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Biduals of tensor products in operator spaces

by
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Abstract. We study whether the operator space V ∗∗
α
⊗W ∗∗ can be identified with

a subspace of the bidual space (V
α
⊗W )∗∗, for a given operator space tensor norm. We

prove that this can be done if α is finitely generated and V and W are locally reflexive.
If in addition the dual spaces are locally reflexive and the bidual spaces have the com-
pletely bounded approximation property, then the identification is through a complete
isomorphism. When α is the projective, Haagerup or injective norm, the hypotheses can
be weakened.

1. Introduction and preliminaries. Whenever V and W are reflex-
ive operator spaces and α is an operator space tensor norm then clearly

V ∗∗
α
⊗W ∗∗ can be completely isometrically embedded in (V

α
⊗W )∗∗. We

are interested in this contention for non-reflexive operator spaces V and W .
Thus, the objective of this paper is to provide conditions on the operator
spaces and the operator tensor norms to guarantee that, indeed, the tensor
product of two bidual operator spaces can be regarded as a subspace of the
bidual of the operator space tensor product.

One main step in this direction is to prove the existence of a natural
completely bounded mapping Θα which realizes the identification. This is
done in Proposition 4.6 for a finitely generated tensor norm α, when the
spaces are assumed to be locally reflexive. In the case of the Haagerup ten-
sor norm and the projective operator space tensor norm, the identification
mapping exists and is a complete contraction, without any assumption on
the operator spaces V , W (see diagram (4.2) and Proposition 3.2).

When ⊗h is the Haagerup tensor product of operator spaces, Θh defines a

canonical completely isometric embedding of V ∗∗
h
⊗W ∗∗ in (V

h
⊗W )∗∗. This
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was proved for C∗-algebras in [16, Theorem 4.1] and for general operator
spaces in [13, Theorem 2.2].

The case of the operator space projective tensor product is studied in
Section 3. The approach we follow in this case is like that in [5] for Banach
spaces (see also [9, Section 3]).

In [13], the authors also study the projective operator space tensor prod-
uct case. Their approach is based on the decomposition of jointly completely
bounded maps defined on exact operator spaces, stated in [19]. They prove
in [13, Theorem 2.7] that for exact operator spaces, there is a Banach space
embedding from V ∗∗ ⊗̂W ∗∗ into (V ⊗̂W )∗∗.

Here, we establish that Θ is a complete isomorphism onto its image
when the dual spaces are assumed to be locally reflexive and one of the
bidual spaces has the completely bounded approximation property, CBAP
(Corollary 3.5). Furthermore, when the dual spaces are assumed to be lo-
cally reflexive and both bidual spaces have CBAP, we prove that Θ is a
complete isomorphism which induces the complete compact extension prop-
erty (CCEP) of V ∗∗ ⊗̂W ∗∗ as a subspace of (V ⊗̂W )∗∗ (Theorem 3.6). We
also obtain an analogous statement in Theorem 4.9 for the mapping Θα
when α is a finitely generated operator space tensor norm.

We finish the paper with an application concerning the so called “unique
norm-preserving extension problem”: when Θα is a complete isometry, we
give a characterization of the uniqueness of the norm preserving extensions
of a bilinear scalar valued mapping (Theorem 5.2).

Throughout the article V and W will be operator spaces. The space of
n× n matrices of elements of V will be denoted by Mn(V ). When V is the
scalar field, we just write Mn (and Mn×m for the space of n × m scalar
matrices); Tn will denote its Banach dual. The space of completely bounded
linear mappings from V to W will be denoted by CB(V,W ). These spaces
will be assumed to be endowed with their usual operator space structure.

We recall the duality and some definitions and notation related to tensor
products and bilinear mappings in operator spaces. We refer to [11, 20] for
all the necessary background and notation from operator space theory, to [4]
for tensor products of operator spaces and to [8] for some specific results on
bilinear ideals on operator spaces.

The operator space structure of the dual space V ∗ is given by the iden-
tification V ∗ ∼= CB(V,C). It has the property that Mn(V ∗) ∼= Tn(V )∗ and
Tn(V ∗) ∼= Mn(V )∗ are complete isometric isomorphisms (see [11, Propo-
sition 7.1.6]), where Tn(V ) ∼= Tn ⊗̂ V and ⊗̂ denotes the operator space
projective tensor product, which we now introduce:

The operator space projective tensor norm of u ∈Mn(V ⊗W ) is defined as

‖u‖∧ = inf{‖α‖ · ‖v‖ · ‖w‖ · ‖β‖},
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where the infimum is taken over all the representations of u as u = α(v⊗w)β
with v ∈Mp(V ), w ∈Mq(W ), α ∈Mn×p·q, β ∈Mp·q×n for some p, q ∈ N.

The operator space injective tensor norm of u ∈ Mn(V ⊗W ) is defined
as

‖u‖∨ = sup{‖(f ⊗ g)n(u)‖ : f ∈Mp(V
∗), g ∈Mq(W

∗), ‖f‖ ≤ 1, ‖g‖ ≤ 1}.

The operator space projective tensor product V ⊗̂W and the operator
space injective tensor product V

̂

⊗W are the completion of (V ⊗W, ‖ · ‖∧)
and the completion of (V ⊗W, ‖ · ‖∨), respectively.

The Haagerup tensor product V
h
⊗W is the completion of V ⊗W under

the Haagerup tensor norm which is defined for u ∈Mn(V ⊗W ) as

‖u‖h = inf{‖v‖ · ‖w‖ : u = v � w, v ∈Mn×r(V ), w ∈Mr×n(W ), r ∈ N}.

Denoting by J CB(V ×W ) and MB(V ×W ) the spaces of jointly com-
pletely bounded bilinear forms and multiplicatively bounded bilinear forms,
the following completely isometric identifications are known:

J CB(V ×W ) ∼= (V ⊗̂W )∗ ∼= CB(V,W ∗), MB(V ×W ) ∼= (V
h
⊗W )∗.

Recall that an operator space V is λ-locally reflexive if for every finite-
dimensional operator space L and every complete contraction ϕ : L → V ∗∗

there exists a net {ϕγ} ⊂ CB(L, V ) such that ‖ϕγ‖cb ≤ λ and

〈ϕγ(u), v∗〉 → 〈ϕ(u), v∗〉 for all u ∈ L, v∗ ∈ V ∗.
When λ = 1, we will use the term locally reflexive instead of 1-locally re-
flexive. Most of the results of the article stated for locally reflexive operator
spaces remain valid for arbitrary local reflexivity constants, with straight-
forward changes.

2. Approximations and complementation. In order to address the
problem of when the natural mappingΘ : V ∗∗⊗̂W ∗∗ → (V ⊗̂W )∗∗ (described
properly in Proposition 3.1) is completely isometric, we begin by describing
the completely bounded approximation property in dual and bidual spaces,
in interplay with the local reflexivity property.

Recall (see [10, 11]):

Definition 2.1. V has the completely bounded approximation property
(CBAP) if there exist a constant K > 0 and a net (ϕγ) of finite rank
completely bounded mappings ϕγ : V → V with ‖ϕγ‖cb ≤ K and ϕγ(v)→ v
for all v ∈ V .

If this holds with K = 1 we say that V has the completely metric ap-
proximation property (CMAP).

