions has been shown to
be equivalent to certain transport-entropy inequalities with weak transport
cost [13]. In Propositions 3.1 and 3.6 we show that this is also the case for
inequalities (1.3) and (1.4). Since the precise formulation of these results
requires introducing additional, rather involved notation, we postpone it to
Section 3.
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Logarithmic Sobolev inequalities for convex functions have one weakness
when compared to their counterparts for smooth functions, namely they
provide only deviation inequalities for the upper tail of the function (in
the classical setting one obtains bounds on the lower tail by applying the
inequality to −ϕ, an approach which is precluded in our situation, since
except for trivial cases −ϕ is not convex).

It turns out that for β = 0 the condition µ ∈ Mβ(m,σ
β+1) is in fact

equivalent to a two-sided concentration inequality for convex functions. This
is a consequence of a recent result by Feldheim, Marsiglietti, Nayar, and
Wang [7] who proved an infimum convolution inequality, which—as follows
from our Proposition 3.6—is stronger than (1.4).

1.3.1. A remark about recent improvements by Gozlan et al. During the
review process of this manuscript a preprint [12] by Gozlan, Roberto, Sam-
son, Shu, and Tetali appeared, in which the authors extended the results by
Feldheim et al. and characterized the infimum-convolution inequality (equiv-
alently weak transportation inequality) for probability measures on the real
line and a large class of cost functions. Their condition can be shown to
be strictly weaker than ours, while (as follows from Proposition 3.1) the in-
equalities they consider are stronger than modified log-Sobolev inequalities
investigated by us. The condition of [12] is expressed in terms of the mono-
tone transport map U between the symmetric exponential distribution and
the measure µ and in the case we consider reads

sup
x∈R

(U(x+ u)− U(x)) ≤ C(1 + u)1/(β+1)

for some C < ∞. Using the same arguments as in Lemma 2.2 below, one
can show that this is implied by µ ∈ Mβ(m,σ

β+1) for some m,σβ+1. On
the other hand, for measures supported on the positive half-line, the latter
condition is equivalent to

sup
x∈R

(U(x+ u)β+1 − U(x)β+1) ≤ D(1 + u)

for some D < ∞ and so it is not difficult to find a measure which satisfies
the condition of [12] but does not belong toMβ(m,σ

β+1) for any m,σβ+1.
To the best of our knowledge, except for the case of β = 0, the character-

ization of measures on the line satisfying the modified log-Sobolev inequal-
ity for convex functions is still unknown. For β = 0 these are exactly the
measures µ which belong to the classM0(m,σ) for some m and σ (this fol-
lows e.g. from Theorem 1.3 and the characterization of the convex Poincaré
inequality due to Bobkov and Götze [4]). We provide a more detailed dis-
cussion of the results of [7, 12] and their relation to our results in Section 3
(see Remark 3.8).
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1.4. Organization of the paper. Section 2 is devoted to the proofs
of our main results presented above. In Section 3 we discuss connections
with transportation inequalities and in Section 4 we briefly comment on the
relation between the classMβ(m,σ

β+1) and the class of functions satisfying
the modified log-Sobolev inequality for all smooth functions.

2. Proofs of the main results

2.1. Technical lemmas. In this section we will prove several technical
lemmas which will be used in the proofs of our main results. Of particular
importance is Lemma 2.4, which constitutes the core of the proof of Theo-
rem 1.3.

In the proofs we will use the notation C(α) to denote constants depending
only on some parameter α. The value of such constants may change between
occurrences.

Proof of Proposition 1.2. Assume (i) holds. For x ≥ m we have

σβ+1µ([x,∞)) ≥ ν+([x,∞)) ≥
x+2σβ+1/xβ�

x

yβµ([y,∞)) dy

≥ 2σβ+1

xβ
· xβµ([x+ 2σβ+1/xβ,∞)),

which clearly implies the first inequality of (ii). The second inequality follows
similarly.

Suppose now that (ii) is satisfied. For x ≥ m define the sequence a0 = x,
an+1 = an+ h/aβn. It is easy to see that this sequence is increasing, an →∞
and an+1/an → 1. Therefore

ν+([x,∞)) =

∞�

x

yβµ([y,∞)) dy ≤
∞∑
n=0

(an+1 − an)aβn+1µ([an,∞))

≤ K
∞∑
n=0

αnµ([a0,∞)) =
K

1− α
µ([x,∞)),

where K = sup (an+1−an)aβn+1 = h sup (an+1/an)
β = h sup (1+h/aβ+1

n )β ≤
h(1+h/mβ+1)β . We can proceed analogously to obtain the condition on the
left tail.

Lemma 2.1. Let µ∈Mβ(m,σ
β+1). Then for all functions f : R→ [0,∞)

which are nonincreasing for x ≤ x0 and nondecreasing for x ≥ x0 (for some
x0 ∈ [−∞,∞]) we have

∞�

m̃

f(x)xβµ([x,∞)) dx ≤ σβ+1
�

R

f(x) dµ(x),

where m̃ = m ∨ ((2β)1/(β+1)σ) + 2σβ+1/(m ∨ ((2β)1/(β+1)σ))β.
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Proof. First notice that the inequalities of Definition 1.1 are also satisfied
for sets of the form (x,∞), x ≥ m. We have

∞�

m̃

f(x)xβµ([x,∞)) dx =

∞�

m̃

∞�

0

1{s≤f(x)}x
βµ([x,∞)) ds dx(2.1)

=

∞�

0

ν+({x ≥ m̃ : f(x) ≥ s}) ds.

The set A = {x ≥ m̃ : f(x) ≥ s} is either a (possibly empty) half-line
contained in [m̃,∞] or a disjoint union of such a half-line and an interval I
with left end equal to m̃. In the former case we have

ν+(A) ≤ σβ+1µ(A) ≤ σβ+1µ({x ∈ R : f(x) ≥ s}).
In the latter case we denote the right end of I by t. Let a = m ∨

((2β)1/(β+1)σ), so that m̃ = a+ 2σβ+1/aβ . Since t ≥ m̃ ≥ a we obtain

ν+(A) ≤ ν+([m̃,∞)) ≤ σβ+1µ([m̃,∞)) ≤ σβ+1µ([a, m̃))

≤ σβ+1µ([a, t)) ≤ σβ+1µ({x ≤ t : f(x) ≥ s}),

where the second inequality follows from the assumption µ ∈Mβ(m,σ
β+1),

the third from Proposition 1.2 and the definition of m̃ (which imply that
µ([a, m̃)) = µ([a,∞))− µ([m̃,∞)) ≥ µ([m̃,∞))), and the last one from the
observation that x0 ≥ t and thus the function f is nonincreasing for x ≤ t.

Hence, in both cases we have ν+(A) ≤ σβ+1µ({x ∈ R : f(x) ≥ s}). Now
we can write

σβ+1
∞�

0

µ({x ∈ R : f(x) ≥ s}) ds = σβ+1
�

R

f(x) dµ(x),

which together with (2.1) ends the proof.

Lemma 2.2. If X is a random variable such that L(X) ∈ Mβ(m,σ
β+1)

then P(|X| ≥ t) ≤ C1(β,m, σ)e
−tβ+1/C2(β,m,σ) for all t ≥ 0.

Proof. Obviously it is sufficient to prove the inequality for t ≥ 4m. Define
continuous functions

g(x) =

∞�

x

yβP(X ≥ y) dy and f(z) =

∞�

z

xβg(x) dx.

By the definition ofMβ(m,σ
β+1), for x ≥ m we have

g(x) ≤ σβ+1P(X ≥ x).
Thus, for z ≥ m,

f(z) =

∞�

z

xβg(x) dx ≤
∞�

z

xβσβ+1P(X ≥ x) dx = σβ+1g(z).
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We can rewrite this as

f ′(z) ≤ − 1

σβ+1
zβf(z), z ≥ m,

which gives f(z) ≤ C exp(−zβ+1/((β + 1)σβ+1)) with C depending only on
β, m and σβ+1 (note that f(m) ≤ σ2β+2). Now, as g is nonincreasing, we
have f(z) ≥

	2z
z yβg(y) dy ≥ zβ+1g(2z) and hence for z ≥ m we get

g(2z) ≤ f(z)

zβ+1
≤ C exp(−zβ+1/((β + 1)σβ+1))

zβ+1
.

Similarly

P(X ≥ 4x) ≤ g(2x)

(2x)β+1
≤ C exp(−xβ+1/((β + 1)σβ+1))

2β+1x2β+2

for x ≥ m.
We can analogously deal with the lower tail.

The next two lemmas contain the core of our argument and are coun-
terparts of Lemmas 4 and 3 in [1]. While Lemma 2.3 follows quite closely
the argument from [1], Lemma 2.4 requires for β < 1 a significantly new
approach.

Lemma 2.3. Let ϕ : R→ R be a smooth convex Lipschitz function, non-
increasing on (−∞, 0), and X a random variable with L(X) ∈Mβ(m,σ

β+1).
Then there exists a constant C3(β,m, σ) such that

�

{(x,y)∈R2:xy≤0)}

ϕ′(x)ϕ′(y)eϕ(y)P(X ≤ x ∧ y)P(X ≥ x ∨ y) dx dy

≤ C3(β,m, σ)Eϕ′(X)2eϕ(X).

