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Abstract. We study the existence of traces of Besov spaces on fractal h-sets Γ with
a special focus on assumptions necessary for this existence; in other words, we present
criteria for the non-existence of traces. In that sense our paper can be regarded as an
extension of Bricchi (2004) and a continuation of Caetano (2013). Closely connected with
the problem of existence of traces is the notion of dichotomy in function spaces: We can
prove that—depending on the function space and the set Γ—there occurs an alternative:
either the trace on Γ exists, or smooth functions compactly supported outside Γ are dense
in the space. This notion was introduced by Triebel (2008) for the special case of d-sets.

1. Introduction. The paper is devoted to a detailed study of traces of
regular distributions taken on fractal sets. Such questions are of particular
interest in view of boundary value problems for elliptic operators, where
the solutions belong to some appropriate Besov (or Sobolev) space. One
standard method is to start with assertions about traces on hyperplanes and
then to transfer these results to bounded domains with sufficiently smooth
boundary. Further studies may concern compactness or regularity results,
leading to the investigation of spectral properties. However, when it comes to
irregular (or fractal) boundaries, following that way one has to circumvent a
lot of difficulties, so that another method turned out to be more appropriate.
It was proposed by Edmunds and Triebel [ET1] in connection with smooth
boundaries and then extended to fractal d-sets in [ET3, ET2, Tr4]. Later
the setting of d-sets was extended to (d, Ψ)-sets by Moura [Mo2] and finally
to the more general h-sets by Bricchi [Br2].

The idea is rather simple to describe, but the details are complicated:
first one determines the trace spaces of certain Besov (or Sobolev) spaces
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as precisely as possible, studies (compact) embeddings of such spaces into
appropriate target spaces together with their entropy and approximation
numbers, and finally applies Carl’s or Weyl’s inequalities to link eigenvalues
and entropy or approximation numbers. If one is in the lucky situation that,
on the one hand, one has atomic or wavelet decomposition results for the
corresponding spaces, and, on the other hand, the irregularity of the fractal
can be characterised by its local behaviour (within ‘small’ cubes or balls),
then there is some chance to carry over all the arguments to appropriate
sequence spaces which are usually easier to handle. This is one reason for
us to stick to fractal h-sets and Besov spaces at the moment. But still the
problem is not so simple and little is known so far.

For spaces on h-sets we refer to [CaL2, CaL1, KZ, Lo], and, probably
closest to our approach here, [Tr6, Chapter 8]. It turns out that one first
needs a sound knowledge about the existence and quality of the correspond-
ing trace spaces. Returning to the first results in that respect in [Br2] (see
also [Br3, Br4, Br1]), we found that the approach can (and should) be ex-
tended for later applications.

More precisely, for a positive continuous and non-decreasing function
h : (0, 1]→ R (a gauge function) with limr→0 h(r) = 0, a non-empty compact
set Γ ⊂ Rn is called an h-set if there exists a finite Radon measure µ in Rn
with suppµ = Γ and

µ(B(γ, r)) ∼ h(r), r ∈ (0, 1], γ ∈ Γ

(see also [Ro, Chapter 2] and [Ma, p. 60]). In the special case h(r) = rd,
0 < d < n, Γ is called a d-set (in the sense of [Tr4, Def. 3.1], see also
[JW, Ma]—be aware that this is different from [Fa]). Recall that some self-
similar fractals are outstanding examples of d-sets; for instance, the usual
(middle-third) Cantor set in R1 is a d-set for d = ln 2/ln 3, and the Koch
curve in R2 is a d-set for d = ln 4/ln 3.

The trace is defined by completion of pointwise traces of ϕ ∈ S(Rn), as-
suming that for 0 < p <∞we have in addition ‖ϕ|Γ |Lp(Γ )‖. ‖ϕ |Bt

p,q(Rn)‖
for suitable parameters t ∈ R and 0 < q < ∞. In the case of a compact
d-set Γ , 0 < d < n, this results in

(1.1) trΓ B
(n−d)/p
p,q (Rn) = Lp(Γ ) if 0 < q ≤ min{p, 1},

and, for s > (n− d)/p,

trΓ B
s
p,q(Rn) = Bs−(n−d)/pp,q (Γ )

(see [Tr4] with some later additions in [Tr5, Tr6]). Here Bs
p,q(Rn) are the

usual Besov spaces defined on Rn. In the classical case d = n − 1, 0 <
p < ∞, 0 < q ≤ min{p, 1} this corresponds to the well-known trace result

trRn−1 B
1/p
p,q (Rn) = Lp(Rn−1).
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In the case of h-sets Γ one needs to consider Besov spaces of gener-
alised smoothness Bσp,q(Rn) which naturally extend Bs

p,q(Rn): instead of the
smoothness parameter s ∈ R one now admits sequences σ = (σj)j∈N0 of
positive numbers which satisfy σj ∼ σj+1, j ∈ N0. Such spaces are special

cases of Bσ,Np,q (Rn) studied in [FaLe] recently, but they have been known for
a long time: apart from the interpolation approach (with a function parame-
ter, see [Me, CoF]), there is the rather abstract approach (approximation by
series of entire analytic functions and coverings) developed independently
by Gol’dman and Kalyabin in the late 70’s and early 80’s of the last century;
we refer to the survey [KL] and the appendix [Li] which cover the extensive
(Russian) literature of that time. We shall rely on the Fourier-analytical
approach as presented in [FaLe].

It turns out that the classical smoothness s ∈ R has to be replaced by
certain regularity indices s(σ), s(σ) of σ.

For σ = (2js)j the spaces Bσp,q(Rn) and Bs
p,q(Rn) coincide and s(σ) =

s(σ) = s. Dealing with traces on h-sets Γ in a similar way as for d-sets, one
obtains

trΓ B
τ
p,q(Rn) = Bσp,q(Γ ),

where the sequence τ (representing smoothness) depends on σ, h (rep-
resenting the geometry of Γ ) and the underlying Rn; in particular, with
h := (h(2−j))j , hp = (h(2−j)1/p 2jn/p)j , the counterpart of (1.1) reads

trΓ B
hp
p,q(Rn) = Lp(Γ ), 0 < p <∞, 0 < q ≤ min{p, 1}.

These results were already obtained in [Br4] under some additional restric-
tions. In [Ca2] we studied sufficient conditions for the existence of such
traces again (in the course of dealing with growth envelopes, characteris-
ing some singularity behaviour) and return to the subject now to obtain
‘necessary’ conditions, or, more precisely, conditions for the non-existence
of traces. This problem is closely connected with the so-called dichotomy:
Triebel [Tr7] coined this term for, roughly speaking, the following alterna-
tive: the existence of a trace on Γ (by completion of pointwise traces) on
the one hand, and the density of the set of smooth functions compactly sup-
ported outside Γ , denoted by D(Rn \ Γ ), on the other. Though it is rather
obvious that the density of D(Rn \ Γ ) in some space prevents the existence
of a properly defined trace, it is not clear (and, in fact, not true in general)
that there is some close converse connection. However, in some cases there
appears an alternative that either we have an affirmative answer to the den-
sity question or traces exist. The criterion for which case occurs naturally
depends on the function spaces and the set Γ . Our main outcome in this
respect, Theorem 3.18, establishes the following: if the h-set Γ satisfies, in
addition, some porosity condition, σ is an admissible sequence and either
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1 ≤ p <∞, 0 < q <∞, or 0 < q ≤ p < 1, then

either Bσp,q(Γ ) = trΓ B
σhp
p,q (Rn) exists

or D(Rn \ Γ ) is dense in B
σhp
p,q (Rn),

and therefore trΓ B
σhp
p,q (Rn) cannot exist.

This result is later reformulated in terms of the dichotomy introduced in [Tr7].
Note that there are further related approaches to trace and dichotomy ques-
tions in [Sch1, Sch2] for Besov spaces defined by differences, and in [Pi, Ha]
referring to weighted settings.

The paper is organised as follows. In Section 2 we collect some funda-
mentals about h-sets and Besov spaces of generalised smoothness, including
their atomic decomposition. In Section 3 we turn to trace questions with
our main result being Theorem 3.18, before we finally deal with the di-
chotomy and obtain Corollary 3.30. Throughout the paper we add remarks,
discussions and examples to illustrate the (sometimes technically involved)
arguments and results.

2. Preliminaries

2.1. General notation. As usual, Rn denotes the n-dimensional real
Euclidean space, N the collection of all natural numbers and N0 = N ∪ {0}.
We use the equivalence ‘∼’ in

ak ∼ bk or ϕ(x) ∼ ψ(x)

always to mean that there are positive numbers c1 and c2 such that

c1ak ≤ bk ≤ c2ak or c1ϕ(x) ≤ ψ(x) ≤ c2ϕ(x)

for all allowable values of the discrete variable k or the continuous variable x,
where (ak)k, (bk)k are non-negative sequences and ϕ, ψ are non-negative
functions. If only one of the inequalities above is meant to hold, we use
the symbol . instead. Given two quasi-Banach spaces X and Y , we write
X ↪→ Y if X ⊂ Y and the natural embedding of X into Y is continuous.

