The Bohr–Pál theorem and the Sobolev space $W_2^{1/2}$

by

VLADIMIR LEBEDEV (Moscow)

Abstract. The well-known Bohr–Pál theorem asserts that for every continuous realvalued function f on the circle \mathbb{T} there exists a change of variable, i.e., a homeomorphism hof \mathbb{T} onto itself, such that the Fourier series of the superposition $f \circ h$ converges uniformly. Subsequent improvements of this result imply that actually there exists a homeomorphism that brings f into the Sobolev space $W_2^{1/2}(\mathbb{T})$. This refined version of the Bohr–Pál theorem does not extend to complex-valued functions. We show that if $\alpha < 1/2$, then there exists a complex-valued f that satisfies the Lipschitz condition of order α and at the same time has the property that $f \circ h \notin W_2^{1/2}(\mathbb{T})$ for every homeomorphism h of \mathbb{T} .

For every integrable function f on the circle $\mathbb{T} = \mathbb{R}/2\pi\mathbb{Z}$ (where \mathbb{R} is the real line and \mathbb{Z} is the group of integers) consider its Fourier series

$$f(t) \sim \sum_{k \in \mathbb{Z}} \widehat{f}(k) e^{ikt}, \quad t \in \mathbb{T}.$$

Recall that the Sobolev space $W_2^{1/2}(\mathbb{T})$ is the space of all (integrable) functions f with

$$\sum_{k\in\mathbb{Z}} |\widehat{f}(k)|^2 |k| < \infty.$$

Let $C(\mathbb{T})$ be the space of all continuous functions on \mathbb{T} .

It is well-known that certain properties of continuous functions related to Fourier series can be considerably improved by a change of variable, i.e., by a homeomorphism of the circle onto itself. The first significant result in this area is the Bohr-Pál theorem that states that for every real-valued $f \in C(\mathbb{T})$ there exists a homeomorphism h of \mathbb{T} onto itself such that the superposition $f \circ h$ belongs to the space $U(\mathbb{T})$ of functions with uniformly convergent

Received 3 November 2015; revised 26 January 2016.

Published online 9 February 2016.

²⁰¹⁰ Mathematics Subject Classification: Primary 42A16.

Key words and phrases: harmonic analysis, homeomorphisms of the circle, superposition operators, Sobolev spaces.

Fourier series. (The theorem was obtained in a somewhat weaker form by J. Pál [11], and in the final form by H. Bohr [2].) The original method of proof of this result uses conformal mappings and in fact allows us (see [9, Sec. 3]) to obtain the following representation:

(1)
$$f \circ h = g + \psi, \quad g \in W_2^{1/2} \cap C(\mathbb{T}), \, \psi \in V \cap C(\mathbb{T}),$$

where $V(\mathbb{T})$ is the space of functions of bounded variation on \mathbb{T} . It is wellknown that both $W_2^{1/2} \cap C(\mathbb{T})$ and $V \cap C(\mathbb{T})$ are subsets of $U(\mathbb{T})$, thus (1) implies $f \circ h \in U(\mathbb{T})(^1)$.

A substantial improvement of the Bohr–Pál theorem was obtained by A. A. Sahakian [12, Corollary 1], who showed that if a(n), n = 0, 1, 2, ...,is a positive sequence satisfying $\sum_n a(n) = \infty$ and a certain condition of regularity, then for every real-valued $f \in C(\mathbb{T})$ there is a homeomorphism h such that $\widehat{f \circ h}(k) = O(a(|k|))$. An immediate consequence of Sahakian's result is that the term ψ in (1) can be omitted, i.e., the following refined version of the Bohr–Pál theorem holds: for every real-valued $f \in C(\mathbb{T})$ there exists a homeomorphism h of \mathbb{T} onto itself such that $f \circ h \in W_2^{1/2}(\mathbb{T})$. This refined version also follows from a result on conjugate functions, obtained by W. Jurkat and D. Waterman [4] (see also [3, Theorem 9.5]). We note that Sahakian's result is obtained by purely real analysis techniques, whereas Jurkat and Waterman use an approach similar to the one of Bohr and Pál. A very short proof of the refined version of the Bohr–Pál theorem was communicated to the author by A. Olevskiĭ (see [7, Sec. 3]).