Proof. For β > 0 we will assume without loss of generality that m ≥ 1.
Let m̃ be the constant defined in Lemma 2.1 (note that for β > 0, m̃ > 1).
For x < 0 < y we have either ϕ′(x)ϕ′(y) ≤ 0 or ϕ′(x) ≤ ϕ′(y) < 0 and
ϕ(x) ≥ ϕ(y), so

0�

−∞

∞�

0

ϕ′(x)ϕ′(y)eϕ(y)P(X ≤ x)P(X ≥ y) dy dx

≤
0�

−∞

∞�

0

ϕ′(x)2eϕ(x)P(X ≤ x)P(X ≥ y) dy dx

≤ C(β,m, σ)
0�

−∞
ϕ′(x)2eϕ(x)P(X ≤ x) dx,
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where the last inequality follows from the fact that by Lemma 2.2,
∞�

0

P(X ≥ y) dy = EX+ ≤ C(β,m, σ).

The integral over the set where x > 0 > y can be treated similarly, namely
we have

∞�

0

0�

−∞
ϕ′(x)ϕ′(y)eϕ(y)P(X ≤ y)P(X ≥ x) dy dx

≤
∞�

0

0�

−∞
ϕ′(y)2eϕ(y)P(X ≤ y)P(X ≥ x) dy dx

≤ C(β,m, σ)
0�

−∞
ϕ′(y)2eϕ(y)P(X ≤ y) dy.

Now, by Lemma 2.1 (note that −X ∈ Mβ(m,σ
β+1) and the function x 7→

ϕ′(−x)2eϕ(−x) is nonincreasing for x ≤ x0 and nondecreasing for x ≥ x0 for
some x0 ∈ [−∞, 0]),

−m̃�

−∞
ϕ′(x)2eϕ(x)P(X ≤ x) dx ≤

−m̃�

−∞
ϕ′(x)2eϕ(x)(−x)βP(X ≤ x) dx

≤ σβ+1Eϕ′(X)2eϕ(X).

Moreover
0�

−m̃

ϕ′(x)2eϕ(x)P(X ≤ x) dx = E
0�

−m̃

ϕ′(x)2eϕ(x)1{X≤x} dx

≤ m̃Eϕ′(X)2eϕ(X),

where the last inequality follows from the fact that ϕ′(x)2eϕ(x)≤ϕ′(X)2eϕ(X)

for X ≤ x ≤ 0.

Lemma 2.4. Let ϕ : R → R be a smooth convex Lipschitz function and
X a random variable with L(X) = µ ∈ Mβ(m,σ

β+1). If β > 0, then there
exists a constant C4(β,m, σ) such that

(2.2)
∞�

0

∞�

0

ϕ′(x)ϕ′(y)eϕ(y)P(X ≤ x ∧ y)P(X ≥ x ∨ y) dx dy

≤ C4(β,m, σ)E(|ϕ′(X)|2 ∨ |ϕ′(X)|(β+1)/β)eϕ(X).

If β = 0 and ϕ′ ≤ 1/(2(m+3σ)), then there exists a constant C4(β = 0,m, σ)
such that
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∞�

0

∞�

0

ϕ′(x)ϕ′(y)eϕ(y)P(X ≤ x ∧ y)P(X ≥ x ∨ y) dx dy

≤ C4(β = 0,m, σ)E|ϕ′(X)|2eϕ(X).

Proof. Let us first notice that the left-hand side of (2.2) is equal to
∞�

0

y�

0

ϕ′(x)ϕ′(y)(eϕ(x) + eϕ(y))P(X ≤ x)P(X ≥ y) dx dy

(since on {(x, y) : x > y} we can make a change of variables swapping x
and y).

Since ϕ is convex there exists a point x0 (possibly 0 or infinity) at which
ϕ attains its infimum on [0,∞]. Let m̃ be the number defined in Lemma 2.1.
Obviously, for β > 0 we can assume that m̃ ≥ 1 (note that we do not change
the value of m̃ in the case β = 0). We split the outer integral into integrals
over the intervals (0, x0 ∧ m̃), (x0 ∧ m̃, x0 ∨ m̃) and (x0 ∨ m̃,∞).

Step 1. Since ϕ is nonincreasing on the interval (0, x0 ∧ m̃) we have

ϕ′(x)ϕ′(y)(eϕ(x) + eϕ(y)) ≤ 2ϕ′(x)2eϕ(x)

for 0 ≤ x ≤ y ≤ x0 ∧ m̃. Therefore

(2.3)
x0∧m̃�

0

y�

0

ϕ′(x)ϕ′(y)(eϕ(x) + eϕ(y))P(X ≤ x)P(X ≥ y) dx dy

≤ 2

x0∧m̃�

0

y�

0

ϕ′(x)2eϕ(x)P(X ≤ x)P(X ≥ y) dx dy

≤ 2m̃E
x0∧m̃�

0

ϕ′(x)2eϕ(x)1{X≤x} dx ≤ 2m̃2Eϕ′(X)2eϕ(X),

where the last inequality follows from the fact that ϕ′(x)2eϕ(x)≤ϕ′(X)2eϕ(X)

for X ≤ x ≤ x0.
Step 2. To estimate the integral over the interval (x0 ∧ m̃, x0 ∨ m̃) we

consider two cases. If x0 < m̃, then

(2.4)
m̃�

x0

y�

0

ϕ′(x)ϕ′(y)(eϕ(x) + eϕ(y))P(X ≤ x)P(X ≥ y) dx dy

≤ 2

m̃�

x0

y�

x0

ϕ′(y)2eϕ(y)P(X ≥ y) dx dy

≤ 2m̃E
m̃�

x0

ϕ′(y)2eϕ(y)1{X≥y} dy ≤ 2m̃2Eϕ′(X)2eϕ(X).
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If x0 > m̃, then as above (the third last passage below follows by Defi-
nition 1.1 and the last by Lemma 2.1; for the third passage recall also that
m̃ ≥ 1 for β > 0)

(2.5)
x0�

m̃

y�

0

ϕ′(x)ϕ′(y)(eϕ(x) + eϕ(y))P(X ≤ x)P(X ≥ y) dx dy

≤ 2

x0�

m̃

y�

0

ϕ′(x)2eϕ(x)P(X ≤ x)P(X ≥ y) dx dy

= 2

x0�

0

x0�

x∨m̃

ϕ′(x)2eϕ(x)P(X ≤ x)P(X ≥ y) dy dx

≤ 2

x0�

0

ϕ′(x)2eϕ(x)P(X ≤ x)
∞�

x∨m̃

yβP(X ≥ y) dy dx

≤ 2σβ+1
x0�

0

ϕ′(x)2eϕ(x)P(X ≤ x)P(X ≥ x) dx

≤ 2σβ+1
(m̃�

0

ϕ′(x)2eϕ(x)P(X ≤ x) dx+

x0�

m̃

ϕ′(x)2eϕ(x)xβP(X ≥ x) dx
)

≤ 2σβ+1(m̃+ σβ+1)Eϕ′(X)2eϕ(X).

Step 3. It remains to estimate the integral over (x0 ∨ m̃,∞). In what
follows we can assume that x0 < ∞ and ϕ(x0) = 0 (since if we subtract
ϕ(x0) from ϕ, both sides of (2.2) will change by a factor of exp(−ϕ(x0))).
Fix δ = 1/(2(m̃ + σβ+1)) and let x1 = sup{x > x0 : ϕ′(x) ≤ δ} (with
the convention that x1 = x0 if ϕ′(x0) > δ). Since ϕ′(x) ≤ 0 ≤ ϕ′(y) for
0 < x ≤ x0 ≤ y we have

(2.6)
∞�

x0∨m̃

y�

0

ϕ′(x)ϕ′(y)(eϕ(x) + eϕ(y))P(X ≤ x)P(X ≥ y) dx dy

≤
∞�

x0∨m̃

y�

x0

ϕ′(x)ϕ′(y)(eϕ(x) + eϕ(y))P(X ≤ x)P(X ≥ y) dx dy

≤ 2

∞�

x0∨m̃

y�

x0

ϕ′(x)ϕ′(y)eϕ(y)P(X ≥ y) dx dy

= 2

∞�

x0∨m̃

ϕ(y)ϕ′(y)eϕ(y)P(X ≥ y) dy
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= 2

x1∨m̃�

x0∨m̃

ϕ(y)ϕ′(y)eϕ(y)P(X ≥ y) dy + 2

∞�

x1∨m̃

ϕ(y)ϕ′(y)eϕ(y)P(X ≥ y) dy.

We will estimate the last two integrals separately.

Step 3a. To estimate the first integral we define a convex function by

ϕ̃(x) =

{
ϕ(x) if x ≤ x1,
ϕ(x1) + (x− x1)δ if x > x1.

