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Unitary closure and Fourier algebra of a topological group

by

Anthony To-Ming Lau (Edmonton) and Jean Ludwig (Metz)

Abstract. This is a sequel to our recent work (2012) on the Fourier–Stieltjes algebra
B(G) of a topological group G. We introduce the unitary closure G of G and use it to
study the Fourier algebra A(G) of G. We also study operator amenability and fixed point
property as well as other related geometric properties for A(G).

1. Introduction. Let G be a topological group, i.e. a group with a
Hausdorff topology such that the mappings x 7→ x−1 from G to G and
(x, y) 7→ xy from G×G to G are continuous. Let P (G) denote the collection
of all continuous positive definite functions on G, i.e. continuous complex-
valued functions ϕ on G such that for any complex numbers λ1, . . . , λn and
any a1, . . . , an in G, we have

n∑
i=1

n∑
j=1

λiλjϕ(a−1i aj) ≥ 0.

Let B(G) denote the linear span of P (G). As shown in [La1], B(G) can
be identified with the predual of a von Neumann algebra W ∗(G) ⊂ B(Hω),
where ω is a ∗-homomorphism of G into the group of unitary operators
in B(Hω), the space of bounded linear operators from a Hilbert space Hω
into Hω. Furthermore, B(G), with the predual norm of W ∗(G), is a com-
mutative Banach algebra called the Fourier–Stieltjes algebra of G.

In a recent paper [La-Lu], we study B(G) when G has a host algebra
or a group C∗-algebra, the analogue of the group C∗-algebra of a locally
compact group G. Our main challenge is that a topological group cannot
have a positive regular Borel measure which is left translation invariant
unless G is locally compact.
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In Section 3, we introduce the unitary cover and the unitary closure of
a topological group and establish their universal properties (Theorems 3.3,
3.6 and 3.7). The unitary closure is then used in Section 4 to define the
Fourier algebra A(G). When G is locally compact, A(G) was introduced
by P. Eymard in his classical paper [Ey]. We study operator amenability of
B(G) and A(G) and the weak fixed point property of A(G) for non-expansive
mappings.

In Section 5, we study the universal C∗-algebra C∗Ω(G) generated by the
continuous representations of G and we derive some of its properties.

In Section 6, we study functions in B(G) arising from the set of left
invariant means on an amenable topological group and its extreme points.
Some open problems are posed in Section 7.

2. Preliminaries and notation. Let A be a subset of a linear space E.
Then 〈A〉 will denote the linear span of A. If E is also normed, then the
closure of A and the closed linear span of A will be denoted by A and 〈A〉
respectively if the closure is taken with respect to the norm topology, or by
A
τ

and 〈A〉τ if the closure is taken with respect to some other topology τ
on E.

The continuous dual of a normed space E will be denoted by E∗. If x ∈ E
and ϕ ∈ E∗, then the value of ϕ on x will be denoted by ϕ(x) or 〈ϕ, x〉.
Also if F ⊂ E∗, then σ(E,F ) will denote the locally convex topology on E
determined by the seminorms {pϕ; ϕ ∈ F}, where pϕ(x) := |ϕ(x)| for all
x ∈ E. If F = E∗, then σ(E,E∗) is called the weak topology of E. The weak∗

topology on E∗ is the locally convex topology determined by the seminorms
px(ϕ) = |〈ϕ, x〉| for ϕ ∈ E∗ and x ∈ E.

If M is a W ∗-algebra (i.e. a C∗-algebra with a predual), then M∗ will
denote the (unique) predual of M . For each ϕ ∈M∗, write ϕ∗ for the func-
tional in M∗ defined by ϕ∗(y) := ϕ(y∗) for y ∈ M . Also the ultra-weak
topology on M (i.e. the σ(M,M∗) topology) will often be referred to as the
σ-topology.

Let G be a topological group and let CB(G) be the Banach algebra of
bounded continuous complex-valued functions on G. For each a ∈ G, define
the left and right translation operators la, ra on CB(G) by

laf(g) := f(ag), raf(g) := f(ga),

for g ∈ G, and for f in CB(G) define the supremum norm by

‖f‖∞ := sup{|f(x)|; x ∈ G}.

Definition 2.1. LetG be a topological group. Define the space WAP(G)
of weakly almost periodic functions to be the set of all f ∈ CB(G) such that
LO(f) := {laf ; a ∈ G} is relatively compact in the weak topology of CB(G).
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It is well known that WAP(G) is a closed and translation invariant ∗-
subalgebra of CB(G). Furthermore, f ∈ WAP(G) if and only if RO(f) :=
{raf ; a ∈ G} is relatively compact in the weak topology of CB(G) (see
[B-J-M]).

Definition 2.2. Let LUC (G) be the space of bounded left uniformly
continuous functions on G, i.e. all f ∈ CB(G) such that the map a 7→ laf
from G to (CB(G), ‖ ‖∞) is continuous.

Remark 2.3. Let G be a topological group. Then WAP(G) ⊂ LUC (G)
(see [M-P-U] for a proof).

The collection P (G) of continuous positive definite functions is a cone
in CB(G), closed under conjugation, involution and product.

We denote

P (G)1 := {ϕ ∈ P (G); ϕ(e) = 1}.

It is clear that P (G)1 is a convex subset and a subsemigroup of P (G) with
pointwise multiplication. When G is a locally compact group, P (G) corre-
sponds to the set of positive linear functionals on C∗(G), the group C∗-
algebra of G.

By a representation or unitary representation (π,Hπ) of a topological
group we shall mean a continuous homomorphism of G into the group of
unitary operators in B(Hπ), when B(Hπ) has the weak operator topol-
ogy. If (π,Hπ) is a continuous unitary representation of G and Mπ :=

〈π(a) : a ∈ G〉σ is the W ∗-algebra determined by π, then π : G → Mπ

is a σ-continuous homomorphism of G into the group of unitary elements of
Mπ, where σ denotes the ultra-weak topology on B(Hπ).

A subspace F of the representation space Hπ is called G-invariant if
π(g)ξ ∈ F for all g ∈ G and ξ ∈ F .

The representation (π,Hπ) is called irreducible if the only closed G-
invariant subspaces of Hπ are the two trivial ones.

A unitary representation (π,Hπ) is called cyclic with cyclic vector ξ ∈ Hπ
if the subspace spanned by {π(a)ξ; a ∈ G} is dense in Hπ. If π is irreducible,
then every non-zero vector in Hπ is cyclic.

A coefficient of the representation (π,Hπ) is by definition the continuous
function

cπξ,η(g) := 〈π(g)ξ, η〉, g ∈ G,

where ξ, η are two elements in Hπ. If ξ = η, we also write cπξ instead of cπξ,ξ.

We say that a continuous positive definite function ϕ is pure if the cor-
responding representation (πϕ,Hϕ) is irreducible.

The following proposition follows easily from [Li-Ma, Theorem 3.2]:
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Proposition 2.4. Let G be a topological group. Then ϕ ∈ P (G)1 if and
only if there exists a cyclic unitary representation (πϕ,Hϕ) with cyclic vector
ξ ∈ Hϕ of length 1 such that ϕ = c

πϕ
ξ .

A function ϕ ∈ P (G)1 is pure if and only ϕ is an extremal point in
P (G)1. If G is abelian, then every irreducible unitary representation π of G
is one-dimensional, i.e. π : G→ T is a character of G.

Let G be a topological group. Let

B(G) := 〈P (G)〉.
Then it follows readily from Proposition 2.4 that ϕ ∈ B(G) if and only if
there exists a continuous unitary representation (π,Hπ) of G and vectors
ξ, η ∈ Hπ such that ϕ(a) = 〈π(a)ξ, η〉 for all a ∈ G. Furthermore, B(G) ⊂
WAP(G) ⊂ LUC (G) by Remark 2.3.

Definition 2.5. Let G be a topological group. The group G acts on
the Banach space A := LUC (G) of left uniformly continuous functions on
G by left translation. This action is strongly continuous. Hence G also acts
on the dual space LUC (G)∗ and this action is jointly continuous for the
weak∗ topology on bounded subsets of LUC (G)∗. We say that a bounded
linear functional n of LUC (G) is a mean if n is positive and 〈n, 1〉 = 1.
The mean n is called left invariant if 〈n, lgf〉 = 〈n, f〉 for all g ∈ G and
f ∈ LUC (G). We say that G is amenable if there exists a left invariant mean
on LUC (G). This is equivalent to the existence, for each f ∈ LUC (G)), of
a mean n such that 〈n, lgf〉 = 〈n, f〉 for all g ∈ G (see [Mi2], [Gre] and
[La4]).

We denote by LIM (G) the set of left invariant means on LUC (G) (which
is convex and weak∗-closed).