Another improvement of the Bohr–Pál theorem was obtained by J.-P. Kahane and Y. Katznelson [6] (see also [9], [5]). These authors showed that if K is a compact family of functions in $C(\mathbb{T})$, then there exists a homeomorphism h of \mathbb{T} such that $f \circ h \in U(\mathbb{T})$ for all $f \in K$. This result naturally leads to the question whether it is possible to attain the condition $f \circ h \in W_2^{1/2}(\mathbb{T})$ for all $f \in K$. This question was posed by A. Olevskii [10]. A negative answer was obtained by the present author [7, Theorem 4]: it turns out that, given a real-valued $u \in C(\mathbb{T})$, the property that for every real-valued $v \in C(\mathbb{T})$ there is a homeomorphism h such that both $u \circ h$ and $v \circ h$ are in $W_2^{1/2}(\mathbb{T})$ is equivalent to the boundedness of the variation of u. Thus, in general, there is no single change of variable which will bring two real-valued functions in $C(\mathbb{T})$ into $W_2^{1/2}(\mathbb{T})$. Certainly this amounts to the existence of a complex-valued $f \in C(\mathbb{T})$ such that $f \circ h \notin W_2^{1/2}(\mathbb{T})$ for every homeomorphism h of \mathbb{T} .

^{(&}lt;sup>1</sup>) Assuming $g \in W_2^{1/2}(\mathbb{T})$, it follows that $\sum_{|k| \leq N} |k\widehat{g}(k)| = o(N)$, which for a function $g \in C(\mathbb{T})$ implies $g \in U(\mathbb{T})$ (see, e.g., [1, Ch. I, Sec. 64]). The inclusion $V \cap C(\mathbb{T}) \subseteq U(\mathbb{T})$ is due to Jordan (see [1, Ch. I, Sec. 39]).

The purpose of this work is to show that there exists a complex-valued function f that is *very smooth* but at the same time has the property that $f \circ h \notin W_2^{1/2}(\mathbb{T})$ for every homeomorphism h of \mathbb{T} .

Note that, as one can easily verify (see, e.g., $[7, \, \mathrm{Sec.} \,\, 3]),$ the two seminorms

(2)
$$\|f\|_{W_{2}^{1/2}(\mathbb{T})} = \left(\sum_{k \in \mathbb{Z}} |\widehat{f}(k)|^{2} |k|\right)^{1/2}, \\\|\|f\|_{W_{2}^{1/2}(\mathbb{T})} = \left(\int_{0}^{2\pi} \frac{1}{\theta^{2}} \int_{0}^{2\pi} |f(t+\theta) - f(t)|^{2} dt \, d\theta\right)^{1/2}$$

are equivalent on $W_2^{1/2}(\mathbb{T})$, i.e., f is in $W_2^{1/2}(\mathbb{T})$ if and only if $|||f|||_{W_2^{1/2}(\mathbb{T})} < \infty$, and

$$c_1 \|f\|_{W_2^{1/2}(\mathbb{T})} \le \|\|f\|\|_{W_2^{1/2}(\mathbb{T})} \le c_2 \|f\|_{W_2^{1/2}(\mathbb{T})}$$
 for all $f \in W_2^{1/2}(\mathbb{T})$.

where $c_1, c_2 > 0$ do not depend on f. Thus, every function that satisfies the Lipschitz condition of order greater than 1/2 belongs to $W_2^{1/2}(\mathbb{T})$. We shall show that, in general, there is no change of variable which will bring a complex-valued function that satisfies the Lipschitz condition of order less than 1/2 into $W_2^{1/2}(\mathbb{T})$. The author does not know if the same holds for functions satisfying the Lipschitz condition of order 1/2 (see remarks at the end of the paper).