The function ϕ̃ is C1-smooth and 0 ≤ ϕ̃′(x) ≤ δ for x ∈ (x0,∞). Moreover
ϕ(x) = ϕ̃(x) and ϕ′(x) = ϕ̃′(x) for x ∈ (x0∨m̃, x1∨m̃) (since this interval is
contained in (x0, x1) or is an empty set). Also 0 ≤ ϕ̃(x) ≤ ϕ(x) and ϕ̃′(x)2 ≤
ϕ′(x)2 for x ∈ R. Hence (the third inequality follows from Lemma 2.1)

(2.7)
x1∨m̃�

x0∨m̃

ϕ(y)ϕ′(y)eϕ(y)P(X ≥ y) dy

≤
∞�

x0∨m̃

ϕ̃(y)ϕ̃′(y)eϕ̃(y)P(X ≥ y) dy

≤ 1

2

∞�

x0∨m̃

(ϕ̃(y)2 + ϕ̃′(y)2)eϕ̃(y)yβP(X ≥ y) dy

≤ σβ+1

2

∞�

x0

(ϕ̃(y)2 + ϕ̃′(y)2)eϕ̃(y) dµ(y)

≤ σβ+1

2
Eϕ̃(X)2eϕ̃(X)1{X≥x0} +

σβ+1

2
Eϕ′(X)2eϕ(X).

In order to complete the estimation of the first integral we have to deal
with the expression Eϕ̃(X)2eϕ̃(X)1{X≥x0}. Using integration by parts (recall
that ϕ̃(x0) = 0), the Cauchy–Schwarz inequality and the fact that ϕ̃′ is
bounded by δ we can write

(2.8) Eϕ̃(X)2eϕ̃(X)1{X≥x0}

= 2

∞�

x0

ϕ̃′(x)ϕ̃(x)eϕ̃(x)P(X ≥ x) dx+

∞�

x0

ϕ̃(x)2ϕ̃′(x)eϕ̃(x)P(X ≥ x) dx

≤ 2
(∞�
x0

ϕ̃(x)2eϕ̃(x)P(X ≥ x) dx
)1/2(∞�

x0

ϕ̃′(x)2eϕ̃(x)P(X ≥ x) dx
)1/2

+ δ

∞�

x0

ϕ̃(x)2eϕ̃(x)P(X ≥ x) dx.



72 R. Adamczak and M. Strzelecki

We can now use Lemma 2.1 to estimate the above integrals by expressions
of the type Eϕ̃(X)2eϕ̃(X)1{X≥x0} or Eϕ′(X)2eϕ(X). For example

∞�

x0

ϕ̃(x)2eϕ̃(x)P(X ≥ x) dx

≤ E
x0∨m̃�

x0

ϕ̃(x)2eϕ̃(x)1{X≥x} dx+

∞�

x0∨m̃

ϕ̃(x)2eϕ̃(x)xβP(X ≥ x) dx

≤ (m̃+ σβ+1)Eϕ̃(X)2eϕ̃(X)1{X≥x0},

and similarly (at the end we skip the indicator function and replace ϕ̃ by ϕ)
∞�

x0

ϕ̃′(x)2eϕ̃(x)P(X ≥ x) dx ≤ (m̃+ σβ+1)Eϕ′(X)2eϕ(X)

(note that we use the monotonicity of ϕ̃, ϕ̃′ to ensure that the assumptions
of Lemma 2.1 are satisfied). Plugging this into (2.8) gives us

(2.9) Eϕ̃(X)2eϕ̃(X)1{X≥x0}

≤ 2(m̃+ σβ+1)(Eϕ̃(X)2eϕ̃(X)1{X≥x0})
1/2(Eϕ′(X)2eϕ(X))1/2

+ δ(m̃+ σβ+1)Eϕ̃(X)2eϕ̃(X)1{X≥x0},

which we solve with respect to Eϕ̃(X)2eϕ̃(X)1{X≥x0} and (since δ(m̃+σβ+1)
= 1/2) arrive at

Eϕ̃(X)2eϕ̃(X)1{X≥x0} ≤ C(β,m, σ)Eϕ
′(X)2eϕ(X).

This allows us to finish the computations of (2.7) and finally conclude that

(2.10)
x1∨m̃�

x0∨m̃

ϕ(y)ϕ′(y)eϕ(y)P(X ≥ y) dy ≤ C(β,m, σ)Eϕ′(X)2eϕ(X).

This ends the estimation of the first integral from (2.6).

Step 3b. To complete the proof we have to estimate the second integral
from (2.6). Notice that if β = 0, then x1 =∞ since by assumption

ϕ′ ≤ δ = 1/(2(m̃+ σ)) = 1/(2(m+ 3σ))

and in this case that integral disappears. Therefore we can assume that
β > 0.

Fix ε > 0. Since ϕ(x0) = 0, by convexity

ϕ(y)β ≤ ϕ′(y)β(y − x0)β ≤ ϕ′(y)βyβ.
Using Lemma 2.1 and Young’s inequality with exponents 1/(1− β) and 1/β
we get
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(2.11)
∞�

x1∨m̃

ϕ(y)ϕ′(y)eϕ(y)P(X ≥ y) dy

≤
∞�

m̃

1{y∈(x1∨m̃,∞)}ϕ(y)
1−βϕ′(y)1+βeϕ(y)yβP(X ≥ y) dy

≤ σβ+1
�

R

1{y∈(x1∨m̃,∞)}ϕ(y)
1−βϕ′(y)1+βeϕ(y) dµ(y)

≤ ε(1− β)σβ+1Eϕ(X)eϕ(X)1{X≥x1∨m̃}

+ σβ+1C(ε, β)E|ϕ′(X)|(1+β)/βeϕ(X).

We will estimate Eϕ(X)eϕ(X)1{X≥x1∨m̃} by a sum of expressions which
appear in the assertion of the lemma and the integral

∞�

x1∨m̃

ϕ(y)ϕ′(y)eϕ(y)P(X ≥ y) dy.

Then we will pick ε = ε(β,m, σ) small enough to get from (2.11) an estimate
of this integral, which will end the estimation of the second integral on the
right-hand side of (2.6), and the proof of Lemma 2.4.

Integration by parts gives

Eϕ(X)eϕ(X)1{X≥x1∨m̃} = ϕ(x1 ∨ m̃)eϕ(x1∨m̃)P(X ≥ x1 ∨ m̃)(2.12)

+

∞�

x1∨m̃

ϕ′(y)eϕ(y)P(X ≥ y) dy

+

∞�

x1∨m̃

ϕ(y)ϕ′(y)eϕ(y)P(X ≥ y) dy,

so it remains to estimate
	∞
x1∨m̃ ϕ

′(y)eϕ(y)P(X ≥ y) dy and the boundary
term ϕ(x1∨ m̃)eϕ(x1∨m̃)P(X ≥ x1∨ m̃). Since m̃ ≥ 1 and for x ≥ x1 we have
ϕ′(x) ≥ δ, we can write

∞�

x1∨m̃

ϕ′(y)eϕ(y)P(X ≥ y) dy ≤ 1

δ

∞�

x1∨m̃

ϕ′(y)2eϕ(y)yβP(X ≥ y) dy(2.13)

≤ σβ+1

δ
Eϕ′(X)2eϕ(X).

As for the boundary term, we write it as

(2.14) E
(
(ϕ(x1 ∨ m̃)eϕ(x1∨m̃) − eϕ(x1∨m̃) + 1) + (eϕ(x1∨m̃) − 1)

)
1{X≥x1∨m̃}.
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It is easy to deal with the second part, since

(2.15) E(eϕ(x1∨m̃) − 1)1{X≥x1∨m̃} ≤ Eeϕ(x1∨m̃)1{X≥x1∨m̃}

≤ 1

δ2
Eϕ′(x1 ∨ m̃)2eϕ(x1∨m̃)1{X≥x1∨m̃} ≤

1

δ2
Eϕ′(X)2eϕ(X).

To estimate the first part, we use the fact that (ϕeϕ− eϕ+1)′ = ϕ′ϕeϕ and
ϕ(x0)e

ϕ(x0) − eϕ(x0) + 1 = 0. Therefore

(2.16) E(ϕ(x1 ∨ m̃)eϕ(x1∨m̃) − eϕ(x1∨m̃) + 1)1{X≥x1∨m̃}

= E
x1∨m̃�

x0

ϕ′(y)ϕ(y)eϕ(y) dy 1{X≥x1∨m̃}

≤
x1∨m̃�

x0

ϕ′(y)ϕ(y)eϕ(y)P(X ≥ y) dy.