Note that when V has CBAP then (ϕγ)n(v)→ v for all v ∈Mn(V ).
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CBAP on an operator space implies BAP on the underlying Banach
space. In general, the converse is not true (see, for instance, [1, 18]).

The space L(H) has neither CBAP, nor BAP, but there are many in-
teresting examples of operator spaces, even non-reflexive, with CBAP or
CMAP. One way to construct such examples is to consider a (non-reflexive
dual or bidual) Banach space X with the metric approximation property
and to endow it with a homogeneous operator space structure (see [20, 9.2]
for the definition), like min(X) or max(X).

CBAP admits a somewhat better formulation in the case of bidual spaces
(see [5, Corollary 1] for the Banach space statement). To prove it, we need
to state the following (probably) known result:

Lemma 2.2 (CBAP in duals). Let V be a locally reflexive operator space
such that V ∗ has CBAP (with constant K). Then there exists a net (ξβ)
of w∗-continuous finite rank mappings ξβ : V ∗ → V ∗ with ‖ξβ‖cb ≤ K and
ξβ(v∗)→ v∗ for all v∗ ∈ V ∗.

Proof. Since V ∗ has CBAP, there exists a net (ϕγ) of finite rank map-
pings on V ∗ such that ‖ϕγ‖cb ≤ K and ϕγ(v∗) → v∗ for all v∗ ∈ V ∗. Let
us consider ϕγ : V ∗ → ran(ϕγ) = Eγ ⊂ V ∗ and ϕ∗γ : E∗γ → V ∗∗. Due to the
local reflexivity of V and the finite dimension of Eγ , the following operator
space analogue of Dean’s identity [6] can be derived by taking duals from
[11, Theorem 14.3.1] (or just considering the definition of local reflexivity
[20, Definition 18.1]):

CB(E∗γ , V
∗∗) ' CB(E∗γ , V )∗∗.

Through this identification, the mappings ϕ∗γ can be seen in CB(E∗γ , V )∗∗

and thus we can use the Goldstine theorem and a standard net argument to
obtain the desired result.

Indeed, for any γ, a finite set F ⊂ V ∗ and ε > 0, we write β = (γ, F, ε)
and consider the set of all β ordered in the usual way. For each β = (γ, F, ε),
there exists ψβ ∈ CB(E∗γ , V ) with ‖ψβ‖cb ≤ K and ‖v∗ ◦ ψβ − v∗ ◦ ϕγ‖ ≤ ε
for all v∗ ∈ F (this is a consequence of the w∗-denseness of the ball of
CB(E∗γ , V ) in the ball of CB(E∗γ , V )∗∗ and the fact that Eγ is finite-dimen-
sional).

Now, if ξβ = ψ∗β ∈ CB(V ∗, Eγ), then ξβ is w∗-continuous, ‖ξβ‖cb ≤ K
and ξβ(v∗)→ v∗ for all v∗ ∈ V ∗.

From the lemma, we get the following:

Proposition 2.3 (CBAP in biduals). Let V be an operator space such
that V ∗ is locally reflexive and V ∗∗ has CBAP (with constant K). Then there
exists a net (ψγ) ⊂ CB(V, V ∗∗) of finite rank mappings with ‖ψγ‖cb ≤ K and
ψ∗∗γ (v∗∗)→ v∗∗ for all v∗∗ ∈ V ∗∗.
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Proof. Since V ∗ is locally reflexive and V ∗∗ has CBAP, the previous
lemma provides a bounded net (ϕγ) in CB(V ∗∗, V ∗∗) of w∗-continuous finite
rank mappings. Since each ϕγ can be expressed as

ϕγ =
N∑
i=1

v∗i ⊗ v∗∗i with v∗i ∈ V ∗ and v∗∗i ∈ V ∗∗,

we can define ψγ ∈ CB(V, V ∗∗) to be the restriction of ϕγ to V . Then ψγ is
a finite rank mapping that satisfies ψ∗∗γ = ϕγ .

For the sake of completeness, we include the proof of the following lemma.
The analogous statement in the more general case of finitely generated op-
erator space tensor norms is given in Lemma 4.8.

Lemma 2.4 (CBAP in projective tensor products). Let V and W be op-
erator spaces having CBAP with constants KV and KW , respectively. Then
V ⊗̂W has CBAP with constant KV ·KW .

Proof. Let (ϕγ) ⊂ CB(V, V ) and (ψδ) ⊂ CB(W,W ) be nets of finite
rank mappings approximating the identities of V and W , respectively, with
‖ϕγ‖ ≤ KV and ‖ψδ‖ ≤ KW . Let us consider the net (Φ(γ,δ)) where Φ(γ,δ) =

ϕγ ⊗ ψδ : V ⊗̂W → V ⊗̂W and the index set (γ, δ) is ordered canonically.
It is clear that each Φ(γ,δ) is a finite rank mapping and ‖Φ(γ,δ)‖ ≤ KV ·KW .
To see that they approximate the identity, it is enough to check their values
on elementary tensors:

‖Φ(γ,δ)(v ⊗ w)− v ⊗ w‖ = sup
φ∈B(V ⊗̂W )∗

|φ(Φ(γ,δ)(v ⊗ w))− φ(v ⊗ w)|

= sup
φ∈B(V ⊗̂W )∗

|φ(ϕγ(v)⊗ ψδ(w))− φ(v ⊗ w)|

= sup
φ∈B(V ⊗̂W )∗

|φ((ϕγ(v)− v)⊗ ψδ(w)) + φ(v ⊗ (ψδ(w)− w))|

≤ sup
φ∈B(V ⊗̂W )∗

(‖φ‖ ‖ϕγ(v)− v‖ ‖ψδ‖ ‖w‖+ ‖φ‖ ‖v‖ ‖w − ψδ(w)‖).

Hence, ‖Φ(γ,δ)(v ⊗ w)− v ⊗ w‖ → 0.

In Theorem 3.6 it will be proved that, under appropriate hypotheses,
the space V ∗∗ ⊗̂W ∗∗ has a stronger property than being just an operator
subspace of (V ⊗̂W )∗∗. To be precise, we introduce the following defini-
tion, which is an operator space analogue of the so called compact extension
property of Banach spaces (see [14]).

Definition 2.5. Let V,W be operator spaces such that V is completely
isomorphic to a subspace of W through a mapping i : V ↪→ W . We say
that V has the complete compact extension property in W (CCEP) through
the mapping i if there exists λ > 0 such that for every operator space Z
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and every compact mapping K ∈ CB(V,Z) there exists a compact mapping

K̃ ∈ CB(W,Z) with ‖K̃‖cb ≤ λ‖K‖cb that makes commutative the diagram

V �
� i //

K ��

W

K̃~~
Z

Note that it is not necessary to require the existence of a constant λ
in the previous definition. Indeed, if each compact operator K ∈ CB(V,Z)

admits a compact extension K̃ ∈ CB(W,Z), then such a λ necessarily exists.
The proof follows a classical argument by Lindenstrauss [17, Theorem 2.2].

The next lemma gives a condition under which we can derive CCEP for
operator spaces with CBAP. The analogous result for Banach spaces is in
[5, Lemma 4].

