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The Bohr–Pál theorem and the Sobolev space W
1/2
2

by

Vladimir Lebedev (Moscow)

Abstract. The well-known Bohr–Pál theorem asserts that for every continuous real-
valued function f on the circle T there exists a change of variable, i.e., a homeomorphism h
of T onto itself, such that the Fourier series of the superposition f ◦h converges uniformly.
Subsequent improvements of this result imply that actually there exists a homeomorphism
that brings f into the Sobolev space W

1/2
2 (T). This refined version of the Bohr–Pál the-

orem does not extend to complex-valued functions. We show that if α < 1/2, then there
exists a complex-valued f that satisfies the Lipschitz condition of order α and at the same
time has the property that f ◦ h /∈W 1/2

2 (T) for every homeomorphism h of T.

For every integrable function f on the circle T = R/2πZ (where R is the
real line and Z is the group of integers) consider its Fourier series

f(t) ∼
∑
k∈Z

f̂(k)eikt, t ∈ T.

Recall that the Sobolev space W
1/2
2 (T) is the space of all (integrable) func-

tions f with ∑
k∈Z
|f̂(k)|2|k| <∞.

Let C(T) be the space of all continuous functions on T.

It is well-known that certain properties of continuous functions related to
Fourier series can be considerably improved by a change of variable, i.e., by
a homeomorphism of the circle onto itself. The first significant result in this
area is the Bohr–Pál theorem that states that for every real-valued f ∈ C(T)
there exists a homeomorphism h of T onto itself such that the superposi-
tion f ◦h belongs to the space U(T) of functions with uniformly convergent
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Fourier series. (The theorem was obtained in a somewhat weaker form by
J. Pál [11], and in the final form by H. Bohr [2].) The original method of
proof of this result uses conformal mappings and in fact allows us (see [9,
Sec. 3]) to obtain the following representation:

(1) f ◦ h = g + ψ, g ∈W 1/2
2 ∩ C(T), ψ ∈ V ∩ C(T),

where V (T) is the space of functions of bounded variation on T. It is well-

known that both W
1/2
2 ∩ C(T) and V ∩ C(T) are subsets of U(T), thus (1)

implies f ◦ h ∈ U(T)(1).

A substantial improvement of the Bohr–Pál theorem was obtained by
A. A. Sahakian [12, Corollary 1], who showed that if a(n), n = 0, 1, 2, . . . ,
is a positive sequence satisfying

∑
n a(n) = ∞ and a certain condition of

regularity, then for every real-valued f ∈ C(T) there is a homeomorphism

h such that f̂ ◦ h(k) = O(a(|k|)). An immediate consequence of Sahakian’s
result is that the term ψ in (1) can be omitted, i.e., the following refined
version of the Bohr–Pál theorem holds: for every real-valued f ∈ C(T) there

exists a homeomorphism h of T onto itself such that f ◦ h ∈ W
1/2
2 (T).

This refined version also follows from a result on conjugate functions, ob-
tained by W. Jurkat and D. Waterman [4] (see also [3, Theorem 9.5]). We
note that Sahakian’s result is obtained by purely real analysis techniques,
whereas Jurkat and Waterman use an approach similar to the one of Bohr
and Pál. A very short proof of the refined version of the Bohr–Pál theorem
was communicated to the author by A. Olevskĭı (see [7, Sec. 3]).

Another improvement of the Bohr–Pál theorem was obtained by J.-P.
Kahane and Y. Katznelson [6] (see also [9], [5]). These authors showed that
if K is a compact family of functions in C(T), then there exists a homeo-
morphism h of T such that f ◦ h ∈ U(T) for all f ∈ K. This result nat-
urally leads to the question whether it is possible to attain the condition

f ◦ h ∈W 1/2
2 (T) for all f ∈ K. This question was posed by A. Olevskĭı [10].

A negative answer was obtained by the present author [7, Theorem 4]: it
turns out that, given a real-valued u ∈ C(T), the property that for every
real-valued v ∈ C(T) there is a homeomorphism h such that both u ◦ h and

v ◦ h are in W
1/2
2 (T) is equivalent to the boundedness of the variation of u.

Thus, in general, there is no single change of variable which will bring two

real-valued functions in C(T) into W
1/2
2 (T). Certainly this amounts to the

existence of a complex-valued f ∈ C(T) such that f ◦h /∈W 1/2
2 (T) for every

homeomorphism h of T.

(1) Assuming g ∈W 1/2
2 (T), it follows that

∑
|k|≤N |kĝ(k)| = o(N), which for a function

g ∈ C(T) implies g ∈ U(T) (see, e.g., [1, Ch. I, Sec. 64]). The inclusion V ∩ C(T) ⊆ U(T)
is due to Jordan (see [1, Ch. I, Sec. 39]).
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The purpose of this work is to show that there exists a complex-valued
function f that is very smooth but at the same time has the property that

f ◦ h /∈W 1/2
2 (T) for every homeomorphism h of T.

