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Abstract. We construct a class of rank-one infinite measure-preserving transforma-
tions such that for each transformation T in the class, the cartesian product T × T is
ergodic, but the product T × T−1 is not. We also prove that the product of any rank-one
transformation with its inverse is conservative, while there are infinite measure-preserving
conservative ergodic Markov shifts whose product with their inverse is not conservative.

1. Introduction. The notion of weak mixing for finite measure-pre-
serving transformations has many equivalent characterizations. Several of
these characterizations, however, do not remain equivalent in the infinite
measure-preserving case. The first examples showing that some of the prop-
erties are different in the infinite measure case were given by Kakutani and
Parry [14], who constructed, for each positive integer k, an infinite measure-
preserving Markov shift T such that the k-fold cartesian product of T with
itself is ergodic but its (k + 1)-fold product is not (such a transformation
is said to have ergodic index k). Later, Adams, Friedman and Silva [3] con-
structed a rank-one infinite measure-preserving transformation T with infi-
nite ergodic index (i.e., all finite cartesian products with itself are ergodic)
but such that T ×T 2 is not conservative, hence not ergodic. Bergelson then
asked if there existed an example of a transformation T of infinite ergodic
index but such that T × T−1 is not ergodic. This question appears as Prob-
lem 10 in [10]. For the history and other examples, the reader may refer
to [11]; more recently though, ergodic index k transformations have been
constructed in rank one in [4].
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In this paper we partially answer Bergelson’s question by constructing
an infinite measure-preserving rank-one transformation T such that T × T
is ergodic, but T ×T−1 is not ergodic (Theorem 5.2). We also prove that for
all rank-one transformations T , the transformation Tn×T−n is conservative
(Theorem 4.3) for all n 6= 0 (the main result is that T ×T−1 is conservative,
as it is known that composition powers of conservative transformations are
conservative, see e.g. [1, Corollary 1.1.4]), while this is not the case in general
(Corollary 6.6).

In this context we note that it was already known that there exist rank-
one transformations T such that T×T is not conservative [2]. Also, whenever
T is a rigid transformation (i.e., there is an increasing sequence {ni} such
that the measure of Tni(A)4A tends to 0 for all sets A of finite measure),
one can verify that T × T−1 is conservative, and as the class of rigid trans-
formations is generic in the group of invertible infinite measure-preserving
transformations of a Lebesgue space under the weak topology [5], it follows
that the property of T × T−1 being conservative is a generic property; this
also follows from Theorem 5.2 and the fact that infinite measure-preserving
rank-ones are generic [7]. As we show later, however, there are other trans-
formations, in particular conservative ergodic Markov shifts, where T ×T−1
is not conservative (Corollary 6.6). A consequence of the properties of our
rank-one example in Theorem 5.2 is that these transformations are not iso-
morphic to their inverse. Also, it follows from Theorem 4.3 that if a rank-one
transformation T is such that T × T is not conservative, then T is not iso-
morphic to its inverse.

The methods we apply are combinatorial and probabilistic in nature.
Propositions 2.3 and 2.4 use the notion of descendants, as introduced in [8],
to turn the dynamics of the rank-one system into combinatorial characteri-
zations.

We let (X,B, µ) denote a Lebesgue measurable subset of the real line
with Borel measurable sets B, and consider an invertible measure-preserving
transformation T : X → X; we are interested in the case whenX is of infinite
measure. The transformation T is ergodic if whenever T−1(A) = A, then
µ(A) = 0 or µ(Ac) = 0, and conservative if A ⊂

⋃∞
n=1 T

−n(A) (mod µ).
The map T is invertible and a standard proof shows that the Lebesgue
measure on R is nonatomic, so when T is ergodic, it is conservative.

We review rank-one cutting-and-stacking transformations. A Rokhlin col-
umn or column C is an ordered finite collection of pairwise disjoint intervals
(called the levels of C) in R, each of the same measure. We think of the levels
in a column as being stacked on top of each other, so that the (j+ 1)st level
is directly above the jth level. Every column C = {Ij} is associated with a
natural column map TC sending each point in Ij to the point directly above
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it in Ij+1 (note that TC is undefined on the top level of C). A rank-one
cutting and stacking construction for T consists of a sequence of columns
Cn such that:

• The first column C0 consists only of the unit interval.
• Each column Cn+1 is obtained from Cn by cutting Cn into rn ≥ 2 sub-

columns of equal width, adding any number sn,k of new levels (called
spacers) above the kth subcolumn, k ∈ {0, rn− 1}, and stacking every
subcolumn under the subcolumn to its right. In this way, Cn+1 consists
of rn copies of Cn, possibly separated by spacers.
• X =

⋃
nCn.

Observing that TCn+1 agrees with TCn everywhere that TCn is defined, we
then take T to be the pointwise limit of TCn as n → ∞. A transformation
constructed with these cutting and stacking techniques is rank-one, and in
practice we often refer to cutting and stacking transformations as rank-one
transformations. For further details on this class of transformations, the
reader may refer to [16] and [7].

Given any level I from Cm and any column Cn of T with m ≤ n, we
define the descendants of I in Cn to be the collection of levels in Cn whose
disjoint union is I. We denote this set by D(I, n). By abuse of notation (and
not to complicate the notation further), we will also use D(I, n) to refer to
the heights of the descendants of I in Cn.

For j ≥ 0, let hj denote the order of Cj , and write hj,k = hj + sj,k.
Suppose that I is a level in Ci of height h(I), where the heights in the
column are 0-indexed. Then I splits into ri levels in Ci+1 of heights

{h(I)} ∪
{
h(I) +

i∑
k=0

hj,k : 0 ≤ i < rj − 1
}
.

Let

(1) Hj = {0} ∪
{ i∑
k=0

hj,k : 0 ≤ i < rj − 1
}
.

It follows inductively that

(2) D(I, n) = h(I) +Hi ⊕Hi+1 ⊕ · · · ⊕Hn−1;

we call Hk the height set of T at the kth stage.
Instead of describing a rank-one transformation by cutting and spacer

parameters, we can describe it by specifying its descendant sets. For in-
stance, given D([0, 1], n) for every n, we have complete information on the
distribution of spacer levels and nonspacer levels (descendants of I) in Cn
below maxD([0, 1], n) for every n ∈ N, which symbolically describes T while
bypassing the traditional cutting and stacking notation. On the other hand,
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if one wishes to construct a rank-one transformation, then one only needs
to specify sets Hk ⊂ N for k ≥ 0 and define D([0, 1], n) as above, that is,
D([0, 1], n) = H0 ⊕ · · · ⊕Hn−1. The only compatibility restrictions that fol-
low from (1) are that 0 ∈ Hk for all k, and that any two elements of Hk are
at least hk−1 apart, where hk−1 is the height of column Ck−1.

