The Bohr-Pál theorem and the Sobolev space $W_{2}^{1 / 2}$

by
VLadimir Lebedev (Moscow)

Abstract

The well-known Bohr-Pál theorem asserts that for every continuous realvalued function f on the circle \mathbb{T} there exists a change of variable, i.e., a homeomorphism h of \mathbb{T} onto itself, such that the Fourier series of the superposition $f \circ h$ converges uniformly. Subsequent improvements of this result imply that actually there exists a homeomorphism that brings f into the Sobolev space $W_{2}^{1 / 2}(\mathbb{T})$. This refined version of the Bohr-Pál theorem does not extend to complex-valued functions. We show that if $\alpha<1 / 2$, then there exists a complex-valued f that satisfies the Lipschitz condition of order α and at the same time has the property that $f \circ h \notin W_{2}^{1 / 2}(\mathbb{T})$ for every homeomorphism h of \mathbb{T}.

For every integrable function f on the circle $\mathbb{T}=\mathbb{R} / 2 \pi \mathbb{Z}$ (where \mathbb{R} is the real line and \mathbb{Z} is the group of integers) consider its Fourier series

$$
f(t) \sim \sum_{k \in \mathbb{Z}} \widehat{f}(k) e^{i k t}, \quad t \in \mathbb{T}
$$

Recall that the Sobolev space $W_{2}^{1 / 2}(\mathbb{T})$ is the space of all (integrable) functions f with

$$
\sum_{k \in \mathbb{Z}}|\widehat{f}(k)|^{2}|k|<\infty
$$

Let $C(\mathbb{T})$ be the space of all continuous functions on \mathbb{T}.
It is well-known that certain properties of continuous functions related to Fourier series can be considerably improved by a change of variable, i.e., by a homeomorphism of the circle onto itself. The first significant result in this area is the Bohr-Pál theorem that states that for every real-valued $f \in C(\mathbb{T})$ there exists a homeomorphism h of \mathbb{T} onto itself such that the superposition $f \circ h$ belongs to the space $U(\mathbb{T})$ of functions with uniformly convergent

[^0]Fourier series. (The theorem was obtained in a somewhat weaker form by J. Pál [11], and in the final form by H. Bohr [2].) The original method of proof of this result uses conformal mappings and in fact allows us (see [9, Sec. 3]) to obtain the following representation:

$$
\begin{equation*}
f \circ h=g+\psi, \quad g \in W_{2}^{1 / 2} \cap C(\mathbb{T}), \psi \in V \cap C(\mathbb{T}) \tag{1}
\end{equation*}
$$

where $V(\mathbb{T})$ is the space of functions of bounded variation on \mathbb{T}. It is wellknown that both $W_{2}^{1 / 2} \cap C(\mathbb{T})$ and $V \cap C(\mathbb{T})$ are subsets of $U(\mathbb{T})$, thus (1) implies $f \circ h \in U(\mathbb{T})\left({ }^{1}\right)$.

A substantial improvement of the Bohr-Pál theorem was obtained by A. A. Sahakian [12, Corollary 1], who showed that if $a(n), n=0,1,2, \ldots$, is a positive sequence satisfying $\sum_{n} a(n)=\infty$ and a certain condition of regularity, then for every real-valued $f \in C(\mathbb{T})$ there is a homeomorphism h such that $\widehat{f \circ h}(k)=O(a(|k|))$. An immediate consequence of Sahakian's result is that the term ψ in (1) can be omitted, i.e., the following refined version of the Bohr-Pál theorem holds: for every real-valued $f \in C(\mathbb{T})$ there exists a homeomorphism h of \mathbb{T} onto itself such that $f \circ h \in W_{2}^{1 / 2}(\mathbb{T})$. This refined version also follows from a result on conjugate functions, obtained by W. Jurkat and D. Waterman [4] (see also [3, Theorem 9.5]). We note that Sahakian's result is obtained by purely real analysis techniques, whereas Jurkat and Waterman use an approach similar to the one of Bohr and Pál. A very short proof of the refined version of the Bohr-Pál theorem was communicated to the author by A. Olevskiĭ (see [7, Sec. 3]).