Let ω be a modulus of continuity, i.e., a nondecreasing continuous function on $[0, \infty)$ such that $\omega(0) = 0$ and $\omega(x + y) \leq \omega(x) + \omega(y)$. We denote by $\operatorname{Lip}_{\omega}(\mathbb{T})$ the class of all complex-valued functions f on \mathbb{T} with $\omega(f, \delta) = O(\omega(\delta)), \ \delta \to +0$, where

$$\omega(f,\delta) = \sup_{|t_1 - t_2| \le \delta} |f(t_1) - f(t_2)|, \quad \delta \ge 0,$$

is the modulus of continuity of f. For $0 < \alpha \leq 1$ we just write $\operatorname{Lip}_{\alpha}$ instead of $\operatorname{Lip}_{\delta^{\alpha}}$.

THEOREM. Suppose that $\limsup_{\delta \to +0} \omega(\delta)/\sqrt{\delta} = \infty$. Then there exists a complex-valued function $f \in \operatorname{Lip}_{\omega}(\mathbb{T})$ such that $f \circ h \notin W_2^{1/2}(\mathbb{T})$ for every homeomorphism h of the circle \mathbb{T} onto itself. In particular, if $\alpha < 1/2$, then there exists a function of class $\operatorname{Lip}_{\alpha}(\mathbb{T})$ with this property.

Ideologically the method of the proof of this theorem is close to the one used by the author to prove Theorem 4 in [7].

We shall need certain preliminary constructions and lemmas. The simple lemma below is purely technical. LEMMA 1. Under the assumption of the Theorem on ω , there exists a sequence $\delta_k > 0, k = 1, 2, \ldots$, such that

(3)
$$\sum_{k=1}^{\infty} \delta_k < 2\pi/6,$$

(4)
$$\sum_{k=1}^{\infty} (\omega(\delta_k))^2 = \infty.$$

Proof. For each j = 1, 2, ... we can find ε_j such that $0 < \varepsilon_j < 2^{-(j+1)}$ and

$$\frac{(\omega(\varepsilon_j))^2}{\varepsilon_j} \ge 2^j.$$

Choose positive integers n_j satisfying

$$\frac{1}{2^{j+1}\varepsilon_j} \le n_j < \frac{1}{2^j\varepsilon_j}, \quad j = 1, 2, \dots$$

Let $N_0 = 1$ and let $N_j = N_{j-1} + n_j$ for $j = 1, 2, \ldots$. We define the sequence δ_k , $k = 1, 2, \ldots$, by setting $\delta_k = \varepsilon_j$ if $N_{j-1} \leq k < N_j$, $j = 1, 2, \ldots$. This yields

$$\sum_{k=1}^{\infty} \delta_k = \sum_{j=1}^{\infty} \sum_{N_{j-1} \le k < N_j} \delta_k = \sum_{j=1}^{\infty} n_j \varepsilon_j \le \sum_{j=1}^{\infty} \frac{1}{2^j} = 1,$$

and at the same time

$$\sum_{N_{j-1} \le k < N_j} (\omega(\delta_k))^2 = n_j (\omega(\varepsilon_j))^2 \ge n_j \varepsilon_j 2^j \ge \frac{1}{2},$$

which proves the lemma. \blacksquare

For a closed interval $I = [a, b] \subseteq (0, 2\pi)$ let Δ_I denote the "triangle" function supported on I, i.e., a continuous function on $[0, 2\pi]$ such that $\Delta_I(t) = 0$ for all $t \in [0, a] \cup [b, 2\pi]$, $\Delta_I(c) = 1$, where c = (a + b)/2 is the center of I, and Δ_I is linear on [a, c] and on [c, b].

