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Linearization of isometric embedding on Banach spaces

by

Yu Zhou, Zihou Zhang and Chunyan Liu (Shanghai)

Abstract. Let X,Y be Banach spaces, f : X → Y be an isometry with f(0) = 0,
and T : span(f(X)) → X be the Figiel operator with T ◦ f = IdX and ‖T‖ = 1. We
present a sufficient and necessary condition for the Figiel operator T to admit a linear
isometric right inverse. We also prove that such a right inverse exists when span(f(X)) is
weakly nearly strictly convex.

1. Introduction. LetX,Y be real Banach spaces. A mapping f : X→Y
is called an isometry if ‖f(u) − f(v)‖ = ‖u − v‖ for any u, v ∈ X, and the
isometry f is said to be standard if f(0) = 0.

There are many remarkable results concerning the properties of isome-
tries and perturbations of isometries between Banach spaces (see, for in-
stance, [15, 13, 11, 1, 10, 20] for the case of isometries; [3, 17, 12, 19, 22, 23,
21, 16] for perturbations of isometries; and [7, 8, 2, 5, 6, 9, 24] for recent
developments on perturbations of isometries). Among all of them, Figiel [11]
showed the following fundamental theorem, which guarantees the existence
and uniqueness of a continuous linear left inverse for any standard isometric
embedding.

Theorem 1.1 (Figiel). Let f : X → Y be a standard isometry. Then
there exists a unique bounded linear operator T (f) : span(f(X)) → X with
‖T (f)‖ = 1 such that

T (f) ◦ f = IdX .

For convenience, the operator T (f) as above will be called the Figiel
operator, and if there is no ambiguity, we use T to denote T (f).

For any non-surjective isometric embedding, Baker [1] showed the fol-
lowing important result.
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Theorem 1.2 (Baker). Let X,Y be Banach spaces, and f : X → Y be
a standard isometry. If span(f(X)) is strictly convex, then f is linear.

The problem whether there exists a linear isometric right inverse of the
Figiel operator T has also attracted attention. For instance, this problem was
investigated by Godefroy and Kalton [15]. Godefroy [13] further provided
an elementary approach for the separable case, and in [14] presented more
interesting details. We reformulate the deep results of [15] as follows.

Theorem 1.3 (Godefroy–Kalton). Let f : X → Y be a standard isom-
etry, and T be the Figiel operator of f .

(I) [15, Proposition 2.9 and Theorem 3.1] If X is a separable Banach
space, then there is a linear isometry S : X → span(f(X)) such that
T ◦ S = IdX .

(II) [15, p. 133] If X is a non-separable weakly compactly generated Ba-
nach space, then there exists a Banach space Y such that there exists
a non-linear isometry f : X → Y but X is not linearly isomorphic
to any subspace of Y .

(I) above shows that if X is separable, then the Figiel operator T admits
a linear isometric right inverse. However, let H be a non-separable Hilbert
space; then H is a non-separable weakly compactly generated space. (II) in-
dicates that even for “the best” non-separable Banach space H, there exist
a Banach space Y and a non-linear isometry f : H → Y such that the Figiel
operator T does not admit a linear isometric right inverse. [15, p. 134] also
provides more examples of pairs of Banach spaces (X,Y ) such that X can
be isometrically embedded into Y without being linearly isomorphic to a
subspace of Y .

Therefore, the following problems deserve consideration.

Problem 1.4. Let f : X → Y be a standard isometry, and T be the
Figiel operator of f .

(I) Find necessary and sufficient conditions for the Figiel operator T to
admit a linear isometric right inverse S : X → span(f(X)).

(II) What classes of non-separable Banach spaces of Y can guarantee
the existence of a linear isometric right inverse S of the Figiel op-
erator T?

In this paper, we first give a necessary and sufficient condition for the
Figiel operator to admit a linear isometric right inverse. We then prove that
such an inverse exists when span(f(X)) is weakly nearly strictly convex.