Notice that we already estimated
	x1∨m̃
x0∨m̃ ϕ

′(y)ϕ(y)eϕ(y)P(X ≥ y) dy in Step
3a (see (2.10)), so it is enough to estimate the integral over (x0, x0 ∨ m̃). By
convexity of ϕ we get

(2.17)
x0∨m̃�

x0

ϕ′(y)ϕ(y)eϕ(y)P(X ≥ y) dy

≤
x0∨m̃�

x0

ϕ′(y)2(y − x0)eϕ(y)P(X ≥ y) dy

≤ m̃E
x0∨m̃�

x0

ϕ′(y)2eϕ(y)1{X≥y} dy ≤ m̃2Eϕ′(X)2eϕ(X),

where the last inequality follows from the fact that ϕ′(X)2eϕ(X)≥ϕ′(y)2eϕ(y)
for X ≥ y ≥ x0. This (together with (2.14)–(2.16)) completes the estimation
of the boundary term from (2.12), i.e. we get

ϕ(x1 ∨ m̃)eϕ(x1∨m̃)P(X ≥ x1 ∨ m̃) ≤
(

1

δ2
+ m̃2 +C(β,m, σ)

)
Eϕ′(X)2eϕ(X).

Therefore we get from (2.12), (2.13) the announced estimate

Eϕ(X)eϕ(X)1{X≥x1∨m̃} ≤ C(β,m, σ)Eϕ
′(X)2eϕ(X)

+

∞�

x1∨m̃

ϕ(y)ϕ′(y)eϕ(y)P(X ≥ y) dy.

As explained above, plugging this into (2.11) and taking ε small enough, we
deduce that
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(2.18)
∞�

x1∨m̃

ϕ(y)ϕ′(y)eϕ(y)P(X ≥ y) dy

≤ C(β,m, σ)E(|ϕ′(X)|(1+β)/β + ϕ′(X)2)eϕ(X)

which ends the estimation of the second integral on the right-hand side of
(2.6) (and finishes Step 3b and also Step 3).

Bringing together the above results of Step 1 (see (2.3)), Step 2 (see (2.4),
(2.5)) and Step 3 (see (2.6), (2.10) and (2.18)) completes the proof of the
lemma.

2.2. Proofs of Theorem 1.3 and Corollaries 1.6–1.8

Proof of Theorem 1.3. We will follow Ledoux’s approach for bounded ran-
dom variables. Due to the tensorization property of the entropy (see e.g. [16,
Chapter 5]) it is enough to prove the theorem for n = 1. Also, by a standard
approximation argument, we can restrict our attention to convex Lipschitz
functions only. Let Y be an independent copy of X. By Jensen’s inequality
we have

Ent eϕ(X) = Eϕ(x)eϕ(X) − Eeϕ(X) logEeϕ(X)

≤ 1

2
E(ϕ(X)− ϕ(Y ))(eϕ(X) − eϕ(Y ))

= E(ϕ(X)− ϕ(Y ))(eϕ(X) − eϕ(Y ))1{X≤Y }

= E
Y�

X

ϕ′(x)dx

Y�

X

ϕ′(y)eϕ(y) dy 1{X≤Y }

=
�

R

�

R

ϕ′(x)ϕ′(y)eϕ(y)P(X ≤ x ∧ y)P(X ≥ x ∨ y) dx dy.

We split the double integral into four integrals depending on the signs of x
and y and use Lemmas 2.4 and 2.3 to obtain the desired inequality—note that
L(−X) ∈Mβ(m,σ

β+1), so we can assume that the infimum of ϕ is attained
at some point of [0,∞] (possibly at ∞), which in particular means that the
assumptions of Lemma 2.3 are satisfied. Moreover, we can use Lemma 2.4
to handle the integration over (−∞, 0)2 (again by a change of variables and
the fact that L(−X) ∈Mβ(m,σ

β+1)).

In the proofs of the corollaries we will use some additional notation and
observations.

Remark 2.5. If we substitute εϕ instead of ϕ into (1.3) and divide both
sides by ε2 tending to zero, we recover the Poincaré inequality for convex
functions:

Varϕ(X1, . . . , Xn) ≤ 2C(β,m, σ)E|∇ϕ(X1, . . . , Xn)|2.
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A standard approximation argument shows that also for L-Lipschitz (but
not necessarily smooth) convex functions we have

Varϕ(X1, . . . , Xn) ≤ 2C(β,m, σ)L2.

Definition 2.6. For β ∈ [0, 1] let Hβ : R→ [0,∞] be the function given
by

Hβ(t) = max{t2, |t|(β+1)/β}

and let H∗β : R→ R be its Legendre transform.

For β = 0 the definition of H0 should be understood as

H0(t) = t21{|t|≤1} +∞1{|t|>1}.

Similarly, all indeterminate expressions below should be interpreted as ap-
propriate limits for β → 0+. The next lemma sums up some properties of
the functions Hβ and H∗β .

Lemma 2.7.

(a) The function H∗β is given by the formula

H∗β(t) =


t2/4 if 0 ≤ |t| ≤ 2,
|t| − 1 if 2 ≤ |t| ≤ (β + 1)/β,
1

β

(
β

β + 1
|t|
)1+β

if |t| ≥ (β + 1)/β.

(b) We have

H∗β(t) ≥
3

16
min{t2, |t|1+β}.

(c) The derivative of the function H∗β is given by the formula

d

dt
H∗β(t) =


|t| sgn(t)/2 if 0 ≤ |t| ≤ 2,
sgn(t) if 2 ≤ |t| ≤ (β + 1)/β,(

β

β + 1
|t|
)β

sgn(t) if |t| ≥ (β + 1)/β.

(d) We have
d

dt
H∗β(t) ≤

∣∣∣∣ ddtH∗β(t)
∣∣∣∣ ≤ min{|t|, |t|β}.

Sketch of the proof. A straightforward calculation gives (a); (c) and (d)
follow directly from it. To prove (b), first notice that for every β ∈ [0, 1)

there exists exactly one t0 > 0 such that t20/4 = 1
β

( β
β+1 t0

)1+β . Since
inf

β∈[0,1]

t0 − 1

t20/4
= inf

t∈[2,4]

t− 1

t2/4
= 3/4
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and the functions t2 and |t|1+β are convex, we conclude that

H∗β(t) ≥
3

4
min

{
t2/4,

1

β

(
β

β + 1
|t|
)1+β}

≥ 3

16
min{t2, |t|1+β},

where we have also used the fact that

inf
β∈[0,1]

1

β

(
β

β + 1

)1+β

= 1/4.

Proof of Corollary 1.6 for β > 0. We follow the classical Herbst argument
(see e.g. [16]). Denote

A = sup{|∇ϕ(x)| : x ∈ Rn}, B = sup{‖∇ϕ(x)‖(β+1)/β : x ∈ Rn}
and for λ > 0 define

Φ(λ) = Eeλϕ(X1,...,Xn).

Then
λΦ′(λ) = Eλϕ(X1, . . . , Xn)e

λϕ(X1,...,Xn)

and hence

λΦ′(λ)− Φ(λ) logΦ(λ) = Ent eλϕ(X1,...,Xn)

≤ CE
(
(λ|∇ϕ(X1, . . . , Xn)|)2

∨ (λ‖∇ϕ(X1, . . . , Xn)‖(β+1)/β)
(β+1)/β

)
eλϕ(X1,...,Xn)

≤ C((Aλ)2 ∨ (Bλ)(β+1)/β)Φ(λ).

After dividing both sides by λ2Φ(λ) we can rewrite this as(
1

λ
logΦ(λ)

)′
≤ C

(
(Aλ)2 ∨ (Bλ)(β+1)/β

)
/λ2.

Since the right-hand side is an increasing function of λ and

lim
λ→0+

1

λ
logΦ(λ) = Eϕ(X1, . . . , Xn),

we deduce from the last inequality that
1

λ
logΦ(λ) ≤ Eϕ(X1, . . . , Xn) + C((Aλ)2 ∨ (Bλ)(β+1)/β)/λ,

which is equivalent to

Eeλϕ(X1,...,Xn) ≤ exp
(
λEϕ(X1, . . . , Xn) + C((Aλ)2 ∨ (Bλ)(β+1)/β)

)
.

Therefore from Chebyshev’s inequality we get

P
(
ϕ(X1, . . . , Xn) ≥ t+ Eϕ(X1, . . . , Xn)

)
≤ Eeλϕ(X1,...,Xn)

exp(λEϕ(X1, . . . , Xn) + λt)

≤ exp
(
−λt+ C((Aλ)2 ∨ (Bλ)(β+1)/β))

)
.
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Now we can optimize the right-hand side with respect to λ. Let K and L be
such that A = K1/2L, B = Kβ/(β+1)L. We have

(Aλ)2 ∨ (Bλ)(β+1)/β = K((Lλ)2 ∨ (Lλ)(β+1)/β) = KHβ(Lλ)

and hence
P
(
ϕ(X1, . . . , Xn) ≥ t+ Eϕ(X1, . . . , Xn)

)
≤ exp(−CKH∗β(t/CKL)).

Using Lemma 2.7 and the definitions of K and L we get

P
(
ϕ(X1, . . . , Xn) ≥ t+ Eϕ(X1, . . . , Xn)

)
≤ exp

(
− 3

16
min

{
t2

CA2
,

t1+β

CβB1+β

})
,

which is the assertion of the lemma.
Proof of Corollary 1.6 for β = 0. We proceed exactly as in the case

β > 0, with the only difference that we have the additional constraint
λ ≤ 1/(2B(m+ 3σ))

since the gradient of the function λϕ has to be small. We arrive at
P
(
ϕ(X1, . . . , Xn) ≥ t+ Eϕ(X1, . . . , Xn)

)
≤ exp(−λt+ CA2λ2).