Another improvement of the Bohr-Pál theorem was obtained by J.-P. Kahane and Y. Katznelson [6] (see also [9, [5]). These authors showed that if K is a compact family of functions in $C(\mathbb{T})$, then there exists a homeomorphism h of \mathbb{T} such that $f \circ h \in U(\mathbb{T})$ for all $f \in K$. This result naturally leads to the question whether it is possible to attain the condition $f \circ h \in W_{2}^{1 / 2}(\mathbb{T})$ for all $f \in K$. This question was posed by A. Olevskiı̆ 10 . A negative answer was obtained by the present author [7, Theorem 4]: it turns out that, given a real-valued $u \in C(\mathbb{T})$, the property that for every real-valued $v \in C(\mathbb{T})$ there is a homeomorphism h such that both $u \circ h$ and $v \circ h$ are in $W_{2}^{1 / 2}(\mathbb{T})$ is equivalent to the boundedness of the variation of u. Thus, in general, there is no single change of variable which will bring two real-valued functions in $C(\mathbb{T})$ into $W_{2}^{1 / 2}(\mathbb{T})$. Certainly this amounts to the existence of a complex-valued $f \in C(\mathbb{T})$ such that $f \circ h \notin W_{2}^{1 / 2}(\mathbb{T})$ for every homeomorphism h of \mathbb{T}.

[^1]The purpose of this work is to show that there exists a complex-valued function f that is very smooth but at the same time has the property that $f \circ h \notin W_{2}^{1 / 2}(\mathbb{T})$ for every homeomorphism h of \mathbb{T}.

Note that, as one can easily verify (see, e.g., [7, Sec. 3]), the two seminorms

$$
\begin{align*}
\|f\|_{W_{2}^{1 / 2}(\mathbb{T})} & =\left(\sum_{k \in \mathbb{Z}}|\widehat{f}(k)|^{2}|k|\right)^{1 / 2} \\
\|f\|_{W_{2}^{1 / 2}(\mathbb{T})} & =\left(\int_{0}^{2 \pi} \frac{1}{\theta^{2}} \int_{0}^{2 \pi}|f(t+\theta)-f(t)|^{2} d t d \theta\right)^{1 / 2} \tag{2}
\end{align*}
$$

are equivalent on $W_{2}^{1 / 2}(\mathbb{T})$, i.e., f is in $W_{2}^{1 / 2}(\mathbb{T})$ if and only if $\|\mid f\|_{W_{2}^{1 / 2}(\mathbb{T})}$ $<\infty$, and

$$
c_{1}\|f\|_{W_{2}^{1 / 2}(\mathbb{T})} \leq\|f\|_{W_{2}^{1 / 2}(\mathbb{T})} \leq c_{2}\|f\|_{W_{2}^{1 / 2}(\mathbb{T})} \quad \text { for all } f \in W_{2}^{1 / 2}(\mathbb{T})
$$

where $c_{1}, c_{2}>0$ do not depend on f. Thus, every function that satisfies the Lipschitz condition of order greater than $1 / 2$ belongs to $W_{2}^{1 / 2}(\mathbb{T})$. We shall show that, in general, there is no change of variable which will bring a complex-valued function that satisfies the Lipschitz condition of order less than $1 / 2$ into $W_{2}^{1 / 2}(\mathbb{T})$. The author does not know if the same holds for functions satisfying the Lipschitz condition of order $1 / 2$ (see remarks at the end of the paper).