Lemma 2.6. Let V and W be operator spaces and ψ : V ↪→ W a lin-
ear mapping in CB(V,W ). Suppose that we have a net (ϕγ) ⊂ CB(V, V )
satisfying ϕγ(v) → v for all v ∈ V , and there exist λ > 0 and a net
(ϕ̃γ) ⊂ CB(W,V ) with ‖ϕ̃γ‖cb ≤ λ such that the following diagram com-
mutes:

V
ψ //

ϕγ   

W

ϕ̃γ~~
V

Then:

(i) V is completely isomorphic to the subspace ψ(V ) ⊂W .
(ii) V has CCEP in W through the mapping ψ with constant λ.

Proof. (i) For every v ∈Mn(V ),

‖v‖ ≤ ‖v − (ϕγ)n(v)‖+ ‖(ϕγ)n(v)‖.
Since (ϕγ)n(v)→ v for all v ∈Mn(V ), and ‖(ϕγ)n(v)‖ = ‖(ϕ̃γ)n(ψn(v))‖ ≤
λ‖ψn(v)‖, we obtain

λ−1‖v‖ ≤ ‖ψn(v)‖ ≤ ‖ψn‖ · ‖v‖.
Therefore, for all n, ψn is an isomorphism onto its image and so ψ is a
complete isomorphism.

(ii) By (i), we can see V inside W through ψ. Now, for any operator
space Z, let K ∈ CB(V,Z) be a compact completely bounded mapping. For
each w ∈W , the element (K ◦ ϕ̃γ)(w) belongs to the image by K of a ball in
V of radius λ‖w‖. This holds for every γ and so the net (((K◦ϕ̃γ)(w))w∈W )γ
is contained in a relatively compact set in the product topology. Thus, there
is a convergent subnet

((K ◦ ϕ̃δ)(w))w∈W → (K̃(w))w∈W .
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This allows us to define the linear mapping

K̃ : W → Z, w 7→ K̃(w).

Since K̃(BW ) ⊂ K(λBV ), it is clear that K̃ is compact. Also,

K̃(ψ(v)) = lim
δ

(K ◦ ϕ̃δ)(ψ(v)) = lim
δ
K(ϕδ(v)) = K(v).

Hence, the diagram of the definition of CCEP commutes.

Finally, let us see that K̃ is completely bounded. For each w ∈Mn(W ),

K̃n(w) = lim
δ
Kn((ϕ̃δ)n(w)), ‖Kn((ϕ̃δ)n(w))‖ ≤ ‖Kn‖ · ‖(ϕ̃δ)n‖ · ‖w‖,

so ‖K̃n(w)‖ ≤ ‖K‖cb · λ · ‖w‖ for all w. Thus, ‖K̃‖cb ≤ ‖K‖cb · λ.

In the case of Banach spaces, it is proved in [14, Theorem 3.5] that
the compact extension property, originally introduced in [17], is equivalent
to the local complementability of the subspace and to the existence of an
extension morphism between the dual spaces. At some point, the so called
principle of local reflexivity is mainly used, so it is not to be expected that an
analogous statement remains valid for arbitrary operator spaces. Anyway,
one of the implications holds, as the following proposition shows, while for
the relationship with local complementability we need an extra hypothesis
(see Proposition 2.10).

Proposition 2.7. Let V and W be operator spaces with a completely
isomorphic inclusion i : V ↪→ W . If V has CCEP in W through i then
there exists a completely bounded linear mapping L : V ∗ → W ∗ such that
L(v∗)(i(v)) = v∗(v) for all v ∈ V and v∗ ∈ V ∗.

Proof. As usual we denote FIN(V ∗) = {F ⊂ V ∗ : F is a finite-dimen-
sional subspace}. For each F ∈ FIN(V ∗), we set ZF = V/F⊥ and let qF :
V → ZF be the quotient mapping. Since qF has finite-dimensional range,
it is a compact mapping, with ‖qF ‖cb ≤ 1. Thus, by hypothesis there exists
a compact completely bounded map KF ∈ CB(W,ZF ) with ‖KF ‖cb ≤ λ
(where λ is the constant of CCEP of V in W ) such that KF ◦ i = qF .

Now, by means of the complete isometry Z∗F ' F we can think that the
adjoint of the mapping KF is defined in F , that is, K∗F : F → W ∗. This
mapping has the following properties: ‖K∗F ‖cb ≤ λ and

(K∗F f)(i(v)) = f((KF ◦ i)(v)) = f(qF (v)) = f(v) for all f ∈ F, v ∈ V.

For each v∗ ∈ V ∗, we consider the net (K∗F (v∗))F∈FIN(V ∗), where we set
K∗F (v∗) = 0 when v∗ 6∈ F . Note that with this definition the mapping K∗F is
no more linear. Anyway, for every F ∈ FIN(V ∗), (K∗F (v∗))v∗∈V ∗ belongs to∏
v∗∈V ∗ λ · ‖v∗‖ · BW ∗ , which is a relatively compact set in the w∗-product
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topology. Thus, the net ((K∗F (v∗))v∗∈V ∗)F has a subnet ((K∗G(v∗))v∗∈V ∗)G
which converges to an element (L(v∗))v∗∈V ∗ in the w∗-product topology.
This means

L(v∗)(w) = lim
G
K∗G(v∗)(w) for all w ∈W, v∗ ∈ V ∗.

In this way we have defined a mapping L : V ∗ →W ∗ that is linear. Also,
since

|〈〈(K∗G)n(v∗), w〉〉| ≤ ‖(K∗G)n‖ · ‖v∗‖ · ‖w‖
≤ λ · ‖v∗‖ · ‖w‖ for all v∗ ∈Mn(G), w ∈Mn(W ),

where 〈〈 , 〉〉 means the matrix pairing according to [11, (1.1.27)], it follows
that ‖L‖cb ≤ λ and so L is completely bounded. Finally,

L(v∗)(i(v)) = lim
G
K∗G(v∗)(i(v)) = v∗(v) for all v ∈ V, v∗ ∈ V ∗.

Remark 2.8. Note that the existence of a completely bounded extension
mapping L : V ∗ → W ∗ implies that V ∗ is completely isomorphic to a
complemented subspace of W ∗.

Now, when a subspace has a kind of local reflexivity property (namely,
V is LCC in V ∗∗ according to the definition below), then the local com-
plementability and the compact extension property are equivalent in the
operator space framework.

Definition 2.9. Let V be a subspace of the operator space W . We
say that V is locally completely complemented in W (LCC) if there exists
c > 0 such that for any finite-dimensional subspace E ⊂W , and any ε > 0,
there exists ϕ ∈ CB(E, V ) such that ‖ϕ‖cb < c + ε and ϕ(z) = z whenever
z ∈ E ∩ V .

Proposition 2.10. Let V ⊂W . Consider the following statements:

(i) V is LCC in W .
(ii) V has the complete compact extension property (CCEP) in W .

Then (i) implies (ii), and if V is LCC in V ∗∗ then (i) and (ii) are equivalent.

