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Coppersmith–Rivlin type inequalities
and the order of vanishing of polynomials at 1

by

Tamás Erdélyi (College Station, TX)

1. Introduction. In [B-99] and [B-13] we examined a number of prob-
lems concerning polynomials with coefficients restricted in various ways. We
are particularly interested in how small such polynomials can be on the in-
terval [0, 1]. For example, we proved that there are absolute constants c1 > 0
and c2 > 0 such that

exp
(
−c1
√
n
)
≤ min

06≡Q∈Fn

{
max
x∈[0,1]

|Q(x)|
}
≤ exp

(
−c2
√
n
)

for every n ≥ 2, where Fn denotes the set of all polynomials of degree at
most n with coefficients from {−1, 0, 1}.

Littlewood considered minimization problems of this variety on the unit
disk. His most famous, now solved, conjecture was that the L1 norm of an
element f ∈ Fn on the unit circle grows at least as fast as c logN , where N
is the number of non-zero coefficients in f and c > 0 is an absolute constant.

When the coefficients are required to be integers, the questions have a
Diophantine nature and have been studied from a variety of points of view.
See [A-90], [B-98], [B-95], [F-80], [O-93].

One key to the analysis is a study of the related problem of giving an
upper bound for the multiplicity of the zero these restricted polynomials
can have at 1. In [B-99] and [B-13] we answer this latter question precisely
for the class of polynomials of the form

Q(x) =
n∑
j=0

ajx
j , |aj | ≤ 1, aj ∈ C, j = 1, . . . , n,

with fixed |a0| 6= 0.
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Variants of these questions have attracted considerable study, though
rarely have precise answers been possible to give. See in particular [A-79],
[B-32], [B-87], [E-50], [Sch-33], [Sz-34]. Indeed, the classical, much stud-
ied, and presumably very difficult problem of Prouhet, Tarry, and Escott
rephrases as a question of this variety. (Precisely: what is the maximal van-
ishing at 1 of a polynomial with integer coefficients with l1 norm 2n? It is
conjectured to be n.) See [H-82], [B-94b], or [B-02].

For n ∈ N, L > 0, and p ≥ 1 we define the following numbers. Let
κp(n,L) be the largest possible value of k for which there is a polynomial
Q 6≡ 0 of the form

Q(x) =

n∑
j=0

ajx
j , |a0| ≥ L

( n∑
j=1

|aj |p
)1/p

, aj ∈ C,

such that (x − 1)k divides Q(x). For n ∈ N and L > 0 let κ∞(n,L) be the
largest possible value of k for which there is a polynomial Q 6≡ 0 of the form

Q(x) =

n∑
j=0

ajx
j , |a0| ≥ L max

1≤j≤n
|aj |, aj ∈ C,

such that (x−1)k divides Q(x). In [B-99] we proved that there is an absolute
constant c3 > 0 such that

min

{
1

6

√
(n(1− logL)− 1, n

}
≤ κ∞(n,L) ≤ min

{
c3
√
n(1− logL), n

}
for every n ∈ N and L ∈ (0, 1]. However, we were far from being able to
establish the right result in the case of L ≥ 1. In [B-13] we proved the
right order of magnitude of κ∞(n,L) and κ2(n,L) in the case of L ≥ 1.
Our results in [B-99] and [B-13] sharpen and generalize results of Schur
[Sch-33], Amoroso [A-90], Bombieri and Vaaler [B-87], and Hua [H-82] who
gave versions for polynomials with integer coefficients. Our results in [B-99]
have turned out to be related to a number of recent papers from a wide
range of research areas. See [A-02], [B-98], [B-95], [B-96], [B-97a], [B-97b],
[B-97c], [B-00], [B-07], [B-08a], [B-13], [B-08b], [B-94a], [B-94b], [Bu-99],
[C-02], [C-13], [C-10], [D-99], [D-01], [D-14], [D-03], [E-08a], [E-08b], [E-15],
[F-00], [G-05], [K-04], [M-69], [M-03], [N-94], [O-93], [P-99], [P-13], [R-04],
[R-07], [S-99], [T-07], [T-84], for example. More results on the zeros of poly-
nomials with Littlewood type coefficient constraints may be found in [E-02b].
Markov and Bernstein type inequalities under Erdős type coefficient con-
straints are surveyed in [E-02a].