A topological group G is called extremely amenable if for every jointly
continuous action of G on a compact Hausdorff set X, there exists a fixed
point in X for this action. If G is extremely amenable, then there exists
an element in LIM (G) which is multiplicative on LUC (G), since the set of
characters X = σ(LUC (G)) is compact in the weak∗ topology and G acts
jointly continuously on this compact Hausdorff space. Hence it has a fixed
point δ. This character δ is then a left invariant mean on LUC (G). The
converse is also true (see [Mi3] and [La3]).

Of course extremely amenable groups are amenable. It has been shown
in [Gra-La] that the only extremely amenable locally compact group is the
trivial one.

By a σ-continuous representation of G in a W ∗-algebra M we shall mean
a pair (ω,M) such that ω is a homomorphism of G into Mu := {x ∈ M ;
x∗x = xx∗ = 1}, the group of unitaries in M , where 1 is the identity of M ,
and ω is continuous when M has the σ-topology.
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Following [La1], we define Ω(G) to be the collection of all σ-continuous

representations α = (ω,M) of G such that 〈ω(G)〉σ = M . Then B(G)
is precisely the collection of all complex-valued functions ϕ on G such
that ϕ = f̂(α) for some f ∈ M∗ and some α = (ω,M) = (ωα,Mα) in

Ω(G), where f̂(α)(a) = 〈ω(a), f〉 for all a ∈ G. For each ϕ in B(G), de-
fine

‖ϕ‖ := ‖ϕ‖B(G)

:= inf{‖f̂(α)‖; f ∈M∗, ϕ = f̂(α) and α = (ω,M) ∈ Ω(G)}.
Also let MΩ :=

∑
⊕Mωα , the direct sum of the W ∗-algebras Mα := Mωα

for α ∈ Ω(G) (see [Sa, p. 2]). Define a σ-continuous homomorphism of G
into MΩ by ωG(a)(α) := ωα(a) for each α = (ωα,Mα) in Ω(G). Write

W ∗(G) := 〈ωG(G)〉σ.
Then

‖x‖ = sup{‖xα‖; α ∈ Ω(G)}
for each

x =
∑
i

λiωG(ai) =
(
xα =

∑
i

λiωα(ai)
)
α∈Ω(G)

∈ 〈ωG(G)〉.

We call ωG the universal representation of G.

The following theorem follows from [La1, Theorems 3.2 and 4.1].

Theorem 2.6.

(a) B(G) is a subalgebra of WAP(G) containing the constant functions.
Furthermore ‖ ‖ is a norm on B(G) and (B(G), ‖ ‖) is a commu-
tative Banach algebra isomorphic to the predual W ∗(G)∗ of W ∗(G).
More specifically, the map ρ : W ∗(G)∗ → B(G) defined by ρ(f) :=

f̂ , f ∈W ∗(G)∗, is a linear isometry from W ∗(G)∗ onto B(G). Fur-
thermore, ρ(f) is positive definite if and only if f is positive.

(b) If α = (ω,M) is any σ-continuous representation of G, then there is
a w∗-homomorphism hω from W ∗(G) into M such that the diagram

G
ωG //

ω ��@
@@

@@
@@

@ W ∗(G)

hω{{www
ww
ww
ww

M

is commutative. Also if f ∈ M∗, then f̂(α)(a) = 〈hω(ωG(a)), f〉 for
all a ∈ G.

(c) If ϕ ∈ B(G) and a ∈ G, then the functions laϕ, raϕ, ϕ∗, ϕ are all
in B(G) and ‖laϕ‖ = ‖ϕ‖, ‖raϕ‖ = ‖ϕ‖, ‖ϕ∗‖ = ‖ϕ‖, ‖ϕ‖ = ‖ϕ‖.

The following theorem has been proved in [La-Lu, Theorem 4.2].
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Theorem 2.7. Let G be a topological group.

(i) The spectrum σ(B(G)) of the algebra B(G) consists of all the non-
zero elements T ∈W ∗(G) such that

π ⊗ ρ(T ) = π(T )⊗ ρ(T ) for all unitary representations π, ρ of G.

(ii) The spectrum σ(B(G)) is a compact semitopological semigroup con-
tained in W ∗(G) with the weak∗ topology. Moreover if T ∈ σ(B(G)),
then T ∗ ∈ σ(B(G)).

Example 2.8. Examples of amenable topological groups which are not
locally compact include:

(1) The group Aut(Q,≤) of all order preserving self-bijections of the set
Q of rational numbers with the usual order, equipped with the Polish
topology of simple convergence on the set Q viewed as discrete. This
group is extremely amenable (see [Pe]).

(2) Let A be a C∗-algebra with unit and U(A) be its unitary group with
the relative weak topology. Then U(A) is amenable if and only if A
is nuclear. This is equivalent to the existence of a left invariant mean
on the space of right uniformly continuous bounded complex-valued
functions on U(A) (see [Pe] and [Pa]).

(3) In [He-Ch] a topological group which is abelian, metrizable and
admits no non-trivial strongly continuous representations is con-
structed. This group is also extremely amenable.

(4) It is known that if a von Neumann algebraM has property (P ) (for
example VN (G) of an amenable [IN ] group G, see [La-Pa]), then
the topological group (Mu, sot) is the direct product of a compact
group and an extremely amenable topological group (see [Gi-Pe]),
where sot denotes the strong operator topology on B(L2(G)) and
VN (G) is the von Neumann algebra in B(L2(G)) generated by left
translations (see [Ey]).

(5) (B(H)u, sot) (H separable) is extremely amenable (see [Gro-Mi]) .

Remark 2.9. Let G be a topological group. Let p ∈ P (G)1 and let
Np := {g ∈ G; p(g) = 1}. Choose a unitary representation of G with a
cyclic vector ξ of length 1 such that p = cπξ . Then

Gp = {g ∈ G; π(g)ξ = ξ}

is a closed subgroup of G. Let now

NG =
⋂

p∈P (G)1

Gp

= {g ∈ G; π(g) = IH for any unitary representation (π,H) of G}.
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Hence

B(G) ≡ B(G/NG)

and B(G/NG) separates the points of G/NG.

3. The unitary closure group

Definition 3.1. Let G be a topological group. Let

G̃ := σ(B(G)) ∩W ∗(G)u, G := ωG(G)
w∗ ∩W ∗(G)u.

Here W ∗(G)u denotes the unitary group of the von Neumann algebra W ∗(G)
of G. We call G̃ the unitary cover of G, and G the unitary closure of G.

Proposition 3.2. The subset G̃ equipped with the weak∗ topology is
a topological group contained in a compact semitopological semigroup. The
canonical mapping ωG of G into G̃ is continuous. Furthermore G is a closed
subgroup of G̃.

Proof. It is clear that G̃ is a subgroup in the algebra W ∗(G) since
σ(B(G)) is a semigroup and the inverse of every unitary element in σ(B(G))
is also contained in σ(B(G)) by [La1, Proposition 5.4]. Since the weak∗ topol-
ogy and the strong operator topology coincide on the unitary elements of
W ∗(G), multiplication in G̃ is weak∗-continuous and the same is true for
taking the inverse. The representations of G being strongly continuous, it

follows that the mapping ωG of G into G̃ is continuous. Since ωG(G)
w∗

is also contained in σ(B(G)), it follows that G = ωG(G)
w∗ ∩ W ∗(G)u ⊂

σ(B(G)) ∩W ∗(G)u = G̃.

Theorem 3.3. The Banach algebras B(G) and B(G) are isomorphic.

In particular G is isomorphic to G.

Proof. Every unitary representation (π,Hπ) of G extends to a weak∗-
continuous representation of the von Neumann algebra W ∗(G) and hence to
a representation π of the group G ⊂ W ∗(G)u. If on the other hand (π,Hπ)
is a continuous representation of G, then we obtain a unitary representation
π := π ◦ωG of G which is continuous and thus π defines a weak∗-continuous
representation π̃′ of W ∗(G). The representation π̃′ coincides with π since
ω(G) is weak∗-dense in G. This shows that Rep(G) and Rep(G) are in bi-
jection and so the mapping θ : B(G) → B(G), ϕ 7→ ϕ ◦ ωG, is an isometric
Banach algebra isomorphism.

To see that G ' G, consider the image Gω := ωG(G) of G in W ∗(G)
under the universal representation ωG. Every unitary representation π of Gω

extends to a unitary representation π of G, and every unitary representation
π of G is the extension of the restriction π|Gω . In particular the universal
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representation ωG is unitarily equivalent to the extension ωGω of the univer-
sal representation ωGω , and this equivalence identifies W ∗(Gω) with W ∗(G).

In this way the group G is the intersection of the weak∗-closure of G, i.e. of

ωG(G), with W ∗(G)u, which means that G = G.

Definition 3.4. Let Bc(G̃) be the space of the coefficients of unitary
representations of G̃ which are restrictions of weak∗-continuous representa-
tions of W ∗(G).