All unimportant positive constants will be denoted by c, occasionally
with additional subscripts within the same formula. If not otherwise indi-
cated, log is always taken with respect to base 2. For κ ∈ R let

(2.1) κ+ = max{κ, 0} and bκc = max{k ∈ Z : k ≤ κ}.
Moreover, for 0 < r ≤ ∞ the number r′ is given by 1/r′ := (1− 1/r)+.

For convenience, let both dx and | · | stand for the (n-dimensional)
Lebesgue measure. The notation | · | is also used for the size of an n-tuple
in Nn0 and the Euclidean norm in Rn, while | · |∞ is reserved for the
corresponding infinity norm.
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Given x ∈ Rn and r > 0, B(x, r) denotes the closed ball

(2.2) B(x, r) = {y ∈ Rn : |y − x| ≤ r}.

2.2. h-sets Γ . A central concept for us is that of h-sets and correspond-
ing measures; we refer to a comprehensive treatment of this concept in [Ro].
Certainly one of the most prominent subclasses of these sets are the famous
d-sets (see also Example 2.7 below), but it is also well-known that in many
cases more general approaches are necessary (cf. [Ma, p. 60]). Here we es-
sentially follow the presentation in [Br1–Br4]; see also [Ma] for basic notions
and concepts.

Definition 2.1.

(i) Let H denote the class of all positive continuous and non-decreasing
functions h : (0, 1]→ R (gauge functions) with limr→0 h(r) = 0.

(ii) Let h ∈ H. A non-empty compact set Γ ⊂ Rn is called h-set if there
exists a finite Radon measure µ in Rn with

suppµ = Γ,(2.3)

µ(B(γ, r)) ∼ h(r), r ∈ (0, 1], γ ∈ Γ.(2.4)

If for a given h ∈ H there exists an h-set Γ ⊂ Rn, we call h a measure
function (in Rn) and any related measure µ with (2.3) and (2.4) will
be called an h-measure (related to Γ ).

We quote some results on h-sets and give examples afterwards; we refer
to the above-mentioned books and papers for proofs and a more detailed
account of geometric properties of h-sets.

In view of (ii) the question arises which h ∈ H are measure functions.
We give a necessary condition first (see [Br2, Thm. 1.7.6]).

Proposition 2.2. Let h ∈ H be a measure function. Then there exists
some c > 0 such that for all j, k ∈ N0,

(2.5)
h(2−k−j)

h(2−j)
≥ c2−kn.

Remark 2.3. Note that every h-set Γ satisfies the doubling condition,
i.e. there is some c > 0 such that

(2.6) µ(B(γ, 2r)) ≤ cµ(B(γ, r)), r ∈ (0, 1], γ ∈ Γ.
Obviously one can regard (2.5) as a refined version of (2.6) for the function h,
in which the dimension n of the underlying space Rn is taken into account
(as expected).

A complete characterisation of functions h ∈ H that are measure func-
tions is given in [Br3]: There is a compact set Γ and a Radon measure µ
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with (2.3) and (2.4) if and only if there are constants 0 < c1 ≤ c2 <∞ and
a function h∗ ∈ H such that

c1h
∗(t) ≤ h(t) ≤ c2h∗(t), t ∈ (0, 1],

and

(2.7) h∗(2−j) ≤ 2knh∗(2−k−j) for all j, k ∈ N0.

Proposition 2.4. Let Γ be an h-set in Rn. All h-measures µ related
to Γ are equivalent to Hh|Γ , the restriction to Γ of the generalised Hausdorff
measure with respect to the gauge function h.

Remark 2.5. A proof of this result is given in [Br2, Thm. 1.7.6]. Con-
cerning the theory of generalised Hausdorff measures Hh we refer to [Ro,
Chapter 2] and [Ma, p. 60]; in particular, if h(r) = rd, then Hh coincides
with the usual d-dimensional Hausdorff measure.

We recall a description of measure functions and give a few examples.

Proposition 2.6. Let n ∈ N.

(i) Let ξ : (0, 1]→ [0, n] be a measurable function. Then the function

(2.8) h(r) = exp

{
−

1�

r

ξ(s)
ds

s

}
, r ∈ (0, 1],

is a measure function.
(ii) Conversely, let h be a measure function. Then for any ε > 0 there

exists a measurable function ξ : (0, 1]→ [−ε, n+ ε] such that

(2.9) h(r) ∼ exp

{
−

1�

r

ξ(s)
ds

s

}
, r ∈ (0, 1].

This version of the theorem is given in [Br4, Thm. 3.7]; it can also be
identified as a special case of a result in [BGT, pp. 74].

Example 2.7. We restrict ourselves to a few examples only, but in view
of Proposition 2.6 one can easily find further examples [Br4, Ex. 3.8]. All
functions are defined for r ∈ (0, ε), suitably extended on (0, 1].

Let Ψ be a continuous admissible function or a continuous slowly varying
function, respectively. An admissible function Ψ in the sense of [ET2, Mo2]
is a positive monotone function on (0, 1] such that Ψ(2−2j) ∼ Ψ(2−j), j ∈ N.
A positive and measurable function Ψ defined on (0, 1] is said to be slowly
varying (in Karamata’s sense) if

(2.10) lim
t→0

Ψ(st)

Ψ(t)
= 1, s ∈ (0, 1].



Traces of Besov spaces on fractal h-sets 123

For such functions it is known, for instance, that for any δ > 0 there exists
c = c(δ) > 1 such that

1

c
sδ ≤ Ψ(st)

Ψ(t)
≤ cs−δ for t, s ∈ (0, 1],

and for each ε > 0 there is a non-increasing function φ and a non-decreasing
function ϕ with t−ε Ψ(t) ∼ φ(t) and tε Ψ(t) ∼ ϕ(t); we refer to the mono-
graph [BGT] for details and further properties; see also [Zy, Ch. V], [EKP],
and [Ne1, Ne2]. In particular,

(2.11) Ψb(x) = (1 + |log x|)b, x ∈ (0, 1], b ∈ R,
may be considered a prototype for both an admissible function and a slowly
varying function.

Let 0 < d < n. Then

(2.12) h(r) = rdΨ(r), r ∈ (0, 1],

is a typical example for h ∈ H. The limiting cases d = 0 and d = n can be
included, assuming additional properties of Ψ in view of (2.5) and h(r)→ 0
for r → 0, e.g.

(2.13) h(r) = (1 + |log r|)b, b < 0, r ∈ (0, 1],

referring to (2.11).
Later on we shall need to consider measure functions of this kind when

b ∈ [−1, 0), so we mention that with this restriction the proof that the above
is a measure function is a simple application of the characterisation given
just before Proposition 2.4 (take h∗ = h and observe that, for b ∈ [−1, 0),
(1 + x)b2xn ≥ 1 for x = 0 and for x ≥ 1, from which (2.7) follows by taking
x = k).

Such functions h given by (2.12) are related to so-called (d, Ψ)-sets stud-
ied in [ET2, Mo2], whereas the special setting Ψ ≡ 1 leads to

(2.14) h(r) = rd, r ∈ (0, 1], 0 < d < n,

connected with the well-known d-sets. Apart from (2.12) also functions of
type h(r) = exp(b|log r|κ), b < 0, 0 < κ < 1, are allowed.

We shall need another feature of h-sets, called ‘porosity’ (see also
[Ma, p. 156] and [Tr5, Sects. 9.16–9.19]).

Definition 2.8. A Borel set Γ 6= ∅ satisfies the porosity condition if
there exists 0 < η < 1 such that for any ball B(γ, r) with γ ∈ Γ and
0 < r ≤ 1, there is a ball B(x, ηr) centred at some x ∈ Rn satisfying

(2.15) B(γ, r) ⊃ B(x, ηr), B(x, ηr) ∩ Γ̄ = ∅.
Replacing η by η/2, we can complement (2.15) by

(2.16) dist(B(x, ηr), Γ̄ ) ≥ ηr, 0 < r ≤ 1.
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This definition coincides with [Tr4, Def. 18.10]. In [Tr5, Prop. 9.18] there is a
complete characterisation for measure functions h such that the correspond-
ing h-sets Γ satisfy the porosity condition. We recall it for convenience.

Proposition 2.9. Let Γ ⊂ Rn be an h-set. Then Γ satisfies the porosity
condition if and only if there exist constants c, ε > 0 such that

(2.17)
h(2−j−k)

h(2−j)
≥ c2−(n−ε)k, j, k ∈ N0.

Note that an h-set Γ satisfying the porosity condition has Lebesgue
measure |Γ | = 0, but the converse is not true. This can be seen from (2.17)
and the result of [Tr6, Prop. 1.153],

(2.18) |Γ | = 0 if and only if lim
r→0

rn

h(r)
= 0

for all h-sets Γ .

Remark 2.10. In view of our above examples and (2.17) it is obvious
that the h from (2.12) and (2.14) with d = n do not satisfy the porosity
condition, in contrast to the case of d < n.