Now we optimize the right-hand side with respect to λ ∈ [0, 1/(2B(m+3σ))].
For t/(2CA2) > 1/(2B(m+ 3σ)) it is best to take λ = 1/(2B(m+ 3σ)), for
which the polynomial becomes
−λt+ CA2λ2 = −t/(2B(m+ 3σ)) + CA2/(2B(m+ 3σ))2

≤ −t/(4B(m+ 3σ)) = −min{t/(4B(m+ 3σ)), t2/(4CA2)}.
For t/(2CA2) ≤ 1/(2B(m+ 3σ)) we set λ = t/(2CA2), which gives
−λt+ CA2λ2 = −t2/(2CA2) + t2/(4CA2)

≤ −t2/(4CA2) = −min{t/(4B(m+ 3σ)), t2/(4CA2)}.
The assertion follows from those two inequalities.

Proof of Corollary 1.7. We will consider only the case β > 0; the case
β = 0 is similar. The function ϕ is differentiable almost everywhere (with
respect to the Lebesgue measure) and

〈∇ϕ(x), h〉 ≤ ϕ(x+ h)− ϕ(x) a.e.
After plugging h = ∇ϕ(x) and h = (|∂iϕ(x)|1/β sgn(∂iϕ(x)))ni=1, and using
the Lipschitz conditions, we arrive at

‖∇ϕ(x)‖22 ≤ L2
2, ‖∇ϕ(x)‖1+β(β+1)/β ≤ L

1+β
1+β a.e.

Let ϕε be the convolution of ϕ and a Gaussian kernel, i.e.
ϕε(x) = Eϕ(x+

√
εG),

where G ∼ N (0, I). The function ϕε is smooth and convex, and inherits
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from ϕ the estimates of the gradient (which are now satisfied for all x ∈ Rn).
Therefore from Corollary 1.6 we get

P
(
ϕε(X1, . . . , Xn) ≥ t+ Eϕε(X1, . . . , Xn)

)
≤ exp

(
− 3

16
min

{
t2

CL2
2

,
t1+β

CβL1+β
1+β

})
.

Moreover |ϕε(x) − ϕ(x)| ≤ L2
√
εE‖G‖2 and hence ϕε converges uniformly

to ϕ as ε tends to zero. This observation ends the proof of the corollary.

Proof of Corollary 1.8. We give a detailed proof only for the case β > 0;
the case β = 0 is similar. Throughout the proof we denote by C(β,m, σ)
the constant from Theorem 1.3 and by xi, i = 1, . . . , n, the coordinates of
the vector x ∈ Rn. The function Φ(x) = infa∈A

∑n
i=1H

∗
β(xi − ai) is convex.

Therefore, the set

Ã = A+
{
x ∈ Rn :

n∑
i=1

H∗β(xi) < 3r/16
}
= {x ∈ Rn : Φ(x) < 3r/16}

is open and convex.
By Rademacher’s theorem, the function Φ is differentiable almost every-

where (with respect to the Lebesgue measure) and hence we can choose a
dense set D ⊂ Ã consisting of points for which ∇Φ exists. We define

ϕ(x) = sup
y∈D
{Φ(y) + 〈∇Φ(y), x− y〉}.

This function is convex as a supremum of linear functions. Moreover ϕ ≤ Φ
and ϕ = Φ on the set cl Ã = {x ∈ Rn : Φ(x) ≤ 3r/16}.

Note that the set {x ∈ Rn : ϕ(x) < 3r/16} is open and convex, contains Ã
(on Ã we have ϕ = Φ < 3r/16), and is disjoint from cl Ã \ Ã = {x ∈ Rn :

Φ(x) = 3r/16} (on cl Ã \ Ã we have ϕ = Φ = 3r/16). Therefore we have
{x ∈ Rn : ϕ(x) < 3r/16} = Ã and hence

(2.19) {x ∈ Rn : ϕ(x) < 3r/16} = A+
{
x ∈ Rn :

n∑
i=1

H∗β(xi) < 3r/16
}

⊂ A+
{
x ∈ Rn :

n∑
i=1

x2i ∧ |xi|1+β < r
}
⊂ A+ r1/2B2 + r1/(1+β)B1+β,

where we have used Lemma 2.7 and the observation that if
∑n

i=1 x
2
i ∧

|xi|1+β < r, then x can be written as y + z with y ∈ r1/2B2 and z ∈
r1/(1+β)B1+β (since we can set yi = xi if x2i < |xi|1+β , yi = 0 otherwise, and
zi = xi if x2i ≥ |xi|1+β , zi = 0 otherwise).
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We will show that

{x ∈ Rn : ϕ(x) < r/16 + Eϕ(X1, . . . , Xn)} ⊂ {x ∈ Rn : ϕ(x) < 3r/16}

for r large enough (greater than some constant depending only on
C(β,m, σ)), and that

|ϕ(x)− ϕ(y)| ≤ L2‖x− y‖2, |ϕ(x)− ϕ(y)| ≤ L1+β‖x− y‖1+β

with

L2
2 = sup

y∈D
‖∇Φ(y)‖22 ≤ r, L1+β

1+β = sup
y∈D
‖∇Φ(y)‖1+β(β+1)/β ≤ r

β.

By Corollary 1.7 the above claims together with (2.19) will give

P
(
(X1, . . . , Xn) /∈ A+ r1/2B2 + r1/(1+β)B1+β

)
≤ exp(−C ′r)

for r large enough and some constant C ′ depending only on C(β,m, σ) and β.
By decreasing C ′ we will be able to guarantee that this inequality holds for
all r > 0 (recall that P((X1, . . . , Xn) ∈ A) ≥ 1/2).

We estimate the Lipschitz constants first. For y ∈ D ⊂ Ã we can choose
ay ∈ clA such that

Φ(y) = inf
a∈A

n∑
i=1

H∗β(yi − ai) =
n∑
i=1

H∗β(yi − a
y
i ).

Note that then y − ay ∈ {x ∈ Rn :
∑n

i=1H
∗
β(xi) ≤ 3r/16}. Let ei be the ith

vector of the canonical basis in Rn. We have

Φ(y + tei)− Φ(y) = inf
a∈A

n∑
j=1

H∗β(yj + t1{i=j} − aj)−
n∑
j=1

H∗β(yj − a
y
j )

≤ H∗β(yi + t− ayi )−H
∗
β(yi − a

y
i ).

The function t 7→ H∗β(yi + t− ayi )−H∗β(yi − a
y
i )− Φ(y + tei) + Φ(y) attains

its minimum for t = 0 and hence ∂iΦ(y) = (H∗β)
′(yi− ayi ). Using Lemma 2.7

we arrive at |∂iΦ(y)| ≤ |yi − ayi | ∧ |yi − a
y
i |β . Therefore,

‖∇Φ(y)‖22 ≤
n∑
i=1

(|yi − ayi | ∧ |yi − a
y
i |
β)2

≤
n∑
i=1

|yi − ayi |
2 ∧ |yi − ayi |

1+β ≤ 16
n∑
i=1

H∗β(yi − a
y
i )/3 ≤ r,

and similarly
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‖∇Φ(y)‖1+β(β+1)/β ≤
( n∑
i=1

|yi − ayi |
(β+1)/β ∧ |yi − ayi |

1+β
)β

≤
( n∑
i=1

|yi − ayi |
2 ∧ |yi − ayi |

1+β
)β

≤
(
16

n∑
i=1

H∗β(yi − a
y
i )/3

)β
≤ rβ.

This finishes the estimation of the Lipschitz constants.
In order to show that for r large enough we have

{x ∈ Rn : ϕ(x) < r/16 + Eϕ(X1, . . . , Xn)} ⊂ {x ∈ Rn : ϕ(x) < 3r/16},
we claim that Eϕ(X1, . . . , Xn) ≤ r/8 for r > 28C(β,m, σ). Indeed, if this
were not the case, then we could write

1/2 ≤ P
(
ϕ(X1, . . . , Xn) ≤ 0

)
≤ P

(
ϕ(X1, . . . , Xn) ≤ Eϕ(X1, . . . , Xn)− r/8

)
≤ P

(
|ϕ(X1, . . . , Xn)− Eϕ(X1, . . . , Xn)| ≥ r/8

)
≤ 64Varϕ(X1, . . . , Xn)/r

2 ≤ 64 · 2C(β,m, σ)/r,
where the first inequality follows from the fact that on A we have ϕ = Φ
= 0, and the last from the fact that µ satisfies the Poincaré inequality (see
Remark 2.5) and ϕ is

√
r-Lipschitz. This yields a contradiction.