2. Preliminaries. Throughout this paper, we will let T (k) = T×· · ·×T
and U = T × T−1. For positive measure sets A,B ⊂ X and any ε ∈ (0, 1),
we take A ⊂ε B to mean that µ(A ∩ B) > (1 − ε)µ(A). The operator | · |
denotes the order of any subset of the integers.

In this section, we develop some techniques whereby cutting and stack-
ing transformations can be characterized by their integer properties. We
find that many of the ergodic properties of products of rank-one transfor-
mations can be deduced from the heights of pieces of the base I of column
Ci in subsequent columns Cj , j > i. These heights can be inferred from the
descendant set D(I, j). First, we have a standard lemma which provides a
sufficient condition for the ergodicity of T ×T when T is a rank-one cutting
and stacking transformation. This is similar to [9, Lemma 2.4], but in the
case of integer actions.

We say that a map τ : A → X belongs to the full groupoid of T , and
write τ ∈ [[T ]], if τ is one-to-one and τ(x) ∈

{
Tnx : n ∈ Z

}
for all x ∈ A.

Lemma 2.1. Let T be a rank-one measure-preserving transformation on
a measure space Y . Let X = Y × Y , and D be the sufficient semiring of
rectangles in X of the form R1 × R2, where R1 and R2 are levels of some
column of T . Then T ×T is ergodic on X if for every A,B ∈ D of the form
A = I × I for I the base of column Ci, i ∈ N, and B = I × T bI, where
0 ≤ b < hi, there exists a map τ ∈ [[T × T ]] satisfying:

D(τ) ⊂ A and R(τ) ⊂ B,
µ(D(τ)) ≥ δµ(A),

dµ ◦ τ
dµ

(v) ≥ β for all v ∈ D(γ),

where δ and β are positive absolute constants, and D and R denote the
domain and range of a map, respectively.

Proof. Let E and F be two sets of positive measure in X. Because D is a
sufficient semiring, we can find rectangles A′ and B′ in D such that A′ and B′

are more than (1−1/32)-full of E and F , respectively. By taking i sufficiently
high, we can assume that A′ and B′ are rectangles in Ci × Ci. So we have

A′ = T a
′
0I×T a

′
1

k−1I and B′ = T b
′
0I×T b′1I, where a′0, a

′
1, b
′
0, b
′
1 ∈ {0, . . . , hi−1}.
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By the Double Approximation Lemma (1), for some j > i, more than 1−1/32
of the subrectangles of A′ and B′ in Cj × Cj must be more than 3/4-full
of E and F , respectively.

We claim that we can find j-subrectangles with sides in Cj , which we
denote A ⊂ A′ and B ⊂ B′, that are more than (1− βδ/2)-full of E and F ,
respectively, with the levels of sides of A at or below the corresponding sides
of B. Let J be the base of Cj . Then all of the j-subrectangles A ⊂ A′ and
B ⊂ B′ are of the form

A = T a
′
0+a

′′
0J × T a′1+a′′1J, B = T b

′
0+b
′′
0J × T b′1+b′′1B,

where

a′′0, a
′′
1, d
′′
0, d
′′
1 ∈ Hi ⊕ · · · ⊕Hj−1 = D(I, j).

Set a` = a′` +a′′` and d` = d′` +d′′` for ` = 0, 1. Recall that min{|x1−x2| :
x1, x2 ∈ D(I, j) and x1 6= x2} ≥ hi, so if a′′` < d′′` for any ` = 0, 1, we should
have a` < d`. For either value of `, the total number of pairs (a′′` , d

′′
` ) such

that a′′` < d′′` is bounded below, say by 1
4 |D(I, j)|2, so the total number of

elements in D(I, j)2 × D(I, j)2 of the form ((a0, a1), (d0, d1)) which have
a0 < d0 and a1 < d1 is bounded below by 1

16 |D(I, j)|4. Each pair denotes
two j-subrectangles, one of A and the other of B. But more than 1− 1/32
of the subrectangles of A are more than (1− βδ/2)-full of E, and the same
is true of subrectangles of B and F . So a fraction larger than 1 − 1/16 of
the possible pairs in D(I, j)2 × D(I, j)2 denote a subrectangle of A which
is more than (1 − βδ/2)-full of E and a subrectangle of B which is more
than (1 − βδ/2)-full of F . Hence, there is a subrectangle B ⊂ B′ which is
more than (1−βδ/2)-full of F and has both of its sides (indexed by heights
d0, d1) above the corresponding sides of a subrectangle A which is more than
(1− βδ/2)-full of E.

Suppose first that d0−a0 ≤ d1−a1. Then d1−a1−d0+a0 ∈ {0, . . . , hj−1}.
Now define the map γ by

γ := (T d0 × T a1+d0−a0) ◦ τ ◦ (T−a0 × T−a1),

where τ ∈ [[T × T ]] is the map with D(τ) ⊂ J × J and R(τ) ⊂ J ×
T d1−a1−d0+a0J , and γ is constructed around τ as a map from A to B. By sup-
position, µ(D(γ)) ≥ δµ(A), so µ(D(γ)∩E) > (δ− βδ/2)µ(A) ≥ (δ/2)µ(A).
Thus,

µ
(
γ(D(γ) ∩ E)) ∩B ∩ F

)
> βµ(D(γ) ∩ E)− βδ

2
µ(B) >

δ

2
− βδ

2
≥ 0.

(1) For a proof of this well-known lemma, see [6].
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But note that

γ(D(γ)∩E) ⊂
⋃
n∈Z

(T d0 × T a1+d0−a0) ◦ (T × T )n ◦ (T−a0× T−a1)(D(γ)∩E)

=
⋃
n∈Z

(
(T d0−a0 × T d0−a0) ◦ (T × T )n

)
(D(γ) ∩ E)

=
⋃
n∈Z

(T × T )n(D(γ) ∩ E).

This set must have positive intersection with F , whence for some n ∈ Z we
obtain µ((T×T )nE∩F ) > 0. A similar proof works when d0−a0 ≥ d1−a1.

The next lemma provides techniques to prove that more general trans-
formations are not ergodic.

Lemma 2.2. Let S := Tα0 × · · · × Tαk−1 be a product of nonzero-integer
powers of rank-one transformations in X := Y ×· · ·×Y . If T is conservative
ergodic, then for every ε > 0, i ∈ N, I the base of Ci, and (b0, . . . , bk−1) ∈
{0, . . . , hi − 1}k, there exists a natural number j > i such that for at least
(1 − ε)|D(I, j)|k tuples of descendants (a0, . . . , ak−1) ∈ D(I, j)k we have
a` = d`+b`+α`n for ` = 0, . . . , k−1 for some tuple (d0, . . . , dk−1) ∈ D(I, j)k

and n ∈ Z \ {0}.
Proof. Fix any ε > 0. First, if S is conservative ergodic, then we must be

able to find a natural number m such that A is covered by
⋃m
n=−m,n 6=0 S

nB
up to a measure (ε/2)µ(A).