For n ∈ N, L > 0, and q ≥ 1 we define the following numbers. Let
µq(n,L) be the smallest value of k for which there is a polynomial of de-
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gree k with complex coefficients such that

|Q(0)| > 1

L

( n∑
j=1

|Q(j)|q
)1/q

.

For n ∈ N and L > 0 let µ∞(n,L) be the smallest value of k for which there
is a polynomial of degree k with complex coefficients such that

|Q(0)| > 1

L
max
1≤j≤n

|Q(j)|.

It is a simple consequence of Hölder’s inequality (see Lemma 3.6) that

κp(n,L) ≤ µq(n,L)

whenever n ∈ N, L > 0, 1 ≤ p, q ≤ ∞, and 1/p+ 1/q = 1.

In this paper we find the the size of κp(n,L) and µq(n,L) for all n ∈ N,
L > 0, and 1 ≤ p, q ≤ ∞. The result about µ∞(n,L) is due to Coppersmith
and Rivlin [C-92a], but our proof presented here is completely different and
much shorter even in that special case. Our results in [B-99] may be viewed
as finding the size of κ∞(n,L) and µ1(n,L) for all n ∈ N and L ∈ (0, 1].
Our results in [B-13] in turn may be viewed as finding the size of κ∞(n,L),
µ1(n,L), κ2(n,L), and µ2(n,L) for all n ∈ N and L > 0.

2. New results. We extend some of our main results in [B-13] to the
case L ≥ 1.

Theorem 2.1. Let p ∈ (1,∞] and q ∈ [1,∞) satisfy 1/p + 1/q = 1.
There are absolute constants c1, c2 > 0 such that

√
n (c1L)−q/2 − 1 ≤ κp(n,L) ≤ µq(n,L) ≤

√
n (c2L)−q/2 + 2

for every n ∈ N and L > 1/2, and

c3 min
{√

n(− logL), n
}
≤ κp(n,L) ≤ µq(n,L)

≤ c4 min
{√

n(− logL), n
}

+ 4

for every n ∈ N and L ∈ (0, 1/2]. Here c1 := 1/53, c2 := 40, c3 := 2/7, and
c4 := 13 are appropriate choices.

Theorem 2.2. There are absolute constants c1, c2 > 0 such that

c1
√
n(1− L)− 1 ≤ κ1(n,L) ≤ µ∞(n,L) ≤ c2

√
n(1− L) + 1

for every n ∈ N and L ∈ (1/2, 1], and

c3 min
{√

n(− logL), n
}
≤ κ1(n,L) ≤ µ∞(n,L)

≤ c4 min
{√

n(− logL), n
}

+ 4
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for every n ∈ N and L ∈ (0, 1/2]. Note that κ1(n,L) = µ∞(n,L) = 0 for
every n ∈ N and L > 1. Here c1 := 1/5, c2 := 1, c3 := 2/7, and c4 := 13 are
appropriate choices.

3. Lemmas. In this section we list our lemmas needed in the proofs of
Theorems 2.1 and 2.2. These lemmas are proved in Section 4. Let Pn be the
set of all polynomials of degree at most n with real coefficients. Let Pcn be
the set of all polynomials of degree at most n with complex coefficients.

Lemma 3.1. Let p ∈ (1,∞). For any 1 ≤ M there are polynomials Pn
of the form

Pn(x) =
n∑
j=0

aj,nx
j , aj,n ∈ R, a0,n ≥

3M

π2
+ o(M),( n∑

j=1

|aj,n|p
)1/p

≤ 16M1/p,

such that Pn has at least
⌊√

n/M
⌋
zeros at 1.

Lemma 3.2. Let p, q ∈ (1,∞) satisfy 1/p+ 1/q = 1. For any L ≥ 1/48
there are polynomials Pn of the form

Pn(x) =
n∑
j=0

aj,nx
j , aj,n ∈ R, a0,n ≥ L+ o(L),

n∑
j=1

|aj,n|p ≤ 1,

such that Pn has at least
⌊√

n(cL)−q/2
⌋
zeros at 1 with c := 3

16π2 .

Lemma 3.3. Let p ∈ [1,∞). For any L ∈ (0, 1/17) there are polynomials
Pn of the form

Pn(x) =

n∑
j=0

aj,nx
j , aj,n ∈ R, a0,n = L,

n∑
j=1

|aj,n|p ≤ 1,

such that Pn has at least 2
7 min

{√
n(1− logL), n

}
zeros at 1.