In this paper, all symbols and notation are standard. All Banach spaces
considered are real, and we use X to denote a real Banach space and X∗
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its dual. For a subspace M ⊂ X, M⊥ stands for the annihilator of M , i.e.
M⊥ = {x∗ ∈ X∗ : 〈x∗, x〉 = 0 for all x ∈ M}. If M ⊂ X∗, then ⊥M ,
the pre-annihilator of M , is defined as ⊥M = {x ∈ X : 〈x, x∗〉 = 0 for all
x∗ ∈ M}. For Banach spaces X,Y , `∞(X,Y ) denotes the Banach space of
all uniformly bounded mappings m : X → Y , endowed with the supnorm.
Given a bounded linear operator T : X → Y , T ∗ : Y ∗ → X∗ stands for
its conjugate operator. For a subset A ⊂ X, span(A) is the closed subspace
linearly generated by A.

2. Main results. Suppose that X,Y are Banach spaces, f : X → Y is
an isometry, and T : span(f(X)) → X is the Figiel operator. We first give
a necessary and sufficient condition for the existence of a linear isometric
right inverse of T .

Theorem 2.1. Let X,Y be two Banach spaces, f : X → Y be a standard
isometry, and T be the Figiel operator with ‖T‖ = 1 and T ◦ f = IdX .

(I) If there exists a linear isometry S : X → span(f(X)) such that
T ◦ S = IdX , then T ∗ ◦ S∗ : span(f(X))∗ → T ∗(X∗) is a w∗-to-w∗

continuous projection with ‖T ∗ ◦ S∗‖ = 1.
(II) If there is a w∗-to-w∗ continuous projection P : span(f(X))∗ →

T ∗(X∗) with ‖P‖ = 1, then there is a unique linear isometric right
inverse S : X → span(f(X)) of T such that T ◦ S = IdX and
P = T ∗ ◦ S∗.

Proof. (I) Since T ∗ : X∗ → T (X∗) is a w∗-to-w∗ continuous linear isom-
etry and S∗ : span(f(X))∗ → X∗ is a w∗-to-w∗ continuous linear operator
with ‖S∗‖ = ‖S‖ = 1, it follows that T ∗ ◦ S∗ : span(f(X))∗ → T ∗(X∗) is
w∗-to-w∗ continuous with ‖T ∗ ◦ S∗‖ = 1. Furthermore,

(T ∗ ◦ S∗) ◦ (T ∗ ◦ S∗) = T ∗ ◦ (S∗ ◦ T ∗) ◦ S∗

= T ∗ ◦ (T ◦ S)∗ ◦ S∗

= T ∗ ◦ IdX∗ ◦ S∗ = T ∗ ◦ S∗.

This shows that T ∗ ◦ S∗ is a linear projection. Therefore, (I) holds.

(II) Suppose that P : span(f(X))∗ → T ∗(X∗) is a w∗-to-w∗ continu-
ous projection with ‖P‖ = 1. Then, for any x ∈ X, 〈f(x), P (·)〉 is a w∗-
continuous linear functional on span(f(X))∗, and this means 〈f(x), P (·)〉 ∈
span(f(X)). Moreover, we have

(2.1) |〈f(x), P (y∗)〉| ≤ ‖P‖ ‖y∗‖ ‖f(x)‖ = ‖P‖ ‖x‖ ‖y∗‖.

Now, we define the desired linear isometry S : X → span(f(X)) as follows:

(2.2) S(x) = 〈f(x), P (·)〉 for all x ∈ X.
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Indeed, it is easy to see that S is a linear operator, and (2.1) implies

(2.3) ‖S‖ ≤ ‖P‖ = 1.

For any x∗ ∈ X∗ and x ∈ X,

〈x∗, x− T ◦ S(x)〉 = 〈x∗, x〉 − 〈T ∗(x∗), S(x)〉(2.4)

= 〈x∗, x〉 − 〈f(x), P (T ∗(x∗))〉
= 〈x∗, x〉 − 〈T ∗(x∗), f(x)〉
= 〈x∗, x〉 − 〈x∗, x〉 = 0.