Proposition 3.5. Bc(G̃) is isometrically isomorphic to B(G).

Since Bc(G̃) is left and right G̃-invariant, we have a central projection
zB(G) ∈W ∗(G̃) such that

Bc(G̃) = zB(G)B(G̃).

Theorem 3.6. Let G1, G2 be topological groups such that the Banach
algebras B(G1) and B(G2) are isometrically isomorphic. Then G̃1 is iso-
morphic or anti-isomorphic to G̃2.

Proof. It follows from the proof of [La-Lu, Lemma 5.3] that if G1 and
G2 are topological groups such that B(G1) and B(G2) are isometrically
isomorphic, then the von Neumann algebras W ∗(G1) and W ∗(G2) are either
isomorphic or anti-isomorphic. Furthermore the groups G̃1 and G̃2 are then
isomorphic or anti-isomorphic, since the elements in G̃i, i = 1, 2, are the
characters of the Fourier–Stieltjes algebras contained in the unitary groups
of the corresponding W ∗-algebras.

Theorem 3.7. Let G be a topological group.

(1) The group G has the following property (∗): For any continuous uni-
tary representation (π,H) of G there is a unique continuous unitary

representation (π,H) of G such that π = π◦ωG and π(G) ⊂ π(G)
w∗

.
(2) If G′ is another topological group and ψ : G → G′ is a continuous

homomorphism satisfying condition (∗) (for ψ), then there is a con-
tinuous homomorphism ω′G : G′ → G such that for every unitary
representation (π,Hπ) of G there exists a unique unitary represen-
tation (π′,Hπ) of G′ such that the following diagram commutes:

G

π !!D
DD

DD
DD

D G′
ω′Goo

π′||zz
zz
zz
zz
z

B(H)

Proof. (1) is clear by Theorem 3.3. To prove (2), by condition (∗), we
know that there exists a unique unitary representation (ω′G,HωG) of G′

such that ωG = ω′G ◦ ψ and ω′G(G′) ⊂ W ∗(G)u ∩ ωG(G)
w∗

= G. For every
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continuous unitary representation (π,Hπ) of G, we then have by (∗) a unique
representation (π′,Hπ) of G′ such that π = π′ ◦ ψ and therefore

π′ ◦ ψ = π = π ◦ ωG = (π ◦ ω′G) ◦ ψ.

The fact that π(G) ⊂ π(G)
w∗

and the uniqueness of π′ tell us then that
π′ = π ◦ ω′G.

Remark 3.8. If G is locally compact, then G̃ = G = G (see [Wa1] and
[Wa2]).

4. The Fourier algebra A(G) and its basic properties. In this
section, we shall define the Fourier algebra of a topological group.

4.1. The Fourier algebra of a topological group. Let G be a topo-
logical group.

Definition 4.1. We define the ideal A(G) inside B(G) as

A(G) :=
⋂

δ∈σ(B(G)), δ 6∈G̃

ker δ.

An F -algebra is a Banach algebra A such that A∗ is a W ∗-algebra and
the identity in A∗ is multiplicative on A. In this case the set of positive
elements in A∗ with norm 1 is a semigroup (see [La2]).

Theorem 4.2. Let G be a topological group. Then A(G) is a closed
translation invariant ideal in B(G). Furthermore, A(G)∗ = zAW

∗(G) for
a central projection zA in W ∗(G). In particular A(G) is an F -algebra. If
A(G) 6= {0}, then there is a net (ϕα) in P1(G)∩A(G) with ‖ϕϕα − ϕ‖ → 0
for all ϕ ∈ P1(G).

Proof. It is easy to see that A(G) is translation invariant. Indeed, for
s, t ∈ G, ϕ ∈ B(G), and δ ∈ σ(B(G)), we have

〈δ, lsrtϕ〉 = 〈δsδδt, ϕ〉.
Since G̃ is a group inside σ(B(G)), it follows that if δ 6∈ G̃, then δsδδt is not
in G̃ either. Hence 〈δ, lsrtϕ〉 = 0 for all δ 6∈ G̃ and s, t ∈ G, ϕ ∈ A(G). This
means that lsrtϕ ∈ A(G) whenever ϕ ∈ A(G). By [Ta1, p. 123, Theorem 2.7],
we now have a central projection zA ∈ W ∗(G) such that A(G) = zAB(G).
Consequently, A(G)∗ = zAW

∗(G), which is a W ∗-algebra with identity zA,
which is multiplicative on A(G). In particular A(G) is an F -algebra. The
last statement follows from [La2, Theorem 4.6].

We are now ready to prove one of our main results:

Theorem 4.3. The ideal A(G) of B(G) is different from {0} if and
only if there exists a continuous homomorphism i : G → H into a locally
compact group H such that the canonical homomorphism i∗ : B(H)→ B(G),
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i∗(ψ) =: ψ ◦ i, is an isometric isomorphism. In this case, G = G̃, G is a
locally compact group and A(G) is isometrically isomorphic to A(G).

Proof. Suppose that A(G) 6= {0}. Take ϕ ∈ A(G) such that ϕ(e) = 1.
Let 1/4 > ε > 0 and consider the closed neighborhood

U = Uε := {δ ∈ σ(B(G)); |〈δ, ϕ〉 − 〈δe, ϕ〉| ≤ ε}
= {δ ∈ σ(B(G)); |〈δ, ϕ〉 − 1| ≤ ε}

of δe in σ(B(G)). Since every δ ∈ σ(B(G)) \ G̃ vanishes on A(G), we see
that U ⊂ G̃. This shows that G̃ contains the compact neighborhood U of
δe ∈ σ(B(G)) and therefore G̃ is open in σ(B(G)) and is a locally compact
group. Hence also the closure G of Gω = ωG(G) in G̃ is locally compact and
the canonical mapping i := ωG of G into G is continuous. Every ϕ ∈ B(G)
has a continuous extension ϕ to G defined by ϕ(δ) := 〈δ, ϕ〉 for δ ∈ G, i.e.
if ϕ = cπξ,η, then for δ = limi δgi ∈ G,

ϕ(δ) = 〈δ, ϕ〉 = 〈π(δ)ξ, η〉 = lim
i
〈π(gi)ξ, η〉.

Every element ϕ ∈ B(G) restricts to a continuous function ϕ on G:

ϕ(g) = ϕ(δg) = ϕ ◦ i(g), g ∈ G.
Hence the mapping Θ : B(G) → B(G), ϕ̃ 7→ i∗(ϕ̃) = ϕ̃ ◦ i, is an isometric
isomorphism of Banach algebras.

Furthermore, every continuous representation (π̃,H) of G is determined
by its restriction to G. The representation π = π̃ ◦ i of G is continuous, since
the mapping i : G→ G, g 7→ δg, is continuous, and for G 3 δ = limj δgj ,

π̃(δ) = lim
j
π̃(δgj ) = lim

j
π(gj) weakly.

Conversely, if π is a continuous representation of G, then for δ = limj δgj
∈ G,

〈π̃(δ)ξ, η〉 = lim
j
〈π(gj)ξ, η〉, ξ, η ∈ Hπ,

defines a continuous unitary representation of G such that π = π̃◦ωG. There-
fore the W ∗-algebras W ∗(G) and W ∗(G) also coincide and Θ is isometric.
Hence

G = σ(B(G)) ∩W ∗(G)u = σ(B(G)) ∩W ∗(G)u = G̃

using [Wa1, Theorem 1]. Let H = G̃.
Conversely, suppose that there exists a continuous homomorphism i :

G→ H of G into a locally compact group H such that the canonical map-
ping i∗ : B(H) → B(G), i∗(ϕ̃) := ϕ̃ ◦ i, is an isometric isomorphism. Let
K be the closure of i(G) in H. Let R : B(H) → B(K) be the restriction
map and denote by j the mapping j : G → K, j(g) := i(g), g ∈ G. Then
i∗ = j∗ ◦ R. Hence j∗ : B(K) → B(G) is bijective and is thus an isometric
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algebra isomorphism. Since H is locally compact, we have B(K) = C∗(K)∗

and therefore by [La-Lu, Lemma 5.5], there exists an isometric linear map-
ping Ψ : W ∗(G) → W ∗(K), which is either an isomorphism or an anti-
isomorphism, such that Ψ∗ : B(K) → B(G) is an isometric isomorphism.
Hence Ψ(W ∗(G)u) = W ∗(K)u and also

Ψ(G̃) = Ψ(σ(B(G)) ∩W ∗(G)u) = Ψ(σ(B(G))) ∩ Ψ(W ∗(G)u)

= σ(B(K)) ∩W ∗(K)u = K

(by [Wa1, Theorem 1]) since K is locally compact. This shows that G̃ and
K are isomorphic or anti-isomorphic as topological groups. In particular
ωG(G) is dense in G̃ and therefore G̃ = G. Furthermore

Ψ−1∗ (A(G)) = Ψ−1∗

(
B(G) ∩

⋂
δ∈σ(B(G))\G̃

ker δ
)

= B(K) ∩
⋂

δ∈σ(B(K))\K

ker δ = A(K).