Lemma 3.4. For any L ∈ (0, 1) there are polynomials Pn 6≡ 0 of the
form

Pn(x) =

n∑
j=0

aj,nx
j , aj,n ∈ R, a0,n ≥ L

n∑
j=1

|aj,n|,

such that Pn has at least 1
5

√
(n− 1)(1− L) zeros at 1.

The observation below is well known, easy to prove, and recorded in
several papers. See [B-99], for example.

Lemma 3.5. Let P 6≡ 0 be a polynomial of the form P (x) =
∑n

j=0 ajx
j.

Then (x− 1)k divides P if and only if
∑n

j=0 ajQ(j) = 0 for all polynomials
Q ∈ Pck−1.
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Our next lemma is a simple consequence of Hölder’s inequality.

Lemma 3.6. Let 1 ≤ p, q ≤ ∞ and 1/p+1/q = 1. Then for every n ∈ N
and L > 0, we have

κp(n,L) ≤ µq(n,L).

The next lemma is [K-09, Lemma 3.4].

Lemma 3.7. For A,M > 0, there exists a polynomial G such that
F = G2 ∈ Pm with

m <
√
π
√
A

4
√
M + 2

such that F (0) = M and

|F (x)| ≤ min{M,x−2}, x ∈ (0, A].

We also need Lemma 5.7 from [B-99], which may be stated as follows.

Lemma 3.8. Let n and R be positive integers with 1 ≤ R ≤
√
n. Then

there exists a polynomial F ∈ Pm with

m ≤ 4
√
n+

9

7
R
√
n+R+ 4 ≤ 44

7
R
√
n+ 4

such that
F (1) = F (2) = · · · = F (R2) = 0

and

|F (0)| > exp(R2)
(
|F (R2 + 1)|+ |F (R2 + 2)|+ · · ·+ |F (n)|

)
≥ exp(R2)

( n∑
j=1

|F (j)|2
)1/2

.

We will use Lemmas 3.6 and 3.7 to prove the following two:

Lemma 3.9. Let q ∈ [1,∞). For every n ∈ N, q ∈ [1,∞), and K > 0,
there are polynomials F ∈ Pm satisfying

|F (0)| > K
( n∑
j=1

|F (j)|q
)1/q

and

m ≤

{√
n (40K)q/2 + 2, 0 < K < 2,

13 min
{√

n logK,n
}

+ 4, K ≥ 2.

Lemma 3.10. For every n ∈ N and K > 1, there are polynomials F ∈Pm
satisfying

|F (0)| > K max
j∈{1,...,n}

|F (j)|

and

m ≤

{√
n(K − 1)/2 + 1, 1 < K < 2,

13 min
{√

n logK,n
}

+ 4, K ≥ 2.
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4. Proofs of the lemmas

Proof of Lemma 3.1. Modifying the construction on p. 138 of [B-95] for
x ∈ (0,∞) we define H1(x) := 1 and

Hm(x) :=
(−1)m+12(m!)2

2πi

∫
Γ

xt dt

(t− 2)
∏m
j=0 (t− j2)

, m = 2, 3, . . . ,

where the simple closed contour Γ surrounds the zeros of the denominator
of the integrand. Observe that we have added the factor t − 2 to the de-
nominator and the factor (−1)m+12 to achieve our goals. (It is left to the
reader to see what role this modification plays in our proof.) Then Hm is a
polynomial of degree m2 with a zero at 1 with multiplicity at least m + 1.
(This can be seen easily by repeated differentiation and then evaluation of
the above contour integral by expanding the contour to infinity.)

Also, by the residue theorem,

(4.1) Hm(x) = 1 + dmx
2 +

m∑
k=1

ck,mx
k2 , m = 2, 3, . . . ,

where

ck,m =
(−1)m+12(m!)2

(k2 − 2)
∏m
j=0, j 6=k (k2 − j2)

=
4

k2 − 2

(−1)k+1(m!)2

(m− k)!(m+ k)!
,

dm =
(−1)m+12(m!)2∏m

j=0 (2− j2)
.

It follows that each ck,m is real and

(4.2) |ck,m| ≤
4

|k2 − 2|
, k = 1, . . . ,m,

and a simple calculation shows that

(4.3) |dm| ≤ 8, m = 2, 3, . . . .