Let ω be a modulus of continuity, i.e., a nondecreasing continuous function on $[0, \infty)$ such that $\omega(0)=0$ and $\omega(x+y) \leq \omega(x)+\omega(y)$. We denote by $\operatorname{Lip}_{\omega}(\mathbb{T})$ the class of all complex-valued functions f on \mathbb{T} with $\omega(f, \delta)=O(\omega(\delta)), \delta \rightarrow+0$, where

$$
\omega(f, \delta)=\sup _{\left|t_{1}-t_{2}\right| \leq \delta}\left|f\left(t_{1}\right)-f\left(t_{2}\right)\right|, \quad \delta \geq 0
$$

is the modulus of continuity of f. For $0<\alpha \leq 1$ we just write $\operatorname{Lip}_{\alpha}$ instead of $\operatorname{Lip}_{\delta^{\alpha}}$.

ThEOREM. Suppose that $\lim \sup _{\delta \rightarrow+0} \omega(\delta) / \sqrt{\delta}=\infty$. Then there exists a complex-valued function $f \in \operatorname{Lip}_{\omega}(\mathbb{T})$ such that $f \circ h \notin W_{2}^{1 / 2}(\mathbb{T})$ for every homeomorphism h of the circle \mathbb{T} onto itself. In particular, if $\alpha<1 / 2$, then there exists a function of class $\operatorname{Lip}_{\alpha}(\mathbb{T})$ with this property.

Ideologically the method of the proof of this theorem is close to the one used by the author to prove Theorem 4 in [7].

We shall need certain preliminary constructions and lemmas. The simple lemma below is purely technical.

Lemma 1. Under the assumption of the Theorem on ω, there exists a sequence $\delta_{k}>0, k=1,2, \ldots$, such that

$$
\begin{align*}
& \sum_{k=1}^{\infty} \delta_{k}<2 \pi / 6 \tag{3}\\
& \sum_{k=1}^{\infty}\left(\omega\left(\delta_{k}\right)\right)^{2}=\infty \tag{4}
\end{align*}
$$

Proof. For each $j=1,2, \ldots$ we can find ε_{j} such that $0<\varepsilon_{j}<2^{-(j+1)}$ and

$$
\frac{\left(\omega\left(\varepsilon_{j}\right)\right)^{2}}{\varepsilon_{j}} \geq 2^{j}
$$

Choose positive integers n_{j} satisfying

$$
\frac{1}{2^{j+1} \varepsilon_{j}} \leq n_{j}<\frac{1}{2^{j} \varepsilon_{j}}, \quad j=1,2, \ldots
$$

Let $N_{0}=1$ and let $N_{j}=N_{j-1}+n_{j}$ for $j=1,2, \ldots$ We define the sequence $\delta_{k}, k=1,2, \ldots$, by setting $\delta_{k}=\varepsilon_{j}$ if $N_{j-1} \leq k<N_{j}, j=1,2, \ldots$. This yields

$$
\sum_{k=1}^{\infty} \delta_{k}=\sum_{j=1}^{\infty} \sum_{N_{j-1} \leq k<N_{j}} \delta_{k}=\sum_{j=1}^{\infty} n_{j} \varepsilon_{j} \leq \sum_{j=1}^{\infty} \frac{1}{2^{j}}=1
$$

and at the same time

$$
\sum_{N_{j-1} \leq k<N_{j}}\left(\omega\left(\delta_{k}\right)\right)^{2}=n_{j}\left(\omega\left(\varepsilon_{j}\right)\right)^{2} \geq n_{j} \varepsilon_{j} 2^{j} \geq \frac{1}{2}
$$

which proves the lemma.
For a closed interval $I=[a, b] \subseteq(0,2 \pi)$ let Δ_{I} denote the "triangle" function supported on I, i.e., a continuous function on $[0,2 \pi]$ such that $\Delta_{I}(t)=0$ for all $t \in[0, a] \cup[b, 2 \pi], \Delta_{I}(c)=1$, where $c=(a+b) / 2$ is the center of I, and Δ_{I} is linear on $[a, c]$ and on $[c, b]$.