Note that, as one can easily verify (see, e.g., [7, Sec. 3]), the two semi-
norms

(2)

‖f‖
W

1/2
2 (T) =

(∑
k∈Z
|f̂(k)|2|k|

)1/2
,

|||f |||
W

1/2
2 (T) =

(2π�

0

1

θ2

2π�

0

|f(t+ θ)− f(t)|2 dt dθ
)1/2

are equivalent on W
1/2
2 (T), i.e., f is in W

1/2
2 (T) if and only if |||f |||

W
1/2
2 (T)

<∞, and

c1‖f‖W 1/2
2 (T) ≤ |||f |||W 1/2

2 (T) ≤ c2‖f‖W 1/2
2 (T) for all f ∈W 1/2

2 (T),

where c1, c2 > 0 do not depend on f . Thus, every function that satisfies

the Lipschitz condition of order greater than 1/2 belongs to W
1/2
2 (T). We

shall show that, in general, there is no change of variable which will bring a
complex-valued function that satisfies the Lipschitz condition of order less

than 1/2 into W
1/2
2 (T). The author does not know if the same holds for

functions satisfying the Lipschitz condition of order 1/2 (see remarks at the
end of the paper).

Let ω be a modulus of continuity, i.e., a nondecreasing continuous func-
tion on [0,∞) such that ω(0) = 0 and ω(x + y) ≤ ω(x) + ω(y). We de-
note by Lipω(T) the class of all complex-valued functions f on T with
ω(f, δ) = O(ω(δ)), δ → +0, where

ω(f, δ) = sup
|t1−t2|≤δ

|f(t1)− f(t2)|, δ ≥ 0,

is the modulus of continuity of f . For 0 < α ≤ 1 we just write Lipα instead
of Lipδα .

Theorem. Suppose that lim supδ→+0 ω(δ)/
√
δ = ∞. Then there exists

a complex-valued function f ∈ Lipω(T) such that f ◦ h /∈W 1/2
2 (T) for every

homeomorphism h of the circle T onto itself. In particular, if α < 1/2, then
there exists a function of class Lipα(T) with this property.

Ideologically the method of the proof of this theorem is close to the one
used by the author to prove Theorem 4 in [7].

We shall need certain preliminary constructions and lemmas. The simple
lemma below is purely technical.
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Lemma 1. Under the assumption of the Theorem on ω, there exists a
sequence δk > 0, k = 1, 2, . . . , such that

∞∑
k=1

δk < 2π/6,(3)

∞∑
k=1

(ω(δk))
2 =∞.(4)

Proof. For each j = 1, 2, . . . we can find εj such that 0 < εj < 2−(j+1)

and
(ω(εj))

2

εj
≥ 2j .

Choose positive integers nj satisfying

1

2j+1εj
≤ nj <

1

2jεj
, j = 1, 2, . . . .

Let N0 = 1 and let Nj = Nj−1 + nj for j = 1, 2, . . . . We define the se-
quence δk, k = 1, 2, . . . , by setting δk = εj if Nj−1 ≤ k < Nj , j = 1, 2, . . . .
This yields

∞∑
k=1

δk =
∞∑
j=1

∑
Nj−1≤k<Nj

δk =
∞∑
j=1

njεj ≤
∞∑
j=1

1

2j
= 1,

and at the same time∑
Nj−1≤k<Nj

(ω(δk))
2 = nj(ω(εj))

2 ≥ njεj2j ≥
1

2
,

which proves the lemma.

For a closed interval I = [a, b] ⊆ (0, 2π) let ∆I denote the “triangle”
function supported on I, i.e., a continuous function on [0, 2π] such that
∆I(t) = 0 for all t ∈ [0, a] ∪ [b, 2π], ∆I(c) = 1, where c = (a + b)/2 is the
center of I, and ∆I is linear on [a, c] and on [c, b].

Let δk, k = 1, 2, . . . , be the sequence from Lemma 1. Consider intervals
Ik = [ak, bk] ⊆ (0, 2π) of length bk − ak = 6δk, where ak < bk < ak+1,
k = 1, 2, . . . (see (3)). For each k let Jk denote the left half of Ik, i.e.,
Jk = [ak, (ak + bk)/2], k = 1, 2, . . . .

Everywhere below we use u and v to denote the real-valued functions on
T defined by

u(t) =

∞∑
k=1

ω(δk)∆Ik(t), v(t) =

∞∑
k=1

ω(δk)∆Jk(t), t ∈ [0, 2π].