This shows that A(G) 6= {0}.
Corollary 4.4. For every dense subgroup H of a locally compact group

equipped with the relative topology, the algebra A(H) is different from {0}.
Proof. This follows from Theorem 4.3 and [La-Lu, Proposition 3.5]).

Theorem 4.5. Let G be a topological group.

(1) For every x ∈ G̃ \G, the annihilator of the subset

δGx = {δsx; s ∈ G}
in B(G) is reduced to {0}.

(2) The central element zA is contained in σ(A(G)).
(3) The algebra A(G) has bounded approximate units if and only if its

ideal I0(G) = {ϕ ∈ A(G); ϕ(e) = 0} has bounded approximate units.

Proof. (1) Let x ∈ G̃ \G and take ϕ ∈ B(G) such that 〈δsδx, ϕ〉 = 0 for
every s ∈ G. We can describe ϕ as a coefficient of the cyclic representation
(π,H) with cyclic vector η, i.e. ϕ(g) = 〈π(g)ξ, η〉, g ∈ G, for some ξ ∈ H.
Then

0 = 〈δsx, ϕ〉 = 〈π(s)π(x)ξ, η〉, s ∈ G.
This implies that π(x)ξ = 0 and so ξ = 0, since π(x) is invertible. Hence
ϕ = 0.

(2) For ϕ,ψ ∈ A(G), we have ϕ = zAϕ, ψ = zAψ, ϕψ = zA(ϕψ), and so

〈zA, ϕ〉〈zA, ψ〉 = ϕ(e)ψ(e) = ϕψ(e) = 〈zA, ϕψ〉.
(3) Since A(G) = A(G), where G is a locally compact group, if A(G)

6= {0} we can assume that G is locally compact. But then assertion (3) is
well known (see [La2, Theorem 4.10].
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We now proceed to give an example of a topological group such that
A(G) = {0}.

Lemma 4.6. Let G be a topological group containing a closed normal
subgroup N such that in σ(B(N)) there exists an element w which is not
invertible in W ∗(N) and such that B(N) = B(G)|N . Then A(G)∩B(G/N)
= {0}.

Proof. We can consider w to be an element w̃ ∈ σ(B(G)), since the
restriction mapping B(G) → B(N), ψ 7→ ψ|N , is a surjective continuous
homomorphism and so

〈w̃, ψ〉 := 〈w,ψ|N 〉, ψ ∈ B(G).

Since w is not invertible in W ∗(N), its counterpart w̃ is not invertible in
W ∗(G) either and so 〈w̃, A(G)〉 = {0}, by the definition of A(G). Let now
ϕ ∈ P (G/N) ∩A(G) with ϕ(e) = 1. Then ϕ|N = 1N and so

1 = 〈w, 1N 〉 = 〈w̃, ϕ〉 = 0.

This contradiction tells us that P (G/N)∩A(G) = {0}. Since every element of
B(G/N)∩A(G) is a finite linear combination of elements of P (G/N)∩A(G),
it follows that B(G/N) ∩A(G) = {0}.

Lemma 4.7. Let G be a locally compact group which is not compact.
Then σ(B(G)) contains elements which are not invertible in W ∗(G).

Proof. The algebra B(G) contains a unit element, hence its spectrum
σ(B(G)) is a compact space. We know from [Wa1] that G ' σ(B(G)) ∩
W ∗(G)r, where W ∗(G)r denotes the invertible elements in W ∗(G). Hence
σ(B(G)) ∩W ∗(G)r is not compact and so different from σ(B(G)).

Theorem 4.8. Let (Gα)α∈A be an infinite family of locally compact,
non-compact groups. Then the direct product G =

∏
α∈AGα is a topological

group such that A(G) = {0}.
Proof. It is clear that G is a topological group containing the locally

compact groups GF =
∏
α∈F Gα (F a finite non-empty subset of A) as

closed subgroups such that B(GF ) = B(G)|GF . Let also GF :=
∏
α 6∈F Gα.

The groups GF and G/GF are isomorphic and the GF ’s are locally compact
but not compact. Hence we know from Lemmas 4.6 and 4.7 that A(G) ∩
B(G/GF ) = {0}. Let ϕ = cπξ ∈ A(G). Since ϕ is continuous, the subset
Uε := {g ∈ G; ‖π(g)ξ − ξ‖ < ε}, ε > 0, is an open neighborhood of e. Hence
there exists a finite subset F ′ ⊂ A such that GF

′ ⊂ Uε. Then by [La-Lu,
Lemma 6.3], there exists a δ ∈ Hπ which is GF

′
-invariant and ‖δ − ξ‖ < ε.

Since ϕ ∈ A(G), we have zAϕ = ϕ, and since zA is a central projection, we
can assume that also π(zA)δ = δ. Hence ψ ∈ A(G). Furthermore, for any
finite non-empty subset F ⊂ A with F ∩ F ′ = ∅ we have GF ⊂ GF

′
and so
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ψ is GF -invariant. Hence ψ ∈ B(G/GF ) ∩ A(G)={0}. Therefore δ = 0 and
finally we see that ξ = 0 and so ϕ = 0. This shows that A(G) = {0}.

4.2. The enveloping von Neumann algebra W ∗(G) and operator
amenability

Definition 4.9. A Banach algebra which is also an operator space is
completely contractive if the multiplication map A×A→ A, (a, b) 7→ ab, is
completely contractive.

Given two von Neumann algebrasM and N acting on Hilbert spaces H
and K, we have the von Neumann algebra tensor productM⊗N generated
by the algebraic tensor productM⊗N . The von Neumann algebrasM, N
andM⊗N have unique predual spacesM∗, N∗ and (M⊗N )∗ respectively.
Since von Neumann algebras have a (concrete) operator space structure, so
do their duals and their preduals. Hence we may form the operator space
tensor productM∗⊗N∗. FurthermoreM∗⊗N∗ and (M⊗N )∗ are completely
isometric (see [Ru2]).

A Hopf–von Neumann algebra is a pair (M, Γ ∗), where M is a von
Neumann algebra and Γ ∗ is a co-multiplication, i.e. a unital, injective weak∗-
weak∗-continuous ∗-homomorphism M→M⊗M which is co-associative,
i.e. the diagram

M Γ ∗ //

Γ ∗

��

M⊗M

Γ⊗IM
��

M⊗M IM⊗Γ ∗ //M⊗M⊗M

is commutative (see [Ta2]). Let (M, Γ ∗) be a Hopf–von Neumann algebra.
Since Γ ∗ :M→M⊗M is weak∗-continuous, it must be the adjoint of an
operator Γ :M∗ ⊗M∗ →M∗. Since Γ ∗ as ∗-homomorphism is a complete
contraction, so is Γ (see [Ru2]).

Consequently, Γ :M∗⊗M∗ →M∗ induces a completely contractive, bi-
linear map. The commutativity of the diagram above ensures that this bilin-
ear map is an associative multiplication onM∗. In particular,M∗ equipped
with this product is a completely contractive Banach algebra.

For a topological group G, let W ∗(G) = 〈ωG(G)〉σ = B(G)∗ as in Theo-
rem 2.6, where ωG denotes the universal representation of G.

Consider the σ-continuous representation of G → W ∗(G) ⊗W ∗(G) de-
fined by x 7→ ωG(x) ⊗ ωG(x) for x ∈ G. By Theorem 2.6, there exists a
w∗-homomorphism

Γ ∗ : W ∗(G)→W ∗(G)⊗W ∗(G)

such that the diagram
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G
ωG //

ωG⊗ωG &&MM
MMM

MMM
MMM

M W ∗(G)

Γ ∗wwnnn
nnn

nnn
nnn

W ∗(G)⊗W ∗(G)

commutes. Clearly, if ϕ,ψ ∈ B(G), then for x ∈ G,

〈Γ (ϕ⊗ ψ), ωG(x)〉 = 〈ϕ⊗ ψ, Γ ∗(ωG(x))〉 = 〈ϕ⊗ ψ, ωG(x)⊗ ωG(x)〉
= ϕ(x)ψ(x) = (ϕψ)(x).

Consequently, the bilinear Γ : B(G) × B(G) → B(G) agrees with (ϕ,ψ)
7→ ϕ · ψ. Hence B(G) is a completely contractive Banach algebra.

Theorem 4.10. For any topological group G, B(G) with the operator
space structure as the (unique) predual of W ∗(G) is a completely contractive
Banach algebra.

Remark 4.11. Let G be a topological group such that A(G) 6= {0}.
Then by Theorem 4.3 and its proof, there is a locally compact group G
such that there is an isometric isomorphism from B(G) onto B(G) and the
von Neumann algebras of G and of G coincide. Consequently, the operator
structures of B(G) and of B(G) coincide too.