Let Lp(Ω), Ω ⊆ Rn, 0 < p ≤ ∞, stand for the usual quasi-Banach space
of p-integrable (measurable, essentially bounded if p = ∞) functions with
respect to the Lebesgue measure, quasi-normed by

‖f |Lp(Ω)‖ :=
( �
Ω

|f(x)|p dx
)1/p

,

with the obvious modification if p = ∞. Moreover, when Γ ⊂ Rn is an
h-set in the sense of Definition 2.1, we consider Lp(Γ ) = Lp(Γ, µ) as the
usual quasi-Banach space of p-integrable (measurable, essentially bounded
if p =∞) functions on Γ with respect to the measure µ, quasi-normed by

‖f |Lp(Γ )‖ =
( �
Γ

|f(γ)|pµ(dγ)
)1/p

<∞

for 0 < p <∞, and

‖f |L∞(Γ )‖ = inf{s > 0 : µ({γ ∈ Γ : |f(γ)| > s}) = 0} <∞.
In view of Proposition 2.4 all (possibly different) measures µ corresponding
to h yield the same Lp(Γ ) space.

2.3. Function spaces of generalised smoothness

Definition 2.11. A sequence σ = (σj)j∈N0 of positive numbers is called
admissible if there are positive constants d0, d1 such that

(2.19) d0σj ≤ σj+1 ≤ d1σj , j ∈ N0.
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Remark 2.12. If σ and τ are admissible sequences, then στ := (σjτj)j
and σr := (σrj )j , r ∈ R, are admissible, too. For later use we introduce the
notation

(2.20) (a) := (2ja)j∈N0 for a ∈ R,

that is, (a) = σ with σj = 2ja, j ∈ N0. Obviously, for a, b ∈ R, r > 0,
and σ admissible, we have (a)(b) = (a + b), (a/r) = (a)1/r, and (a)σ =
(2jaσj)j∈N0 .

Example 2.13. Let s ∈ R, and let Ψ be an admissible function in the
sense of Example 2.7 above. Then σ = (2jsΨ(2−j))j is admissible, including,
in particular, σ = (s), s ∈ R. We refer to [FaLe] for a more general approach
and further examples.

We introduce some ‘regularity’ indices for σ.

Definition 2.14. Let σ be an admissible sequence, and set

s(σ) := lim inf
j→∞

log

(
σj+1

σj

)
,(2.21)

s(σ) := lim sup
j→∞

log

(
σj+1

σj

)
.(2.22)

Remark 2.15. These indices were introduced in [Br2]. For admissible
sequences σ as in (2.19) we have log d0 ≤ s(σ) ≤ s(σ) ≤ log d1. One easily
verifies that

(2.23) s(σ) = s(σ) = s if σ = (2jsΨ(2−j))j ,

for all admissible functions Ψ and s ∈ R. On the other hand, one can find
examples in [FaLe], due to Kalyabin, showing that an admissible sequence
does not necessarily have a fixed main order. Moreover, it is known that for
any 0 < a ≤ b < ∞, there is an admissible sequence σ with s(σ) = a and
s(σ) = b, that is, with prescribed upper and lower indices.

For later use we record some observations that are more or less imme-
diate consequences of the definitions (2.21), (2.22). Let σ, τ be admissible
sequences. Then

(2.24) s(σ) = −s(σ−1), s(σr) = rs(σ), r ≥ 0,

and

(2.25) s(στ ) ≤ s(σ) + s(τ ), s(στ ) ≥ s(σ) + s(τ ).

In particular, for σ = (a), a ∈ R, (2.25) can be sharpened to

(2.26) s(τ (a)) = a+ s(τ ), s(τ (a)) = a+ s(τ ).

Observe that, given ε > 0, there are positive constants c1 = c1(ε) and
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c2 = c2(ε) such that

(2.27) c12
(s(σ)−ε)j ≤ σj ≤ c22(s(σ)+ε)j , j ∈ N0.

Plainly this implies that whenever s(σ) > 0, then σ−1 belongs to any space
`u, 0 < u ≤ ∞, whereas s(σ) < 0 leads to σ−1 6∈ `∞.

Remark 2.16. Note that in some later papers (cf. [Br1]), instead of
(2.21) and (2.22) the so-called upper and lower Boyd indices of σ are con-
sidered, given by

(2.28) ασ = lim
j→∞

1

j
log

(
sup
k∈N0

σj+k
σk

)
= inf

j∈N

1

j
log

(
sup
k∈N0

σj+k
σk

)
and

(2.29) βσ = lim
j→∞

1

j
log

(
inf
k∈N0

σj+k
σk

)
= sup

j∈N

1

j
log

(
inf
k∈N0

σj+k
σk

)
respectively. In general we have

s(σ) ≤ βσ ≤ ασ ≤ s(σ),

but one can construct admissible sequences with s(σ) < βσ and ασ < s(σ).

To introduce function spaces of generalised smoothness, we need to recall
some notation. We denote by S(Rn) the Schwartz space of all complex-
valued, infinitely differentiable and rapidly decreasing functions on Rn, and
by S ′(Rn) the dual space of all tempered distributions on Rn. If ϕ ∈ S(Rn),
then

(2.30) ϕ̂(ξ) ≡ (Fϕ)(ξ) := (2π)−n/2
�

Rn
e−ixξϕ(x) dx, ξ ∈ Rn,

denotes the Fourier transform of ϕ. As usual, F−1ϕ or ϕ∨ stands for the
inverse Fourier transform, given by the right-hand side of (2.30) with i in
place of −i. Here xξ denotes the scalar product in Rn. Both F and F−1
extend to S ′(Rn) in the standard way. Let ϕ0 ∈ S(Rn) be such that

(2.31) ϕ0(x) = 1 if |x| ≤ 1 and suppϕ0 ⊂ {x ∈ Rn : |x| ≤ 2},
and for each j ∈ N let

(2.32) ϕj(x) := ϕ0(2
−jx)− ϕ0(2

−j+1x), x ∈ Rn.
Then the sequence (ϕj)

∞
j=0 forms a smooth dyadic resolution of unity.

Definition 2.17. Let σ be an admissible sequence, 0 < p, q ≤ ∞, and
(ϕj)

∞
j=0 a smooth dyadic resolution of unity (in the sense described above).

Then

(2.33) Bσp,q(Rn) =
{
f ∈S ′(Rn) :

( ∞∑
j=0

σqj‖F
−1ϕjFf |Lp(Rn)‖q

)1/q
<∞

}
(with the usual modification if q =∞).
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Remark 2.18. These spaces are quasi-Banach spaces, independent of
the resolution of unity chosen, and S(Rn) is dense in Bσp,q(Rn) when p, q <∞.

Taking σ = (2js)j , s ∈ R, we obtain the classical Besov spaces Bs
p,q(Rn),

whereas σ = (2jsΨ(2−j))j , s ∈ R, Ψ an admissible function, leads to the

spaces B
(s,Ψ)
p,q (Rn), studied in [Mo1, Mo2] in detail. Moreover, the above

spaces Bσp,q(Rn) are special cases of the more general approach investigated
in [FaLe]. For the theory of Bs

p,q(Rn) spaces we refer to the series of mono-
graphs [Tr2–Tr6].

We recall the atomic characterisation of Bσp,q(Rn) spaces for later use. Let
Zn stand for the lattice of all points in Rn with integer-valued components,
and let Qjm denote a cube in Rn with sides parallel to the coordinates axes,
centred at 2−jm = (2−jm1, . . . , 2

−jmn), and with side length 2−j , where
m ∈ Zn and j ∈ N0. If Q is a cube in Rn with sides parallel to the axes and
r > 0, then rQ is the cube in Rn concentric with Q, with sides parallel to
the sides of Q and r times their length.

Definition 2.19. Let K ∈ N0 and b > 1.

(i) A K times differentiable complex-valued function a(·) in Rn (con-
tinuous if K = 0) is called an 1K-atom if

(2.34) supp a ⊂ bQ0m for some m ∈ Zn,

and

|Dαa(x)| ≤ 1 for |α| ≤ K.

(ii) Let L + 1 ∈ N0, and σ be admissible. A K times differentiable
complex-valued function a(·) in Rn (continuous if K = 0) is called
an (σ, p)K,L-atom if for some j ∈ N0,

supp a ⊂ bQjm for some m ∈ Zn,(2.35)

|Dαa(x)| ≤ σ−1j 2j(n/p+|α|) for |α| ≤ K, x ∈ Rn,(2.36)
�

Rn
xβa(x) dx = 0 if |β| ≤ L.(2.37)

We adopt the usual convention to denote atoms located at Qjm (which
means (2.34) or (2.35) holds) by ajm, j ∈ N0, m ∈ Zn. For sequences λ =
(λjm)j∈N0,m∈Zn of complex numbers the Besov sequence spaces bp,q, 0 <
p, q ≤ ∞, are given by

(2.38)

λ ∈ bp,q if and only if ‖λ | bp,q‖ =
( ∞∑
j=0

( ∑
m∈Zn

|λjm|p
)q/p)1/q

<∞
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(with the usual modification if p =∞ or q =∞). The atomic decomposition
theorem for Bσp,q(Rn) reads as follows (see [FaLe, Thm. 4.4.3, Rem. 4.4.8]).

Proposition 2.20. Let σ be admissible, b > 1, 0 < p, q ≤ ∞, K ∈ N0

and L+ 1 ∈ N0 with

(2.39) K > s(σ) and L > −1 + n

(
1

p
− 1

)
+

− s(σ).