3. A link to transport inequalities. In this section we will present
several equivalent formulations of modified log-Sobolev inequalities for con-
vex functions in terms of transportation inequalities or τ -log-Sobolev in-
equalities, in the spirit of [13, Theorem 6.8]. We emphasize that our argu-
ments in this part of the article follow quite closely the approach in [13] (in
fact the authors of [13], while working with the classical convex log-Sobolev
inequality, i.e. β = 1, mention the possibility of extending their results to
more general cost functions). In particular we do not claim any novelty of
the methods we use.

Our main motivation for providing an equivalent formulation of modi-
fied log-Sobolev inequalities for all β ∈ [0, 1] is the hope that it may help
find a characterization of measures satisfying the inequalities in question.
In fact, one interesting observation which follows from our considerations is
that modified log-Sobolev inequalities are equivalent to formally stronger
results in which the entropy is replaced by a larger functional (see Re-
mark 3.4).

Since we will rely heavily on techniques developed by other authors, we
decided to present only the main steps and ideas of the proofs. We include
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numerous references to appropriate sources for the reader interested in all
technical details.

Before stating the actual results we have to introduce some notation
which we will use throughout this section.

For x = (x1, . . . , xn) ∈ Rn and β ∈ (0, 1] (we will treat the case β = 0
later) we define

H
(n)
β (x) =

n∑
i=1

Hβ(xi), H
(n)∗
β (x) =

n∑
i=1

H∗β(xi),

where H∗β is the Legendre transform of the function Hβ(s) = s2 ∨ |s|(β+1)/β

(see Definition 2.6 and Lemma 2.7). For t > 0, β ∈ (0, 1], and a function
f : Rn → R we define the infimum-convolution operator

Qtf(x) = inf
y∈Rn
{f(y) + tH

(n)∗
β ((x− y)/t)} ∈ [−∞,∞).

Let P1(Rn) denote the class of all probability measures on Rn with finite
first moment. If µ ∈ P1(Rn), we define the transport cost

T (µ|ν) = inf
π

{ �

Rn
H

(n)∗
β

(
x−

�

Rn
y dpx(y)

)
dν(x)

}
,

where the infimum is taken over all probability measures π on Rn×Rn with
the first marginal ν and the second µ; here px denotes the probability kernel
such that π(dxdy) = ν(dx)px(dy).

If f : Rn → R is bounded below by an affine function, we define for λ > 0,

Rλf(x) = inf
p

{ �

Rn
f(y) dp(y) + λH

(n)∗
β

(
x−

�

Rn
y dp(y)

)}
∈ [−∞,∞)

where the infimum is taken over all probability measures p ∈ P1(Rn). Note
that Rλf ≤ f .

Recall also that for two probability measures µ, ν on Rn the relative
entropy of ν with respect to µ is given by the formula

H(ν|µ) =
�

Rn
log

(
dν

dµ

)
dν

if ν is absolutely continuous with respect to µ; otherwise we set H(ν|µ)
= +∞.

The main result of this section provides a characterization of the modified
log-Sobolev inequalities with β ∈ (0, 1] for convex functions in terms of
transportation inequalities.

Proposition 3.1. Let X be an integrable random vector with values in
Rn and law µ. For β ∈ (0, 1] the following conditions are equivalent:
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(i) There exists b > 0 such that for all probability measures ν on Rn,
T (µ|ν) ≤ bH(ν|µ).

(ii) For all s > 0 we have Ees|X| < ∞ and there exist λ,D > 0 such
that

(3.1) Ent ef(X) ≤ DE(f(X)−Rλf(X))ef(X)

for all functions f : Rn → R such that Ef(X)ef(X) < ∞ and f is
bounded below by an affine function.

(iii) For all s > 0 we have Ees|X| <∞ and there exists C > 0 such that

(3.2) Ent eϕ(X) ≤ CEH(n)
β (∇ϕ(X))eϕ(X)

for all smooth convex Lipschitz functions ϕ : Rn → R.
(iv) For all s > 0 we have Ees|X| < ∞ and there exists B > 0 such

that for every t0 ∈ [0, B], every t > 0, and every convex Lipschitz
function ϕ : Rn → R bounded from below,

(3.3) ‖eQtϕ(X)‖k(t) ≤ ‖eϕ(X)‖k(0),

where k(t) = (1+B−1(t−t0))1{t≤t0}+(1+B−1β−1(t−t0))β1{t>t0}.
Here, for a positive random variable Z, we use the notation ‖Z‖0 =
exp(E logZ) and ‖Z‖k = (EZk)1/k if k 6= 0.

Moreover, in each of the above implications the constants in the conclusion
depend only on the constants in the premise (in particular they do not depend
on the dimension).

Remark 3.2. Using the terminology and notation introduced in [13], the
above proposition can be stated more briefly: (i) means that the transport
inequality T−c (b) holds (for the cost function c(x, p) = H

(n)∗
β (x−

	
Rn y dp(y));

see [13, Definition 5.1]), and (ii) is the τ -log-Sobolev inequality, denoted
(τ)-LSIc(λ,D) (for the same cost function; see [13, Definition 6.1]).

Remark 3.3. The exponential integrability of the norm in items (ii)–(iv)
is introduced to exclude heavy tailed measures for which the only exponen-
tially integrable convex functions are constants. Using the observation that
Rλf(x) = infy{ϕ(y)+ λH

(n)∗
β (x− y)}, where ϕ is the greatest convex mino-

rant of f (see [13, Corollary 3.11(2)]), one can easily see that such measures
trivially satisfy (3.1) with D = 1 and arbitrary λ > 0, while they cannot
satisfy the inequality of point (i), as it implies subexponential concentration.

Remark 3.4. As we will see from the proof (see (3.5)), the conditions of
the proposition remain equivalent if we replace the entropy on the left-hand
side of the inequalities in (ii) and (iii) by the (greater) expression

�

Rn
ϕeϕ dµ−

�

Rn
ϕdµ

�

Rn
eϕ dµ =

1

2
E(ϕ(X)− ϕ(Y ))(eϕ(X) − eϕ(Y ))
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(where X,Y are independent with law µ). Therefore the first estimate from
the proof of Theorem 1.3 is actually quite sharp. Note that there does not
exist a finite constant C such that C Ent eX ≥ E(X − Y )(eX − eY ) for all
bounded i.i.d. random variables X and Y (as one can see by considering e.g.
X with the distribution 1

2δ−a +
1
2δa for a sufficiently large).

Remark 3.5. In the proofs we will use a dual formulation of (i): the
transport cost inequality holds if and only if

(3.4)
( �

Rn
eb
−1Q1ϕ(x) dµ(x)

)b
e−

	
Rn ϕ(x) dµ(x) ≤ 1

for all convex Lipschitz functions ϕ : Rn → R bounded from below (see [13,
Proposition 5.5(ii′′) and Corollary 3.11(2)]; note also that Q1ϕ = R1ϕ since
ϕ is convex).

For β = 0 a result similar to Proposition 3.1 holds, but we have to
introduce a slightly different notation which will additionally depend on a
number δ > 0. Namely, for x = (x1, . . . , xn) ∈ Rn we define

H
(n)
0,δ (x) =

n∑
i=1

H0,δ(xi), H
(n)∗
0,δ (x) =

n∑
i=1

H∗0,δ(xi),

where H0,δ(s) = H0(s/δ) = δ−2s21{|s|≤δ} +∞1{|s|>δ} and H∗0,δ(s) = H∗0 (sδ)

= 1
4δ

2s21{δ|s|≤2} + (δ|s| − 1)1{δ|s|>2} is its Legendre transform. We define
Qt,δ, T δ, Rλδ as Qt, T , Rλ above, but with H(n)

0,δ and H(n)∗
0,δ in place of H(n)

β

and H(n)∗
β respectively, i.e. we set

Qt,δf(x) = inf
y∈Rn
{f(y) + tH

(n)∗
0,δ ((x− y)/t)},

T δ(µ|ν) = inf
π

{ �

Rn
H

(n)∗
0,δ

(
x−

�

Rn
y dpx(y)

)
dν(x)

}
,

Rλδ f(x) = inf
p∈P1(Rn)

{ �

Rn
f(y) dp(y) + λH

(n)∗
0,δ

(
x−

�

Rn
y dp(y)

)}
.

We then have the following

Proposition 3.6. Let X be an integrable random vector with values in
Rn and law µ. The following conditions are equivalent:

(i) There exist δ1 and b > 0 such that for all probability measures ν
on Rn,

T δ1(µ|ν) ≤ bH(ν|µ).

(ii) There exist δ2 > 0, λ,D > 0 such that EeD
−1H

(n)∗
0,δ2

(X)
<∞ and

Ent ef(X) ≤ DE(f(X)−Rλδ2f(X))ef(X)
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for all functions f : Rn → R such that Ef(X)ef(X) < ∞ and f is
bounded below by an affine function.

(iii) There exist δ3, C > 0 such that EeC
−1H

(n)∗
0,δ3

(X)
<∞ and

Ent eϕ(X) ≤ CEH(n)
0,δ3

(∇ϕ(X))eϕ(X)

for all smooth convex Lipschitz functions ϕ : Rn → R with ‖∇ϕ‖∞
≤ δ3.