Let A(G) be equipped with the operator space structure from B(G).
Then A(G) is also a completely contractive Banach algebra completely iso-
metric to A(G).

Definition 4.12. A bimodule X over a completely contractive Banach
algebra A is called an operator Banach A-module if X is also an operator
space and the module action A × X → X, (a, x) 7→ a · x, is completely
bounded.

A completely contractive Banach algebra is called operator amenable if
for each operator Banach A-module X, each completely bounded derivation
D : A → X∗ is inner; and A is called operator weakly amenable if every
completely bounded derivation D : A → A∗ is inner when A is regarded as
an operator Banach A-module by left and right multiplication.

Remark 4.13. Let G be a topological group and let H be a dense sub-
group ofG. The algebras LUC (G) and LUC (H) are isometrically isomorphic
as Banach algebras. Indeed, the restriction map R : LUC (G) → LUC (H),
R(ϕ) := ϕ|H , ϕ ∈ LUC (G), is an isometric homomorphism. Since every
ψ ∈ LUC (H) extends to a unique element ϕ ∈ LUC (G), we see that the
mapping R is also surjective.

Definition 4.14. Let G be a topological group and let τ be the weakest
topology on G such that all the functions in B(G) are continuous for this
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topology. Then τ turns the group G into a topological group Gτ and B(G)
= B(Gτ ).

Lemma 4.15. Let H be a dense subgroup of the topological group G.
Then G is amenable if and only if H is so.

Proof. If H is amenable, take an H-left invariant mean m on LUC (H).
Then the mean m defined on LUC (G) by m(ϕ) := m(R(ϕ)) for ϕ ∈
LUC (G), where R denotes the restriction map LUC (G)→ LUC (H), is H-
left invariant and so by left uniform continuity also G-left invariant. Hence
G is amenable.

Conversely, ifG is amenable, then everyG-left invariant mean on LUC (G)
defines an H-left invariant mean on LUC (H), since every ψ ∈ LUC (H)
extends in a unique way to an element in LUC (G). Hence H is amenable
too.

Theorem 4.16. Let G be a topological group such that B(G) separates
the elements of G and A(G) 6= {0}. Then Gτ is amenable if and only if
A(G) is operator amenable.

Proof. If A(G) is operator amenable, then A(G) is operator amenable
by Theorem 4.3 and Remark 4.11. Hence the locally compact group G is
amenable by a result of Ruan [Ru1]. Therefore Gτ , which is homeomorphic
to ωG(G) ⊂ G, is also amenable by Lemma 4.15.

Conversely, if Gτ is amenable, then G is amenable too by Lemma 4.15,
since Gτ and ωG(G) are homeomorphic. Again by the result of Ruan, A(G)
is operator amenable. Therefore, since by Theorem 4.3, A(G) ' A(G), we
see that A(G) is operator amenable.

Theorem 4.17. For every topological group G, the algebra A(G) is
weakly operator amenable.

Proof. If A(G) = {0}, then A(G) is trivially weakly operator amenable.
Now if A(G) 6= {0}, then A(G) ' A(G), where G is a locally compact
group. Hence A(G) is weakly operator amenable by [Sp]. So A(G) is weakly
operator amenable.

An F algebra A is called left (resp. right) amenable if for each two-sided
Banach A-module X such that ϕ · x = ϕ(1)x (resp. x · ϕ = ϕ(1)x) for all
ϕ ∈ A and x ∈ X, every bounded derivation from A into X∗ is inner (see
[La2, p. 167]). It was shown in [La2, Theorem 4.1 and Corollary 4.3] that a
locally compact group is amenable if and only if the measure algebra M(G)
(or the group algebra L1(G)) is left amenable. The following is a consequence
of [La2, Example (i), p. 168]:

Theorem 4.18. For any topological group G, both F -algebras B(G) and
A(G) are left (and right) amenable.
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4.3. Fixed point property for the Fourier algebra. Let E be a
Banach space and K a non-empty bounded closed convex subset of E. We
say thatK has the fixed point property (or simply fpp) if every non-expansive
mapping T : K → K (i.e. ‖Tx− Ty‖ ≤ ‖x− y‖ for all x and y in E) has
a fixed point. We say that E has the (resp. weak) fixed point property if
every bounded closed (resp. weakly compact) convex subset K ⊂ E has the
fixed point property.

It is well known that l1 has the weak fixed point property (see for instance
[Go-Ki] and [Li]), but not the fixed point property. A well known result of
Browder (see [Go-Ki]) asserts that if E is uniformly convex, then E has
the weak fpp. As shown by Alspach [Al], the Banach space L1([0, 1]) does
not have the weak fpp (hence not the fpp). In fact, he exhibited a weakly
compact convex subset K of L1([0, 1]) and an isometry T : K → K (i.e.
‖Tx− Ty‖ = ‖x− y‖ for all x, y ∈ K) without a fixed point. In particular,
the Fourier algebra A(Z) ' L1(Π) does not have the weak fpp. Here Π =
{λ ∈ C; |λ| = 1} is the circle group with multiplication and Z is the additive
group of the integers. On the other hand, A(Π) ' l1(Z) has the weak fpp
but not the fpp.

We say that a topological group G is a [SIN ]-group if the left and right
uniformities agree. In the case of a locally compact group this is equivalent
to the existence of a basis of the identity e consisting of compact sets V such
that xV x−1 = V for all x ∈ G (see [Mil]).

Theorem 4.19. Let G be a [SIN ]-group. Then A(G) has the weak fixed
point property if and only if either A(G) = {0}, or there exists a continuous
embedding i : G/NG → H into a compact group such that i∗ : A(H) →
A(G/NG), i∗(ψ) := ψ ◦ i, is an isometric isomorphism.

Proof. We can assume for the proof that NG = {e}. Suppose that A(G)
has the weak fixed point property and A(G) 6= {e}. Then there exists a
continuous embedding i : G → H into a locally compact group such that
i(G) is dense in H and i∗ : C∗(H)∗ = B(H) → B(G) is an isometric
isomorphism. Hence by [La-Lu, Lemma 5.3], there exists a linear isomet-
ric mapping ψ : W ∗(G) → W ∗(H) which is either an isomorphism or an
anti-isomorphism such that ψ∗(A(G)) = A(H). In particular A(H) has the
weak fixed point property. Now by [La-Lu, Remark 3.4], the restriction map
R : LUC (H) → LUC (G), R(ϕ) = ϕ|G, is a surjective isometric isomor-
phism. Since G is a [SIN ]-group, we have LUC (G) = RUC (G) and therefore
LUC (H) = RUC (H). Hence by [Mil], H is also a [SIN ]-group. But then by
[La-Le, Corollary 4.2], H must be a compact group.

Conversely, if A(G) = {0}, then clearly A(G) has the weak fpp.
Otherwise there is a continuous embedding i : G → H into a compact
group such that i∗ : A(H) → A(G), i∗(ϕ) = ϕ ◦ i, is an isometric isomor-
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phism. By [La-Le], A(H) has the weak fpp. Hence A(G) has the weak fpp
as well.

Remark 4.20. If there exists a continuous embedding i : G/NG → H
into a compact group such that i∗ : A(H) → A(G) is an isometric isomor-
phism, then A(H) = C∗(H)∗ and A(G) have the weak∗ fpp also (i.e. every
weak∗-compact convex subset of A(H) has a fixed point for non-expansive
self-maps, by using again [La-Ma, Theorem 5]). In particular A(H) regarded
as the dual of C∗(H) also has the weak∗ fpp.

Using [La-Le, Theorem 5.7], we can also prove by an argument similar
to that for Theorem 4.19:

Theorem 4.21. Let G be a topological group. Then A(G) has the fixed
point property if and only if G/NG is finite.

Definition 4.22. A Banach space E is said to have UKK (uniform
Kadec–Klee property) if for any ε > 0 there is a δ > 0 such that whenever
(xn)n is a sequence in the unit ball of E converging weakly to x and satisfying
inf ‖xn − xm‖ > ε then ‖x‖ ≤ δ (see [Hu]). As is known [Du-Si], if E has
UKK , then E has weak fpp.

Definition 4.23. A Banach space E is said to have the Radon–Nikodym
property (or RNP) if each closed convex subset D of E is dentable, i.e. for
any ε > 0, there exists an x ∈ D such that x 6∈ co(D \ Bε(x)), where
Bε(x) = {y ∈ E; ‖x− y‖ < ε} and co(K) is the closed convex hull of a set
K in E. It was shown in [L-M-U] that for a von Neumann algebraM, if its
predual M∗ has the RNP then M∗ has the fpp.

Definition 4.24. A Banach space E is said to have the Krein–Milman
property (or KMP) if every closed bounded convex subset of E is the closed
convex hull of its set of extreme points.