Proof. For the first implication consider a compact operator K ∈
CB(V,Z). Assuming that V is LCC in W , we can choose, for each E ∈
FIN(W ), an operator ϕE : E → V as in Definition 2.9. Proceeding as
in the proof of the previous proposition, we define ψE(w) := K(ϕE(w))
for w ∈ E (and ψE(w) := 0 otherwise). The net ((ψE(w))w∈W )E∈FIN(W )

is contained in the relatively compact set (for the w∗-product topology)∏
w∈W K((c+ε)‖w‖BV ), which has a limit pointψ. The mapping K̃ : W → Z

defined as K̃(w) := ψ(w) is a compact complete extension of K.
Now, assume that V has CCEP in W . Then the adjoint mapping of L

in Remark 2.8, L∗ : W ∗∗ → V ∗∗, is a complete contractive projection. If in
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addition V is LCC in V ∗∗, there exists c > 0 such that for each ε > 0 and each
finite-dimensionalF ⊂ V ∗∗, we can take a mappingψF : F → V satisfying the
conditions in Definition 2.9. Let E ⊂W be a finite-dimensional subspace and
let iW denote the natural inclusion W ⊂W ∗∗. Set F := L∗∗ ◦ iW (E) ⊂ V ∗∗.
Then ϕE := ψF ◦ L∗∗ ◦ iW : E → V satisfies ϕE(v) = v if v ∈ E ∩ V and
‖ϕE‖cb ≤ c+ ε.

Two comments are in order. First, the local reflexivity of V and the
fact that V is LCC in V ∗∗ are not equivalent. For instance, L(H) is locally
completely complemented in L(H)∗∗ but not locally reflexive.

Second, we recall that H. Rosenthal introduced in [21, Definition 2.32]
the notion of a completely locally complemented subspace, a property which
is, in principle, stronger that the one in Definition 2.9. For Banach spaces
both properties coincide (see [14, Lemma 3.2]).

3. Bidual of the projective tensor product. For V and W operator
spaces, the completely isometric identification J CB(V ×W ) ' CB(V,W ∗)
allows us to extend each φ ∈ J CB(V ×W ) to φ ∈ J CB(V ∗∗ ×W ∗∗) in a
canonical way. Indeed, if φ is identified withϕ ∈ CB(V,W ∗) then φ is the bilin-
ear mapping associated to ϕ∗∗. Note that ‖φ‖jcb = ‖ϕ‖cb = ‖ϕ∗∗‖cb = ‖φ‖jcb
and so φ is a norm-preserving extension of φ to the biduals.

Moreover, we have

Proposition 3.1. The map

J CB(V ×W ) ↪→ JCB(V ∗∗ ×W ∗∗), φ→ φ,

is a completely isometric injection.

Proof. We have already shown that this is an isometric injection. To see
that it is a complete isometry, note that the n-amplification of this mapping
coincides with the following procedure: to each φ ∈ Mn(J CB(V ×W )) '
JCB(V ×W,Mn) we associate ϕ ∈ CB(V, CB(W,Mn)) ' CB(V,Mn(W ∗)).
Now, ϕ∗∗ is in

CB(V ∗∗,Mn(W ∗)∗∗) ' CB(V ∗∗,Mn(W ∗∗∗)) ' CB(V ∗∗, CB(W ∗∗,Mn))

and identifies with φ ∈ J CB(V ∗∗ ×W ∗∗,Mn) 'Mn(J CB(V ∗∗ ×W ∗∗)).

From the above considerations, we have naturally defined the following
mapping:

Θ : V ∗∗ ⊗̂W ∗∗ → (V ⊗̂W )∗∗ ' JCB(V ×W )∗,

v∗∗ ⊗ w∗∗ 7→ (φ 7→ φ(v∗∗, w∗∗)).

Proposition 3.2. Θ is a well defined completely bounded linear map
with ‖Θ‖cb = 1.
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Proof. It is clear that Θ(u) belongs to J CB(V ×W )∗ with ‖Θ(u)‖ ≤ ‖u‖
for any u ∈ V ∗∗ ⊗̂W ∗∗. Thus, Θ is a well defined continuous linear mapping.

To see the complete boundedness of Θ, consider, for each n ∈ N, the
n-amplification

Θn : Mn(V ∗∗ ⊗̂W ∗∗)→Mn((V ⊗̂W )∗∗) 'Mn(J CB(V ×W )∗).

Given u ∈Mn(V ∗∗ ⊗̂W ∗∗), we want to show

‖Θn(u)‖Mn((V ⊗̂W )∗∗) = ‖Θn(u)‖Mn(JCB(V×W )∗) ≤ ‖u‖Mn(V ∗∗⊗̂W ∗∗).

We do this by means of the duality

Mn(J CB(V ×W )∗) ' Tn(J CB(V ×W ))∗.

For φ ∈ Tn(J CB(V ×W )) we denote by φ the matrix (φij). Appealing to
Proposition 3.1 and [11, Theorem 4.1.8] we know that

‖φ‖Tn(JCB(V ∗∗×W ∗∗)) ≤ ‖φ‖Tn(JCB(V×W )).

Hence,

|〈Θn(u), φ〉| = |〈φ, u〉| ≤ ‖φ‖Tn(JCB(V ∗∗×W ∗∗))‖u‖Mn(V ∗∗⊗̂W ∗∗)

≤ ‖φ‖Tn(JCB(V×W ))‖u‖Mn(V ∗∗⊗̂W ∗∗).

This implies ‖Θn(u)‖Mn(JCB(V×W )∗) ≤ ‖u‖Mn(V ∗∗⊗̂W ∗∗) and so ‖Θn‖ ≤ 1
for all n.

Moreover, by evaluating Θn on a diagonal matrix in Mn(V ∗∗ ⊗̂W ∗∗),
with v ⊗ w in the diagonal for any v ∈ V and w ∈ W , we can show that
actually ‖Θn‖ = 1 for every n. Therefore, ‖Θ‖cb = 1.

One way to determine when Θ is completely isometric is to use some facts
about duality between the projective and the injective operator space tensor
norms. Specifically, we bear in mind two natural mappings: the complete
isometry Λ : V ∗

̂

⊗W ∗ → (V ⊗̂W )∗ (see [11, Proposition 8.1.2]) and Ω :
V ∗∗ ⊗̂W ∗∗ → (V ∗

̂

⊗W ∗)∗, as well as the canonical commutative diagram

(3.1)

V ∗∗ ⊗̂W ∗∗ Θ //

Ω ''

(V ⊗̂W )∗∗

Λ∗ww
(V ∗

̂

⊗W ∗)∗

where Λ∗ (which in the Banach space setting is called the Borel transform)
is the adjoint of Λ. Once we know that Ω is a complete isometry, the same
will hold for Θ.

A weak form of the CMAP, namely W∗MAP, was introduced in [10].
There, it was proved that V has W∗MAP if and only if the natural map
V ⊗̂W → (V ∗

̂

⊗W ∗)∗ is a complete isometry for every operator space W [10,
Theorem 2.2]. Note that this mapping is a restriction of Ω in diagram (3.1).
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Also, by [10, Theorem 2.1], the canonical mapping V ∗ ⊗̂E∗ → (V

̂

⊗E)∗ is a
complete isometry for every finite-dimensional operator space E if and only if
V is locally reflexive. Thus, in order to prove that our mappingΩ is a complete
isometry too, it seems natural to assume local reflexivity of both V and W .
The respective facts for Banach spaces can be found in [7, 16.3 Corollary 2].

Theorem 3.3. Let V and W be locally reflexive operator spaces such
that V ∗ (or W ∗) has CMAP. Then the mapping Ω : V ∗ ⊗̂W ∗ → (V

̂

⊗W )∗

is completely isometric.