Let $\delta_{k}, k=1,2, \ldots$, be the sequence from Lemma 1. Consider intervals $I_{k}=\left[a_{k}, b_{k}\right] \subseteq(0,2 \pi)$ of length $b_{k}-a_{k}=6 \delta_{k}$, where $a_{k}<b_{k}<a_{k+1}$, $k=1,2, \ldots$ (see (3)). For each k let J_{k} denote the left half of I_{k}, i.e., $J_{k}=\left[a_{k},\left(a_{k}+b_{k}\right) / 2\right], k=1,2, \ldots$.

Everywhere below we use u and v to denote the real-valued functions on \mathbb{T} defined by

$$
u(t)=\sum_{k=1}^{\infty} \omega\left(\delta_{k}\right) \Delta_{I_{k}}(t), \quad v(t)=\sum_{k=1}^{\infty} \omega\left(\delta_{k}\right) \Delta_{J_{k}}(t), \quad t \in[0,2 \pi]
$$

We shall show that the function $f=u+i v$ satisfies the assertion of the theorem.

Lemma 2. The functions u and v are of class $\operatorname{Lip}_{\omega}(\mathbb{T})$.
Proof. It is clear that for every (closed) interval $I \subseteq(0,2 \pi)$, the function Δ_{I} satisfies

$$
\begin{equation*}
\left|\Delta_{I}\left(t_{1}\right)-\Delta_{I}\left(t_{2}\right)\right| \leq \frac{2}{|I|}\left|t_{1}-t_{2}\right| \quad \text { for all } t_{1}, t_{2} \in[0,2 \pi] \tag{5}
\end{equation*}
$$

where $|I|$ is the length of I.
Note also that if $0<x \leq y$, then $\omega(y) / y \leq 2 \omega(x) / x$. Indeed, let $n=$ $[y / x]+1$, where $[\alpha]$ denotes the integer part of α; then $y \leq n x \leq 2 y$, so

$$
\frac{\omega(y)}{y} \leq \frac{\omega(n x)}{y} \leq \frac{n \omega(x)}{y} \leq 2 \frac{\omega(x)}{x}
$$

Let us show that $u \in \operatorname{Lip}_{\omega}(\mathbb{T})$; for v the proof is similar. It is easy to see that it suffices to verify that for all $t_{1}, t_{2} \in \bigcup_{k} I_{k}$ we have

$$
\left|u\left(t_{1}\right)-u\left(t_{2}\right)\right| \leq c \omega\left(\left|t_{1}-t_{2}\right|\right)
$$

where $c>0$ does not depend on t_{1} or t_{2}.
First we consider the case when t_{1} and t_{2} belong to the same interval I_{k}. Then, since $\left|t_{1}-t_{2}\right| \leq\left|I_{k}\right|=6 \delta_{k}$, we have

$$
\frac{\omega\left(6 \delta_{k}\right)}{6 \delta_{k}} \leq 2 \frac{\omega\left(\left|t_{1}-t_{2}\right|\right)}{\left|t_{1}-t_{2}\right|}
$$

so (see (5))

$$
\begin{aligned}
\left|u\left(t_{1}\right)-u\left(t_{2}\right)\right| & =\omega\left(\delta_{k}\right)\left|\Delta_{I_{k}}\left(t_{1}\right)-\Delta_{I_{k}}\left(t_{2}\right)\right| \\
& \leq \omega\left(\delta_{k}\right) \frac{2}{6 \delta_{k}}\left|t_{1}-t_{2}\right| \leq 2 \frac{\omega\left(6 \delta_{k}\right)}{6 \delta_{k}}\left|t_{1}-t_{2}\right| \leq 4 \omega\left(\left|t_{1}-t_{2}\right|\right)
\end{aligned}
$$