Then f ∈ S ′(Rn) belongs to Bσp,q(Rn) if and only if it can be represented as

(2.40) f =

∞∑
j=0

∑
m∈Zn

λjmajm(x) (convergence in S ′(Rn)),

where λ ∈ bp,q and ajm are 1K-atoms (j = 0) or (σ, p)K,L-atoms (j ∈ N) in
the sense of Definition 2.19. Furthermore,

inf ‖λ | bp,q‖,
where the infimum is taken over all admissible representations (2.40), is an
equivalent quasi-norm in Bσp,q(Rn).

Remark 2.21. For later use it is useful to remark that, for fixed j ∈ N0,
the family

{Qjm : m ∈ Zn}
constitutes a tessellation of Rn. We shall call it a tessellation of step 2−j

and refer to each cube of it as a grid cube.

Remark 2.22. The following will also be of use later on: given the fam-
ilies of tessellations as above (for any possible j ∈ N0), there clearly exists,
for each j ∈ N0, a partition of unity {ϕjm : m ∈ Zn} on Rn by functions
ϕjm supported on 3

2Qjm and such that, for each γ ∈ Nn0 , there exists cγ > 0
independent of j such that

(2.41) |Dγϕjm(x)| ≤ cγ2j|γ|, x ∈ Rn, m ∈ Zn.
We shall call it a partition of unity of step 2−j .

3. Besov spaces on Γ . Let Γ be some h-set, h ∈ H. Following [Br2],
we use the abbreviation

(3.1) h := (hj)j∈N0 with hj := h(2−j), j ∈ N0,

for the sequence connected with h ∈ H.

3.1. Trace spaces Bσp,q(Γ ). Recall that Lp(Γ ) = Lp(Γ, µ), where µ ∼
Hh|Γ is related to the h-set Γ . Suppose there exists some c > 0 such that
for all ϕ ∈ S(Rn),

(3.2) ‖ϕ|Γ |Lp(Γ )‖ ≤ c‖ϕ |Bτp,q(Rn)‖,



Traces of Besov spaces on fractal h-sets 129

where the restriction on Γ is taken pointwise. By the density of S(Rn) in
Bτp,q(Rn) for p, q < ∞ and the completeness of Lp(Γ ) one can define for
f ∈ Bτp,q(Rn) its trace trΓ f on Γ by completion of pointwise restrictions.

This was the approach followed in [Br2, Def. 3.3.5], combining general
embedding results for Besov spaces on Rn (as seen for example in [CaF,
Thm. 3.7] or [Br2, Prop. 2.2.16]) with the fact that (3.2) above holds for
τ = h1/p(n)1/p, 0 < p < ∞, 0 < q ≤ min{p, 1} (cf. [Br2, Thm. 3.3.1(i)]).
Then, following [Br2, Def. 3.3.5], for 0 < p, q < ∞ and σ admissible with
s(σ) > 0, we define Besov spaces on Γ

(3.3) Bσp,q(Γ ) := trΓ B
σh1/p(n)1/p

p,q (Rn),

more precisely,

(3.4) Bσp,q(Γ ) := {f ∈ Lp(Γ ) : ∃g ∈ Bσh1/p(n)1/p

p,q (Rn), trΓ g = f},

equipped with the quasi-norm

(3.5) ‖f |Bσp,q(Γ )‖

= inf{‖g |Bσh1/p(n)1/p

p,q (Rn)‖ : trΓ g = f, g ∈ Bσh1/p(n)1/p

p,q (Rn)}.

This was extended in [Ca2, Def. 2.7] in the following way:

Definition 3.1. Let 0 < p, q < ∞, let σ be an admissible sequence,
and Γ be an h-set. Assume that

(i) for p ≥ 1 or q ≤ p < 1,

(3.6) σ−1 ∈ `q′ ,

(ii) for 0 < p < 1 and p < q,

(3.7) σ−1h1/r−1/p ∈ `vr for some r ∈ [p,min{q, 1}] with
1

vr
=

1

r
− 1

q
.

Then we again define Bσp,q(Γ ) as in (3.3), (3.4) with the quasi-norm given
by (3.5).

Remark 3.2. The reasonability of declaring that smoothness (1) (that
is, 0, in classical notation) on Γ corresponds to smoothness h1/p(n)1/p on
Rn—as is implicit in (3.3)—comes from the fact that, at least when Γ also

satisfies the porosity condition, we indeed have trΓ B
h1/p(n)1/p

p,q (Rn) = Lp(Γ )
when 0 < p <∞, 0 < q ≤ min{p, 1}—cf. [Br2, Thm. 3.3.1(ii)].

Remark 3.3. Both in [Br2] and in [Ca2] the definition of Besov spaces
on Γ also covers the cases when p or q can be ∞, with some modifications
of the approach given above. However, in view of the main results to be
presented in this paper, the restriction to 0 < p, q <∞ is natural.
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Remark 3.4. We briefly compare the different assumptions in [Br2,
Def. 3.3.5] and in Definition 3.1 above. Due to the observation follow-
ing (2.27), s(σ) > 0 implies σ−1 ∈ `v for all v, i.e. (3.6) and (3.7) with
r = p. The converse, however, is not true: take e.g. σj = (1+j)κ, κ ∈ R; then
s(σ) = 0, but σ−1 ∈ `q′ for κ > 1/q′, corresponding to (3.6). As for (3.7),
say with p = r, for the same σ we also have σ−1 ∈ `vp for κ > 1/p − 1/q,
but still s(σ) = 0. So the above definition is in fact a proper extension of
the one considered in [Br2] and, as we shall see, will (at least in some cases)
be indeed the largest possible extension.

Remark 3.5. The definition above applies in particular when Γ is a
d-set and σ = (s) with s > 0. In simpler notation, we can write in this case
that

(3.8) Bsp,q(Γ ) = trΓ B
s+(n−d)/p
p,q (Rn).

This coincides with [Tr4, Def. 20.2].

3.2. Criteria for non-existence of trace spaces. Here we shall get
necessary conditions for the existence of the trace. To this end, we explore
the point of view that the trace cannot exist in the sense of Definition 3.1
when D(Rn \ Γ ), the set of test functions with compact support outside Γ ,

is dense in B
σh1/p(n)1/p

p,q (Rn).
In fact, assume that D(Rn \ Γ ) is dense in Bτp,q(Rn). Let ϕ ∈ C∞0 (Rn)

with ϕ ≡ 1 on a neighbourhood of Γ . Clearly, ϕ ∈ Bτp,q(Rn). Then there
exists a sequence (ψk)k ⊂ D(Rn \ Γ ) with

(3.9) ‖ϕ− ψk |Bτp,q(Rn)‖ −−−→
k→∞

0.

If the trace were to exist in the sense explained before, this would imply

(3.10) 0 = ψk|Γ = trΓ ψk −−−→
k→∞

trΓ ϕ = ϕ|Γ = 1 in Lp(Γ ),

which is a contradiction.

Discussion 3.6. So in order to disprove the existence of the trace in
certain cases it is sufficient to show the density of D(Rn \ Γ ) in Bτp,q(Rn).
Further, we may restrict ourselves to functions ϕ ∈ C∞0 (Rn) because of
their density in Bτp,q(Rn), 0 < p, q <∞, and approximate them by functions
ψk ∈ D(Rn \Γ ). We shall construct such ψk based on finite sums of the type∑

r∈Ik

λrϕr,

where Ik is some finite index set, λr ∈ C and ϕr are compactly supported
smooth functions with

(3.11)
∑
r∈Ik

λrϕrϕ = ϕ
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on a neighbourhood (depending on k) of Γ , ϕ as above, and

(3.12)
∥∥∥∑
r∈Ik

λrϕrϕ
∣∣∣Bτp,q(Rn)

∥∥∥ −−−→
k→∞

0.

Plainly, then ψk := ϕ−
∑

r∈Ik λrϕrϕ ∈ D(Rn \ Γ ), k ∈ N, and

‖ϕ− ψk |Bτp,q(Rn)‖ =
∥∥∥∑
r∈Ik

λrϕrϕ
∣∣∣Bτp,q(Rn)

∥∥∥ −−−→
k→∞

0,

and therefore the required density is proved.

The limit in (3.12) above is going to be computed with the help of
atomic representations for the functions considered. In order to explain how
this will be done, we need first to consider a preliminary result which con-
nects the Definition 2.1 of h-sets with the atomic representation given in
Proposition 2.20.

Definition 3.7. Given Γ ⊂ Rn and r > 0, we shall denote by Γr the
neighbourhood of radius r of Γ , that is,

Γr := {x ∈ Rn : dist(x, Γ ) < r}.
Lemma 3.8. Let Γ be an h-set in Rn with µ a corresponding Radon

measure. Let j ∈ N. There is a cover {Q(j, i)}Nji=1 of Γ2−j such that

(i) Nj ∼ h−1j ,

(ii) Q(j, i) are cubes in Rn of side length ∼ 2−j,
(iii) each Q(j, i) is, in fact, the union of ∼ 1 grid cubes of a tessellation

of Rn of step 2−j in the sense of Remark 2.21,
(iv) each Q(j, i) contains a ball of radius ∼ 2−j centred at a point of Γ

such that any two of them, for different values of i, are disjoint.