(No effort has been made to optimize the bound in (4.3).)
Let SM be the collection of all odd square free integers in [1,M ]. Let

m :=
⌊√

n/M
⌋
. If m = 0 then there is nothing to prove. So we may assume

that m ≥ 1. It is well known that

|SM | ≥
3M

π2
+ o(M),

where |A| denotes the number of elements in a finite set A. This follows from
the fact that if S∗M is the collection of all square free integers in [1,M ], then

|S∗M | =
6M

π2
+ o(M)

(see [H-38, pp. 267–268], for example), by observing that the number of odd
square free integers in [1,M ] is not less than the number of even square
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free integers in [1,M ] (if a is an even square free integer then a/2 is an odd
square free integer). We define

Pn(x) :=
∑
j∈SM

Hm(xj).

Then Pn is of the form

Pn(x) =

n∑
j=0

aj,nx
j , aj,n ∈ R, j = 0, 1, . . . , n.

We have

a0,n = |S∗M | ≥
3M

π2
+ o(M).

First assume that m = 1. Then
n∑
j=1

|aj,n|p = 2|SM | ≤ 2M,

and as Pn has one zero at 1, the lemma follows. Now assume that m ≥ 2. We
have ju 6= lv whenever j, l ∈ SM , j 6= l, and u, v ∈ {12, 22, . . . ,m2} ∪ {2}.
Combining this with (4.1)–(4.3), we obtain

n∑
j=1

|aj,n|p ≤ |SM |
(

8p +
m∑
k=1

(
4

|k2 − 2|

)p)
≤ |SM |

(
8p +

m∑
k=1

4p

|k2 − 2|

)
=M(8p + 8p) ≤ 16pM.

Observe that each term in Pn has a zero at 1 with multiplicity at least
m+ 1 >

⌊√
n/M

⌋
, and hence so does Pn.

Proof of Lemma 3.2. The statement follows from Lemma 3.1 by choosing
1 ≤M so that

L :=
3

16π2
M1−1/p =

3

16π2
M1/q.

This can be done when 3
16π2 ≤ L.

Proof of Lemma 3.3. Let L ∈ (0, 1/17]. We define

k := min

{⌊
− logL

log 17

⌋
, n

}
and m :=

⌊√
n/k

⌋
.

Observe that k,m ≥ 1. Let Pn := LHk
m ∈ Pn, where Hm ∈ Pm2 is defined

by (4.1). Then

Pn(x) =

n∑
j=0

aj,nx
j , aj,n ∈ R, j = 0, 1, . . . , n,

has at least

km ≥ k1

2

√
n/k =

1

2

√
nk =

1

2
√

log 17
min

{√
n(− logL), n

}
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zeros at 1, where 2
√

log 17 < 7/2. Clearly, a0,n = Pn(0) = L, and using the
notation in (4.1) again, we can deduce that

n∑
j=1

|aj,n|p ≤ Lp
( n∑
j=1

|aj,n|
)p
≤ Lp

(
1 + |dm|+

m∑
k=1

|ck,m|
)kp

≤ Lp(1 + 8 + 8)kp = Lp 17kp ≤ LpL−p = 1

if m ≥ 2, and
n∑
j=1

|aj,n|p ≤ Lp
( n∑
j=1

|aj,n|
)p
≤ Lp2kp ≤ LpL−p = 1

if m = 1.

Proof of Lemma 3.4. Let

r :=

⌊
12

1 + L

1− L

⌋
+ 1 and m :=

⌊√
n− 1

r

⌋
.

When m ≤ 1 we have
⌊
(1/9)

√
n(1− L)

⌋
= 0, so there is nothing to prove.

Now assume that m ≥ 2. Let Pn ∈ Pn be defined by Pn(x) := Hm(xr),
where Hm ∈ Pm2 is as in (4.1). Let Qn ∈ Pn be defined by

Qn(x) = −
∫ 1

0
Pn(t) dt+

∫ x

0
Pn(t) dt.

Then, using the notation in (4.1) again, we have

Qn(x) = −1− dm
2r + 1

−
m∑
k=1

ck,m
rk2 + 1

+ x+
dmx

2r+1

2r + 1
+

m∑
k=1

ck,mx
rk2+1

rk2 + 1
.

Writing

Qn(x) =

n∑
j=0

aj,nx
j , aj,n ∈ R, j = 0, 1, . . . , n,

and recalling (4.2) and (4.3), we have

|a0,n| ≥ 1− 8

2r + 1
−

m∑
k=1

4

|k2 − 4|(rk2 + 1)
≥ 1− 8

2r + 1
− 8

r
> 1− 12

r

and
n∑
j=1

|aj,n| ≤ 1 +
8

2r + 1
+

m∑
k=1

4

(k2 − 2)(rk2 + 1)
< 1 +

12

r
.