Consider now the case when $t_{1} \in I_{k_{1}}, t_{2} \in I_{k_{2}}, k_{1} \neq k_{2}$. We can assume that $t_{1}<t_{2}$, and hence $0<t_{1}<b_{k_{1}}<a_{k_{2}}<t_{2}<2 \pi$. Using the previous estimate, we obtain

$$
\begin{aligned}
\left|u\left(t_{1}\right)-u\left(t_{2}\right)\right| & \leq\left|u\left(t_{1}\right)\right|+\left|u\left(t_{2}\right)\right|=\left|u\left(t_{1}\right)-u\left(b_{k_{1}}\right)\right|+\left|u\left(t_{2}\right)-u\left(a_{k_{2}}\right)\right| \\
& \leq 8 \omega\left(\left|t_{1}-t_{2}\right|\right)
\end{aligned}
$$

proving the lemma.
For $n=1,2, \ldots$ we define

$$
u_{n}(t)=\max \{u(t), 1 / n\}, \quad t \in \mathbb{T} .
$$

As above, $V(\mathbb{T})$ stands for the class of functions of bounded variation on \mathbb{T}.

Lemma 3. The functions $u_{n}, n=1,2, \ldots$, have the following properties:

$$
\begin{gather*}
\left|u_{n}\left(t_{1}\right)-u_{n}\left(t_{2}\right)\right| \leq\left|u\left(t_{1}\right)-u\left(t_{2}\right)\right| \quad \text { for all } t_{1}, t_{2} \in \mathbb{T} \text { and all } n \tag{6}\\
u_{n} \in V(\mathbb{T}) \text { for all } n \tag{7}\\
\sup _{n}\left|\int_{\mathbb{T}} v(t) d u_{n}(t)\right|=\infty \tag{8}
\end{gather*}
$$

Proof. Properties (6) and (7) are obvious. Let us verify (8). To this end consider the middle thirds of the intervals J_{k}, namely, the intervals $J_{k}^{*}=\left[a_{k}+\delta_{k}, a_{k}+2 \delta_{k}\right], k=1,2, \ldots$. Note that if

$$
\begin{equation*}
\frac{\omega\left(\delta_{k}\right)}{3} \geq \frac{1}{n} \tag{9}
\end{equation*}
$$

then u_{n} coincides with u on J_{k}^{*}. So, if (9) holds, then u_{n} is increasing on J_{k}^{*}, and at the endpoints of J_{k}^{*} we have

$$
u_{n}\left(a_{k}+\delta_{k}\right)=\omega\left(\delta_{k}\right) / 3, \quad u_{n}\left(a_{k}+2 \delta_{k}\right)=2 \omega\left(\delta_{k}\right) / 3
$$

It is easily seen that for each k,

$$
\min _{J_{k}^{*}} v=2 \omega\left(\delta_{k}\right) / 3
$$

Taking into account that u, and hence u_{n}, is nondecreasing on each J_{k}, we see that for all n and k satisfying (9),

$$
\begin{aligned}
\int_{J_{k}} v d u_{n} & \geq \int_{a_{k}+\delta_{k}}^{a_{k}+2 \delta_{k}} v d u_{n} \geq \frac{2}{3} \omega\left(\delta_{k}\right) \int_{a_{k}+\delta_{k}}^{a_{k}+2 \delta_{k}} d u_{n} \\
& =\frac{2}{3} \omega\left(\delta_{k}\right) \frac{1}{3} \omega\left(\delta_{k}\right)=\frac{2}{9}\left(\omega\left(\delta_{k}\right)\right)^{2}
\end{aligned}
$$

In addition (since u_{n} is nondecreasing on each J_{k}) we have

$$
\int_{J_{k}} v d u_{n} \geq 0
$$

for all n and k. Thus, taking into account that v vanishes outside $\bigcup_{k=1}^{\infty} J_{k}$, we obtain

$$
\int_{\mathbb{T}} v d u_{n}=\sum_{k=1}^{\infty} \int_{J_{k}} v d u_{n} \geq \sum_{k: \omega\left(\delta_{k}\right) \geq 3 / n} \int_{J_{k}} v d u_{n} \geq \sum_{k: \omega\left(\delta_{k}\right) \geq 3 / n} \frac{2}{9}\left(\omega\left(\delta_{k}\right)\right)^{2}
$$