Proof. The mapping Ω is always completely contractive. The point here
is to prove that, under our hypothesis, ‖u‖ ≤ ‖Ωn(u)‖ for every u ∈
Mn(V ∗ ⊗̂W ∗). Clearly, it is enough to consider matrices u in the uncom-
pleted projective tensor product (V ∗ ⊗ W ∗,∧). Let u = (uij), where, for
each i, j,

uij =

Nij∑
k=1

v∗ijk ⊗ w∗ijk ∈ V ∗ ⊗W ∗.

Since (Mn(V ∗ ⊗̂W ∗))∗ ' Tn((V ∗ ⊗̂W ∗)∗) ' Tn(CB(V ∗,W ∗∗)), there exists
T ∈ Tn(CB(V ∗,W ∗∗)) such that

‖T‖Tn(CB(V ∗,W ∗∗)) = 1, |〈T, u〉| =
∣∣∣∑
i,j

〈Tij , uij〉
∣∣∣ = ‖u‖Mn(V ∗⊗̂W ∗).

Suppose that V ∗ has CMAP (the proof when W ∗ has CMAP is analo-
gous) and let ε > 0. Since V is locally reflexive we can apply Lemma 2.2 to
obtain a completely bounded w∗-continuous finite rank map ϕε : V ∗ → V ∗

satisfying ‖ϕε‖cb ≤ 1 and ‖ϕε(v∗ijk)−v∗ijk‖ < ε/M , where M =
∑

i,j,k ‖w∗ijk‖.
For each i, j, the range of Tij ◦ϕε is a finite-dimensional subspace of W ∗∗.

Now, by the local reflexivity of W there is a completely bounded map ψ :
span{ran(Tij ◦ ϕε) : 1 ≤ i, j ≤ n} →W with ‖ψ‖cb ≤ 1 + ε such that

ψ(w∗∗)(w∗ijk) = w∗∗(w∗ijk)

for all i, j, k and w∗∗ ∈ span{ran(Tij ◦ϕε) : 1 ≤ i, j ≤ n}. Thus, the composi-
tion ψ◦Tij ◦ϕε can be seen as an element of V ⊗W with ‖ψ◦Tij ◦ϕε‖V

̂

⊗W =
‖ψ ◦ Tij ◦ ϕε‖CB(V ∗,W ). This gives

‖ψ ◦ T ◦ ϕε‖Tn(V

̂

⊗W ) = ‖ψ ◦ T ◦ ϕε‖Tn(CB(V ∗,W ))

≤ ‖ψ‖cb‖T‖Tn(CB(V ∗,W ∗∗))‖ϕε‖cb ≤ 1 + ε.

Hence,

‖Ωn(u)‖Mn(V

̂

⊗W )∗ ≥
1

1 + ε
|〈ψ ◦ T ◦ ϕε, Ωn(u)〉|

=
1

1 + ε

∣∣∣∑
i,j

〈ψ ◦ Tij ◦ ϕε, uij〉
∣∣∣
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=
1

1 + ε

∣∣∣∑
i,j,k

ψ(Tij(ϕε(v
∗
ijk)))(w

∗
ijk)
∣∣∣

=
1

1 + ε

∣∣∣∑
i,j,k

Tij(ϕε(v
∗
ijk))(w

∗
ijk)
∣∣∣

≥ 1

1 + ε

[∣∣∣∑
i,j,k

Tij(v
∗
ijk)(w

∗
ijk)
∣∣∣− ∣∣∣∑

i,j,k

Tij(v
∗
ijk − ϕε(v∗ijk))(w∗ijk)

∣∣∣]
≥ 1

1 + ε

[
|〈T, u〉| −

∑
i,j,k

‖Tij‖ ‖v∗ijk − ϕε(v∗ijk)‖ ‖w∗ijk‖
]

≥ 1

1 + ε
(‖u‖Mn(V ∗⊗̂W ∗) − ε).

Since ε can be chosen arbitrarily small, the proof is complete.

Some comments are in order. First, observe that if we assume CBAP
instead of CMAP in Theorem 3.3, we conclude that Ω is a complete isomor-
phism onto its image.

Second, if N and I denote, respectively, the ideals of completely nuclear
and completely integral bilinear mappings (see the definitions in [8]), then
Theorem 3.3 reads:

Corollary 3.4. Let V and W be operator spaces such that V ∗ (or W ∗)
has CMAP and both V and W are locally reflexive. Then the natural inclu-
sion N (V ×W ) ↪→ I(V ×W ) is completely isometric.

Proof. From [8, Proposition 3.14] we know that in this case N (V ×W ) =
V ∗ ⊗̂ W ∗, and from [8, Proposition 3.11], we always have I(V × W ) =
(V

̂

⊗W )∗. Thus, Ω corresponds to the natural inclusion between the ideals.

Third, by the relation between Ω and Θ explained just below the com-
mutative diagram (3.1), we obtain:

Corollary 3.5. Let V and W be operator spaces such that V ∗∗

(or W ∗∗) has CMAP (respectively CBAP) and both V ∗ and W ∗ are locally
reflexive. Then the mapping Θ : V ∗∗ ⊗̂ W ∗∗ → (V ⊗̂ W )∗∗ is a complete
isometry (resp. a complete isomorphism onto its image).

If in the corollary it is further assumed that both dual spaces have CBAP,
we get a stronger conclusion about the embedding of V ∗∗⊗̂W ∗∗ in (V ⊗̂W )∗∗.
It is worth noting that the proofs of Corollary 3.5 and of the following
theorem are different: the latter does not use the duality of the tensor norms,
but the approximation properties in dual spaces and tensor products stated
in Section 2. For the analogous result in the Banach space setting see [5,
Theorem 1].
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Theorem 3.6. Let V and W be operator spaces such that both V ∗∗ and
W ∗∗ have CBAP with constants K1 and K2 (respectively CMAP) and both
V ∗ and W ∗ are locally reflexive. Then V ∗∗ ⊗̂W ∗∗ has CCEP in (V ⊗̂W )∗∗

through the mapping Θ. Hence, J CB(V ∗∗ ×W ∗∗) is completely isomorphic
(respectively isometric) to a complemented subspace of J CB(V ×W )∗∗.

Proof. By Corollary 2.3 there exist nets (ϕγ) ⊂ CB(V, V ∗∗) and (ψδ) ⊂
CB(W,W ∗∗) of finite rank mappings with ‖ϕγ‖cb ≤ K1 and ‖ψδ‖cb ≤ K2

such that

‖ϕ∗∗γ v∗∗ − v∗∗‖ → 0 for all v∗∗ ∈ V ∗∗,
‖ψ∗∗δ w∗∗ − w∗∗‖ → 0 for all w∗∗ ∈W ∗∗.

Now, the proof of Lemma 2.4 shows that the net (Φ(γ,δ) = ϕ∗∗γ ⊗ψ∗∗δ ) realizes

CBAP in V ∗∗ ⊗̂W ∗∗ with constant K1 ·K2.