(iv) There exist δ4, B > 0 such that

EeB
−1H

(n)∗
0,δ4

(X)
<∞

and for every t0 ∈ [0, B], every t > 0, and every convex Lipschitz
function ϕ : Rn → R bounded from below,

‖eQt,δ4ϕ(X)‖k(t) ≤ ‖eϕ(X)‖k(0),

where k(t) = B−1min{1 +B−1(t− t0), 1}.

Moreover, in each of the above implications the constants in the conclusion
depend only on the constants in the premise (in particular they do not depend
on the dimension).

Remark 3.7. The dependence of the constants is the following: (i) im-
plies (ii) with λ ∈ (0, 1/b), D = 1/(1 − λb), and δ2 = δ1; (ii) implies (iii)
with C = λD and δ3 = δ2(λ∧ (2D)−1); (iii) implies (iv) with B = C ∨ 1 and
δ4 = δ3; (iv) implies (i) with b = B and δ1 = δ4. Note also that for a ≥ 1 we
have H0,aδ ≤ H0,δ and H∗0,δ ≤ H∗0,aδ ≤ a2H∗0,δ, and hence if the inequalities
in (i)–(iv) hold for some δ > 0, then they also hold for every δ′ ∈ (0, δ).

Sketch of the proof of Proposition 3.1. For simplicity we assume n = 1. To
prove that (i) implies (ii) we follow the proof of [13, Proposition 6.3]. Fix λ ∈
(0, 1/b) and let f : R→ R be a function with

	
R fe

fdµ <∞. We define νf to
be the measure with density efdµ/(

	
R e

fdµ). Let π be a measure on R2 with
the first marginal νf and the second µ. We have π(dxdy) = νf (dx)px(dy) for
some probability kernel px and hence�

R

f dνf −
�

R

f dµ =
�

R2

(f(x)− f(y))π(dxdy)

=
�

R

(
f(x)−

�

R

f(y) dpx(y)
)
dνf (x)

≤
�

R

(f(x)−Rλf(x)) dνf (x)

+ λ
�

R

H∗β

(
x−

�

R

y dpx(y)
)
dνf (x),
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where the last inequality follows from the definition of Rλ. Optimizing over
all measures π as above gives us�

R

fdνf −
�

R

fdµ ≤
�

R

(f(x)−Rλf(x)) dνf (x) + λT (µ|νf )

≤
�

R

(f(x)−Rλf(x)) dνf (x) + λbH(νf |µ).

It follows from Jensen’s inequality that

H(νf |µ) =
�

R

log

(
ef	

R e
f dµ

)
dνf ≤

�

R

f dνf −
�

R

f dµ

and hence we conclude from the preceding inequality that
�

R

f dνf −
�

R

f dµ ≤ 1

1− λb

�

R

(f(x)−Rλf(x)) dνf (x).

By the definition of νf this means that

(3.5)
�

R

fef dµ−
�

R

f dµ
�

R

ef dµ ≤ 1

1− λb

�

R

(f(x)−Rλf(x))ef dµ(x).

Therefore (3.1) is satisfied with D = 1/(1 − λb) (the above inequality is
formally stronger, since its left-hand side is by Jensen’s inequality greater
than Ent ef ; see Remark 3.4).

It remains to prove the exponential integrability of the norm (we present
the argument on the real line, however it can be easily adapted to Rn, e.g.
if we decide to work with the `n1 norm all the calculations are performed on
each coordinate separately; clearly the choice of the norm for this problem
is irrelevant).

Consider the function ϕ(x) = r|x|. By the dual formulation of the trans-
port cost inequality (see Remark 3.5) and the assumption that X is inte-
grable, we get Eeb−1Q1ϕ(X) < ∞. It is easy to see that for |x| large enough
(depending on r) the infimum in the definition of Q1ϕ(x) is attained for
y = x−sgn(x)((H∗β)′)−1(r), where ((H∗β)′)−1 is the inverse of (H∗β)′ restricted
to [0,∞). Thus for |x| large enough, we have Q1ϕ(x) ≥ r|x|/2. Since r is
arbitrary, we conclude that Ees|X| <∞ for all s.

To prove that (ii) implies (iii) note that if ϕ is convex, then

ϕ(x)−Rλϕ(x) = sup
p

{�
R

(ϕ(x)− ϕ(y)) dp(y)− λH∗β
(
x−

�

R

y dp(y)
)}

≤ sup
p

{�
R

ϕ′(x)(x− y) dp(y)− λH∗β
(
x−

�

R

y dp(y)
)}

≤ sup
p

{
ϕ′(x) ·

(
x−

�

R

y dp(y)
)
− λH∗β

(
x−

�

R

y dp(y)
)}
.
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We have

uv ≤ CHβ(u) + λH∗β(v)

for some constant C depending only on λ and β. Therefore

ϕ(x)−Rλϕ(x) ≤ CHβ(ϕ
′(x))

and hence (iii) holds.
To see that (iii) implies (iv) (with B = C) we follow the reasoning from

the proof of [10, Theorem 1.11]. By a perturbation argument we can assume
that µ is absolutely continuous. Indeed, if γ is a Gaussian measure on Rn
whose covariance matrix is a sufficiently small multiple of identity, then the
product measure µ⊗γ on Rn×Rn satisfies the modified log-Sobolev inequal-
ity with constant C. Let ϕ : Rn → Rn be a smooth convex Lipschitz function
and let Φ : Rn × Rn → Rn be defined by Φ(x, y) = ϕ(x+ εy), x, y ∈ R. Ap-
plying the modified log-Sobolev inequality to the measure µ ⊗ γ and the
function Φ, we see that the convolution µ ∗ γε, where γε(A) = γ(A/ε), sat-
isfies the modified log-Sobolev inequality on Rn with constant Cε → C as
ε → 0. If one can prove that (3.3) is satisfied by µ ∗ γε with Bε = Cε, then
one can obtain it for µ with B = C by the Lebesgue dominated conver-
gence theorem. Note that if µ is absolutely continuous, then another stan-
dard approximation shows that (iii) holds for all convex Lipschitz functions
(by the Rademacher theorem the gradient is then almost surely well de-
fined).

If ϕ : R → R is a convex function, then so is Qtϕ and it satisfies the
Hamilton–Jacobi equation

(3.6) ∂tQtϕ+Hβ(∂xQtϕ) = 0

(see [6, Chapter 3.3.2]). More precisely, the function (t, x) 7→ Qtϕ(x) is
Lipschitz and the equation is satisfied a.e. with respect to the Lebesgue
measure on (0,∞)× Rn. We fix t0 ∈ [0, C], define

k(t) = (1 + C−1(t− t0))1{t≤t0} + (1 + C−1β−1(t− t0))β1{t>t0},

and set

F (t) =
�

R

ek(t)Qtϕ(x) dµ(x) for t > 0.

Using the absolute continuity of µ together with integrability properties of
Lipschitz functions, one can show that F is locally Lipschitz, F ′(t) exists for
almost all t > 0, and
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k(t)F ′(t) = k(t)
�

R

ek(t)Qtϕ(x)
(
k′(t)Qtϕ(x) + k(t)∂tQtϕ(x)

)
dµ(x)

= k(t)
�

R

ek(t)Qtϕ(x)
(
k′(t)Qtϕ(x)− k(t)Hβ(∂xQtϕ(x))

)
dµ(x)

= k′(t)F (t) logF (t) + k′(t) Ent ek(t)Qtϕ(X)

− k(t)2
�

R

ek(t)Qtϕ(x)Hβ(∂xQtϕ(x)) dµ(x)

≤ k′(t)F (t) logF (t) + Ck′(t)
�

R

ek(t)Qtϕ(x)Hβ(k(t)∂xQtϕ(x)) dµ(x)

− k(t)2
�

R

ek(t)Qtϕ(x)Hβ(∂xQtϕ(x)) dµ(x)

≤ k′(t)F (t) logF (t)

+
�

R

ek(t)Qtϕ(x)Hβ(∂xQtϕ(x)) dµ(x)

·
(
Ck′(t)max{|k(t)|2, |k(t)|(β+1)/β} − k(t)2

)
= k′(t)F (t) logF (t),

where we have used (3.6), the inequality (3.2), the fact that

Hβ(ax) ≤ max{|a|2, |a|(β+1)/β}Hβ(x),

and the definition of k(t) in the last equality. The above differential inequality
is equivalent to (log(F (t))/k(t))′ ≤ 0 for almost all t > 0. Since Qtϕ ≤ ϕ,
we arrive at

logF (t)

k(t)
≤ lim inf

s→0+

logF (s)

k(s)
≤ lim

s→0+

log(
	
R e

k(s)ϕ(x) dµ(x))

k(s)
= log ‖eϕ(X)‖k(0),

which is equivalent to the assertion.
Finally, (iv) implies (i) (with b = B ∨ 1). Indeed, we plug t0 = B and

t = B ∧ 1 ≤ 1 (so that k(t) = (B ∨ 1)−1 and k(0) = 0) into inequality (3.3),
and using the fact thatQtϕ decreases with t we arrive at the dual formulation
of the transport cost inequality (see Remark 3.5). This ends the proof of the
last implication.