Using [La-Le, Corollary 4.2] (see also [La-Ma] and [L-M-U]) and the
arguments of Theorem 4.19, we have

Theorem 4.25. Let G be a [SIN ]-group. Then A(G) has RNP (resp.
KMP, UKK ) if and only if either A(G) = {0}, or there exists a continuous
embedding i : G/NG → H into a compact group such that i∗ : A(H)→ A(G)
is an isometric isomorphism.

5. The universal C∗-algebra generated by the continuous rep-
resentations

Definition 5.1. Let G be a topological group.

(1) Let (ω,Hω) be a unitary representation of G. Define C∗δ,ω(G) :=

〈ω(G)〉, i.e. the C∗-algebra generated by the group ω(G) in B(Hω).
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(2) Denote by (ωd,Hd) the universal representation of the group Gd.
(3) Let C∗Ω(G) be the completion of the algebra l1(Gd) with respect to

the norm

‖a‖∗,c := sup
π∈Rep(G)

‖π(a)‖op, a ∈ l1(Gd),

where ‖π(a)‖op denotes the operator norm of π(a). Then of course
C∗Ω(G) is isomorphic to C∗δ,ωG(G), an isomorphism being given by
the universal representation ωG.

Definition 5.2. For every continuous unitary representation (π,Hπ)
of G, we obtain a unitary representation (π′,Hπ) of C∗Ω(G) defined by

π′
(∑

g

cgδg

)
:=
∑
g

cgπ(g), f =
∑
g

cgδg ∈ l1(Gd).

On the other hand, every unitary representation (π′,Hπ′) of C∗Ω(G) restricts
to a unitary representation (π′,Hπ′) of the group Gd, i.e. the group G
equipped with the discrete topology, since G can be considered as being
a subgroup of the unitary group of the unital C∗-algebra C∗Ω(G). This gives
us two injective mappings:

ιδ : Rep(G)→ Rep(C∗Ω(G)), (π,Hπ) 7→ (π′,Hπ),

ι′δ : Rep(C∗Ω(G))→ Rep(Gd), (π′,Hπ′) 7→ (π′,H′π).

Denote, for a unitary representation (π,Hπ) of Gd, its canonical extension
to W ∗(Gd) by (π,Hπ), i.e. π(g) = π(ωd(g)) for g ∈ G.

Let PΩ(G) ⊂ B(Gd) be the set of positive linear functionals defined on
C∗Ω(G) and let PΩ,1(G) be the elements in PΩ(G) of length 1.

Proposition 5.3. The subset PΩ,1(G) of B(Gd) is the weak∗-closure of
the convex subset P1(G) in B(Gd).

Proof. By definition of C∗Ω(G), the ideal IRep(G) :=
⋂
π∈Rep(G) kerπ′ in

C∗Ω(G) is {0}. But then every representation ρ′ of C∗Ω(G) is weakly contained
in the set {π′; π ∈ Rep(G)}, and therefore by [Di, Theorem 3.4.4], every
p′ ∈ Pδ,1(G) is a weak∗-limit of a net contained in P1(G).

Proposition 5.4. The C∗-algebra C∗Ω(G) is a B(G)-module.

Proof. Let a =
∑

g cgδg be a finite sum in C∗Ω(G), let u = cπξ,η ∈ B(G)
and let

u · a :=
∑
g

u(g)cgδg,

which is also in C∗Ω(G). For any continuous unitary representation (ω,Hω)
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of G and x, y ∈ Hω it follows that

〈ω(u · a)x, y〉 =
∑
g

u(g)cg〈ω(g)x, y〉 =
∑
g

cg〈π(g)ξ, η〉〈ω(g)x, y〉

=
〈∑

g

cg(ω ⊗ π)(g)(x⊗ ξ), y ⊗ η
〉

= 〈(ω ⊗ π)′(a)(x⊗ ξ), y ⊗ η〉.
This shows that ‖ω(u · a)‖op ≤ ‖u‖B(G)‖a‖∗,c. Consequently, the multipli-
cation B(G) × C∗Ω(G) → C∗Ω(G), (u, a) 7→ u · a, is well defined and the
multiplication in B(G) induces a B(G)-module structure on C∗Ω(G).

Definition 5.5. Let G be a topological group.

(1) For a unitary representation (π,Hπ) of Gd let

Hcπ := {ξ ∈ Hπ; the map G→ Hπ, g 7→ π(g)ξ, is continuous}.
Then the subspace Hcπ of Hπ is closed and Gd-invariant. We call an
element of Hc a continuous vector.

(2) In particular, the restriction πc of π to the invariant subspace Hcπ is
continuous and all the associated coefficients u = cπξ,η, ξ, η ∈ Hcπ, are
continuous functions on G, i.e. u ∈ B(G).

The orthogonal complement Hc,⊥π contains only elements ξ 6= 0 for
which the mapping g 7→ π(g)ξ is not continuous. We say that Hc,⊥π
is the totally discontinuous part of π.

Remark 5.6. (1) Let G be a topological group and let (π,Hπ) be an
irreducible unitary representation of the group Gd. Then π is either contin-
uous or totally discontinuous.

(2) For the universal representation (ωd,Hd) := (ωGd ,HωGd ) of Gd, we
obtain the orthogonal decomposition

Hd = Hcd ⊕H
c,⊥
d .

Then Hcd is an orthogonal sum Hcd =
∑⊕

p∈C Hp for a certain subset C of

P (G)1. On the other hand, the subspace
∑⊕

p∈P (G)1
Hp is contained in Hcd.

This means that

HωG =
∑⊕

p∈P (G)1

Hp = Hcd,

i.e. the restriction of ωd to Hcd is our universal representation ωG. Let zc be
the orthogonal projection of Hd onto Hcd. Then zc is central in W ∗(Gd).

(3) Note that B(G) is a closed translation invariant subspace of B(Gd).
By [Ta1, Theorem 2.7(i), p. 127], B(G) is invariant in B(Gd) as a predual of
W ∗(Gd), i.e. for all a ∈W ∗(Gd) and ϕ ∈ B(G), we have a ·ϕ, ϕ · a ∈ B(G),
where 〈a · ϕ, b〉 = 〈ϕ, ba〉 and 〈ϕ · a, b〉 = 〈ϕ, ab〉 for all b ∈ W ∗(G). So, by
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[Ta1, Theorem 2.7(iii), p. 127], there is a central projection z ∈ W ∗(Gd)
such that

zB(Gd) = B(G).

Hence the polar of zB(Gd),

(zB(Gd))
0 = {a ∈W ∗(Gd); 〈a, ϕ〉 = 0 for all ϕ ∈ B(G)}

is the ideal (1 − z)W ∗(G) of W ∗(Gd) and zW ∗(Gd) ' W ∗(G). We write
z = zB(G).

Proposition 5.7. Let (π,Hπ) be a unitary representation of the
group Gd. Then π(zB(G)) is the orthogonal projection onto the subspace Hcπ.
In particular

zc = ωd(zB(G)).

Proof. Take ξ, η ∈ Hcπ. Then the function u = cπξ,η of Gd is in B(G).
Hence zB(G)u = u and so for every g ∈ G,

〈π(g)ξ, η〉 = 〈π(g)π(zB(G))ξ, η〉.
Thus π(zB(G))ξ = ξ.

If now ξ∈Hc,⊥π , then for any η∈Hπ and u = cπξ,η we have zB(G)u ∈ B(G),
hence zB(G)u is a continuous function on G. Therefore the function Gd → C,
g 7→ 〈π(g)π(zB(G))(ξ), η〉, is continuous for every η ∈ Hπ. Hence the vector
π(zB(G))(ξ) is weakly continuous and so also continuous. This shows that

π(zB(G))(ξ) ∈ Hcπ ∩ H
c,⊥
π = {0}. Hence π(zB(G))(H

c,⊥
π ) = {0} and π(zB(G))

is the orthogonal projection onto Hcπ.
In particular, for the universal representation ωGd , we get

ωGd(zB(G)) = orthogonal projection onto Hcd = zc.

Definition 5.8. We denote

Rep(C∗Ω(G))c := {(π′,Hπ′) ∈ Rep(C∗Ω(G)); π′(zB(G)) = IHπ′}.
Theorem 5.9. The mapping

Rep(G)→ Rep(C∗Ω(G))c, (π,Hπ) 7→ (π′,Hπ),

is a bijection between the space Rep(G) of continuous unitary representa-
tions of the topological group G and the subspace Rep(C∗Ω(G))c of the space
Rep(C∗Ω(G)) of unitary representations of C∗Ω(G).

Proof. Let (π,Hπ) ∈ Rep(G). Then π defines a representation π′ of
C∗Ω(G), and also a representation (π,Hπ) of the von Neumann algebra
W ∗(Gd). But then π(zB(G)) = IHπ′ , since Hπ = Hcπ by Proposition 5.7.