Due to Lemma 2.6, the proof will be finished once we find mappings
Φ̃(γ,δ) ∈ CB((V ⊗̂W )∗∗, V ∗∗ ⊗̂W ∗∗) with (‖Φ̃(γ,δ)‖cb) bounded such that the
following diagram commutes:

V ∗∗ ⊗̂W ∗∗ Θ //

Φ(γ,δ) ''

(V ⊗̂W )∗∗

Φ̃(γ,δ)ww
V ∗∗ ⊗̂W ∗∗

Let us see that we achieve this goal through Φ̃(γ,δ) = (ϕγ ⊗ ψδ)∗∗. Since the

mappings ϕγ ⊗ψδ ∈ CB(V ⊗̂W,V ∗∗ ⊗̂W ∗∗) have finite rank, it is clear that

the Φ̃(γ,δ) also have finite rank and belong to CB((V ⊗̂W )∗∗, V ∗∗ ⊗̂W ∗∗).
Also,

‖Φ̃(γ,δ)‖cb = ‖ϕγ ⊗ ψδ‖cb ≤ ‖ϕγ‖cb · ‖ψδ‖cb ≤ K1 ·K2.

It only remains to prove the commutativity of the diagram, that is, Φ̃(γ,δ)◦Θ
= Φ(γ,δ); it is enough to check it on elementary tensors.

For v∗∗ ∈ V ∗∗, w∗∗ ∈ W ∗∗ and φ ∈ J CB(V ∗∗ ×W ∗∗) = (V ∗∗ ⊗̂W ∗∗)∗
we have

φ
(
Φ̃(γ,δ)(Θ(v∗∗ ⊗ w∗∗))

)
= φ

(
(ϕγ ⊗ ψδ)∗∗(Θ(v∗∗ ⊗ w∗∗))

)
= Θ(v∗∗ ⊗ w∗∗)((ϕγ ⊗ ψδ)∗(φ))

= (ϕγ ⊗ ψδ)∗(φ)(v∗∗, w∗∗) = φ ◦ (ϕγ ⊗ ψδ)(v∗∗, w∗∗)
= φ(ϕ∗∗γ v

∗∗, ψ∗∗δ w
∗∗) = φ(ϕ∗∗γ v

∗∗, ψ∗∗δ w
∗∗)

= φ((ϕ∗∗γ ⊗ ψ∗∗δ )(v∗∗ ⊗ w∗∗)) = φ(Φ(γ,δ)(v
∗∗ ⊗ w∗∗)).

Since this is valid for every v∗∗ ∈ V ∗∗, w∗∗ ∈W ∗∗ and φ ∈ J CB(V ∗∗×W ∗∗)
= (V ∗∗ ⊗̂W ∗∗)∗, we are done.
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The last part of the statement is now a consequence of Lemma 2.6(ii),
Proposition 2.7 and Remark 2.8.

The statement with the CMAP hypothesis follows as well, taking into
account that in this case K1 = K2 = 1.

4. Bidual of a tensor product with other tensor norms. In this sec-

tion we address the analogous problem of whether an element in V ∗∗
α
⊗W ∗∗

can be identified with an element in (V
α
⊗W )∗∗, for an operator space tensor

norm α. In order to have a mapping Θα : V ∗∗
α
⊗W ∗∗ → (V

α
⊗W )∗∗ properly

defined, we need to establish some properties of operator space tensor norms
and to impose conditions on the spaces involved. We recall the notion of
operator space tensor norm as defined in [8]:

Definition 4.1. We say that α is an operator space tensor norm if α is
an operator space matrix norm on each tensor product of operator spaces
V ⊗W that satisfies the following two conditions:

(a) α is a cross matrix norm, that is, α(v ⊗ w) = ‖v‖ · ‖w‖ for all
v ∈Mp(V ), w ∈Mq(W ) and p, q ∈ N.

(b) α has the “completely metric mapping property”: for every r1 ∈
CB(U1, V ), r2 ∈ CB(U2,W ), the operator r1 ⊗ r2 : (U1 ⊗ U2, α) →
(V ⊗W,α) is completely bounded and ‖r1 ⊗ r2‖cb ≤ ‖r1‖cb · ‖r2‖cb.

We denote by V
α
⊗W the completion of (V ⊗W,α).

Definition 4.2. We say that an operator space tensor norm α is finitely
generated if for any operator spaces V , W and every u ∈Mn(V ⊗W ),

‖u‖Mn(V⊗αW )

= inf{‖u‖Mn(E⊗αF ) : E ∈ FIN(V ), F ∈ FIN(W ), u ∈Mn(E ⊗ F )}.

Now we prove an operator space version of [7, Extension Lemma 6.7]
which we need in order to have an appropriate generalization of Proposition
3.1 to other tensor norms α (see Corollary 4.5).

Lemma 4.3 (Right extension lemma). Let V and W be operator spaces
with W locally reflexive and let α be a finitely generated operator space tensor
norm. Then the following mapping is a complete isometry:

(V
α
⊗W )∗ → (V

α
⊗W ∗∗)∗, φ 7→ φ∧,

where φ∧(v ⊗ w∗∗) = w∗∗(Lφ(v)) and Lφ : V →W ∗ is given by Lφ(v)(w) =
φ(v, w).

Proof. Denoting by JW : W → W ∗∗ the canonical inclusion, it is clear

that the mapping id⊗ JW : V
α
⊗W → V

α
⊗W ∗∗ is completely bounded with
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‖id⊗ JW ‖cb ≤ 1. Thus, from the duality Mn((V
α
⊗W )∗) ' Tn(V

α
⊗W )∗ and

[11, Theorem 4.1.8] it is easily seen that every φ ∈Mn((V
α
⊗W )∗) satisfies

‖φ‖
Mn((V

α
⊗W )∗)

≤ ‖φ∧‖
Mn((V

α
⊗W ∗∗)∗)

.

For the reverse inequality, let φ ∈ Mn((V
α
⊗ W )∗). By the complete

identification Mn((V
α
⊗W ∗∗)∗) ' CB(V

α
⊗W ∗∗,Mn) and by [11, Proposition

2.2.2] we have

‖φ∧‖
Mn((V

α
⊗W ∗∗)∗)

= ‖φ∧‖
CB(V

α
⊗W ∗∗,Mn)

= ‖φ∧n‖

= sup
u∈B

Mn(V
α
⊗W∗∗)

‖φ∧n(u)‖.

For this last supremum it is enough to consider matrices u in the uncom-
pleted tensor product. Let u ∈ Mn(V ⊗W ∗∗) and take finite-dimensional
subspaces F1 ⊂ V and F2 ⊂W ∗∗ such that u ∈Mn(F1 ⊗ F2).

Since φ ∈ Mn((V
α
⊗W )∗) ' CB(V

α
⊗W,Mn) it has an associated lin-

ear mapping Lφ : V → CB(W,Mn) = Mn(W ∗) satisfying φ∧(v ⊗ w∗∗) =
(w∗∗)n(Lφ(v)) for all v ∈ V and w∗∗ ∈ W ∗∗. Now, there exists a finite-
dimensional subspace E ⊂ W ∗ such that Lφ(F1) ⊂ Mn(E). Equivalently,
Lφij (F1) ⊂ E, for all i, j, where φij denote the entries of the matrix φ.

By the local reflexivity of W , given ε > 0, there is a completely bounded
map ϕ : F2 →W such that

‖ϕ‖cb < 1 + ε,

ϕ(w∗∗)(Lφij (v)) = w∗∗(Lφij (v)) for all i, j and all w∗∗ ∈ F2, v ∈ F1.