Let δ_k , k = 1, 2, ..., be the sequence from Lemma 1. Consider intervals $I_k = [a_k, b_k] \subseteq (0, 2\pi)$ of length $b_k - a_k = 6\delta_k$, where $a_k < b_k < a_{k+1}$, k = 1, 2, ... (see (3)). For each k let J_k denote the left half of I_k , i.e., $J_k = [a_k, (a_k + b_k)/2], k = 1, 2, ...$

Everywhere below we use u and v to denote the real-valued functions on $\mathbb T$ defined by

$$u(t) = \sum_{k=1}^{\infty} \omega(\delta_k) \Delta_{I_k}(t), \quad v(t) = \sum_{k=1}^{\infty} \omega(\delta_k) \Delta_{J_k}(t), \quad t \in [0, 2\pi].$$

We shall show that the function f = u + iv satisfies the assertion of the theorem.

LEMMA 2. The functions u and v are of class $\operatorname{Lip}_{\omega}(\mathbb{T})$.

Proof. It is clear that for every (closed) interval $I \subseteq (0, 2\pi)$, the function Δ_I satisfies

(5)
$$|\Delta_I(t_1) - \Delta_I(t_2)| \le \frac{2}{|I|} |t_1 - t_2|$$
 for all $t_1, t_2 \in [0, 2\pi]$,

where |I| is the length of I.

Note also that if $0 < x \leq y$, then $\omega(y)/y \leq 2\omega(x)/x$. Indeed, let n = [y/x] + 1, where $[\alpha]$ denotes the integer part of α ; then $y \leq nx \leq 2y$, so

$$rac{\omega(y)}{y} \leq rac{\omega(nx)}{y} \leq rac{n\omega(x)}{y} \leq 2rac{\omega(x)}{x}.$$

Let us show that $u \in \operatorname{Lip}_{\omega}(\mathbb{T})$; for v the proof is similar. It is easy to see that it suffices to verify that for all $t_1, t_2 \in \bigcup_k I_k$ we have

$$|u(t_1) - u(t_2)| \le c\omega(|t_1 - t_2|),$$

where c > 0 does not depend on t_1 or t_2 .

First we consider the case when t_1 and t_2 belong to the same interval I_k . Then, since $|t_1 - t_2| \le |I_k| = 6\delta_k$, we have

$$\frac{\omega(6\delta_k)}{6\delta_k} \le 2\frac{\omega(|t_1 - t_2|)}{|t_1 - t_2|},$$

so (see (5))

$$|u(t_1) - u(t_2)| = \omega(\delta_k) |\Delta_{I_k}(t_1) - \Delta_{I_k}(t_2)| \leq \omega(\delta_k) \frac{2}{6\delta_k} |t_1 - t_2| \leq 2 \frac{\omega(6\delta_k)}{6\delta_k} |t_1 - t_2| \leq 4\omega(|t_1 - t_2|).$$

Consider now the case when $t_1 \in I_{k_1}$, $t_2 \in I_{k_2}$, $k_1 \neq k_2$. We can assume that $t_1 < t_2$, and hence $0 < t_1 < b_{k_1} < a_{k_2} < t_2 < 2\pi$. Using the previous estimate, we obtain

$$|u(t_1) - u(t_2)| \le |u(t_1)| + |u(t_2)| = |u(t_1) - u(b_{k_1})| + |u(t_2) - u(a_{k_2})| \le 8\omega(|t_1 - t_2|),$$

proving the lemma. \blacksquare

For $n = 1, 2, \ldots$ we define

$$u_n(t) = \max\{u(t), 1/n\}, \quad t \in \mathbb{T}.$$

As above, $V(\mathbb{T})$ stands for the class of functions of bounded variation on \mathbb{T} .