If on the other hand (π′,Hπ′) is a cyclic unitary representation of C∗Ω(G)
such that π(zB(G)) = IHπ′ , then Hπ′ = Hcπ′ by Proposition 5.7 and π :=
π|G is a continuous representation of G. Therefore π′ is the extension of π
to C∗Ω(G).
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Definition 5.10 (see [La-Lu]). Let G be a topological group. We say
that G has a group C∗-algebra if there exists a C∗-algebra A and a linear
isometric isomorphism Φ : A∗ → B(G) such that multiplication in B(G)
induces a B(G)-module structure on A. This means the following: for every
a ∈ A and ϕ ∈ B(G), we have an element ϕ · a ∈ A∗∗ defined by

〈ϕ · a, δ〉 := 〈Φ−1(ϕΦ(δ)), a〉, δ ∈ A∗.

We demand now that ϕ · a ∈ A for every a ∈ A and ϕ ∈ B(G). In particular
then

‖ϕ · a‖ ≤ ‖a‖ ‖ϕ‖.

Proposition 5.11. Let G be a topological group. Then C∗Ω(G) is a group
C∗-algebra of G if and only if BΩ(G) = B(G).

Proof. We already know that C∗Ω(G) is a B(G)-module by Proposi-
tion 5.4 and that B(G) ⊂ Bδ(G). Hence C∗Ω(G) is a group C∗-algebra of
G if and only if the canonical injection B(G)→ BΩ(G) is a bijection.

Remark 5.12. Let G be a topological group. Suppose G admits a group
C∗-algebra A. Let Φ : A∗ → B(G) be a linear isometric isomorphism. Then,
according to [La-Lu, Lemma 5.2], the adjoint map Φt is an isomorphism or
an anti-isomorphism of W ∗(G) onto the von Neumann algebra Ã of A and
Φ maps positive linear functionals on A to continuous positive definite func-
tions on G. In particular the irreducible representations of A correspond to
irreducible continuous representations of G. This shows that the topological
group mentioned in [Gl], i.e. the group L0(X,µ;Π) of all measurable maps
from a standard Lebesgue measure space X into the circle rotation group
with pointwise multiplication and the L1(µ)-norm, which admits a faithful
unitary representation by multiplication operators, yet no non-trivial uni-
tary irreducible representations, cannot have a group C∗-algebra.

6. Functions in B(G) arising from invariant means. In this section
we study functions in B(G) arising from the set of left invariant means on
an amenable topological group and its extreme points.

The following lemma has been proved in [Hu]. We present another proof
for completeness.

Lemma 6.1. Let G be a topological group. Suppose that G contains an
increasing net (Gi)i∈I of closed amenable locally compact subgroups such
that G0 =

⋃
i∈I Gi is dense in G. Then G is amenable.

Proof. Choose for every i ∈ I a left invariant mean mi on the space
CB(Gi). It defines a mean ni on LUC (G) by

ni(ϕ) := mi(ϕ|Gi), ϕ ∈ LUC (G).
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The mean ni is left Gi-invariant. Let n be a cluster point in (LUC (G))∗ of
the net (ni)i. Then n is a LIM on LUC (G). Indeed, there exists a subnet
(n′j := nij )j of (ni) such that n = limj n

′
j . Let xi ∈ Gi, i ∈ I. There exists an

index j such that ij ≥ i and therefore xi ∈ Gik for every k ≥ j. Hence the
means n′k, k > j, are xi-invariant. Consequently, n is G0-invariant. Since G
acts strongly on LUC (G), n must be in LIM (G), since G0 is dense in G.

Definition 6.2. Let G be an amenable topological group and let n ∈
LIM (G). We define an inner product 〈 , 〉n on LUC (G) by letting

〈ϕ,ψ〉n := n(ϕψ), ϕ, ψ ∈ LUC (G).

Let In := {ϕ ∈ LUC (G); n(|ϕ|2) = 0}. Then the quotient space LUC (G)/In
is a pre-Hilbert space with 〈[ϕ], [ψ]〉n := n(ϕψ), where [ϕ] denotes the equiv-
alence class of ϕ in LUC (G)/In ⊂ Hn, with Hn denoting the completion of
LUC (G)/In.

For ϕ ∈ LUC (G), we can define a bounded operator πn(ϕ) on Hn by

πn(ϕ)[ψ] := [ϕψ], ψ ∈ LUC (G).

Then of course ‖πn(ϕ)[ψ]‖2 = n(|ϕψ|2) ≤ ‖ϕ‖2∞n(|ψ|2) = ‖ϕ‖2∞‖[ψ]‖2.
Hence ‖πn(ϕ)‖op ≤ ‖ϕ‖∞.

We can extend the mean n to a bounded linear functional ñ on Hn. It
suffices to remark that n(ϕ) = 〈[ϕ], [1]〉. Hence if we take ñ(ξ) := 〈ξ, [1]〉n,
we have such an extension, which has the property that |ñ(ξ)| ≤ ‖ξ‖, by
Cauchy’s inequality.

We can also define a unitary representation πn of the group G on the
Hilbert space Hn by setting

πn(g)[ψ] := [lg−1ψ], g ∈ G, ψ ∈ LUC (G).

Since n is a left invariant mean, the action of g ∈ G on Hn is isometric, and
because G acts strongly continuously on LUC (G), the representation πn of
G is strongly continuous.

Since B(G) is contained in LUC (G), we have:

Lemma 6.3. The function G 3 g 7→ n(lg−1ϕψ) =: h(g) (ϕ,ψ ∈ LUC (G))
is in LUC (G).

Theorem 6.4. Let G be an amenable topological group and let n∈LIM (G).
Let π := πn. The following conditions are equivalent:

(1) The mean n is an extreme point in LIM (G).
(2) For each m ∈ LIM (G) and all ξ, η∈Hπ, we have m(cπξ,η)= ñ(ξ)ñ(η).

(3) For each ξ ∈ Hπ, ñ(ξ)[1] ∈ co‖ ‖{π(x)ξ; x ∈ G}.
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(4) For each ϕ ∈ LUC (G), there exists a sequence( nk∑
i=1

λi,kπ(xi,k)
)
k

of convex combinations of operators π(x), x ∈ G, such that∥∥∥ nk∑
i=1

λi,kπ(xi,k)ϕ
∥∥∥2
n
→ |n(ϕ)|2.

Proof. (1)⇒(2). Let 0 ≤ ψ ≤ 1, ψ ∈ LUC (G) and m ∈ LIM (G). For
ϕ ∈ LUC (G), define ϕn ∈ LUC (G) by

ϕn(x) := n((lxϕ)ψ) = 〈π(x−1)[ϕ], [ψ]〉 = 〈π(x)[ψ]), [ϕ]〉, x ∈ G.
Then for x, y ∈ G we have

(lyϕ)n(x) = n((lx(lyϕ))ψ)

= n((lyxϕ)ψ) = ϕn(yx) = ly(ϕ
n)(x),

i.e. (lyϕ)n = ly(ϕ
n). Let

θ(ϕ) := m(ϕn)− n(ϕ)n(ψ).

Since m and n are left invariant, θ(lyϕ) = θ(ϕ) for every y ∈ G. Also n+ θ
and n− θ are in LIM (G), since both are G-invariant and for ϕ ≥ 0 we have

(n+ θ)(ϕ) = n(ϕ) +m(ϕn)− n(ϕ)n(ψ)

= n(ϕ)(1− n(ψ)) +m(ϕn) ≥ 0,

(n− θ)(ϕ) = n(ϕ)−m(ϕn) + n(ϕ)n(ψ)

≥ n(ϕ)n(ψ) ≥ 0.

Furthermore

(n+ θ)(1) = n(1) +m(n(1ψ)1)− n(1)n(ψ) = n(1) = 1,

(n− θ)(1) = n(1)−m(n(1ψ)1) + n(1)n(ψ) = n(1) = 1.

But n is extreme. It follows that θ = 0, i.e. (2) holds for all 0 ≤ ψ ≤ 1.
Consequently, (2) must hold for all ξ, η ∈ Hπ.

(2)⇒(3). Let (nα =
∑kα

i=1 λi,αδxi,α)α be a net of convex combinations
of point evaluations such that 〈nα, ϕ〉 → 〈n, ϕ〉 for all ϕ ∈ LUC (G). So for
ξ, η ∈ Hπ, the function G 3 y 7→ 〈π(y)ξ, η〉n =: cξ,η(y) being a coefficient of
a unitary representation of G, we have〈 kα∑

i=1

λi,απ(xi,α)ξ, η
〉
n

= 〈nα, cξ,η〉 → n(cξ,η) = ñ(ξ)ñ(η) = 〈ñ(ξ)[1], η〉

by (2). Hence the vector ñ(ξ)[1] is in the weak closed convex hull of {π(x)ξ;
x ∈ G}, hence also in the norm closed convex hull of this set.
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(3)⇒(4). If (3) holds, then for ϕ ∈ LUC (G), we can find a sequence
(
∑nk

i=1 λi,kπ(xi,k))k of convex linear combinations such that∥∥∥ nk∑
i=1

λi,kπ(xi,k)[ϕ]− ñ([ϕ])[1]
∥∥∥
n
→ 0.