Combining these two formulas, we obtain

|a0,n|∑n
j=1 |aj,n|

>
1− 12/r

1 + 12/r
≥ 1− (1− L)/(1 + L)

1 + (1− L)/(1 + L)
= L.
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Also Qn has at least m+ 1 ≥
⌊√

(n− 1)/r
⌋

+ 1 ≥ 1
5

√
(n− 1)(1− L) zeros

at 1.

Proof of Lemma 3.6. We assume that p, q ∈ (1,∞); in the cases p = 1,
q = ∞ and p = ∞, q = 1 the result can be proved similarly with straight-
forward modifications. Let m := µq(n,L). Let Q be a polynomial of degree
m with complex coefficients such that

|Q(0)| > 1

L

( n∑
j=1

|Q(j)|q
)1/q

.

Now let P be a polynomial of the form

P (x) =

n∑
j=0

ajx
j , |a0| ≥ L

( n∑
j=1

|aj |p
)1/p

, aj ∈ C.

It follows from Hölder’s inequality that∣∣∣ n∑
j=1

ajQ(j)
∣∣∣ ≤ ( n∑

j=1

|aj |p
)1/p( n∑

j=1

|Q(j)|q
)1/q

<
|a0|
L
L|Q(0)| = |a0Q(0)|.

Then
∑n

j=0 ajQ(j) 6= 0, and hence Lemma 3.5 implies that (x− 1)m+1 does

not divide P . We conclude that κp(n,L) ≤ m = µq(n,L).

Proof of Lemma 3.9. Note that µq(n,K) ≤ n for all n ∈ N and L > 0,
as is justified by H ∈ Pn defined by H(x) :=

∏n
j=1 (x− j).

Case 1: 0 < K < n−1/q. The choice F ≡ 1 gives the lemma.

Case 2: n−1/q ≤ K < 2. Let F be the polynomial given in Lemma 3.7
with A := n and M := (4K)2q. Then

n∑
j=1

|F (j)|q ≤
∑

j≤M−1/2

M q +
∑

j>M1/2

1

j2q
< M q−1/2 +

1

2q − 1
bM−1/2c−2q+1

≤ (1 + 22q−1)M q−1/2,

so ( n∑
j=1

|F (j)|q
)1/q

< 4M1−1/(2q) = K−1F (0),

and the degree m of F satisfies

m < π
√
n

4
√
M + 2 < π

√
n (4K)q/2 + 2 ≤

√
n (40K)q/2 + 2.

Case 3: 2 ≤ K ≤ exp(n− 2
√
n). Let R :=

⌊√
logK

⌋
+ 1, and let F be

the polynomial given in Lemma 3.8 with this R. Then

|F (0)| > K
n∑
j=1

|F (j)| ≥ K
( n∑
j=1

|F (j)|q
)1/q

,
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and the degree m of F satisfies

m ≤ 44

7
R
√
n+ 4 ≤ 13

√
n logK + 4.

Case 4: K > exp(n − 2
√
n), n ≥ 9. Then logK > n − 2

√
n ≥ n/3 for

all n ≥ 9. Hence the polynomial F ∈ Pn defined by

(4.4) F (x) :=
n∏
j=1

(x− j)

shows that

µq(n,K) ≤ n ≤
√

3 min
{√

n logK,n
}
.

Case 5: K ≥ 2 and n < 9. Now the polynomial (4.4) shows

µq(n,K) ≤ n ≤ 4 min
{√

n logK,n
}
.

Proof of Lemma 3.10. First let 1 < K < 2. Let m =
⌊√

n(K − 1)/2
⌋
+1.

Let Tm be the Chebyshev polynomial of degree m defined by

Tm(cos t) = cos(mt), t ∈ R.

It is well known that |T ′m(1)| = m2 and T ′m(x) is increasing on [1,∞), hence
Tm(1 + x) ≥ 1 +m2x for all x > 0. Now we define F ∈ Pm by

F (x) := Tm

(
−2x

n− 1
+
n+ 1

n− 1

)
.

Then |F (x)| ≤ 1 for all x ∈ [1, n], and

F (0) ≥ Tm
(

1 +
2

n− 1

)
> 1 +

m2

n− 1
> 1 +

m2

n
≥ K,

which finishes the proof in the case of 1 < K < 2. Now let k ≥ 2. Then the
polynomial F ∈ Pm chosen for q = 1, n ∈ N, and K ≥ 2 by Lemma 3.9
gives

|F (0)| > K
( n∑
j=1

|F (j)|q
)1/q

≥ K max
j∈{1,...,n}

|F (j)|,

with
m ≤ 13 min

{√
n logK,n

}
+ 4.