Denote by Q(j) the family of all grid cubes obtained in this way (that is,
Q(j) = {Qjm : Qjm ⊂ Q(j, i) for some i}) and consider the corresponding
functions of a related partition of unity {ϕjm} of step 2−j of Rn in the
sense of Remark 2.22. That is, consider only the functions of that partition
which are supported on 3

2Qjm such that Qjm ∈ Q(j).
The cover of Γ2−j considered above can be chosen in such a way that the

family

{ϕjm : Qjm ∈ Q(j)}
is a partition of unity of Γ2−j .

All equivalence constants in the estimates above are independent of j
and i.

Proof. For each j ∈ N, start by considering an optimal cover of Γ in the
sense of [Br2, Lemma 1.8.3], that is, a cover by balls B(γi, 2

−j−1) centred at
points γi ∈ Γ and such that B(γi, 2

−j−1/3) ∩B(γk, 2
−j−1/3) = ∅ for i 6= k.
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As was pointed out in [Br2, Lemma 1.8.3], the number N2−j−1 of balls in
such a cover satisfies

(3.13) N2−j−1 ∼ h−1j+1.

It is not difficult to see that each B(γi, 2
−j−1) is contained in the union of 2n

grid cubes of the type Qjm which together form a cube of side length 2−j+1

and which we shall provisionally denote by Q(j, i). Then assertions (ii)–(iv)
of the lemma are clear.

As to (i), it is also clear, using (3.13) and Proposition 2.2, that Nj . h−1j .
The reverse inequality follows from the fact that there can only be ∼ 1
different B(γk, 2

−j−1) giving rise to the same Q(j, i), because each of those
also produces a ball B(γk, 2

−j−1/3) which is disjoint from all the other balls
obtained in a similar way. Eliminating the repetitions among the previously
considered Q(j, i) and redefining the i accordingly, we get a possible cover
of Γ satisfying (i)–(iv) of the lemma.

To get the corresponding cover of Γ2−j , we just need to enlarge each
Q(j, i) by adding all the 4n − 2n surrounding grid cubes which touch it. It
is clear that the new cubes Q(j, i) obtained in this way also satisfy (i)–(iv)
above.

Finally, if we further enlarge the preceding Q(j, i) by adding to it all the
6n − 4n surrounding grid cubes which touch it, clearly we do not destroy
properties (i)–(iv) for the new cubes Q(j, i), this cover of Γ2−j satisfying
also the property that

{ϕjm : Qjm ∈ Q(j)}
is a partition of unity of Γ2−j .

Remark 3.9. It follows from the construction above that Q(j) is also a
cover of Γ2−j with ]Q(j) ∼ h−1j (though a property like (iv) above cannot
be guaranteed for each grid cube in Q(j)).

Remark 3.10. We shall use the expression ‘optimal cover of Γ2−j ’ when
referring to a cover of Γ2−j satisfying all the requirements of the lemma
above.

We return now to the question of calculating the limit (3.12) in Discus-
sion 3.6.

Discussion 3.11. The index set Ik, k ∈ N, will have the structure

(3.14) Ik = {(j,m) ∈ N× Zn : j ∈ Jk, m ∈Mj},
where Jk and Mj are appropriate finite subsets of N and Zn respectively.
In any case, for each (j,m) ∈ Ik the relation dist(Qjm, Γ ) . 2−j should be
satisfied. With r = (j,m) ∈ Ik, we shall also require that

(3.15) suppϕr ⊂ bQjm
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for some constant b > 1, and, for any fixed K ∈ N,

(3.16) |Dγϕr(x)| ≤ cK2j|γ|, x ∈ Rn, γ ∈ Nn0 with |γ| ≤ K.

We claim that then (up to constants) the functions a(j,m) = τ−1j 2jn/pϕ(j,m)ϕ
are (τ , p)K,−1-atoms (no moment conditions) located at Qjm: the support
condition is obvious; as for the derivatives we calculate for α ∈ Nn0 , |α| ≤ K,
that

|Dαa(j,m)(x)| ≤ τ−1j 2jn/p
∑
γ≤α

(
α

γ

)
|Dγϕ(j,m)(x)| |Dα−γϕ(x)|

≤ τ−1j 2jn/pc′K2j|α|‖ϕ |CK(Rn)‖

≤ CK,ϕτ−1j 2j(n/p+|α|),

fitting the needs of Definition 2.19.

Since ∑
r∈Ik

λrϕrϕ =
∑

(j,m)∈Ik

(λ(j,m)CK,ϕτj2
−jn/p)(C−1K,ϕa(j,m)),

to obtain (3.12) we can then estimate from above the quasi-norm of this
function by applying Proposition 2.20, provided the parameters considered
do not require moment conditions.

If moment conditions are required, and the h-set Γ satisfies the porosity
condition, a standard procedure can be applied to identify the above sum at
least in a smaller neighbourhood of Γ (than the one considered for (3.11))
with an atomic representation∑

(j,m)∈Ik

(c−12 λ(j,m)CK,ϕτj2
−jn/p)(c2C

−1
K,ϕã(j,m))

satisfying appropriate moment conditions; this produces essentially the same
upper estimate by applying Proposition 2.20. So, in this case we replace,
in Discussion 3.6,

∑
r∈Ik λrϕrϕ by the above sum, keeping a property like

(3.11). In any case, following Proposition 2.20, the quasi-norms of both sums
in Bτp,q(Rn) are estimated by

(3.17) .
(∑
j∈Jk

( ∑
m∈Mj

|λ(j,m)τj2
−jn/p|p

)q/p)1/q
.

The standard procedure referred to above, leading to the creation of
atoms with appropriate moment conditions, though still coinciding with the
former atoms in a somewhat smaller neighbourhood of a set satisfying the
porosity condition, comes from [TW] and was used for example in [Ca1]
and, more recently, in [Tr7]. It is quite technical, but we give here a brief
description for the convenience of the reader.
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For each Qjm as above, namely with dist(Qjm, Γ ) . 2−j , fix an element
of Γ , xj,m say, at a distance . 2−j from Qjm. Clearly, there is a constant
c1 > 0 such thatQjm ⊂ B(xj,m, c12

−j). Without loss of generality, we can as-
sume that 0 < c12

−j < 1, so that, as Γ satisfies the porosity condition of Def-
inition 2.8, there exists yj,m ∈ Rn such thatB(yj,m, ηc12

−j) ⊂ B(xj,m, c12
−j)

and B(yj,m, ηc12
−j) ∩ Γ = ∅, where 0 < η < 1 is as in Definition 2.8. Obvi-

ously, as mentioned in (2.16), also dist(B(yj,m, ηc12
−j−1), Γ ) ≥ ηc12−j−1.

Fix a natural L as in (2.39)—with τ instead of σ—and let ψγ , with

γ ∈ Nn0 and |γ| ≤ L, be C∞-functions with support in the open ball B̊(0, 1)
and satisfying

∀β, γ ∈ Nn0 with |β|, |γ| ≤ L,
�

Rn
xβψγ(x) dx = δβγ ,

where δβγ stands for the Kronecker symbol (for the existence of such func-
tions, see [TW, p. 665]).

Define, for each j,m as above,

dj,mγ ≡
�

Rn
xγa(j,m)(ηc12

−j−1x+ yj,m) dx, γ ∈ Nn0 with |γ| ≤ L,

and

ã(j,m)(z) = a(j,m)(z)−
∑
|γ|≤L

dj,mγ ψγ((ηc1)
−12j+1(z − yj,m)), z ∈ Rn.

It is easy to see that�

Rn
((ηc1)

−12j+1(z − yj,m))β ã(j,m)(z) dz = 0, β ∈ Nn0 with |β| ≤ L,

and consequently (by Newton’s binomial formula),�

Rn
zβ ã(j,m)(z) dz = 0, β ∈ Nn0 with |β| ≤ L.

This means that each ã(j,m) has the required moment conditions for the
atoms in the atomic representations of functions of Bτp,q(Rn). Actually, it
is not difficult to see that there exists a positive constant c2 such that
c2C

−1
K,ϕã(j,m) is a (τ, p)K,L-atom located at Qjm.

Since, from the hypotheses and choices made, ã(j,m) = a(j,m) on Γηc12−j−1 ,
we are done.

Proposition 3.12. Let Γ be an h-set satisfying the porosity condition,
let 0 < p, q <∞ and let τ be an admissible sequence. Assume that

(3.18) τ−1h1/p(n)1/p 6∈ `∞.
Then D(Rn \ Γ ) is dense in Bτp,q(Rn), therefore

(3.19) trΓ B
τ
p,q(Rn) cannot exist.
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Proof. By a standard reasoning, (3.18) implies that τ−1h1/p(n)1/p has a
divergent subsequence. More precisely, there is a strictly increasing sequence
(jk)k∈N ⊂ N such that

(3.20) lim
k→∞

τjkh
−1/p
jk

2−jkn/p = 0.