Applying (4) we see that (8) holds.
We shall also need the following auxiliary lemma.
Lemma 4. If $x, y \in W_{2}^{1 / 2} \cap C(\mathbb{T})$ and $y \in V(\mathbb{T})$, then

$$
\left|\frac{1}{2 \pi} \int_{\mathbb{T}} x(t) d y(t)\right| \leq\|x\|_{W_{2}^{1 / 2}(\mathbb{T})}\|y\|_{W_{2}^{1 / 2}(\mathbb{T})}
$$

Proof. Integration by parts yields

$$
\frac{1}{2 \pi} \int_{0}^{2 \pi} e^{i k t} d y(t)=-\frac{1}{2 \pi} \int_{0}^{2 \pi} y(t) d e^{i k t}=-i k \widehat{y}(-k)
$$

So, if x is a trigonometric polynomial, using the Cauchy inequality we obtain

$$
\begin{aligned}
\left|\frac{1}{2 \pi} \int_{\mathbb{T}} x(t) d y(t)\right| & =\left|\sum_{k} \widehat{x}(k) \frac{1}{2 \pi} \int_{\mathbb{T}} e^{i k t} d y(t)\right| \\
& =\left|\sum_{k} \widehat{x}(k)(-i k) \widehat{y}(-k)\right| \leq\|x\|_{W_{2}^{1 / 2}(\mathbb{T})}\|y\|_{W_{2}^{1 / 2}(\mathbb{T})} .
\end{aligned}
$$

To see that the assertion holds in the general case, consider the Fejér sums

$$
\sigma_{N}(x)(t)=\sum_{|k| \leq N}\left(1-\frac{|k|}{N}\right) \widehat{x}(k) e^{i k t}
$$

Since $\left|\widehat{\sigma_{N}(x)}(k)\right| \leq|\widehat{x}(k)|$ for all $k \in \mathbb{Z}$, we have $\left\|\sigma_{N}(x)\right\|_{W_{2}^{1 / 2}(\mathbb{T})} \leq\|x\|_{W_{2}^{1 / 2}(\mathbb{T})}$. Hence,

$$
\begin{aligned}
\left|\frac{1}{2 \pi} \int_{\mathbb{T}} \sigma_{N}(x)(t) d y(t)\right| & \leq\left\|\sigma_{N}(x)\right\|_{W_{2}^{1 / 2}(\mathbb{T})}\|y\|_{W_{2}^{1 / 2}(\mathbb{T})} \\
& \leq\|x\|_{W_{2}^{1 / 2}(\mathbb{T})}\|y\|_{W_{2}^{1 / 2}(\mathbb{T})}
\end{aligned}
$$

At the same time, since y is of bounded variation and $\sigma_{N}(x)$ converges uniformly to x, it is clear that

$$
\frac{1}{2 \pi} \int_{\mathbb{T}} \sigma_{N}(x)(t) d y(t) \rightarrow \frac{1}{2 \pi} \int_{\mathbb{T}} x(t) d y(t)
$$

as $N \rightarrow \infty$, which yields the assertion.
Proof of the Theorem. Let $f=u+i v$. Lemma 2 yields $f \in \operatorname{Lip}_{\omega}(\mathbb{T})$, so it remains to show that $f \circ h \notin W_{2}^{1 / 2}(\mathbb{T})$ for every homeomorphism h of \mathbb{T}. It is obvious that if a function is in $W_{2}^{1 / 2}(\mathbb{T})$, then so are its real and imaginary parts. Assume, contrary to the assertion, that $f \circ h \in W_{2}^{1 / 2}(\mathbb{T})$ for a certain homeomorphism h. Then $u \circ h \in W_{2}^{1 / 2}(\mathbb{T})$ and $v \circ h \in W_{2}^{1 / 2}(\mathbb{T})$.