We shall show that the function f = u + iv satisfies the assertion of the
theorem.
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Lemma 2. The functions u and v are of class Lipω(T).

Proof. It is clear that for every (closed) interval I ⊆ (0, 2π), the func-
tion ∆I satisfies

(5) |∆I(t1)−∆I(t2)| ≤
2

|I|
|t1 − t2| for all t1, t2 ∈ [0, 2π],

where |I| is the length of I.

Note also that if 0 < x ≤ y, then ω(y)/y ≤ 2ω(x)/x. Indeed, let n =
[y/x] + 1, where [α] denotes the integer part of α; then y ≤ nx ≤ 2y, so

ω(y)

y
≤ ω(nx)

y
≤ nω(x)

y
≤ 2

ω(x)

x
.

Let us show that u ∈ Lipω(T); for v the proof is similar. It is easy to see
that it suffices to verify that for all t1, t2 ∈

⋃
k Ik we have

|u(t1)− u(t2)| ≤ cω(|t1 − t2|),

where c > 0 does not depend on t1 or t2.

First we consider the case when t1 and t2 belong to the same interval Ik.
Then, since |t1 − t2| ≤ |Ik| = 6δk, we have

ω(6δk)

6δk
≤ 2

ω(|t1 − t2|)
|t1 − t2|

,

so (see (5))

|u(t1)− u(t2)| = ω(δk)|∆Ik(t1)−∆Ik(t2)|

≤ ω(δk)
2

6δk
|t1 − t2| ≤ 2

ω(6δk)

6δk
|t1 − t2| ≤ 4ω(|t1 − t2|).

Consider now the case when t1 ∈ Ik1 , t2 ∈ Ik2 , k1 6= k2. We can assume
that t1 < t2, and hence 0 < t1 < bk1 < ak2 < t2 < 2π. Using the previous
estimate, we obtain

|u(t1)− u(t2)| ≤ |u(t1)|+ |u(t2)| = |u(t1)− u(bk1)|+ |u(t2)− u(ak2)|
≤ 8ω(|t1 − t2|),

proving the lemma.

For n = 1, 2, . . . we define

un(t) = max{u(t), 1/n}, t ∈ T.

As above, V (T) stands for the class of functions of bounded variation on T.
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Lemma 3. The functions un, n = 1, 2, . . . , have the following properties:

|un(t1)− un(t2)| ≤ |u(t1)− u(t2)| for all t1, t2 ∈ T and all n;(6)

un ∈ V (T) for all n;(7)

sup
n

∣∣∣�
T

v(t) dun(t)
∣∣∣ =∞.(8)

Proof. Properties (6) and (7) are obvious. Let us verify (8). To this
end consider the middle thirds of the intervals Jk, namely, the intervals
J∗k = [ak + δk, ak + 2δk], k = 1, 2, . . . . Note that if

(9)
ω(δk)

3
≥ 1

n
,

then un coincides with u on J∗k . So, if (9) holds, then un is increasing on J∗k ,
and at the endpoints of J∗k we have

un(ak + δk) = ω(δk)/3, un(ak + 2δk) = 2ω(δk)/3.

It is easily seen that for each k,

min
J∗k

v = 2ω(δk)/3.

Taking into account that u, and hence un, is nondecreasing on each Jk, we
see that for all n and k satisfying (9),

�

Jk

v dun ≥
ak+2δk�

ak+δk

v dun ≥
2

3
ω(δk)

ak+2δk�

ak+δk

dun

=
2

3
ω(δk)

1

3
ω(δk) =

2

9
(ω(δk))

2.

In addition (since un is nondecreasing on each Jk) we have�

Jk

v dun ≥ 0

for all n and k. Thus, taking into account that v vanishes outside
⋃∞
k=1 Jk,

we obtain
�

T

v dun =

∞∑
k=1

�

Jk

v dun ≥
∑

k :ω(δk)≥3/n

�

Jk

v dun ≥
∑

k :ω(δk)≥3/n

2

9
(ω(δk))

2.

Applying (4) we see that (8) holds.

We shall also need the following auxiliary lemma.

Lemma 4. If x, y ∈W 1/2
2 ∩ C(T) and y ∈ V (T), then∣∣∣∣ 1

2π

�

T

x(t) dy(t)

∣∣∣∣ ≤ ‖x‖W 1/2
2 (T)‖y‖W 1/2

2 (T).
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Proof. Integration by parts yields

1

2π

2π�

0

eikt dy(t) = − 1

2π

2π�

0

y(t) deikt = −ikŷ(−k).