5. Proofs of the theorems

Proof of Theorem 2.1. Without loss of generality we may assume that
p ∈ (1,∞), as the case p =∞ follows by a simple limiting argument (or we
may as well refer to the main result in [B-13]). By Lemma 3.6 we have

κp(n,L) ≤ µq(n,L)
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for every n ∈ N and L > 0. The lower bounds for κp(n,L) follow from
Lemmas 3.2 and 3.3. The upper bounds for µq(n,L) follow from Lemma 3.9
with K = L−1.

Proof of Theorem 2.2. By Lemma 3.6 we have

κ1(n,L) ≤ µ∞(n,L)

for every n ∈ N and L > 0. The lower bounds for κ1(n,L) follow from Lem-
mas 3.3 and 3.4. The upper bounds for µ∞(n,L) follow from Lemma 3.10
with K = L−1.

6. Remarks and problems. A question that we have not really con-
sidered in this paper is the following: Are there examples of n, L, and p for
which the values of κp(n,L) are significantly smaller if the coefficients are
required to be rational (perhaps together with other restrictions)? The same
question may be raised about µq(n,L). As the conditions on the coefficients
of the polynomials in Theorems 2.1 and 2.2 are homogeneous, assuming ra-
tional coefficients and integer coefficients lead to the same results. Three
special classes of interest are

Fn :=
{
Q : Q(z) =

n∑
j=0

ajz
j , aj ∈ {−1, 0, 1}

}
,

Ln :=
{
Q : Q(z) =

n∑
j=0

ajz
j , aj ∈ {−1, 1}

}
,

Kn :=
{
Q : Q(z) =

n∑
j=0

ajz
j , aj ∈ C, |aj | = 1

}
.

The following three problems arise naturally.

Problem 6.1. How many zeros can a polynomial 0 6≡ Q ∈ Fn have
at 1?

Problem 6.2. How many zeros can a polynomial Q ∈ Ln have at 1?

Problem 6.3. How many zeros can a polynomial Q ∈ Kn have at 1?

The case p = ∞ and L = 1 in our Theorem 2.1 shows that every 0 6≡
Q ∈ Fn, every Q ∈ Ln, and every Q ∈ Kn can have at most cn1/2 zeros
at 1, where c > 0 is an absolute constant. However, one may expect better
results by utilizing the additional pieces of information on their coefficients.

It was observed in [B-99] that for every integer n ≥ 2 there is a Q ∈ Fn
having at least c(n/log n)1/2 zeros at 1 with an absolute constant c > 0.
This can be shown by a simple pigeon-hole argument. However, as far as we
know, closing the gap between cn1/2 and c(n/log n)1/2 in Problem 6.1 is an
open and most likely a very difficult problem.
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As far as Problem 6.2 is concerned, Boyd [B-97c] showed that for n ≥ 3
every Q ∈ Ln has at most

(6.1)
c(log n)2

log log n

zeros at 1. This is the best known upper bound in Problem 6.2 even to-
day. Boyd’s proof is very clever and, up to an application of the prime
number theorem, completely elementary. It is reasonable to conjecture that
there is an absolute constant c > 0 such that every Q ∈ Ln, n ≥ 2, has
at most c log n zeros at 1. It is easy to see that for every integer n ≥ 2
there are Qn ∈ Ln with at least c log n zeros at 1 with an absolute constant
c > 0.

As to Problem 6.3, one may suspect that every Q ∈ Kn, n ≥ 2, has at
most c log n zeros at 1. However, just to see if Boyd’s bound (6.1) holds
for every Q ∈ Kn seems quite challenging and beyond reach at the mo-
ment.
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[B-32] A. Bloch and G. Pólya, On the roots of certain algebraic equations, Proc. London
Math. Soc. 33 (1932), 102–114.

[B-87] E. Bombieri and J. D. Vaaler, Polynomials with low height and prescribed van-
ishing, in: Analytic Number Theory and Diophantine Problems, Birkhäuser,
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[B-97a] P. Borwein and T. Erdélyi, On the zeros of polynomials with restricted coeffi-
cients, Illinois J. Math. 41 (1997), 667–675.
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