Note that (6) implies $\left|u_{n} \circ h\left(t_{1}\right)-u_{n} \circ h\left(t_{2}\right)\right| \leq\left|u \circ h\left(t_{1}\right)-u \circ h\left(t_{2}\right)\right|$ for all $t_{1}, t_{2} \in \mathbb{T}$. Using the equivalence of the seminorms $\|\cdot\|_{W_{2}^{1 / 2}(\mathbb{T})}$ and $\left|\left||\cdot| \|_{W_{2}^{1 / 2}(\mathbb{T})}(\right.\right.$ see $(2))$, we infer that $u_{n} \circ h \in W_{2}^{1 / 2}(\mathbb{T})$ for all $n \stackrel{2}{=} 1,2, \ldots$, and

$$
\begin{equation*}
\left\|u_{n} \circ h\right\|_{W_{2}^{1 / 2}(\mathbb{T})} \leq c\|u \circ h\|_{W_{2}^{1 / 2}(\mathbb{T})}, \quad n=1,2, \ldots \tag{10}
\end{equation*}
$$

where $c>0$ does not depend on n.

The property of a function to be of bounded variation is invariant under homeomorphic changes of variable, hence (7) implies that $u_{n} \circ h \in V(\mathbb{T})$ for all n. Certainly we also have $u_{n} \circ h \in C(\mathbb{T})$. Applying Lemma 4 , and taking (10) into account, we obtain

$$
\begin{aligned}
\left|\frac{1}{2 \pi} \int_{\mathbb{T}} v(t) d u_{n}(t)\right| & =\left|\frac{1}{2 \pi} \int_{\mathbb{T}} v \circ h(t) d u_{n} \circ h(t)\right| \\
& \leq\|v \circ h\|_{W_{2}^{1 / 2}(\mathbb{T})}\left\|u_{n} \circ h\right\|_{W_{2}^{1 / 2}(\mathbb{T})} \\
& \leq c\|v \circ h\|_{W_{2}^{1 / 2}(\mathbb{T})}\|u \circ h\|_{W_{2}^{1 / 2}(\mathbb{T})},
\end{aligned}
$$

which contradicts (8).
Remarks. 1. For $s>0$ consider the Sobolev space $W_{2}^{s}(\mathbb{T})$ of all (integrable) functions f with

$$
\sum_{k \in \mathbb{Z}}|\widehat{f}(k)|^{2}|k|^{2 s}<\infty
$$

As shown in [7, Corollary 3], for each compact family K in $C(\mathbb{T})$ (or equivalently for each class $\left.\operatorname{Lip}_{\omega}(\mathbb{T})\right)$ there exists a homeomorphism h of \mathbb{T} such that $f \circ h \in \bigcap_{s<1 / 2} W_{2}^{s}(\mathbb{T})$ for all $f \in K$ (resp. for all $\left.f \in \operatorname{Lip}_{\omega}(\mathbb{T})\right)$.
2. There exists a real-valued $f \in C(\mathbb{T})$ such that $f \circ h \notin \bigcup_{s>1 / 2} W_{2}^{s}(\mathbb{T})$ for every homeomorphism h of \mathbb{T}. This is a simple consequence of the inclusion $\bigcup_{s>1 / 2} W_{2}^{s} \cap C(\mathbb{T}) \subseteq A(\mathbb{T})$, where $A(\mathbb{T})$ is the Wiener algebra of absolutely convergent Fourier series, and of a well-known result of Olevskiĭ that provides a negative answer to Lusin's rearrangement problem: there exists a real-valued $f \in C(\mathbb{T})$ such that $f \circ h \notin A(\mathbb{T})$ for every homeomorphism h ([8], see also [9]).
3. The function $f(t)=\sum_{k \geq 0} 2^{-k / 2} e^{i 2^{k} t}$ is in $\operatorname{Lip}_{1 / 2}(\mathbb{T})$ (see, e.g., 11, Ch. XI, Sec. 6]), but it is obvious that $f \notin W_{2}^{1 / 2}(\mathbb{T})$; thus $\operatorname{Lip}_{1 / 2}(\mathbb{T}) \nsubseteq$ $W_{2}^{1 / 2}(\mathbb{T})$. The author does not know if the assertion of the Theorem holds for $\omega(\delta)=\delta^{1 / 2}$. At the same time there is no change of variable which will bring the whole class $\operatorname{Lip}_{1 / 2}(\mathbb{T})$ into $W_{2}^{1 / 2}(\mathbb{T})$: a proof will be presented in another paper.