This shows that T ◦ S = IdX . Thus,

(2.5) ‖x‖ = ‖T ◦ S(x)‖ ≤ ‖T‖ · ‖S(x)‖ = ‖S(x)‖.

(2.3) and (2.5) together imply that S is a linear isometry.

It is trivial that T ∗(X∗) ⊂ span(f(X))∗ is w∗-closed. It follows from the
w∗-closedness of T ∗(X∗) that

(2.6) T ∗(X∗) = [⊥(T ∗(X∗))]⊥ = (span(f(X))/⊥(T ∗(X∗)))∗.

Furthermore, for any y∗ ∈ span(f(X))∗,

(2.7) 〈T ∗ ◦ S∗(y∗), f(x) + ⊥T ∗(X∗)〉 = 〈T ∗ ◦ S∗(y∗), f(x)〉
= 〈S∗(y∗), T ◦ f(x)〉 = 〈S∗(y∗), x〉 = 〈y∗, S(x)〉
= 〈f(x), P (y∗)〉 = 〈f(x) + ⊥T ∗(X∗), P (y∗)〉.

It follows from (2.6) and (2.7) that P = T ∗ ◦ S∗.
Finally, if Si : X → span(f(X)), i = 1, 2, are two linear isometries such

that T ◦ Si = IdX and P = T ∗ ◦ S∗i , then necessarily S1 = S2.

Proposition 2.4 below comes from [15, Proposition 2.6], which in fact goes
back to Lindenstrauss’ article [18]. For convenience, we present its proof. To
state the proposition, we need the following definition of invariant mean on
a semigroup and some related results, which are taken from Benyamini and
Lindenstrauss’s book [3, pp. 417–418].

Definition 2.2. Let G be a semigroup. A left-invariant mean on G is
a linear functional µ on `∞(G,R) such that:

(I) µ(1) = 1,
(II) µ(f) ≥ 0 for every f ≥ 0,

(III) for all f ∈ `∞(G) and g ∈ G, µ(fg) = µ(f), where fg is the left
translation of f by g, i.e., fg(h) = f(gh) for h ∈ G.

Analogously, we can define right-invariant means on G. An invariant
mean is a linear functional on `∞(G,R) which is both left-invariant and
right-invariant. Note that (I) and (II) are equivalent to (I) and ‖µ‖ = 1.
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Lemma 2.3. Every Abelian semigroup G (in particular, every linear
space) has an invariant mean.

Proposition 2.4. Let X,Y be Banach spaces, f : X → Y be a standard
isometry, and T be the Figiel operator such that T ◦ f = IdX . Then there
exists a continuous linear projection Q : span(f(X))∗→T ∗(X∗) with ‖Q‖=1.

Proof. We will first define a bounded linear operator R : span(f(X))∗

→ X∗ with ‖R‖ ≤ 1.
Note that X is an Abelian group with respect to vector addition. By

Lemma 2.3, there exists an invariant mean µ on X, which we denote also by
µz or µz(·), to emphasize that the mean is taken with respect to z. Since f :
X → Y is a standard isometry, for any fixed x ∈ X and y∗ ∈ span(f(X))∗,
and any z ∈ X,

|〈f(x+ z)− f(z), y∗〉| ≤ ‖f(x+ z)− f(z)‖ · ‖y∗‖ = ‖x‖ · ‖y∗‖.
Therefore, (〈f(x+ z)− f(z), y∗〉)z∈X ∈ `∞(X,R). For simplicity, we denote
this map by 〈f(x + z) − f(z), y∗〉z∈X . Making use of the invariant mean
µz ∈ `∞(X,R)∗, we define R : span(X)∗ → X∗ as follows. For any z∗ ∈
span(f(X))∗, x ∈ X,

(2.8) 〈R(z∗), x〉 =
〈
µz, 〈f(x+ z)− f(z), z∗〉z∈X

〉
.