Recall that for any j ≥ i, all of the rectangles in (Cj)
k are pairwise

disjoint, and A and B are disjoint unions of such rectangles. In addition,
for any j-subrectangle C of B of the form C = T c0+b0J × · · · × T ck−1+bk−1J
(where J is the base of Cj), if c` ∈ D(I, j), c` ≥ m|α`| + |b`| and c` <
hj −m|α`| − |b`| for all `, then Sn(C), |n| ≤ m, is also a rectangle in (Cj)

k.
But the proportion of such rectangles C grows arbitrarily high in j. Thus,
we can choose j large enough such that

⋃
n=−m,n 6=0 S

nB is composed up

to a measure (ε/2)µ(A) by a union of rectangles that are elements of (Cj)
k

and fall entirely inside of
⋃
n=−m,n 6=0 S

nB. Specifically, we use rectangles of
the form

(3) T d0+b0+α0nJ × · · · × T dk−1+bk−1+αk−1nJ

for |n| ≤ m, n 6= 0, where J is the base of Cj and (d0, . . . , dk−1) ∈ D(I, j)k.
Then by supposition these rectangles must cover A up to a measure εµ(A).
But because the rectangles of (Cj)

k are pairwise disjoint, a j-rectangle in⋃
n=−m,n 6=0 S

nB intersects A only if it equals a subrectangle of A. We pro-
ceed to denote the covered subrectangles of A by k-tuples (a0, . . . , ak−1) ∈
D(I, j)k, and note that such subrectangles must equal rectangles of the
form (3).
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This implies that, for at least (1−ε)|D(I,j)|k of the k-tuples (a0, . . . , ak−1)
∈ D(I, j)k, we must have the relation

T a0J × · · · × T ak−1J = T d0+b0+α0nJ × · · · × T dk−1+bk−1+αk−1nJ(4)

for some nonzero n, |n| ≤ m, and some (d0, . . . , dk−1) ∈ D(I, j)k such that
d` + b` + α`n, |n| ≤ m, is defined as a level in Cj . This can only happen if
a` = d` + b` + α`n for all ` = 0, . . . , k − 1.

These lemmas now yield the following propositions, which provide nec-
essary conditions and stronger sufficient conditions for the ergodicity of a
transformation T which is a product of powers of a rank-one transforma-
tion T .

Proposition 2.3. For a rank-one transformation T , T × T is conser-
vative ergodic if for every ε > 0, i ∈ N, I the base of Ci, and 0 ≤ b < hi− 1,
there is a natural number j > i such that at least (1 − ε)|D(I, j)|k k-tuples
of descendants of the base I of column Ci of the form (a, a′) ∈ D(I, j)k have
uniquely corresponding pairs (d, d′) ∈ D(I, j)k such that a− d = a′ − d′ − b.

Proof. Suppose that T meets the stated condition, and fix an i ∈ N. Let
A = I × I and B = I × T bI for I the base of some column Ci of T , and
an integer b ∈ {0, . . . , hi − 1}. Fix some positive ε. Then by supposition,
there exists some j > i such that some fraction 1− ε of the |D(I, j)|2 of the
constituent subrectangles of A of the form T aJ × T a′J, (a, a′) ∈ D(I, j)2,
can be associated with unique complementary descendant tuples (d, d′) with
a− d′ = a′ − d′ − b. Letting n = d− a implies that

(T × T )n(T aJ × T a′J) = T dJ × T d′+bJ ⊂ B.
Define τ(a,a′) to be any measure-preserving bijection taking points from

T aJ × · · · × T a′J to T dJ × T d′+bJ . Let F (I, j) ⊂ D(I, j)2 be the set of all
pairs (a, a′) of descendants with such a unique complementary tuple (d, d′).
Then we can define

τ =
⊔

(a,a′)∈F (I,j)

τ(a,a′),

in which case τ ∈ [[T × T ]], D(τ) ⊂ A, and R(τ) ⊂ B. Also, µ(D(τ)) ≥
(1−ε)µ(A) and τ is measure-preserving. Because ε can be taken arbitrarily
small, Lemma 2.1 (with any choice of β, δ ∈ (0, 1)) implies that T × T is
ergodic.

Lemma 2.2 also suggests a method of establishing nonergodicity of prod-
ucts of powers of rank-one transformations.

Proposition 2.4. For T a rank-one transformation and nonzero inte-
gers α0, . . . , αk−1, S := Tα0 × · · · × Tαk−1 is conservative ergodic only if for
every ε>0, i∈N, I the base of Ci, and k-tuple (b0, . . . , bk−1)∈{0, . . . , hi−1}k,
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there is a natural number j > i such that for at least (1 − ε)|D(I, j)|k
k-tuples of descendants of the form (a0, . . . , ak−1) ∈ D(I, j)k, we have cor-
responding k-tuples (d0, . . . , dk−1) ∈ D(I, j)k such that (a0 − d0 − b0)/α0 =
(a` − d` − b`)/α` ∈ Z \ {0} for each ` = 0, . . . , k − 1. The map T is ergodic
if this condition holds, and to every tuple (a0, . . . , ak−1) with a complemen-
tary k-tuple meeting the stated conditions, we can associate a unique such
complementary tuple.

Proof. By Lemma 2.2, if S is ergodic, for every i ∈ N and ε > 0 we can
find some j > i such that (1−ε)|D(I, j)|k k-tuples of descendants have com-
plementary tuples (d0, . . . , dk−1) ∈ D(I, j)k satisfying a` = d` + b` +α`n for
some n ∈ Z\{0}. This implies that (a0 − d0 − b0)/α0 = (α` − d` − b`)/α` =
n ∈ Z \ {0} for each `. The proof of the sufficiency of the second stated
condition is similar to the proof of Proposition 2.3, and is omitted.

3. Combinatorics. We have shown that a rank-one cutting and stack-
ing transformation can be characterized by its descendant sets, which encap-
sulate information about its cutting and stacking parameters. Descendant
sets are just sum sets of height sets, which each correspond to cuts and
spacers added to one particular column. The following lemma is used to
construct the height sets Hk for a rank-one transformation T such that
T × T is ergodic but T × T−1 is not.