References

[1] N. K. Bary, A Treatise on Trigonometric Series, Vols. I, II, Pergamon Press, Oxford, 1964.
[2] H. Bohr, Über einen Satz von J. Pál, Acta Sci. Math. (Szeged) 7 (1935), 129-135.
[3] G. Goffman, T. Nishiura and D. Waterman, Homeomorphisms in Analysis, Math. Surveys Monogr. 54, Amer. Math. Soc., 1997.
[4] W. Jurkat and D. Waterman, Conjugate functions and the Bohr-Pál theorem, Complex Variables 12 (1989), 67-70.
[5] J.-P. Kahane, Quatre leçons sur les homéomorphismes du circle et les séries de Fourier, in: Topics in Modern Harmonic Analysis, Vol. II, Ist. Naz. Alta Mat. Francesco Severi, Roma, 1983, 955-990.
[6] J.-P. Kahane and Y. Katznelson, Séries de Fourier des fonctions bornées, in: Studies in Pure Math. in Memory of Paul Turán, Budapest, 1983, 395-410 (preprint, Orsay, 1978).
[7] V. V. Lebedev, Change of variable and the rapidity of decrease of Fourier coefficients, Mat. Sb. 181 (1990), 1099-1113 (in Russian); English transl.: Math. USSRSb. 70 (1991), 541-555 (English transl. corrected by the author is available at arXiv:1508.06673).
[8] A. M. Olevskiĭ, Change of variable and absolute convergence of Fourier series, Soviet Math. Dokl. 23 (1981), 76-79.
[9] A. M. Olevskiĭ, Modifications of functions and Fourier series, Russian Math. Surveys 40 (1985), 181-224.
[10] A. M. Olevskiĭ, Modifications of functions and Fourier series, in: Theory of Functions and Approximations (Saratov, 1984), Part 1, Saratov. Gos. Univ., Saratov, 1986, 31-43 (in Russian).
[11] J. Pál, Sur les transformations des fonctions qui font converger leurs séries de Fourier, C. R. Acad. Sci. Paris 158 (1914), 101-103.
[12] A. A. Saakjan, Integral moduli of smoothness and the Fourier coefficients of the composition of functions, Math. USSR-Sb. 38 (1981), 549-561.

Vladimir Lebedev
National Research University Higher School of Economics
34 Tallinskaya St.
Moscow, 123458, Russia
E-mail: lebedevhome@gmail.com

[^0]: 2010 Mathematics Subject Classification: Primary 42A16.
 Key words and phrases: harmonic analysis, homeomorphisms of the circle, superposition operators, Sobolev spaces.
 Received 3 November 2015; revised 26 January 2016.
 Published online 9 February 2016.

[^1]: $\left({ }^{1}\right)$ Assuming $g \in W_{2}^{1 / 2}(\mathbb{T})$, it follows that $\sum_{|k| \leq N}|k \widehat{g}(k)|=o(N)$, which for a function $g \in C(\mathbb{T})$ implies $g \in U(\mathbb{T})$ (see, e.g., [1, Ch. I, Sec. 64]). The inclusion $V \cap C(\mathbb{T}) \subseteq U(\mathbb{T})$ is due to Jordan (see [1] Ch. I, Sec. 39]).