The proof in the case β = 0 follows roughly the same lines. Below we
sum up the most important changes one has to make.

Sketch of the proof of Proposition 3.6. For simplicity we assume n= 1.
To prove that (i) implies the entropy bound of (ii) (with δ2 = δ1) we follow
exactly the same reasoning as in the proof of Proposition 3.1. As for the ex-
ponential integrability of H(n)∗

0,δ1
, we again consider ϕ(x) = r|x| and note that

by the dual formulation of (i), Eeb−1Q1,δ1
ϕ(X) < ∞. But, as one can easily
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see, the boundedness of the derivative of H∗0,δ1 implies that for r sufficiently
large,

Q1,δ1ϕ(x) = inf
y
{r|y|+H∗0,δ1(x− y)} = H∗0,δ1(x),

which shows that Eeb
−1H∗0,δ1

(X)
<∞.

To prove that (ii) implies (iii) with δ3 = δ2(λ ∧ (2D)−1) and C = λD,
notice that if ϕ is convex and |ϕ′| ≤ δ3, then Eϕ(X)eϕ(X) <∞ and

ϕ(x)−Rλδ2ϕ(x) ≤ sup
p

{
ϕ′(x) ·

(
x−

�

R

y dp(y)
)
− λH∗0,δ2

(
x−

�

R

y dp(y)
)}
.

We have

uv ≤ (λH∗0,δ2)
∗(u) + λH∗0,δ2(v) = λH0,δ2(u/λ) + λH∗0,δ2(v)

= λH0,λδ2(u) + λH∗0,δ2(v) ≤ λH0,δ3(u) + λH∗0,δ2(v).

Therefore ϕ(x)−Rλδ2ϕ(x) ≤ λH0,δ3(ϕ
′(x)) and hence (iii) holds.

As in the case β > 0, for the proof that (iii) implies (iv) (with δ4 = δ3 and
B = C∨1) we can assume that µ is absolutely continuous. Thus, by standard
approximation arguments, the log-Sobolev inequality of (iii) is satisfied for all
convex Lipschitz functions (the gradient is then almost surely well defined).
In what follows, without loss of generality, we will also assume that C ≥ 1.

Note that

|∂xtH∗0,δ3((x− y)/t)| = |(H
∗
0,δ3)

′((x− y)/t)| ≤ δ3,
so for t > 0, x 7→ Qt,δ3ϕ(x) is δ3-Lipschitz. An adaptation of the reasoning
from [6, Chapter 3.3.2] shows that (t, x) 7→ Qt,δ3ϕ(x) is Lipschitz and

∂tQt,δ3ϕ+H0,δ3(∂xQt,δ3ϕ) = ∂tQt,δ3ϕ+ δ−23 (∂xQt,δ3ϕ)
2 = 0

Lebesgue a.e. on (0,∞) × R (we remark that for n > 1 one needs to work
with the `n1 rather than the Euclidean norm to deduce that t 7→ Qt,δ3ϕ(x) is
Lipschitz).

Next, one shows that for any C̃ ≥ C, the function

F (t) =
�

R

ek̃(t)Qt,δ3ϕ(x) dµ(x), t > 0,

is well defined, where we have denoted

k̃(t) = C̃−1min{1 + C̃−1(t− t0), 1},
and t0 ∈ [0, C̃] is a fixed number. Indeed,

k̃(t)Qt,δ3ϕ(x) ≤ k̃(t)tH∗0,δ3(x/t) + k̃(t)ϕ(0) ≤ k̃(t)δ3|x|+ k̃(t)ϕ(0).

For |x| > 2/δ3 the right-hand side above is bounded by C̃−1(H∗0,δ3(x) + 1
+ ϕ(0)), which together with the assumed exponential integrability of H∗0,δ3
shows that the integral defining F is finite.
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Using absolute continuity of F and again exponential integrability of
H∗0,δ3 one proves that for C̃ > C, F is differentiable a.e. Moreover, the same
argument as for β > 0 shows that k̃(t)F ′(t) ≤ k̃′(t)F (t) logF (t) for almost
all t > 0. Let us list the additional observations needed to carry out the
calculations. First,

|∂xk̃(t)Qt,δ3ϕ| ≤ |∂xQt,δ3ϕ| ≤ δ3,

which allows us to use the modified log-Sobolev inequality. Second,

H0,δ3(k̃(t)∂xQt,δ3ϕ(x)) = k̃(t)2H0,δ3(∂xQt,δ3ϕ(x)).

Finally,
C̃k̃′(t)k̃(t)2 ≤ k̃(t)2.

We remark that to verify the above properties one uses the assumption that
C ≥ 1.

Integration of the differential inequality and taking the limit C̃ → C ends
the proof of the implication.

Finally, (iv) implies (i) (with b = B and δ1 = δ4) as in the case β > 0: it
is enough to check that(�

R

eB
−1Q1,δ3

ϕ(x) dµ(x)
)B
e−

	
R ϕ(x) dµ(x) ≤ 1

for all convex Lipschitz functions ϕ : R → R bounded from below (see
Remark 3.5). This is easy to recover from the hypercontractive inequality
in (iv). If B < 1 one sets t0 = t = B and uses the inequality Q1,δ3ϕ ≤ Qt,δ3ϕ,
otherwise one sets t = t0 = 1.

Remark 3.8. As mentioned in the Introduction, very recently Feldheim
et al. [7] proved that in the case of symmetric measures on R, the condi-
tion µ ∈ M0(m,σ) for some m,σ is equivalent to the infimum-convolution
inequality �

R

eQ1,δϕ(x) dµ(x)
�

R

e−ϕ(x) dµ(x) ≤ 1

for some δ, which is a formally stronger property than the inequality (i) of
Proposition 3.6 (see Remark 3.5). Thus for β = 0 the modified log-Sobolev
inequality is in fact equivalent to a stronger concentration property. Gozlan
et al. [12] extended the characterization of [7] to much more general transport
costs, including all the cases considered by us. It would be interesting to
provide an intrinsic characterization also for measures on the line satisfying
general modified log-Sobolev inequalities. One expects that for β ∈ (0, 1] such
measures form a strictly larger class than the class of measures satisfying the
inequality of [12].
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4. A remark about the nonconvex setting. As noted in Remark 2.5,
a Borel probability measures satisfying inequality (1.4) for all smooth convex
functions (with bounded derivatives) also satisfies the Poincaré inequality for
all smooth convex functions. It follows from [4, Theorem 1.4] that in this case
µ ∈M0(m,σ) for some m and σ.

We will now show that sufficiently nice Borel probability measures µ
which satisfy the modified logarithmic Sobolev inequality (1.3) for all (not
necessarily log-convex) smooth functions belong to the class Mβ(m,σ

β+1)
for some m and σ. More precisely, for β > 0 we have the following result.

Proposition 4.1. Le µ be a Borel probability measure on R, absolutely
continuous with respect to the Lebesgue measure. Suppose there exist con-
stants C <∞ and β ∈ (0, 1] such that for all smooth functions f ,

Ent f(X)2 ≤ CE(f ′(X)2 ∨ |f ′(X)|(β+1)/β),

where X is a random variable with law µ. Denote by M the median and by
n the density of µ, and assume also that

1

β
n(x)−β ≥ ε

x∨M�

x∧M
n(t)−β dt

for some ε > 0 and all x 6= M . Then there exist constants m,σ < ∞ such
that µ ∈Mβ(m,σ

β+1).

Proof. It follows from the Barthe–Roberto criterion [2, Theorem 10] that
for some constant K and all y ≥M ,

(4.1) µ([y,∞)) log
1

µ([y,∞))

( y�
M

n(t)−β dt
)1/β

≤ K.

Hölder’s inequality (with exponents β + 1 and (β + 1)/β) gives

1

xβ
=

x+1/xβ�

x

n(t)−β/(β+1)n(t)β/(β+1) dt

≤
( x+1/xβ�

x

n(t)−β dt
)1/(β+1)( x+1/xβ�

x

n(t) dt
)β/(β+1)

,

and therefore

1

x1+β
≤
( x+1/xβ�

x

n(t)−β dt
)1/β

µ([x, x+ 1/xβ)).

Since µ has the concentration property of order 1 + β, using (4.1) for y =
x+ 1/xβ we get
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D

K
x1+βµ([x+ 1/xβ,∞)) ≤

(x+1/xβ�

M

n(t)−β dt
)−1/β

≤ x1+βµ([x, x+ 1/xβ))

for some constant D and x large enough. Hence, for x large enough,

µ([x+ 1/xβ,∞)) ≤ 1

1 +D/K
µ([x+ 1/xβ,∞)).

Since we can deal analogously with the left tail, the claim follows from Propo-
sition 1.2.

Remark 4.2. As proved in [1], in the case of β = 1 we do not need
the assumption of absolute continuity, as in this case the Barthe–Roberto
criterion can be replaced by a more general Bobkov–Götze criterion [3], in
which one does not require the existence of a density.
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