LEMMA 3. The functions u_n , n = 1, 2, ..., have the following properties:

(6)
$$|u_n(t_1) - u_n(t_2)| \le |u(t_1) - u(t_2)|$$
 for all $t_1, t_2 \in \mathbb{T}$ and all n

(7)
$$u_n \in V(\mathbb{T}) \quad for \ all \ n;$$

(8)
$$\sup_{n} \left| \int_{\mathbb{T}} v(t) \, du_n(t) \right| = \infty.$$

Proof. Properties (6) and (7) are obvious. Let us verify (8). To this end consider the middle thirds of the intervals J_k , namely, the intervals $J_k^* = [a_k + \delta_k, a_k + 2\delta_k], k = 1, 2, \ldots$ Note that if

(9)
$$\frac{\omega(\delta_k)}{3} \ge \frac{1}{n}$$

then u_n coincides with u on J_k^* . So, if (9) holds, then u_n is increasing on J_k^* , and at the endpoints of J_k^* we have

,

$$u_n(a_k + \delta_k) = \omega(\delta_k)/3, \quad u_n(a_k + 2\delta_k) = 2\omega(\delta_k)/3.$$

It is easily seen that for each k,

$$\min_{J_k^*} v = 2\omega(\delta_k)/3.$$

Taking into account that u, and hence u_n , is nondecreasing on each J_k , we see that for all n and k satisfying (9),

$$\int_{J_k} v \, du_n \ge \int_{a_k+\delta_k}^{a_k+2\delta_k} v \, du_n \ge \frac{2}{3}\omega(\delta_k) \int_{a_k+\delta_k}^{a_k+2\delta_k} du_n$$
$$= \frac{2}{3}\omega(\delta_k) \frac{1}{3}\omega(\delta_k) = \frac{2}{9}(\omega(\delta_k))^2.$$

In addition (since u_n is nondecreasing on each J_k) we have

$$\int_{J_k} v \, du_n \ge 0$$

for all n and k. Thus, taking into account that v vanishes outside $\bigcup_{k=1}^{\infty} J_k$, we obtain

$$\int_{\mathbb{T}} v \, du_n = \sum_{k=1}^{\infty} \int_{J_k} v \, du_n \ge \sum_{k : \omega(\delta_k) \ge 3/n} \int_{J_k} v \, du_n \ge \sum_{k : \omega(\delta_k) \ge 3/n} \frac{2}{9} (\omega(\delta_k))^2.$$

Applying (4) we see that (8) holds. \blacksquare

 \sim

We shall also need the following auxiliary lemma.

LEMMA 4. If
$$x, y \in W_2^{1/2} \cap C(\mathbb{T})$$
 and $y \in V(\mathbb{T})$, then
 $\left| \frac{1}{2\pi} \int_{\mathbb{T}} x(t) \, dy(t) \right| \leq \|x\|_{W_2^{1/2}(\mathbb{T})} \|y\|_{W_2^{1/2}(\mathbb{T})}.$

Proof. Integration by parts yields

$$\frac{1}{2\pi} \int_{0}^{2\pi} e^{ikt} \, dy(t) = -\frac{1}{2\pi} \int_{0}^{2\pi} y(t) \, de^{ikt} = -ik\widehat{y}(-k).$$

So, if x is a trigonometric polynomial, using the Cauchy inequality we obtain

$$\begin{aligned} \left| \frac{1}{2\pi} \int_{\mathbb{T}} x(t) \, dy(t) \right| &= \left| \sum_{k} \widehat{x}(k) \frac{1}{2\pi} \int_{\mathbb{T}} e^{ikt} \, dy(t) \right| \\ &= \left| \sum_{k} \widehat{x}(k) (-ik) \widehat{y}(-k) \right| \le \left\| x \right\|_{W_{2}^{1/2}(\mathbb{T})} \left\| y \right\|_{W_{2}^{1/2}(\mathbb{T})} \end{aligned}$$

To see that the assertion holds in the general case, consider the Fejér sums

$$\sigma_N(x)(t) = \sum_{|k| \le N} \left(1 - \frac{|k|}{N}\right) \widehat{x}(k) e^{ikt}$$