Lemma 3.1. Let M,Γ, γ ∈ N. Then there are sets of nonnegative in-
tegers H(U), H(L), where H(U) = {{V1,W1}, . . . , {VΓ ,WΓ }} and H(L) =
{{v1, w1}, . . . , {vγ , wγ}}, such that if we let

H = {Vi,Wj , vk, w` : 1 ≤ i, j ≤ Γ, 1 ≤ k, ` ≤ γ},
then H satisfies the following properties:

(1) For every {V,W} ∈ H(U) and {v, w} ∈ H(L) we have V + W =
v + w − 1.

(2) If x1, x2, x3, x4 are in H and |x1 +x2−x3−x3| < M , then precisely
one of the following holds:

• {x1, x2} = {x3, x4},
• {x1, x2} 6= {x3, x4} but x1 + x2 = x3 + x4, in which case {x1, x2}

and {x3, x4} are both in either H(U) or H(L),
• x1+x2 = x3+x4−1, in which case {x1, x2} ∈ H(U) and {x3, x4} ∈
H(L), or
• x1+x2 = x3+x4+1, in which case {x1, x2} ∈ H(L) and {x3, x4} ∈
H(U).

Proof. We proceed by finding a set H such that Vr + Wr = vs + ws for
all r ∈ {1, . . . , Γ} and s ∈ {1, . . . , γ}, and such that |x1 + x2 − x3 − x4| < 1
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with distinct summands implies {x1, x2, x3, x4} is one of {vs, ws, vs′ , ws′},
{vs, ws, Vr,Wr}, or{Vr,Wr, Vr′ ,Wr′}.For this construction ofHwhenM= 1,
choose n much greater than 22(Γ+γ), which from now on we denote as n�
22(Γ+γ), also choose it even, and let

H := {2, . . . , 2Γ+γ , n− 2Γ+γ , . . . , n− 2},
whereH(U) = {{2, n−2}, . . . , {2Γ , n−2Γ }} andH(L) = {{2Γ+1, n− 2Γ+1},
. . . , {2Γ+γ , n−2Γ+γ}}. For r ∈ {1, . . . , Γ} let Vr = 2r and Wr = n−2r, and
for s ∈ {1, . . . , γ} let vs = 2Γ+s and ws = n− 2Γ+s.

Now, partition H into sets R1 = {2, . . . , 2Γ+γ} and R2 = {n− 2Γ+γ , . . . ,
n−2}. Note that, given x1, x2, x3, x4 ∈ H with |x1 +x2−x3−x4| < M = 1,
we have x1 + x2 = x3 + x4. Suppose that x1, x2 ∈ R1, that is, x1 = 2z1

and x2 = 2z2 for integers 0 ≤ z1, z2 ≤ Γ + γ. Then x1 + x2 ≤ 2Γ+γ+1 �
n − 2Γ+γ , so x3 and x4 are also both in R1. By unique binary expansion,
either z1 = z3 and z2 = z4 or z1 = z4 and z2 = z3. Then {x1, x2} = {x3, x4},
so we obtain the first subcase above. Suppose that x1 ∈ R1, x2 ∈ R2.
Then x3 and x4 are not both in R1 and the size of n dictates that precisely
one of {x3, x4} is in R1. Without loss of generality write x1 = 2z1 , x2 =
n − 2z2 , x3 = 2z3 , and x4 = n − 2z4 , where z1, z2, z3, z4 ∈ {1, . . . , Γ + γ}.
Then we obtain 2z1 + 2z4 = 2z2 + 2z3 , implying that either z1 = z2 and
z3 = z4 or z1 = z3 and z2 = z4. In the former case x1, x2 are a pair {v, w}
or {V,W} and x3, x4 also form such a pair; in the latter case x1 = x3
and x2 = x4, so {x1, x2} = {x3, x4}. Symmetry addresses the case where
x1 ∈ R2 and x2 ∈ R1. Finally, if x1, x2 ∈ R2 then both x3 and x4 are in R2;
setting x1 = n − 2z1 , x2 = n − 2z2 , x3 = n − 2z3 , and x4 = n − 2z4 , we
see that 2z1 + 2z2 = 2z3 + 2z4 , which again implies the first subcase. Hence,
H conforms to its stated condition.

Fix an M ∈ N with M ≥ 2. Multiply every element in H by M , and then
subtract 1 from all of the elements obtained from multiplying M with a Vr.
Set V ′r = M · Vr − 1, W ′r = M ·Wr, and so on. Call the set containing these
new pairs H ′. Suppose that y1, y2, y3, y4 are distinct elements in H ′ with
|y1 + y2 − y3 − y4| < M . Let x1, x2, x3, x4 be their corresponding elements
in H. By adding 1 to all y terms of the form V ′r , we deduce that |Mx1 +
Mx2 −Mx3 −Mx4| < M + 2, whence |x1 + x2 − x3 − x4| < 1 + 2/M ≤ 2.
So |x1 + x2 − x3 − x4| = 0 or 1. But recall that n was chosen to be even, so
|x1 +x2−x3−x4| = 0. Thus, the pairs {x1, x2} and {x3, x4} are either both
in H(U) or both in H(L) or are split evenly between them, which implies
the same for {y1, y2} and {y3, y4} in H(U)′ and H(L)′. Hence, H ′ is our
desired set for any given M , when we let H(U)′ be the set of pairs {V ′r ,W ′r}
and H(L)′ be the set of pairs {v′s, w′s}.

Remark 3.2. Using Lemma 3.1, we can construct the height sets Hk of
our transformation inductively. Specifically, let Mk, Γk, γk ∈ N be the inputs
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for the set Hk, as implemented in Lemma 3.1. Choose

Mk � 2 maxD(I, k) = 2 max(H0 ⊕ · · · ⊕Hk−1).

This clearly ensures that the difference between any two elements in Hk

is greater than hk−1. As of yet, let {Γk} and {γk} remain unspecified; we
choose them towards the end of our construction.

For reasons that will soon become clear, we need to categorize pairs in
H2
k by their additive properties. Certain pairs (a, a′) drawn from H2

k will
have complementary pairs (d, d′) ∈ H2

k that satisfy a− d = a′ − d′ − 1, and
others will have complements (d, d′) satisfying a+ d = a′ + d′ + 1. Our goal
is to maximize the proportion of the former in order to make T ×T ergodic,
but minimize the proportion of the latter in order to keep T × T−1 from
being ergodic.

Definition 3.3. Let H be as in Lemma 3.1. A pair {x, y} ∈ H ×H is
called mixed if x = Vi or Wj ∈ H(U), and y = vk or w` ∈ H(L), or vice versa.
A mixed pair is called positive if it is of the form (wj ,Wi), (wj , Vi), (vj , Vi) or
(vj ,Wi). A pair is called negative if it is of the form (Vi, vj), (Vi, wj), (Wi, vj)
or (Wi, wj). A negative mixed pair will be said to correspond to a positive
mixed pair (d, d′) if a − d = a′ − d′ − 1 (for instance, (Vi, vj) corresponds
to (wj ,Wi)). Note that this correspondence is one-to-one for any negative
mixed pair.