This can be translated into the equality φij(v ⊗ ϕ(w∗∗)) = φ∧ij(v ⊗ w∗∗),
and so φ(v ⊗ ϕ(w∗∗)) = φ∧(v ⊗ w∗∗) for all w∗∗ ∈ F2 and v ∈ F1. Hence,
φ∧n(u) = φn((id⊗ ϕ)n(u)) and we obtain

‖φ∧n(u)‖ ≤ ‖φn‖ · ‖(id⊗ ϕ)n‖cb · ‖u‖
Mn(F1

α
⊗F2)

≤ ‖φn‖ · (1 + ε) · ‖u‖
Mn(F1

α
⊗F2)

.

This holds for any ε > 0 and all finite-dimensional subspaces F1 ⊂ V and
F2 ⊂W ∗∗ such that u ∈Mn(F1⊗F2). Since α is finitely generated we clearly
derive

‖φ∧n‖ ≤ ‖φn‖ and so ‖φ∧‖
Mn((V

α
⊗W ∗∗)∗)

≤ ‖φ‖
Mn((V

α
⊗W )∗)

.

This finishes the proof.

An analogous argument leads to:

Lemma 4.4 (Left extension lemma). Let V and W be operator spaces
with V locally reflexive and let α be a finitely generated operator space tensor
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norm. Then the following map is a complete isometry:

(V
α
⊗W )∗ → (V ∗∗

α
⊗W )∗, φ 7→ ∧φ,

where ∧φ(v∗∗⊗w) = v∗∗(Rφ(w)) and Rφ : W → V ∗ is given by Rφ(w)(v) =
φ(v, w).

Corollary 4.5. Let V and W be locally reflexive operator spaces and
let α be a finitely generated operator space tensor norm. Then the following
maps are complete isometries:

(V
α
⊗W )∗ → (V ∗∗

α
⊗W ∗∗)∗, φ 7→ ∧(φ∧),

(V
α
⊗W )∗ → (V ∗∗

α
⊗W ∗∗)∗, φ 7→ (∧φ)∧.

A priori, these two isometries may be different. However, in many cases
they coincide, as is the case for Banach spaces (see Remark 5.3).

When α is the projective operator space tensor norm, the extension called
φ in Section 3 coincides with ∧(φ∧). Note that in this case we proved this
result in Proposition 3.1 without requiring the local reflexivity hypothesis.

For an operator space tensor norm α, the set Aα of bilinear mappings de-

termined by the relation Aα(V ×W,X) ∼= CB(V
α
⊗W,X) defines an operator

space bilinear ideal [8, Proposition 2.4]. Thus, Corollary 4.5 also says that,
under the hypothesis of local reflexivity, every bilinear form φ ∈ Aα(V ×W )
admits an extension φ ∈ Aα(V ∗∗ ×W ∗∗) with ‖φ‖Aα = ‖φ‖Aα .

With the same proof as for the projective operator space tensor product
(Proposition 3.2), we obtain

Proposition 4.6. Let V and W be locally reflexive operator spaces and
let α be a finitely generated operator space tensor norm. Then the map

Θα : V ∗∗
α
⊗W ∗∗ → (V

α
⊗W )∗∗ ' Aα(V ×W )∗,

v∗∗ ⊗ w∗∗ 7→ (φ 7→ ∧(φ∧)(v∗∗, w∗∗)),

is completely bounded with ‖Θα‖cb = 1.

In the particularly relevant cases of the injective and the Haagerup tensor
norms, Θα is, in fact, a complete isometry:

The injective tensor norm case. Let us see that under the conditions
of Proposition 4.6, when α is the injective operator space tensor norm ‖ ·‖∨,
the mapping Θ∨ is a complete isometry. Indeed, the version for the injective
norm of diagram (3.1) is

(4.1)

V ∗∗

̂

⊗W ∗∗ Θ∨ //

Λ ''

(V

̂

⊗W )∗∗

Ω∗ww
(V ∗ ⊗̂W ∗)∗
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Since the mapping Λ : V ∗∗

̂

⊗W ∗∗ → (V ∗ ⊗̂W ∗)∗ is completely isomet-
ric and both Θ∨ and Ω are complete contractions, Θ∨ is also a complete
isometry. Thus, we have

Proposition 4.7. For V and W locally reflexive operator spaces the
map Θ∨ : V ∗∗

̂

⊗W ∗∗ → (V

̂

⊗W )∗∗ is a complete isometry.

It has been proved in [11, Chapter 14] that the mapping Θ∨ is a complete
isometry in another situation: If one of the spaces, say V , satisfies the so
called condition C (that is, if it is exact and locally reflexive), then, for any
W , Θ∨ is a complete isometry.

The Haagerup tensor norm case. When α is the Haagerup tensor

norm, the map Θh : V ∗∗
h
⊗W ∗∗ → (V

h
⊗W )∗∗ can be defined and proved

to be completely isometric without any hypothesis on V and W . This was
done in [13, Theorem 2.2] and [15, Remark 2.11]. The proof in [15] can be
written using a commutative diagram analogous to (3.1) and the fact that
the Haagerup tensor norm is self-dual.

Indeed, defining the embedding Θh : V ∗∗
h
⊗W ∗∗ → (V

h
⊗W )∗∗ by setting

Θh(v∗∗ ⊗w∗∗)(φ) = φ̃(v∗∗, w∗∗), where φ̃ is the (unique) separately w∗-con-
tinuous extension of φ (see [3, 1.6.7]), it is clear that Θh is a complete

contraction. Now, the fact that the mappings Ωh : V ∗∗
h
⊗W ∗∗ → (V ∗

h
⊗W ∗)∗

and Λh : V ∗
h
⊗W ∗ → (V

h
⊗W )∗ are complete isometries (see, for instance

[11, Theorem 9.4.7]) implies that Θh is also a complete isometry, through
the following commutative diagram:

(4.2)

V ∗∗
h
⊗W ∗∗ Θh //

Ωh &&

(V
h
⊗W )∗∗

Λ∗hxx

(V ∗
h
⊗W ∗)∗

We return now to the general case of any finitely generated operator
space tensor norm α. To deduce that Θα is a completely bounded inclusion
that produces the CCEP, we need again to impose an approximation hypo-
thesis. We omit the proofs since, once we know that Θα is properly defined,
they follow as their projective analogues, Lemma 2.4 and Theorem 3.6:

Lemma 4.8 (CBAP in tensor products). Let V and W be operator spaces
with CBAP with constants KV and KW respectively, and let α be a finitely

generated operator space tensor norm. Then V
α
⊗W has CBAP with constant

KV ·KW .
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Theorem 4.9. Let V and W be operator spaces such that both V ∗∗ and
W ∗∗ have CBAP with constants K1 and K2 (respectively CMAP) and all the
spaces V , V ∗, W and W ∗ are locally reflexive. Let α be a finitely generated
operator space tensor norm. Then:

(i) The mapping Θα : V ∗∗
α
⊗ W ∗∗ → (V

α
⊗ W )∗∗ is a complete iso-

morphism (resp. complete isometry) and V ∗∗
α
⊗W ∗∗ has CCEP in

(V
α
⊗W )∗∗ through Θα.

(ii) The space Aα(V ∗∗×W ∗∗) is completely isomorphic (resp. completely
isometric) to a complemented subspace of Aα(V ×W )∗∗.