Since $\widehat{|\sigma_N(x)(k)|} \leq |\widehat{x}(k)|$ for all $k \in \mathbb{Z}$, we have $\|\sigma_N(x)\|_{W_2^{1/2}(\mathbb{T})} \leq \|x\|_{W_2^{1/2}(\mathbb{T})}$. Hence,

$$\frac{1}{2\pi} \int_{\mathbb{T}} \sigma_N(x)(t) \, dy(t) \bigg| \le \|\sigma_N(x)\|_{W_2^{1/2}(\mathbb{T})} \|y\|_{W_2^{1/2}(\mathbb{T})} \\ \le \|x\|_{W_2^{1/2}(\mathbb{T})} \|y\|_{W_2^{1/2}(\mathbb{T})}.$$

At the same time, since y is of bounded variation and $\sigma_N(x)$ converges uniformly to x, it is clear that

$$\frac{1}{2\pi} \int_{\mathbb{T}} \sigma_N(x)(t) \, dy(t) \to \frac{1}{2\pi} \int_{\mathbb{T}} x(t) \, dy(t)$$

as $N \to \infty$, which yields the assertion.

Proof of the Theorem. Let f = u + iv. Lemma 2 yields $f \in \operatorname{Lip}_{\omega}(\mathbb{T})$, so it remains to show that $f \circ h \notin W_2^{1/2}(\mathbb{T})$ for every homeomorphism h of \mathbb{T} . It is obvious that if a function is in $W_2^{1/2}(\mathbb{T})$, then so are its real and imaginary parts. Assume, contrary to the assertion, that $f \circ h \in W_2^{1/2}(\mathbb{T})$ for a certain homeomorphism h. Then $u \circ h \in W_2^{1/2}(\mathbb{T})$ and $v \circ h \in W_2^{1/2}(\mathbb{T})$.

Note that (6) implies $|u_n \circ h(t_1) - u_n \circ h(t_2)| \leq |u \circ h(t_1) - u \circ h(t_2)|$ for all $t_1, t_2 \in \mathbb{T}$. Using the equivalence of the seminorms $\|\cdot\|_{W_2^{1/2}(\mathbb{T})}$ and $\|\cdot\|_{W_2^{1/2}(\mathbb{T})}$ (see (2)), we infer that $u_n \circ h \in W_2^{1/2}(\mathbb{T})$ for all $n = 1, 2, \ldots$, and

(10)
$$||u_n \circ h||_{W_2^{1/2}(\mathbb{T})} \le c ||u \circ h||_{W_2^{1/2}(\mathbb{T})}, \quad n = 1, 2, \dots,$$

where c > 0 does not depend on n.

V. Lebedev

The property of a function to be of bounded variation is invariant under homeomorphic changes of variable, hence (7) implies that $u_n \circ h \in V(\mathbb{T})$ for all *n*. Certainly we also have $u_n \circ h \in C(\mathbb{T})$. Applying Lemma 4, and taking (10) into account, we obtain

$$\begin{aligned} \left| \frac{1}{2\pi} \int_{\mathbb{T}} v(t) \, du_n(t) \right| &= \left| \frac{1}{2\pi} \int_{\mathbb{T}} v \circ h(t) \, du_n \circ h(t) \right| \\ &\leq \left\| v \circ h \right\|_{W_2^{1/2}(\mathbb{T})} \left\| u_n \circ h \right\|_{W_2^{1/2}(\mathbb{T})} \\ &\leq c \| v \circ h \|_{W_2^{1/2}(\mathbb{T})} \| u \circ h \|_{W_2^{1/2}(\mathbb{T})}, \end{aligned}$$

which contradicts (8). \blacksquare

REMARKS. 1. For s > 0 consider the Sobolev space $W_2^s(\mathbb{T})$ of all (integrable) functions f with

$$\sum_{k\in\mathbb{Z}} |\widehat{f}(k)|^2 |k|^{2s} < \infty.$$

As shown in [7, Corollary 3], for each compact family K in $C(\mathbb{T})$ (or equivalently for each class $\operatorname{Lip}_{\omega}(\mathbb{T})$) there exists a homeomorphism h of \mathbb{T} such that $f \circ h \in \bigcap_{s < 1/2} W_2^s(\mathbb{T})$ for all $f \in K$ (resp. for all $f \in \operatorname{Lip}_{\omega}(\mathbb{T})$).