For each k ∈ N, consider an optimal cover of Γ2−jk in the sense of Re-
mark 3.10, and follow our Discussions 3.6 and 3.11 with Ik from (3.14)
given by

Ik = {(j,m) ∈ N× Zn : j = jk, Qjm ∈ Q(j)}
(that is, Jk = {jk} and Mj = Mjk = {m ∈ Zn : Qjkm ∈ Q(jk)}),
ϕ(j,m) = ϕjm and λ(j,m) = 1. By Remark 2.22, this fits nicely into Dis-
cussions 3.6 and 3.11, in particular (3.11), (3.15) and (3.16) hold. It then
follows, especially from (3.17), that the quasi-norm of the sum in (3.12) (or
of an alternative similar sum, as discussed in Discussion 3.11 apropos of the
moment conditions) is

.
( ∑
Qjkm∈Q(jk)

τpjk2−jkn
)1/p

= τjk2−jkn/p(]Q(jk))
1/p

∼ τjk2−jkn/ph
−1/p
jk

−−−→
k→∞

0,

where we have also used Remark 3.9 and (3.20). Thus (3.12) holds (possi-
bly with an alternative similar sum if moment conditions are required, as
mentioned above), and Discussion 3.6 then concludes the proof.

Remark 3.13. The porosity condition was only used in the proof above
to guarantee that atoms with appropriate moment conditions can be con-
sidered. Thus the proposition holds without assuming porosity of Γ as long
as L can be taken equal to −1 in the atomic representation theorem for
Bτp,q(Rn) (cf. Proposition 2.20 with τ instead of σ).

The next result shows that when p < q we can conclude as in the pre-
ceding proposition with a hypothesis weaker than (3.18).

Proposition 3.14. Let Γ be an h-set satisfying the porosity condition,
and let 0 < p < q <∞ and τ be admissible. Assume that

(3.21) lim sup τ−1h1/p(n)1/p > 0.

Then D(Rn \ Γ ) is dense in Bτp,q(Rn), therefore

(3.22) trΓ B
τ
p,q(Rn) cannot exist.

Proof. Denote σ := τh−1/p(n)−1/p. From (3.21) there exists a constant
c > 0 and a strictly increasing sequence (j`)`∈N ⊂ N such that

(3.23) σ−1j` ≥ c, ` ∈ N.
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Given k ∈ N, let k2 ∈ N be such that

(3.24)
1

k
+

1

k + 1
+ · · ·+ 1

k2
≥ 2,

which clearly exists. Then choose j(k) so large that there is an optimal cover
of Γ2−j(k) in the sense of Remark 3.10 with the number Nj(k) of cubes such

that k−12 Nj(k) ≥ 2. Again, this is clearly possible, because of Nj(k) ∼ h−1j(k)
(cf. Lemma 3.8) and the properties of gauge functions (cf. Definition 2.1).
Actually, we shall also require that j(k) coincides with one of the j`’s above,
which is also possible.

Hence, for i = k, k + 1, . . . , k2,

bi−1Nj(k)c > i−1Nj(k) − 1 ≥ 1

2
i−1Nj(k),

and therefore, using (3.24),

bk−1Nj(k)c+ b(k + 1)−1Nj(k)c+ · · ·+ bk−12 Nj(k)c ≥ Nj(k).

Let k1 ∈ N be smallest such that

(3.25) bk−1Nj(k)c+ b(k + 1)−1Nj(k)c+ · · ·+ bk−11 Nj(k)c ≥ Nj(k).

On the other hand, following Lemma 3.8 and Discussion 3.6,

(3.26)
∑

Qj(k)m∈Q(j(k))

ϕj(k)mϕ = ϕ on Γ2−j(k) .

Now we partition the terms of this sum in the following way: first consider
the m’s such that Qj(k)m are grid subcubes of the first bk−1Nj(k)c cubes of
the optimal cover above; next consider the m’s such that Qj(k)m are grid

subcubes of the following b(k + 1)−1Nj(k)c cubes of the same cover; and so

on until the m’s such that Qj(k)m are grid subcubes of at most bk−11 Nj(k)c
cubes of the optimal cover. This process certainly leads to repetition of grid
cubes, so, in order not to affect the sum above we make the convention that
ϕj(k)m is replaced by zero any time it corresponds to a grid cube that has
already been considered before. That is, ϕj(k)m is replaced by ϕ̃j(k)m which
can be either ϕj(k)m or zero, as just explained.

Denote by ψi, i = k, k+ 1, . . . , k1, the sum of the ϕ̃j(k)m’s corresponding
to each part above, so that the sum in (3.26) can be written as

(3.27)

k1∑
i=k

ψiϕ,

which, of course, still equals ϕ on Γ2−j(k) .

Next we choose, for each i = k + 1, . . . , k1, j(i) in such a way that

(3.28) j(k) < j(k + 1) < · · · < j(k1)
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and j(i) coincides with one of the j`’s used to get (3.23). Then consider
optimal covers of Γ2−j(i) and the sum

(3.29)

k1∑
i=k

∑
Qj(i)m∈Q(j(i))

ϕj(i)mψiϕ,

which, by Lemma 3.8 and (3.28), equals ϕ on Γ2−j(k1) . We know, following

Remark 3.9, that each inner sum above has ∼ h−1j(i) terms. However, because

of the product structure of the latter and the support of each ψi, actually
only a smaller number, namely . i−1h−1j(i) of terms are non-zero. This can

be seen in the following way: for fixed i = k, k + 1, . . . , k1, only the ϕj(i)m
such that

suppϕj(i)m ∩ suppψi 6= ∅

are of interest; this implies that the cubes of the optimal cover of Γ2−j(i)
which contain the grid cubes at which such functions ϕj(i)m are located are

contained in a neighbourhood of radius ∼ 2−j(i) of suppψi, which in turn
is contained in the union of the neighbourhoods of radius ∼ 2−j(k) of the
. i−1h−1j(k) cubes of the optimal cover of Γ2−j(k) which were used to form ψi;

since these union measures . i−1h−1j(k)hj(k), that is, . i−1, and the cubes

of the optimal cover of Γ2−j(i) contain disjoint balls of radius ∼ 2−j(i), so
measuring ∼ hj(i) each, the number of cubes that are being considered here

must be . i−1h−1j(i); as clearly the same estimate holds for the family of grid

subcubes of such cubes, our claim is proved.

We then write (3.29) in the form

(3.30)

k1∑
i=k

∑′

Qj(i)m∈Q(j(i))

ϕj(i)mψiϕ,

where the prime means that we are in fact taking only . i−1h−1j(i) terms,

according to the discussion above, without changing the value of (3.29).

Now we remark that, for i = k, k + 1, . . . , k1,

suppϕj(i)mψi ⊂ suppϕj(i)m ⊂
3

2
Qj(i)m,

and, due to the Leibniz formula, (3.28) and (2.41), for a fixed K ∈ N there
is a positive constant cK such that

|Dγ(ϕj(i)mψi)(x)| ≤ cK2j(i)|γ|, x ∈ Rn, γ ∈ Nn0 with |γ| ≤ K.

That is, (3.11), (3.15) and (3.16) hold for λr = λ(j(i),m) = 1 and ϕr =
ϕ(j(i),m) = ϕj(i)mψi with r = (j(i),m) belonging to a set Ik as in (3.14),
though more involved to describe: here we have Jk = {j(k), j(k+1), . . . , j(k1)}
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and each Mj(i) with i = k, k + 1, . . . , k1 is the set of m’s considered in the
corresponding inner sum in (3.30).

It then follows, especially from (3.17), that the quasi-norm of the sum
in (3.12) (or of an alternative similar sum, as considered in Discussion 3.11
apropos of the moment conditions) is

.
( k1∑
i=k

( ∑′

Qj(i)m∈Q(j(i))

τpj(i)2
−j(i)n

)q/p)1/q

.
( k1∑
i=k

τ qj(i)2
−j(i)nq/pi−q/ph

−q/p
j(i)

)1/q
=
( k1∑
i=k

i−q/pσqj(i)

)1/q
.
( ∞∑
i=k

i−q/p
)1/q

,

the last estimate being a consequence of (3.23) and the choice of the j(i)
in (3.28).

Using now the hypothesis 0 < p < q < ∞, we conclude that the last
expression above tends to zero as k → ∞, so that the result follows from
Discussion 3.6.

Remark 3.15. An observation corresponding to the one in Remark 3.13
also holds here.

The next result shows that when q > 1 we can also get the conclusion of
Proposition 3.12 with a hypothesis weaker than (3.18).

Proposition 3.16. Let Γ be an h-set satisfying the porosity condition,
and let 1 < q <∞ and τ be admissible. Assume that

(3.31) τ−1h1/p(n)1/p /∈ `q′ .

Then D(Rn \ Γ ) is dense in Bτp,q(Rn), therefore

trΓ B
τ
p,q(Rn) cannot exist.

Proof. Denote σ := τh−1/p(n)−1/p. From (3.31) there exists a strictly
increasing sequence (jk)k∈N ⊂ N such that

(3.32)

jk+1−1∑
l=jk

σ−q
′

l ≥ 1, k ∈ N.