Since∥∥∥ nk∑
i=1

λi,kπ(xi,k)[ϕ]− ñ([ϕ])[1]
∥∥∥2
n

=
∥∥∥ nk∑
i=1

λi,kπ(xi,k)[ϕ]
∥∥∥2
n
− 2 Re

(
n(ϕ)

〈 nk∑
i=1

λi,kπ(xi,k)[ϕ], [1]
〉
n

)
+ |n(ϕ)|2

=
∥∥∥ nk∑
i=1

λi,kπ(xi,k)[ϕ]
∥∥∥2
n
− 2 Re(n(ϕ)n(ϕ)) + |n(ϕ)|2,

we see that ‖
∑nk

i=1 λi,kπ(xi,k)[ϕ]‖2n − |n(ϕ)|2 → 0.
(4)⇒(1). Suppose that n is not extreme. Then there exist two means

n1, n2 in LIM (G) such that n 6= n1 and n = 1
2(n1 + n2). Let ϕ ∈ LUC (G).

There exists a sequence of convex linear combinations
∑nk

i=1 λi,kπ(xi,k) such
that for ϕk :=

∑nk
i=1 λi,kπ(xi,k)ϕ, we have ‖ϕk‖ → |n(ϕ)|. But then

|n1(ϕ)|2 =
∣∣∣n1( nk∑

i=1

λi,kπ(xi,k)ϕ
)∣∣∣2 = |n1(ϕk)|2

≤ n1(1)n1(|ϕk|2) ≤ 2n(|ϕk|2)→ 2|n(ϕ)|2.
Thus n(ϕ) = 0 implies n1(ϕ) = 0. Therefore n1 = cn for some complex
number c. But since n1(1) = 1 = n(1), necessarily n = n1, a contradiction.

Corollary 6.5. Suppose that the topological group G is extremely
amenable. Then there exists a net (xα)α in G such that for every extreme
point n ∈ LIM (G),

n((lxαϕ)ψ)→ n(ϕ)n(ψ), ϕ, ψ ∈ LUC (G).

Proof. Since G is extremely amenable, there exists a net (xα)α in G such
that the point evaluations δx−1

α
converge pointwise to a multiplicative LIM

m on LUC (G).
Hence for every ϕ,ψ ∈ LUC (G), we have

n((lxαϕ)ψ) = cπn
[ϕ],[ψ]

(x−1α ) = 〈δx−1
α
, cπn

[ϕ],[ψ]
〉(6.1)

→ 〈m, cπn
[ϕ],[ψ]

〉 = n(ϕ)n(ψ)

by condition (2) in Theorem 6.4.

Remark 6.6. Condition (3) of the preceding theorem is an analogue
of the following result (due to [C-N-P] for discrete semigroups). Let S be
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a semitopological semigroup. Then LUC (S) has a LIM if and only if for
any f ∈ LUC (S), the pointwise closure cop{rsf ; s ∈ S} of the convex
hull of the right orbit of f contains a constant function λ1. Furthermore,
if λ1 ∈ cop{rsf ; s ∈ S}, then there exists a LIM on LUC (G) such that
m(f) = λ (see [Mi1] and [La4]).

In order to combine these two actions, we form the cross-product

Cn(G) := Gn LUC (G) ⊂ B(Hn),

which is the uniform closure of the set of operators of the form
∑

j πn(gj) ◦
πn(ϕj), and we obtain a bounded representation σn of the algebra Cn(G)
on Hn.

Proposition 6.7. Let G be an amenable topological group. Let n be an
extremal point in LIM (G). Then the representation πn of the algebra Cn(G)
is irreducible.

Proof. Let ξ ∈ Hn \ {0}. We must show that ξ is cyclic. Let V be the
Cn(G)-invariant subspace generated by ξ and suppose that V 6= Hn. Choose
a vector η in Hn orthogonal to V . Then

〈πn(a)η, πn(g)πn(b)ξ〉n = 0, a, b ∈ LUC (G), g ∈ G.
Let cπnπn(b)ξ,πn(a)η be the coefficient of πn associated to the vectors πn(b)ξ,

πn(a)η. By Theorem 6.4,

ñ(πn(b)ξ)ñ(πn(a)η) = n(cπnπn(b)ξ,πn(a)η) = n(0) = 0.

Hence ñ(πn(b)ξ)ñ(πn(a)η) = 0 for all a, b ∈ LUC (G). Since ξ 6= 0, we
have ñ(πn(a)η) = 0 for every a and so η = 0. Hence πn is an irreducible
representation of the algebra Cn(G).

7. Remarks and open problems. (1) For G locally compact, let ρ
be the left regular representation of G and let C∗δ,ρ(G) = 〈ρ(G)〉 ⊂ W ∗ρ (G).
Then we have a canonical surjection

C∗δ,ρ(G)→ C∗ρ(Gd),

and by [B-K-L-S] the following relations hold:

(a) C∗δ,ωG(G) ' C∗ρ(Gd)⇔ G contains an open subgroup which is amen-
able as discrete ([B-K-L-S, Theorem 1]).

(b) C∗d(G) ' C∗δ,ωG(G)⇔ G is amenable.

From the above, for G amenable as discrete, we have

B(Gd) = C∗δ,ρ(G)∗ = C∗δ,ωG(G)∗.

So
B(G) = C∗δ,ωG(G)∗ ⇔ G is discrete

in this case.
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(2) If G is a compact group such that C∗ρ(G) ⊂ C∗δ (G), where C∗δ (G)

denotes the C∗-algebra generated by {ρ(g); g ∈ G} in B(L2(G)) (see [C-L-R]
for examples), then

C∗δ (G) ' C∗δ,ωG(G)

since G is amenable (see [B-K-L-S]). But in general C∗δ (G) is only a homo-
morphic image of C∗δ,ω(G).

(3) Let Bδ,ωG(G) := Cδ,ωG(G)∗. Then Bδ,ωG(G) is always a commutative
Banach algebra, since ω ⊗ ω ' ω [La-Lu, Theorem 3.3].

(4) When is B(G) = C∗δ,ωG(G)∗, i.e., when is C∗Ω(G) a group C∗-algebra
of G?

(5) Let Θ : C∗(Gd) → C∗δ,ωG(G) be the canonical projection (G locally
compact). How big is kerΘ? For which groups is Θ injective?

(6) Can we characterize extremely amenable groups in terms of B(G)?
Note that for G locally compact: G extremely amenable⇔ B(G) ≡ C. Also:
G extremely amenable ⇒ G has no non-trivial finite-dimensional represen-
tations (see [Gra-La]).

(7) (see [C-L-R]) If C∗ρ(G) ∩ C∗δ,ρ(G) 6= {0} (G locally compact) then
C∗ρ(G) ⊂ C∗δ,ρ(G). What can be said in the topological group case?

(8) (see [C-L-R]) If a nondiscrete locally compact group G contains a
dense subgroup with property (T ) (as a discrete group), does it follow that
C∗ρ(G) ∩ C∗δ,ρ(G) 6= {0}?

(9) Let G be a topological group. We know that G̃ ⊂Mu,M = W ∗(G).
If G is locally compact, we have G̃ = G. How big is G̃ in the topological
group case?
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Université de Lorraine-Metz
Bâtiment A, Ile du Saulcy

F-57045 Metz, France
E-mail: jean.ludwig@univ-lorraine.fr

http://dx.doi.org/10.1215/S0012-7094-71-03893-2
http://dx.doi.org/10.1090/S0002-9939-1990-1023345-7
http://dx.doi.org/10.1090/S0002-9947-1965-0193523-8
http://dx.doi.org/10.1090/S0002-9947-1966-0190249-2
http://dx.doi.org/10.2307/2375026
http://dx.doi.org/10.1006/jfan.1996.0093
http://dx.doi.org/10.1090/S0002-9939-02-06680-7
http://dx.doi.org/10.1016/0022-1236(72)90077-8
http://dx.doi.org/10.2140/pjm.1975.58.267

	1 Introduction
	2 Preliminaries and notation
	3 The unitary closure group
	4 The Fourier algebra A(G) and its basic properties
	4.1 The Fourier algebra of a topological group
	4.2 The enveloping von Neumann algebra W*(G)  and operator amenability
	4.3 Fixed point property for the Fourier algebra

	5 The universal C*-algebra generated by the continuous representations
	6 Functions in  B(G)  arising from invariant means
	7 Remarks and open problems
	References