2. There exists a real-valued $f \in C(\mathbb{T})$ such that $f \circ h \notin \bigcup_{s>1/2} W_2^s(\mathbb{T})$ for every homeomorphism h of \mathbb{T} . This is a simple consequence of the inclusion $\bigcup_{s>1/2} W_2^s \cap C(\mathbb{T}) \subseteq A(\mathbb{T})$, where $A(\mathbb{T})$ is the Wiener algebra of absolutely convergent Fourier series, and of a well-known result of Olevskiĭ that provides a negative answer to Lusin's rearrangement problem: there exists a real-valued $f \in C(\mathbb{T})$ such that $f \circ h \notin A(\mathbb{T})$ for every homeomorphism h([8], see also [9]).

3. The function $f(t) = \sum_{k\geq 0} 2^{-k/2} e^{i2^k t}$ is in $\operatorname{Lip}_{1/2}(\mathbb{T})$ (see, e.g., [1, Ch. XI, Sec. 6]), but it is obvious that $f \notin W_2^{1/2}(\mathbb{T})$; thus $\operatorname{Lip}_{1/2}(\mathbb{T}) \notin W_2^{1/2}(\mathbb{T})$. The author does not know if the assertion of the Theorem holds for $\omega(\delta) = \delta^{1/2}$. At the same time there is no change of variable which will bring the whole class $\operatorname{Lip}_{1/2}(\mathbb{T})$ into $W_2^{1/2}(\mathbb{T})$: a proof will be presented in another paper.

References

- N. K. Bary, A Treatise on Trigonometric Series, Vols. I, II, Pergamon Press, Oxford, 1964.
- [2] H. Bohr, Über einen Satz von J. Pál, Acta Sci. Math. (Szeged) 7 (1935), 129–135.
- [3] G. Goffman, T. Nishiura and D. Waterman, *Homeomorphisms in Analysis*, Math. Surveys Monogr. 54, Amer. Math. Soc., 1997.

- W. Jurkat and D. Waterman, Conjugate functions and the Bohr-Pál theorem, Complex Variables 12 (1989), 67–70.
- [5] J.-P. Kahane, Quatre leçons sur les homéomorphismes du circle et les séries de Fourier, in: Topics in Modern Harmonic Analysis, Vol. II, Ist. Naz. Alta Mat. Francesco Severi, Roma, 1983, 955–990.
- [6] J.-P. Kahane and Y. Katznelson, Séries de Fourier des fonctions bornées, in: Studies in Pure Math. in Memory of Paul Turán, Budapest, 1983, 395–410 (preprint, Orsay, 1978).
- [7] V. V. Lebedev, Change of variable and the rapidity of decrease of Fourier coefficients, Mat. Sb. 181 (1990), 1099–1113 (in Russian); English transl.: Math. USSR-Sb. 70 (1991), 541–555 (English transl. corrected by the author is available at arXiv:1508.06673).
- [8] A. M. Olevskii, Change of variable and absolute convergence of Fourier series, Soviet Math. Dokl. 23 (1981), 76–79.
- [9] A. M. Olevskiĭ, Modifications of functions and Fourier series, Russian Math. Surveys 40 (1985), 181–224.
- [10] A. M. Olevskiĭ, Modifications of functions and Fourier series, in: Theory of Functions and Approximations (Saratov, 1984), Part 1, Saratov. Gos. Univ., Saratov, 1986, 31–43 (in Russian).
- J. Pál, Sur les transformations des fonctions qui font converger leurs séries de Fourier, C. R. Acad. Sci. Paris 158 (1914), 101–103.
- [12] A. A. Saakjan, Integral moduli of smoothness and the Fourier coefficients of the composition of functions, Math. USSR-Sb. 38 (1981), 549–561.

Vladimir Lebedev National Research University Higher School of Economics 34 Tallinskaya St. Moscow, 123458, Russia E-mail: lebedevhome@gmail.com