Indeed, it is trivial to show R(z∗) is bounded linear functional on X with
‖R(z∗)‖ ≤ ‖z∗‖. The linearity of R : span(X)∗ → X∗ is also obvious. In
summary, R : span(X)∗ → X∗ is a bounded linear operator with ‖R‖ ≤ 1.

Next, we claim that ‖R‖ = 1 and T ∗ ◦ R : span(f(X))∗ → T ∗(X∗) is a
bounded linear projection with ‖T ∗ ◦ R‖ = 1. In fact, this follows from the
fact that R ◦ T ∗ = IdX∗ . Since T ∗ is a linear isometry, ‖T ∗ ◦R‖ = ‖R‖ = 1.
Letting Q = T ∗ ◦R completes the proof.

Remark 2.5. Theorem 2.1 shows that the existence of a linear isometric
right inverse of the Figiel operator T depends on the existence of a w∗-to-w∗

continuous linear projection P from span(f(X))∗ onto T ∗(X∗) with ‖P‖=1.
Even though Proposition 2.4 shows that there always exist a bounded linear
projection Q : span(f(X))∗ → T ∗(X∗) with ‖Q‖ = 1, we cannot claim
that Q is w∗-to-w∗ continuous in general. For example, let H be a non-
separable Hilbert space. Then, by Godefroy–Kalton’s Theorem 1.3, there
exist a Banach space Y and a non-linear isometry f : H → Y such that H
is not even linearly isomorphic to any subspace of Y . Thus, in this case, the
projection Q is not w∗-to-w∗ continuous by Theorem 2.1.

We continue to study (II) of Problem 1.4. We mainly show that if
span(f(X)) is weakly nearly strictly convex, then the Figiel operator T
admits a linear isometric right inverse. Note that Baker [1] proved (see The-
orem 1.2) that any standard isometric embedding from a Banach space into
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a strictly convex Banach space is necessarily linear. Therefore, we need to
consider the class of Banach spaces containing all strictly convex spaces.

The following definition of (weakly) nearly strictly convex space comes
from Cabrera and Sadarangani [4].

A Banach space X is said to be (resp. weakly) nearly strictly convex if,
given x∗ ∈ X∗ with |x∗| = 1, the set {x ∈ X : ‖x‖ = 1, x∗(x) = 1} is (resp.
weakly) compact.

Clearly, strictly convex spaces are NSC, NSC spaces are WNSC, and
WNSC spaces include all reflexive Banach spaces.

Finally, we prove the following main result.

Theorem 2.6. Let X,Y be Banach spaces, f : X → Y be a standard
isometry, and T be the Figiel operator such that ‖T‖ = 1 and T ◦f = IdX . If
span(f(X)) is a WNSC space, then there exists a linear isometry S : X →
span(f(X)) such that T ◦ S = IdX .

Proof. Recall that the bounded linear operator R : span(f(X))∗ → X∗

in (2.8) is defined as follows: for any z∗ ∈ span(f(X))∗ and x ∈ X,

(2.9) 〈R(z∗), x〉 =
〈
µz, 〈f(x+ z)− f(z), z∗〉z∈X

〉
.

It follows from (2.9) that |〈R(z∗), x〉| ≤ ‖z∗‖ ‖x‖ and 〈R(·), x〉 is a bounded
linear functional on span(f(X))∗ with ‖〈R(·), x〉‖ ≤ ‖x‖.