5. Unique norm preserving extensions. A long-standing problem in
the Banach space setting is under which conditions a unique norm-preserving
extension of a mapping exists. From one of the possible points of view on
this matter, there is a classical result due to Godefroy [12] that characterizes
when a linear mapping has a unique norm-preserving extension to the bidual
space. This result has been extended to polynomial ideals in [2, 9].

As an application of the previous sections, we address the unique norm-
preserving extension problem for extensions of bilinear mappings to bidual
spaces. By Proposition 3.1, each φ ∈ Mn(J CB(V ×W )) has an extension
to V ∗∗ × W ∗∗, which we called φ, satisfying ‖φ‖jcb = ‖φ‖jcb. Also, if V
and W are locally reflexive operator spaces and α is a finitely generated
operator space tensor norm, then by Corollary 4.5, there are norm-preserving
extensions of every φ ∈Mn(Aα(V ×W )) to the biduals. More precisely, we
know that (∧φ)∧ and ∧(φ∧) are extensions of φ to Mn(Aα(V ∗∗×W ∗∗)) that
satisfy ‖(∧φ)∧‖Aα = ‖∧(φ∧)‖Aα = ‖φ‖Aα .

The following statement, which concerns the existence of norm-preserv-
ing extensions, is in some sense converse to Proposition 4.6.

Lemma 5.1. Let V and W be operator spaces and α be a finitely gener-
ated operator space tensor norm. Assume that there exists a complete con-

traction Θα : V ∗∗
α
⊗W ∗∗ → (V

α
⊗W )∗∗ such that Θα(v ⊗w)(φ) = φ(v ⊗w).

Then, for every φ ∈Mn(Aα(V ×W )), the mapping

φ := (Θ∗α)n|Mn(Aα(V×W ))(φ)

is an extension of φ such that ‖φ‖Aα = ‖φ‖Aα.

Proof. The restriction of Θ∗α to Aα(V ×W )∗ is a complete contraction.
Consequently, ‖φ‖Aα ≤ ‖φ‖Aα . The other inequality follows from the fact
that α has the “completely metric mapping property” (condition (b) in
Definition 4.1).

In the next theorem, the notation φ is as in Lemma 5.1.
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Theorem 5.2. Let V , W , α and

Θα : V ∗∗
α
⊗W ∗∗ → (V

α
⊗W )∗∗ ' Aα(V ×W )∗

be as in the preceding lemma. If Θα is a complete isometry then, for a given
φ ∈Mn(Aα(V ×W )) with ‖φ‖Aα = 1, the following conditions are equivalent:

(i) There is a unique extension of φ to V ∗∗ ×W ∗∗ preserving the Aα-
norm.

(ii) For any net (φγ)γ ∈ Mn(Aα(V × W )) with ‖φγ‖Aα ≤ 1 for all γ
that satisfies φγ(v, w) → φ(v, w) for every (v, w) ∈ V ×W we have
φγ(v∗∗, w∗∗)→ φ(v∗∗, w∗∗) for every (v∗∗, w∗∗) ∈ V ∗∗ ×W ∗∗.

Proof. To prove that (i) implies (ii), let (φγ)γ ∈ Mn(Aα(V × W )) be
a net with ‖φγ‖Aα ≤ 1 for all γ such that φγ(v, w) → φ(v, w) for every
(v, w) ∈ V ×W . Since the net (φγ)γ is contained in the unit ball of

Mn(Aα(V ∗∗ ×W ∗∗)) ∼= Mn((V ∗∗
α
⊗W ∗∗)∗) ∼= (Tn(V ∗∗

α
⊗W ∗∗))∗,

which is w∗-compact, there exists a subnet (still denoted (φγ)γ) w∗-conv-
erging to an element ψ in the unit ball of Mn(Aα(V ∗∗ ×W ∗∗)).

Hence, for every (v∗∗, w∗∗) ∈ V ∗∗ × W ∗∗, φγ(v∗∗, w∗∗) → ψ(v∗∗, w∗∗).

Since φγ(v, w) = φγ(v, w) for each (v, w) ∈ V ×W and φγ(v, w) → φ(v, w)
we derive that ψ|V×W = φ. Also, the fact that ‖ψ‖Aα ≤ 1 = ‖φ‖Aα says
that ψ is a Aα-norm-preserving extension of φ. By (i), we have ψ = φ.
A canonical subnet argument finishes the proof.

For the reverse implication, let ψ ∈Mn(Aα(V ∗∗×W ∗∗)) be an extension
of φ with ‖ψ‖Aα = 1. Through the complete isometry Θα, the operator space

V ∗∗
α
⊗W ∗∗ can be seen as a subspace of (V

α
⊗W )∗∗. Thus, the matrix ψ ∈

Mn(Aα(V ∗∗×W ∗∗)) ∼= CB(V ∗∗
α
⊗W ∗∗,Mn) has a norm-preserving extension

to ψ̃ ∈ CB((V
α
⊗W )∗∗,Mn) ∼= Mn(Aα(V ×W )∗∗). Using an operator space

version of Goldstine’s theorem, we know that there exists a net (φγ)γ ⊂
Mn(Aα(V ×W )) with ‖φγ‖ ≤ 1 for all γ, satisfying

un(φγ)→ ψ̃(u) for all u ∈ Aα(V ×W )∗.

Now, for any (v, w) ∈ V × W , the elementary tensor v ⊗ w belongs to
Aα(V ×W )∗. Then

φγ(v, w) = (v ⊗ w)n(φγ)→ ψ̃(v ⊗ w) = ψ(v, w) = φ(v, w).

Applying (ii) and the equality φγ(v∗∗, w∗∗) = (v∗∗ ⊗ w∗∗)n(φγ) we obtain,
for every (v∗∗, w∗∗) ∈ V ∗∗ ×W ∗∗,
φγ(v∗∗, w∗∗)→ φ(v∗∗, w∗∗), φγ(v∗∗, w∗∗)→ φ̃(v∗∗ ⊗ w∗∗) = ψ(v∗∗, w∗∗).

Therefore ψ = φ, and this completes the proof.
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Remark 5.3. Some comments are in order.

• When V and W are locally reflexive and φ satisfies (i) of the previous
theorem, then, in particular, ∧(φ∧) = (∧φ)∧.
• Projective operator space tensor product: When α = ‖·‖∧, the hypoth-

esis of the previous theorem (i.e. Θ being completely isometric) holds
when V ∗ and W ∗ are locally reflexive and V ∗∗ (or W ∗∗) has CMAP,
by Corollary 3.5.
• Injective operator space tensor product: When α = ‖·‖∨, the hypothesis

of the previous theorem (i.e. Θ∨ being completely isometric) holds
when V and W are locally reflexive, by Proposition 4.7.
• Haagerup tensor product: When α = ‖ · ‖h, there is a completely

isometric natural inclusion Θh : V ∗∗
h
⊗W ∗∗ → (V

h
⊗W )∗∗ (see diagram

(4.2)), and consequently the conclusion of Theorem 5.2 holds, without
any assumption on V and W .
• For a general α, by Theorem 4.9, when V, V ∗, W and W ∗ are locally

reflexive and V ∗∗ and W ∗∗ have CMAP, the mapping Θα is completely
isometric and hence the conclusion of Theorem 5.2 holds.
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