A pair {x, y} ∈ H is called pure if {x, y} ∈ H(L) or {x, y} ∈ H(U). No-
tice that the pure pairs are unordered, whereas the mixed pairs are ordered
(and are positive or negative depending upon the order of the elements).

The use of the words “positive” and “negative” is meant to be evocative.
Let a, a′ ∈ D(I, j), and let b be fixed. As in Theorem 4.3, we write a =∑j−1

k=i ak where ak ∈ Hk. As in the preceding lemmas, we are interested in
necessary and sufficient conditions for, for instance, the existence of d, d′ ∈
D(I, j) such that a−d = a′−d′−b. If there are b indices k such that {ak, a′k}
is negative mixed, then we can achieve this condition; choose dk, d

′
k to be

the corresponding positive mixed pair to get ak − dk = a′k − d′k − 1 for those
b indices, and for the remaining ones set dk = ak and d′k = a′k. Crucially,
given any such pair (a, a′) with b indices having (ak, a

′
k) negative mixed, we

can associate with it a unique pair (d, d′) satisfying a − d = a′ − d′ − b.
There is a similar idea for dealing with the condition relating to U , that is,
a+ a′ = d+ d′ = b.

Lemma 3.4. Let n be fixed and let Mk be the increasing sequence dis-
cussed in Remark 1 with M0 > 1. Let I be the base level of Ci, where
i < n, and suppose that a + a′ = d + d′ + 1 with a, a′, d, d′ ∈ D(I, n).
Write a =

∑n−1
k=i ak with ak ∈ Hk, and similarly for d, a′, d′. Then there is
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a k in {i, . . . , n − 1} such that {ak, a′k} ∈ Hk(U) and {dk, d′k} ∈ Hk(L), or
vice-versa.

Proof. We clearly cannot have ak+a′k = dk+d′k for each k, so choose the
largest k such that equality does not hold. Recall that Mk is the constant
used to construct Hk in Lemma 3.1, and was chosen to be� 2 maxD(I, k) in
Remark 3.2. The first case is |ak+a′k−dk+d′k| < Mk. Therefore, {ak, a′k} and
{dk, d′k} must be pairs in Hk(U) and Hk(L). So we have {ak, a′k} ∈ Hk(U)
and {dkd′k} ∈ Hk(L), or {ak, a′k} ∈ Hk(L) and {dk, d′k} ∈ Hk(U).

The second case is when |ak + a′k − dk − d′k| ≥Mk � 2 maxD(I, k). We
have

|a+ a′ − d− d′| =
∣∣∣n−1∑
j=i

aj +

n−1∑
j=i

dj −
n−1∑
j=i

a′j −
n−1∑
j=i

d′j

∣∣∣
=
∣∣∣ k∑
j=i

(aj + dj − a′j − d′j)
∣∣∣

≥ |ak + dk − a′k − d′k| −
k−1∑
j=i

|aj + dj − a′j − d′j |

≥Mk − 2

k−1∑
j=1

maxHj = Mk − 2 maxD(I, k)� 1,

which contradicts the initial assumption, proving the lemma.

4. For each rank-one T and n ∈ Z\{0}, Tn×T−n is conservative.
We note that there exist rank-one transformations T such that T × T is
not conservative [2], as well as infinite measure-preserving transformations
where T × T−1 is not conservative (Corollary 6.6). The proof of Lemma 4.1
below follows from [13, proof of Proposition 8.1].

Lemma 4.1. Let T be any infinite measure-preserving transformation on
X and D be a sufficient semiring in X. Suppose that T satisfies the con-
servativity conditon on D that for every A ∈ D we have A ⊂

⋃
n∈Z\{0} T

nA

(mod µ). Then T is conservative.

This lemma has a very desirable equivalence between a property on our
semiring and a property on all of our measure space. It allows us to use
our descendant’s notation to its fullest potential. Using Lemma 4.1, we have
the following condition equivalent to conservativity of products of rank-one
transformations:

Proposition 4.2. Let T be a rank-one transformation on a measure
space Y and A = I × · · · × I (k times), where I is the base of column Ci.
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Furthermore, let (α0, . . . , αk−1) be a k-tuple of nonzero integers. Set D to
be the semiring of rectangles in X := Y × · · · × Y (k times) which have
levels of columns of T as sides. Then the product transformation S :=
Tα0 × · · · × Tαk−1 on X is conservative if and only if for every ε > 0 there
is j such that at for at least (1− ε)|D(I, j)|k of the k-tuples (a0, . . . , ak−1) ∈
D(I, j)k there exist complementary k-tuples (d0, . . . , dk−1) ∈ D(I, j)k satis-
fying (a0 − d0)/α0 = (a` − d`)/α` ∈ Z \ {0} for ` = 1, . . . , k − 1.

Proof. Fix ε > 0. First, if S is conservative, we can find some m such
that A is covered by

⋃m
n=−m,n 6=0 S

nA except for some measure (ε/2)µ(A).
Then we may choose j large enough such that, up to measure (ε/2)µ(A),
all of the intersections SnA ∩ A for n, |n| ≤ m, are composed of unions

of rectangles in (Cj)
k for ` = 0, . . . , k − 1 (see the proof of Lemma 2.2).

These subrectangles are descendant rectangles of A (that is, their sides are
descendants of the original sides of A) whose sides have heights indexed by
elements in D(I, j)k. Thus, out of a total of |D(I, j)|k subrectangles at the
jth stage, at least (1−ε)|D(I, j)|k are contained in SnA∩A for some n 6= 0.
This implies that an equal number of k-tuples (a0, . . . , ak−1) ∈ D(I, j)k will
satisfy T a0J × · · · × T ak−1J ⊂ SnA for some n 6= 0 with |n| ≤ m. For these
rectangles, this can only happen if a` = d` + α`n for some n ∈ Z and all
` = 0, . . . , k − 1, for some k-tuple (d0, . . . , dk−1) ∈ D(I, j)k.

Now suppose that the conditions of the lemma hold for S. Then we may
choose m so large that, up to measure εµ(A), all of the (1 − ε)|D(I, j)|k
subrectangles of A are contained in

⋃m
n=−m,n 6=0 S

nA. Specifically, note that
if (a0 − d0)/α0 = (a` − d`)/α` ∈ Z \ {0} for all `; then we should have

T a0J × · · · × T ak−1J = Sn(T d0J × · · · × T dk−1J) ⊂ SnA,
wheren=−(a0 − d0)/α0.Then A is covered by

⋃m
n=−m,n 6=0S

nAup to measure

εµ(A). Our choice of ε was arbitrary, so we must have A⊂
⋃m
n=−m,n 6=0 S

nA
(mod µ) for some m ∈ N and all sets A.