For each k ∈ N, consider optimal covers of Γ2−i , in the sense of Remark 3.10,
for all i = jν , jν + 1, . . . , jν+1 − 1 and all ν = 1, . . . , k, and follow Dis-
cussions 3.6 and 3.11 with Ik from (3.14) defined so that Jk = {j ∈ N :
∃ν = 1, . . . , k : j ∈ {jν , jν+1, . . . , jν+1−1}} and Mj = {m∈Zn :Qjm ∈Q(j)},
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ϕ(j,m) = ϕjm and

(3.33) λ(j,m) =
σ−q

′

j

k

(jν+1−1∑
l=jν

σ−q
′

l

)−1
, j = jν , . . . , jν+1−1, ν = 1, . . . , k.

Due to Remark 2.22, this fits nicely into Discussions 3.6 and 3.11. In par-
ticular, (3.15) and (3.16) immediately hold. As for (3.11), we have, for
x ∈ Γ2−jk+1 ,

jk+1−1∑
j=j1

∑
Qjm∈Q(j)

λ(j,m)ϕ(j,m)(x)ϕ(x)

=
1

k

k∑
ν=1

jν+1−1∑
j=jν

σ−q
′

j

(jν+1−1∑
l=jν

σ−q
′

l

)−1 ∑
Qjm∈Q(j)

ϕjm(x)ϕ(x)

=
ϕ(x)

k

k∑
ν=1

jν+1−1∑
j=jν

σ−q
′

j

(jν+1−1∑
l=jν

σ−q
′

l

)−1
= ϕ(x).

It then follows, especially from (3.17), that the quasi-norm of the sum
in (3.12) (or of an alternative similar sum, as considered in Discussion 3.11
apropos of the moment conditions) is

.
(jk+1−1∑

j=j1

( ∑
Qjm∈Q(j)

|λ(j,m)τj2
−jn/p|p

)q/p)1/q

=
(jk+1−1∑

j=j1

λq(j,m)τ
q
j 2−jnq/p(]Q(j))q/p

)1/q

∼
( k∑
ν=1

jν+1−1∑
j=jν

σ−q
′q

j

k

(jν+1−1∑
l=jν

σ−q
′

l

)−q
σqj

)1/q

=
1

k

( k∑
ν=1

(jν+1−1∑
l=jν

σ−q
′

l

)1−q)1/q
≤ 1

k

( k∑
ν=1

1
)1/q

= k−1/q
′ −−−→

k→∞
0,

since q > 1, where we have also used Remark 3.9, (3.33) and (3.32). Thus
(3.12) holds (possibly with an alternative similar sum if moment conditions
are required, as mentioned above), and Discussion 3.6 then concludes the
proof.
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Remark 3.17. An observation corresponding to the one in Remark 3.13
also holds here.

Theorem 3.18. Let Γ be an h-set satisfying the porosity condition, σ an
admissible sequence, and let either 1 ≤ p <∞, 0 < q <∞, or 0 < q ≤ p < 1.
Then either

(i) Bσp,q(Γ ) = trΓ B
σh1/p(n)1/p

p,q (Rn) exists, or

(ii) D(Rn \ Γ ) is dense in B
σh1/p(n)1/p

p,q (Rn), and so trΓ B
σh1/p(n)1/p

p,q (Rn)
cannot exist.

Proof. Either (3.6) holds or not. If it holds, then from Definition 3.1 it
follows that (i) above holds. If (3.6) fails, then, with τ := σh1/p(n)1/p,

τ−1h1/p(n)1/p /∈ `q′ ,
therefore, from Propositions 3.12 (for 0 < q ≤ 1) and 3.16 (for 1 < q <∞),
(ii) holds.

Remark 3.19. The only use of the porosity condition in the proof
above is to guarantee the existence of suitable atoms when moment condi-
tions for these are required. Therefore the conclusion of the theorem above
holds without assuming porosity of Γ whenever the atomic representation

of B
σh1/p(n)1/p

p,q (Rn) does not require atoms with moment conditions.

Remark 3.20. From the proof above it also follows that, under the
conditions of the theorem, (i) is equivalent to (3.6), that is, σ−1 ∈ `q′ .

Conjecture 3.21. Let Γ be an h-set satisfying the porosity condition,
σ an admissible sequence, and 0 < p < 1, 0 < p < q <∞. Define vp by the
identity 1/vp = 1/p− 1/q. With the extra assumption

(3.34) lim
j→∞

hjσ
vp
j = 0,

the alternative in the conclusion of the theorem above also holds. More pre-
cisely, assertion (i) holds iff assertion (ii) does not hold iff

(3.35) σ−1 ∈ `vp .
We discuss this conjecture a little. Clearly, if (3.35) holds then Defini-

tion 3.1 guarantees that (i) holds, and therefore (ii) does not, even without
the extra assumption (3.34).

On the other hand, Proposition 3.14 with τ := σh1/p(n)1/p guarantees
that at least in the special case of σ−1 /∈ `vp with lim supσ−1 > 0, (ii) holds,
and therefore (i) does not.

In other words, we can get the alternative in the conclusion of the the-
orem above in the case 0 < p < 1, 0 < p < q < ∞ if instead of the extra
assumption (3.34) we assume that lim supσ−1 > 0. The drawback of this
restriction is that it immediately implies that (3.35) never holds, so (3.35)
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is not a real alternative under that extra assumption. From this point of
view, (3.34) is more interesting. Notice also that, for this conjecture not
to contradict Definition 3.1, under (3.34) it must be true that (3.35) holds
whenever any of the conditions (3.7) does. In fact, by standard comparison
criteria for series it is easy to see directly that this is indeed the case (take
also into account that the case vr =∞ in (3.7) never holds under (3.34)).

Remark 3.22. It is worth noticing that when Γ is a d-set with 0< d < n,
(3.34) holds whenever (3.35) fails, so in that setting, and by the above dis-
cussion, there is no need to impose the extra condition (3.34), the conjecture
then turning out to be indeed a known result (cf. [Tr7, (1.5)]). However, for
general h-sets we cannot dispense with an extra assumption (such as (3.34)),
as the conjecture above then fails, at least as regards equivalence with (3.35).
We now give a class of relevant examples:

Consider h(r) = (1 + |log r|)b, r ∈ (0, 1], for any given b ∈ (−1, 0); recall
(2.13) and the discussion afterwards. Let 0 < p < 1 and 0 < p < q < ∞.

Given any κ ∈
(
−b
(
1
p −

1
q

)
+ (1 + b) 1

q′ ,
1
p −

1
q

]
, consider σ = ((1 + j)κ)j .

It is easy to see that, though (3.35) fails, by Definition 3.1(ii) with r =
min{q, 1}, (i) of the theorem above holds, i.e., the trace exists (and therefore
the corresponding assertion (ii) fails, as discussed at the beginning of Sec-
tion 3.2).

Nevertheless, our conjecture as stated above resists this class of coun-
terexamples: as is easily seen, for this class the assumption (3.34) is violated.

3.3. Dichotomy results. We combine our results from the previous
subsections and deal with the so-called dichotomy of trace spaces. First we
briefly describe the idea.

Recall that D(Rn) is dense in all spaces Bτp,q(Rn) with 0 < p, q <∞. So
removing from Rn only a ‘small enough’ Γ one can ask whether (still)

(3.36) D(Rn \ Γ ) is dense in Bτp,q(Rn).

Conversely, we have the affirmative trace results mentioned in Section ??,
but one can also ask for what (‘thick enough’) Γ

(3.37) there exists a trace of Bτp,q(Rn) in Lp(Γ )

(for sufficiently high smoothness and q-regularity). Though these questions
may arise independently, it is at least clear that whenever D(Rn\Γ ) is dense
in Bτp,q(Rn), there cannot exist a trace according to (3.2); see our discussion
at the beginning of Section 3.2 and [Tr7] for the corresponding argument in
the classical case.

Remark 3.23. It is not always true that one really has an alternative in
the sense that either there is a trace or D(Rn \ Γ ) is dense in Bτp,q(Rn).



142 A. M. Caetano and D. D. Haroske

Triebel studied such questions in [Tr7] for spaces of type Bs
p,q and de-

scribed an example of a set Γ where a gap remains: traces can only exist
for spaces Bs

p,q with smoothness s ≥ s0, whereas density requires s ≤ s1 and
s1 < s0.

However, if one obtains an alternative between (3.36) and (3.37), then
following Triebel [Tr7] we call this phenomenon dichotomy. First we recall
this notion for spaces of type Bs

p,q(Rn) and then we point out necessary
modifications for our setting. Let

(3.38) trΓ : Bs
p,q(Rn)→ Lp(Γ )

be the trace operator defined by completion from the pointwise trace ac-
cording to (3.2), and

(3.39) Bp(Rn) = {Bs
p,q(Rn) : 0 < q <∞, s ∈ R}, 0 < p <∞.