We define the desired linear isometry S : X → span(f(X)) as follows:
for any x ∈ X,

(2.10) S(x) = 〈R(·), x〉.
Indeed, we first assert 〈R(·), x〉 ∈ span(f(X)). Without loss of generality,
we assume ‖x‖ = 1. Then there exists an x∗ ∈ X∗ such that 〈x∗, x〉 = 1 and
|x∗| = 1. Since T ∗ is a w∗-to-w∗ continuous linear isometry, ‖T ∗(x∗)‖ = 1.
For any z ∈ X,

(2.11) T ∗(x∗)(f(x+ z)− f(z)) = 〈x∗, x+ z − z〉 = 〈x∗, x〉 = 1.

Together with ‖f(x+ z)− f(z)‖ = ‖x+ z − z‖ = 1, this implies

(2.12) {f(x+ z)− f(z) : z ∈ X}
⊆ {y ∈ span(f(X)) : ‖y‖ = 1, T ∗(x∗)(y) = 1}.

Since span(f(X)) is weakly nearly strictly convex, the set {y ∈ span(f(X)) :
‖y‖ = 1, T ∗(x∗)(y) = 1} is weakly compact. Let m be the locally convex
Mackey topology on span(f(X))∗ (that is, the topology of uniform conver-
gence on weakly compact subsets of span(f(X))). Then

(span(f(X))∗,m)∗ = span(f(X)).

Suppose that {z∗α}α∈D ⊂ span(f(X))∗ is a net with z∗α
m−→ z∗0 for some

z∗0 ∈ span(f(X))∗. Since the set {y ∈ span(f(X)) : ‖y‖ = 1, T ∗(x∗)(y) = 1}
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is weakly compact, {z∗α}α∈D is uniformly convergent to {z∗0} on that set.
Consequently, {z∗α}α∈D is uniformly convergent to {z∗0} on {f(x+z)−f(z) :
z ∈ X} by (2.12). According to (2.9), 〈R(z∗α), x〉 → 〈R(z∗0), x〉. Therefore,
〈R(·), x〉 is a Mackey continuous bounded linear functional on span(f(X))∗.
Hence, 〈R(·), x〉 ∈ span(f(X)).

For any u, v ∈ X and z∗ ∈ span(f(X))∗, by (2.9) and (2.10),

(2.13) 〈S(u+ v), z∗〉 = 〈R(z∗), u+ v〉
=

〈
µz, 〈f(u+ v + z)− f(z), z∗〉z∈X

〉
=

〈
µz, 〈f(u+ v + z)− f(u+ z) + f(u+ z)− f(x), z∗〉z∈X

〉
=

〈
µz, 〈f(u+ v + z)− f(u+ z), z∗〉z∈X

〉
+
〈
µz, 〈f(u+ z)− f(z), z∗〉z∈X

〉
= 〈S(v), z∗〉+ 〈S(u), z∗〉.

Thus, the mapping S : X → span(f(X)) is additive. Furthermore,

〈S(u)− S(v), z∗〉 = 〈R(z∗), u〉 − 〈R(z∗), v〉(2.14)

=
〈
µz, 〈f(u+ z)− f(v + z), z∗〉z∈X

〉
≤ ‖u− v‖ ‖z∗‖.

Therefore, ‖S(u)−S(v)‖ ≤ ‖u−v‖, i.e., S is 1-Lipschitz. This together with
(2.13) shows that S is a bounded linear operator with ‖S‖ ≤ 1.

Finally, for any x∗ ∈ X∗ and x ∈ X,

〈x∗, T ◦ S(x)〉 = 〈T ∗(x∗), S(x)〉 = 〈R(T ∗(x∗)), x〉(2.15)

=
〈
µz, 〈f(x+ z)− f(z), T ∗(x∗)〉z∈X

〉
=

〈
µz, 〈T (f(x+ z)− f(z)), x∗〉z∈X

〉
= 〈µz, 〈x, x∗〉z∈X〉 = 〈x, x∗〉.

So T ◦ S = IdX . Therefore, S is a linear isometry.

We originally proved Theorem 2.6 under the assumption that span(f(X))
is nearly strictly convex. Due to the referee’s observations, the result was
generalized to the case where span(f(X)) is weakly nearly strictly convex.
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