We now show that all sets in D have the same property: cut any rectan-
gle in D into a disjoint union of rectangles in (Ci)

k for some i∈N, and let I
be the base of Ci. Then we may write each such constituent subrectangle as
T b0I×· · ·×T bk−1I, where b` ∈ {0, . . . , hi−1} for ` = 0, . . . , k−1. Note that

T b0I × · · · × T bk−1I = (T b0 × · · · × T bk−1)I × · · · × I

⊂ (T b0 × · · · × T bk−1)
⋃

n∈Z\{0}

Sn(I × · · · × I)

=
⋃

n∈Z\{0}

Sn(T b0I × · · · × T bk−1I).

This result holds for each of the constituent subrectangles of any rectangle
in D, so Lemma 4.1 implies that S is conservative.
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For the proof of the following theorem, it will be helpful to have notation
for breaking up elements of D(I, j) into their additive components. To this

end, for any a ∈ D(I, j), we write a =
∑j−1

k=i ak where ak ∈ Hk according
to the decomposition D(I, j) = Hi ⊕ · · · ⊕ Hj−1. We proceed similarly for
a′, d, and d′.

Theorem 4.3. Let T be a rank-one transformation, and n a nonzero
integer. Then Tn × T−n is conservative.

Proof. Let A = I×I, where I is the base of any column Ci. It suffices to
show (by Proposition 4.2) that for every ε > 0 there is j such that at least
(1 − ε)|D(I, j)|2 of the pairs (a, a′) ∈ D(I, j)2 have complementary pairs
(d, d′) ∈ D(I, j)2 with a− d = d′ − a′ ∈ nZ \ {0}.

For any k ∈ N, let R′(I, k) ⊂ D(I, k)2 denote the largest subset of
D(I, k)2 containing pairs (a, a′) which have n | a−a′. A pigeonhole argument
shows that |R′(I, k)| ≥ n−2 |D(I, k)|2 (take all pairs of elements drawn from
the largest intersection of D(I, k) with a congruence class modulo n). Of
all of the pairs in R′(I, k), at most |D(I, k)| have a = a′. Hence, at least
n−2|D(I, k)|2 − |D(I, k)| of the pairs in D(I, k)2 have n | a− a′ and a 6= a′.
Call the set of all such pairs R(I, k), and note that

|R(I, k)|
|D(I, k)|2

≥ 1

n2
− 1

|D(I, k)|
.

Recalling that D(I, k) ≥ 2k−i and D(I, k) is increasing in k whenever k ≥ i,
we let k′ denote the smallest integer k ≥ i such that |D(I, k)| > 2n2.

For any j > k′, consider any pair (a, a′) ∈ D(I, j)2 which has (ak, a
′
k) ∈

R(I, k) for some k with k′ ≤ k < j. Denote this particular value of k
by k∗. We construct (d, d′) ∈ D(I, j)2 as follows: for k 6= k∗, set dk = ak
and d′k = a′k. Next set dk∗ = a′k∗ and d′k∗ = ak∗ . Then we clearly have
a+a′ = d+d′, and thus a−d = d′−a′ = ak∗−a′k∗ ∈ nZ\{0}. Furthermore,
the proportion of such pairs inside of D(I, j)2 is lower-bounded by

1−
j−1∏
k=k′

(
1− |R(I, k)|
|D(I, j)|2

)
≥ 1−

j−1∏
k=k′

(
1

n2
− 1

|D(I, k)|

)
≥ 1−

(
1− 1

2n2

)j−k′
.

This quantity goes to 1 as j grows large, so we may conclude that Tn×T−n
is conservative.

5. T ×T ergodic but T ×T−1 not ergodic. In this section, we use the
combinatorial results of Section 3 to construct a class of rank-one transfor-
mations T such that T×T is ergodic but T×T−1 is not. To obtain ergodicity
of the cartesian square we just need γk = Γk for all k with arbitrary Γk.

Theorem 5.1. Let T be defined by using the height sets given in Lem-
ma 3.1, and by setting γk = Γk > 0 for every k ≥ 0. Then T (2) is ergodic.
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Proof. Suppose that T is as specified. We will apply Proposition 2.3. To
do so, for any i ∈ N, ε > 0, b ∈ {0, . . . , hi−1}, we must show that there exists
a natural number j > i such that at least (1 − ε)|D(I, j)|2 pairs (a, a′) of
descendants of the base I of Ci can be associated to unique complementary
pairs (d, d′) ∈ D(I, j)2 satisfying a− d = a′ − d′ − b.

Recall that the descendants of I in Cj can be given by D(I, j) = Hi ⊕
Hi+1 ⊕ · · · ⊕ Hj−1. So we can decompose any element c ∈ D(I, j) into

its sum components as c =
∑j−1

k=i ck, where ck ∈ Hk. We will employ this
notation for pairs (a, a′) and their corresponding pairs (d, d′). Given any
k ≥ i, also recall that Hk contains 2γk+2Γk = 4γk elements, so H2

k contains
16γ2k elements. On the other hand, the number of negative mixed pairs in
Hk is given by 4γ2k . So the proportion of pairs in H2

k which are negative
mixed is 1/4. Thus, taking any j � i+b, we see that the proportion of pairs
(a, a′) in D(I, j)2 which have (ak, a

′
k) negative mixed for k = i, . . . , i+ b− 1

is 1/4b. For any such pair, we can take (dk, d
′
k) to be the positive mixed

pair corresponding to (ak, a
′
k) for k = i, . . . , i+ b− 1, and dk = ak, d

′
k = a′k

elsewhere. Then we should clearly have a−d = a′−d′−b, and to every such
(a, a′) we can associate a unique pair (d, d′) (as (dk, d

′
k) is the unique positive

mixed pair corresponding to (ak, a
′
k) whenever the pairs are not chosen to

be exactly equal).
We have now deduced that at most 1− 1/4b of the pairs in D(I, j)2 do

not meet the precondition for ergodicity given in Proposition 2.3 whenever
j � i + b. Taking j sufficiently high and then considering the proportion
of pairs (a, a′) ∈ D(I, j) which have (ak, a

′
k) as negative mixed pairs in

Hi+b, . . . ,Hi+2b−1, which is independent of the previous case, we can reduce
this proportion to (1− 1/4b)2. Continuing in this manner, we can make the
proportion of unsatisfactory pairs arbitrarily small, from which we conclude
that T × T is ergodic.