Definition 3.24. Let n ∈ N, Γ ⊂ Rn, 0 < p < ∞. The dichotomy of
the scale Bp(Rn) with respect to Lp(Γ ), denoted by D(Bp(Rn), Lp(Γ )), is
defined by

D(Bp(Rn), Lp(Γ )) = (sΓ , qΓ ), sΓ ∈ R, 0 < qΓ <∞,(3.40)

if

(i) trΓ B
s
p,q(Rn) exists for

{
s > sΓ , 0 < q <∞,

s = sΓ , 0 < q ≤ qΓ ,
(3.41)

and

(ii) D(Rn \ Γ ) is dense in Bs
p,q(Rn) for

{
s = sΓ , qΓ < q <∞,

s < sΓ , 0 < q <∞.
(3.42)

Remark 3.25. The notion applies to spaces of type F sp,q in a similar way
(cf. [Tr7]). Then one has to define the borderline cases qΓ = 0 and qΓ =∞,
too. But this will not be needed at the moment in our setting.

We briefly explain why it is reasonable to look for the ‘breaking point’
(sΓ , qΓ ). In the diagram below we sketch this situation, where spaces of
type Bs

p,q(Rn) are indicated by their parameters (1/q, s) (while p is always
assumed to be fixed). Assume that D(Rn \ Γ ) is dense in some Bs2

p,q2(Rn).
Then, since D(Rn) is dense in all the spaces Bt

p,u(Rn), we immediately see

that D(Rn \Γ ) is also dense in all the spaces Bt
p,u(Rn) in which Bs2

p,q2(Rn) is
continuously embedded (the shaded area left of and below (1/q2, s2) refer-
ring to Bs2

p,q2(Rn) in the diagram). This explains why we look for the largest
possible s2 and smallest possible q2 in (3.42). Conversely, if the trace exists
for some Bs1

p,q1(Rn), then it exists likewise for all spaces which embed contin-
uously into Bs1

p,q1(Rn) (the shaded area right of and above (1/q1, s1) referring
to Bs1

p,q1(Rn) in the diagram); hence we now search for the smallest possi-
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ble s1 and largest possible q1 in (3.41). Dichotomy in the above-defined sense
happens if the two ‘extremal’ points merge, that is, the common breaking
point (1/qΓ , sΓ ) in the diagram exists. Then we denote the couple of pa-
rameters (sΓ , qΓ ) by D(Bp(Rn), Lp(Γ )).

trΓ exists

D(Rn \ Γ ) dense

Bs1p,q1(Rn)

Bs2p,q2(Rn)

s

1
q

1
qΓ

sΓ

In [Tr8, Sect. 6.4.3] Triebel already mentioned that it might be more
reasonable in general to exclude the limiting case q = qΓ in (3.41) or shift
it to (3.42). But as will turn out below, (also) in our context the breaking
point q = qΓ is always on the trace side.

Now we collect what is known in the situation of Bs
p,q spaces for hyper-

planes Γ = Rm or d-sets Γ , 0 < d < n.

Proposition 3.26. Let 0 < p <∞.

(i) Let m ∈ N, m ≤ n− 1. Then

D(Bp(Rn), Lp(Rm)) =

(
n−m
p

,min{p, 1}
)
.

(ii) Let Γ be a compact d-set, 0 < d < n. Then

D(Bp(Rn), Lp(Γ )) =

(
n− d
p

,min{p, 1}
)
.

Remark 3.27. The result (i) is proved in this explicit form in [Tr7]
(see also [Tr8, Cor. 6.69] and [Sch1]). The second part (ii) can be found
in [Tr7] and [Tr8, Thm. 6.68] (with forerunners in [Tr4, Thm. 17.6] and
[Tr5, Prop. 19.5]). In the classical case of a bounded C∞ domain Ω in Rn
with boundary Γ = ∂Ω (having d = n − 1), 1 < p < ∞, 1 ≤ q < ∞,
s ∈ R, the situation (whether D(Ω) is dense in Bs

p,q(Ω)) has been known
for long (cf. [Tr1, Thm. 4.7.1]), even in a more general setting (we refer to
[Sch2]). Moreover, dichotomy questions for weighted spaces corresponding
to (ii) were dealt with in [Pi, Ha]. More precisely, when Γ is again a compact
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d-set, 0 < d < n, 0 < p <∞, and the weight wκ,Γ is given by

wκ,Γ (x) =

{
dist(x, Γ )κ if dist(x, Γ ) ≤ 1,

1 if dist(x, Γ ) ≥ 1,

with κ > −(n− d), then

(3.43) D(Bp(Rn, wκ,Γ ), Lp(Γ )) =

(
n− d+ κ

p
,min{p, 1}

)
.

In all the cases mentioned above there are parallel results for F -spaces, too.

We return to our setting of traces ofBτp,q(Rn) on fractal h-sets. Obviously,
definitions (3.39)–(3.42) have to be modified. The following extension seems
appropriate. (Recall that we set v =∞ if 1/v = 0.)

Definition 3.28. Let Γ be a porous h-set, and

(3.44) Bp(Rn) = {Bτp,q(Rn) : 0 < q <∞, τ admissible}, 0 < p <∞.
Then the dichotomy of the scale Bp(Rn) with respect to Lp(Γ ) is defined by

(3.45) D(Bp(Rn), Lp(Γ )) = (τΓ , qΓ )

if τΓ is admissible, 0 < qΓ <∞, and

(i) trΓ B
τ
p,q(Rn) exists for τ−1τΓ ∈ `v, where

1

v
=

(
1

qΓ
− 1

q

)
+

,(3.46)

and

(ii) D(Rn \ Γ ) is dense in Bτp,q(Rn) for τ−1τΓ 6∈ `v.(3.47)

Remark 3.29. One immediately checks that (3.44)–(3.47) with h(r) = rd,
τ = (s) for s ∈ R, and 0 < p <∞, 0 < q <∞, coincides with (3.39)–(3.42),
that is, the notion is extended (we may thus retain the same symbols with
a slight abuse of notation). Using the continuous embedding

(3.48) Bσp,q1(Rn) ↪→ Bτp,q2(Rn)

for σ−1τ ∈ `q∗ with 1/q∗ = (1/q2 − 1/q1)+ (cf. [CaF, Thm. 3.7]), we can
argue as in Remark 3.25 to motivate the definition.

Part of the results contained in Theorem 3.18 and Remark 3.20 can then
be rephrased in terms of this notion of dichotomy in the following way.

Corollary 3.30. Let Γ be an h-set satisfying the porosity condition
and 1 ≤ p <∞. Then

D(Bp(Rn), Lp(Γ )) = (h1/p(n)1/p, 1).

Remark 3.31. Again, for h(r) = rd, τ = (s), Corollary 3.30 coincides
with Proposition 3.26(ii) for p ≥ 1. So one might expect some parallel result
with qΓ = p for 0 < p < 1 (see also (3.43)). However, we have not been yet
able to (dis)prove this claim. More precisely, if 0 < p < 1 and p < q < ∞,
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(3.46) is satisfied with τΓ = h1/p(n)1/p and qΓ = p (see (3.7)). The gap that
remains at the moment is to confirm (3.47) in that case (possibly with some
additional assumptions); recall Conjecture 3.21 and the following discussion.

But we can obtain some weaker version as follows. Introducing a notion of
dichotomy where also q can be fixed beforehand, hence adapting accordingly
(3.44), (3.45) and denoting the new versions respectively by Bp,q(Rn) and
D(Bp,q(Rn), Lp(Γ )) = (τΓ , qΓ ), while keeping (3.46) and (3.47) unchanged,
we can also recast the case 0 < q ≤ p < 1 of Theorem 3.18 and Remark 3.20
in terms of dichotomy.

Corollary 3.32. Let Γ be an h-set satisfying the porosity condition
and 0 < q ≤ p < 1. Then

D(Bp,q(Rn), Lp(Γ )) = (h1/p(n)1/p, p).

Acknowledgments. It is our pleasure to thank our colleagues in the
Department of Mathematics at the University of Coimbra for their kind
hospitality during our stays there.

The first author was partially supported by FEDER funds through COM-
PETE–Operational Programme Factors of Competitiveness (“Programa
Operacional Factores de Competitividade”) and by Portuguese funds through
the Center for Research and Development in Mathematics and Applica-
tions (University of Aveiro) and the Portuguese Foundation for Science
and Technology (“FCT–Fundação para a Ciência e a Tecnologia”), within
project PEst-C/MAT/UI4106/2011 with COMPETE number FCOMP-
01-0124-FEDER-022690b and projects PEst-OE/MAT/UI4106/2014 and
UID/MAT/04106/2013. The second author was also supported by the DFG
Heisenberg fellowship HA 2794/1-2.

References

[BGT] N. H. Bingham, C. M. Goldie, and J. L. Teugels, Regular Variation, Encyclopedia
Math. Appl. 27, Cambridge Univ. Press, Cambridge, 1987.

[Br1] M. Bricchi, Existence and properties of h-sets, Georgian Math. J. 9 (2002), 13–32.
[Br2] M. Bricchi, Tailored function spaces and related h-sets, PhD thesis, Friedrich-

Schiller-Universität Jena, 2002.
[Br3] M. Bricchi, Complements and results on h-sets, in: D. D. Haroske et al. (eds.),

Function Spaces, Differential Operators and Nonlinear Analysis—The Hans Trie-
bel Anniversary Volume, Birkhäuser, Basel, 2003, 219–230.
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