So, if x is a trigonometric polynomial, using the Cauchy inequality we obtain∣∣∣∣ 1

2π

�

T

x(t) dy(t)

∣∣∣∣ =

∣∣∣∣∑
k

x̂(k)
1

2π

�

T

eikt dy(t)

∣∣∣∣
=
∣∣∣∑
k

x̂(k)(−ik)ŷ(−k)
∣∣∣ ≤ ‖x‖

W
1/2
2 (T)‖y‖W 1/2

2 (T).

To see that the assertion holds in the general case, consider the Fejér sums

σN (x)(t) =
∑
|k|≤N

(
1− |k|

N

)
x̂(k)eikt.

Since |σ̂N (x)(k)|≤|x̂(k)| for all k∈Z, we have ‖σN (x)‖
W

1/2
2 (T)≤‖x‖W 1/2

2 (T).

Hence, ∣∣∣∣ 1

2π

�

T

σN (x)(t) dy(t)

∣∣∣∣ ≤ ‖σN (x)‖
W

1/2
2 (T)‖y‖W 1/2

2 (T)

≤ ‖x‖
W

1/2
2 (T)‖y‖W 1/2

2 (T).

At the same time, since y is of bounded variation and σN (x) converges
uniformly to x, it is clear that

1

2π

�

T

σN (x)(t) dy(t)→ 1

2π

�

T

x(t) dy(t)

as N →∞, which yields the assertion.

Proof of the Theorem. Let f = u+iv. Lemma 2 yields f ∈ Lipω(T), so it

remains to show that f ◦h /∈W 1/2
2 (T) for every homeomorphism h of T. It is

obvious that if a function is in W
1/2
2 (T), then so are its real and imaginary

parts. Assume, contrary to the assertion, that f ◦ h ∈W 1/2
2 (T) for a certain

homeomorphism h. Then u ◦ h ∈W 1/2
2 (T) and v ◦ h ∈W 1/2

2 (T).

Note that (6) implies |un ◦ h(t1) − un ◦ h(t2)| ≤ |u ◦ h(t1) − u ◦ h(t2)|
for all t1, t2 ∈ T. Using the equivalence of the seminorms ‖ · ‖

W
1/2
2 (T) and

||| · |||
W

1/2
2 (T) (see (2)), we infer that un ◦ h ∈ W 1/2

2 (T) for all n = 1, 2, . . . ,

and

(10) ‖un ◦ h‖W 1/2
2 (T) ≤ c‖u ◦ h‖W 1/2

2 (T), n = 1, 2, . . . ,

where c > 0 does not depend on n.
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The property of a function to be of bounded variation is invariant under
homeomorphic changes of variable, hence (7) implies that un ◦h ∈ V (T) for
all n. Certainly we also have un ◦ h ∈ C(T). Applying Lemma 4, and taking
(10) into account, we obtain∣∣∣∣ 1

2π

�

T

v(t) dun(t)

∣∣∣∣ =

∣∣∣∣ 1

2π

�

T

v ◦ h(t) dun ◦ h(t)

∣∣∣∣
≤ ‖v ◦ h‖

W
1/2
2 (T)‖un ◦ h‖W 1/2

2 (T)

≤ c‖v ◦ h‖
W

1/2
2 (T)‖u ◦ h‖W 1/2

2 (T),

which contradicts (8).

Remarks. 1. For s > 0 consider the Sobolev space W s
2 (T) of all (inte-

grable) functions f with ∑
k∈Z
|f̂(k)|2|k|2s <∞.

As shown in [7, Corollary 3], for each compact family K in C(T) (or equiv-
alently for each class Lipω(T)) there exists a homeomorphism h of T such
that f ◦ h ∈

⋂
s<1/2W

s
2 (T) for all f ∈ K (resp. for all f ∈ Lipω(T)).

2. There exists a real-valued f ∈ C(T) such that f ◦h /∈
⋃
s>1/2W

s
2 (T) for

every homeomorphism h of T. This is a simple consequence of the inclusion⋃
s>1/2W

s
2 ∩ C(T) ⊆ A(T), where A(T) is the Wiener algebra of absolutely

convergent Fourier series, and of a well-known result of Olevskĭı that pro-
vides a negative answer to Lusin’s rearrangement problem: there exists a
real-valued f ∈ C(T) such that f ◦ h /∈ A(T) for every homeomorphism h
([8], see also [9]).

3. The function f(t) =
∑

k≥0 2−k/2ei2
kt is in Lip1/2(T) (see, e.g., [1,

Ch. XI, Sec. 6]), but it is obvious that f /∈ W
1/2
2 (T); thus Lip1/2(T) *

W
1/2
2 (T). The author does not know if the assertion of the Theorem holds

for ω(δ) = δ1/2. At the same time there is no change of variable which will

bring the whole class Lip1/2(T) into W
1/2
2 (T): a proof will be presented in

another paper.
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