Theorem 5.2. Let T be a rank-one transformation constructed using a
sequence {γ` > 0} that satisfies

0 <
∏
`∈N

(
1− 1

4γ`

)
and γk = Γk for all k ≥ 0. Then T × T is ergodic but U = T × T−1 is not.

Proof. Ergodicity of T ×T follows from Theorem 5.1. For contradiction,
suppose that U is conservative ergodic. Letting I be the base of an arbitrary
column Ci, set A = I × I and B = I × T (I) (that is, choose b0 = 0 and
b1 = 1). Then by Proposition 2.4, for every ε > 0 there exists j such that
for at least (1− ε)|D(I, j)|2 pairs of descendants (a, a′) ∈ D(I, j)2 we have
a+ a′ = d+ d′ + 1 for some n. By Lemma 3.4, this occurs for a pair (a, a′)
only if there exists some k ∈ {i, . . . , n− 1} such that (ak, a

′
k) is a pure pair.
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But there are only 2(2γk) possible pure pairs in Hk out of 16γ2k total pairs.
Let P ⊂ D(I, j)2 denote the set of pairs (a, a′) ∈ D(I, j)2 such that (ak, a

′
k)

is never pure for i ≤ k < j. Then the proportion of pairs in D(I, j)2 with at
least one additive component pair (ak, a

′
k), i ≤ k < j, pure is |P |/|D(I, j)|2,

and

|P |
|D(I, j)|2

= 1− |P c|
|D(I, j)|2

= 1−
j−1∏
`=i

(
1− 1

4γ`

)
.

Since this quantity is strictly less than 1, the proportion of pairs (a, a′) ∈
D(I, j) with a complementary pair (d, d′) satisfying a + a′ = d + d′ + 1
must be bounded above by a number less than 1. For any choice 0 < ε <∏
`(1− 1/4γ`), this contradicts ergodicity of U .

Regarding ergodicity of higher products, we note that T ×T ×T ergodic
is equivalent to the statement that for any b0, b1, b2 and I the base of some
column, the proportion of triples (a0, a1, a2) ∈ D(I, j)3 having uniquely
associated corresponding descendant triples (d0, d1, d2) ∈ D(I, j)3 with

a0 − d0 − b0 = a1 − d1 − b1 = a2 − d2 − b2
goes to 1 as j →∞. We can write this in a slightly nicer form, letting b0 = b
and b1 = b2 = 0, as

a0 + d1 = a1 + d0 + b, a0 + d2 = a2 + d0 + b.

It remains open whether this condition can correspond to T ×T−1 not being
ergodic.

6. A Markov shift with T × T−1 not conservative. In this section
we construct a conservative ergodic Markov shift T such that T ×T−1 is not
conservative. This is based on the examples of Kakutani and Parry [14]. For
further background and terms not defined below regarding Markov shifts,
the reader is referred to [1].

6.1. Preliminaries on Markov shifts. We briefly recall some proper-
ties of infinite measure-preserving countable state Markov shifts. Let S be a
countable set, which in our case will be Z, and let P be a stochastic matrix
over S. Let λ be a vector indexed by S that is a left eigenvector of P with
eigenvalue 1, so λP = λ, and assume that

∑
s∈S λs =∞. Let X = SZ, and

let B be the Borel σ-algebra generated by cylinder sets of the form

[s0 . . . sn]k = {x ∈ X : xj+k = sj for all k = 0, . . . , n}.
Define a measure on these sets by

µλ([s0 . . . sn]k) = λs0ps0,s1ps1,s2 . . . psn−1,sn ,

and let T be the left shift on X. Then T preserves µλ. The tuple (X,B, µ, T )
is called a σ-finite Markov shift.
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Let Pn be the matrix P taken to the nth power, and let p
(n)
s,t be the

(s, t)th entry of Pn. A Markov shift is called irreducible if for any s, t ∈ S
we have p

(n)
s,t > 0 for some n. The following can be found in [1].

Theorem 6.1. Let T be an irreducible Markov shift. If there is s ∈ S
such that

∑∞
n=1 p

(n)
s,s = ∞, then T is conservative. Conversely, if there is s

such that
∑∞

n=1 p
(n)
s,s <∞, then T is not conservative. Furthermore, if T is

irreducible and conservative, then it is ergodic.

We will use the following theorem of Kakutani and Parry.

Theorem 6.2 ([14]). The following conditions hold if and only if T (k) =
T × · · · × T is ergodic:

Ik. If s1, . . . , sk, t1, . . . , tk ∈ S, there is n with p
(n)
s1,t1

, . . . , p
(n)
sk,tk

> 0.

IIk.
∑∞

n=1 p
(n)
0,0 =∞.

In [14], the authors construct a family of Markov shifts that have ergodic
index k as follows. For some ε > 0 (the choice of which determines the
ergodic index of the shift), they let pi,i+1 = (1− ε/i)/2, pi,i−1 = (1 + ε/i)/2
if i 6= 0, p0,1 = p0,−1 = 1/2, and pi,j = 0 if j 6= i + 1 and j 6= i − 1. They
also define, for i positive,

λi =
i · Γ (1 + ε)Γ (i− ε)
Γ (1− ε)Γ (i+ 1 + ε)

and set λi = 0 and λi = λ−i if i < 0. They note that λP = λ and
∑∞
−∞ λi

= ∞. Lastly, using a particular ε = ε(k), they show that Q = P · P has
ergodic index k.

6.2. Reversible shifts

Proposition 6.3. Let T be a Markov shift defined by the matrix P with
1-eigenvalue λ. If P is reversible, that is,

(5) λipi,j = λjpj,i,

then T is isomorphic to its inverse.

Proof. Define φ : X → X by φ(x)i = x−i. Clearly, T ◦φ = φ ◦T−1. Now,
φ−1([s0 . . . sn]k) = φ([s0 . . . sn]k) = [sn . . . s0]l where l is some integer. So,

µλ[sn . . . s0]l = λsnpsn,sn−1 . . . ps1,s0 = psn−1,snλsn−1psn−1,sn−2 . . . ps1,s0
= psn−2,sn−1psn−1,snλsn−2 . . . ps1,s0
= · · · = ps0,s1 . . . psn−1,snλs0 = µλ[s0 . . . sn]k.

Thus φ is a measure isomorphism.
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Proposition 6.4. Let P and Q be reversible stochastic matrices defining
Markov shifts, with the same 1-eigenvector λ, and where P and Q commute.
Then P ·Q is reversible.

Proof. By assumption, λipi,j = λjpj,i and λiqi,j = λjqj,i for every i, j.
Now,

λi(pq)i,j = λi
∑
k

pi,kqk,j =
∑
k

λipi,kqk,j =
∑
k

λkpk,iqk,j =
∑
k

λjpk,iqj,k

= λj
∑
k

pj,kqk,i = λj(qp)j,i = λj(pq)j,i

so that P ·Q is reversible.

In particular, if P is reversible, then P · P is reversible, because it has
the same 1-eigenvector.

6.3. Examples with T × T−1 not conservative

Proposition 6.5. The stochastic matrix P defined by Kakutani and
Parry is reversible.

Proof. We wish to show that λi/λj = pj,i/pi,j . Now,

pi,i+1

pi+1,i
=

pi,i+1

pi+1,(i+1)−1
=

1− ε/i
1 + ε/(i+ 1)

so long as i, i+ 1 6= 0. If i = 0, we have

pi,i+1

pi+1,i
=
p0,1
p1,0

=
1

1 + ε
,

and if i = −1, we have

pi,i+1

pi+1,i
=
p−1,0
p0,−1

= 1 + ε.

Recall that λ is defined as

λi =
i · Γ (1 + ε)Γ (i− ε)
Γ (1− ε)Γ (i+ 1 + ε)

if i > 0, λ0 = 1, and λi = λ−i if i < 0. We need only check that the
reversibility equality holds if j = i+ 1 or i− 1, as the other entries in P are
all zero. If i > 0, we have

λi+1

λi
=

(i+ 1) · Γ (1 + ε)Γ (i+ 1− ε)
Γ (1− ε)Γ (i+ 2 + ε)

Γ (1− ε)Γ (i+ 1 + ε)

i · Γ (1 + ε)Γ (i− ε)

=
i+ 1

i

i− ε
i+ 1 + ε

,
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whereas

pi,i+1

pi+1,i
=

1− ε/i
1 + ε/(i+ 1)

=
i+ 1

i

i− ε
i+ 1 + ε

,

which is the same. The i < −1 case is a similar calculation. This concludes
the proof unless i = 0,−1. If i = 0, we have

λ1
λ0

=
Γ (1 + ε)Γ (1− ε)
Γ (1− ε)Γ (2 + ε)

=
1

1 + ε
=
p0,1
p1,0

,

and if i = −1, we get

λ0
λ−1

=
λ0
λ1

= 1 + ε =
p−1,0
p0,−1

,

as required.

Corollary 6.6. For any k, there exists a conservative ergodic Markov
shift T , isomorphic to its inverse, such that T (k) is conservative ergodic and
T (k) × T−1 is neither.

Proof. Kakutani and Parry show that by suitable choice of ε, the Markov
shift T defined by P · P is such that T (k) is conservative ergodic but T (k+1)

is not ergodic, hence not conservative. By the above, T is isomorphic to its
inverse, so clearly T (k)× T−1 is not conservative (and hence not ergodic).

In particular, choosing k = 1 gives us a transformation T such that T is
conservative ergodic, but T × T−1 is neither.

6.4. Power weak mixing is generic. An invertible transformation T
is said to be power weakly mixing if for every sequence of numbers k1, . . . , kr
∈ Z\{0}, the product transformation T k1×· · ·×T kr is ergodic. In finite mea-
sure this is equivalent to weak mixing, but in infinite measure it is stronger
than infinite ergodic index [3]. As we will show in this section, under the weak
topology in the group of invertible measure-preserving transformations, the
set of transformations that are power weakly mixing is a residual set, so we
say this property is generic. It follows that the set of transformations T such
that T × T−1 is not ergodic is meagre. Sachdeva [15] showed that infinite
ergodic index is generic in the weak topology. Ageev, at the time of [5], men-
tioned to one of the authors that he had a proof that power weak mixing
is generic, but it has not been published as far as we know. Following the
proof of genericity of infinite ergodic index in [11] we include below a proof
of genericity of power weak mixing, as we are interested in showing that the
properties of the transformations of Section 5 are topologically rare.

We recall the weak topology defined on the group G = G(X,µ) of in-
vertible measure-preserving transformations on a σ-finite Lebesgue measure
space (X,B, µ). The topology on G is inherited from the strong operator



ERGODICITY AND CONSERVATIVITY OF PRODUCTS 289

topology so that a sequence Tn converges to T if and only if

µ(Tn(A)4 T (A)) + µ(T−1n (A)4 T−1(A))→ 0

for all sets A of finite measure. This topology is called the weak topology
on G, and is completely metrizable through a natural metric [15].

We will use the following lemma from [15].

Lemma 6.7. The conjugacy class of any transformation T ∈ G(X,µ) is
dense in G(X,µ).

Theorem 6.8. The property of power weak mixing is generic in G(X,µ),
in particular, the set of power weakly mixing transformations in G(X,µ)
forms a dense Gδ subset.

Proof. Let P∞ be the set of power weakly mixing transformations on
(X,µ). First we show that it is a Gδ set. Let α = (α1, . . . , αk), where
αi ∈ Z \ {0} for each 1 ≤ i ≤ k. For an invertible measure-preserving
transformation T , define Tα = Tα1 × · · · × Tαk . That T is power weakly
mixing is equivalent to Tα being ergodic for every such α. Now, define
φα : G(X,µ) → G(X(k), µ(k)) by φα(T ) = Tα. As is easily checked, φα is
continuous in the weak topology. By Sachdeva [15] (see also [1]), the set E(k)
of ergodic transformations is a Gδ subset of G(X(k), µ(k)), hence φ−1α (E(k))
is a Gδ subset of G(X,µ). But φ−1α (E(k)) is precisely those T ∈ G(X,µ)
such that Tα is ergodic, hence Pα, the set of T such that Tα is ergodic,
is Gδ. Because the countable intersection of Gδ sets is Gδ, P∞ is Gδ
in G(X,µ).

It remains to show density. Since P∞ is nonempty [12], if we show that
it is closed under conjugation, Lemma 6.7 will give us that it is dense.
To that end, let α = (α1, . . . , αk) be a tuple of nonzero integers, let S be a
measure-preserving transformation, and suppose that (S ◦T ◦S−1)α(A) = A
for some A. This means

(S ◦ T ◦ S−1)α(A) = A,(
(S ◦ T ◦ S−1)α1 × · · · × (S ◦ T ◦ S−1)αk

)
(A) = A,(

(S ◦ Tα1 ◦ S−1)× · · · × (S ◦ Tαk ◦ S−1)
)
(A) = A,

S(k) ◦ Tα ◦ (S−1)(k)A = A,

Tα ◦ (S−1)(k)A = (S−1)(k)A,

hence by the ergodicity of Tα we see that (S−1)(k)A is either null or conull,
therefore as S is measure-preserving, A is either null or conull, and hence
S ◦ T ◦ S−1 is power weakly mixing.
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