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Blow-up of solutions for the non-Newtonian polytropic
filtration equation with a generalized source

Jun Zhou (Chongqing)

Abstract. This paper deals with the blow-up properties of the non-Newtonian poly-
tropic filtration equation

ut − div(|∇um|p−2∇um) = f(u)

with homogeneous Dirichlet boundary conditions. The blow-up conditions, upper and
lower bounds of the blow-up time, and the blow-up rate are established by using the
energy method and differential inequality techniques.

1. Introduction. Consider a compressible fluid flow in a homogeneous
isotropic rigid porous medium. Then the volumetric moisture content θ(x),

the macroscopic velocity ~V and the density of the fluid ρ are governed by
the following equation [WZYL]:

(1.1) θ(x)
∂ρ

∂t
+ div(ρ~V )− η(ρ) = 0,

where η(ρ) is the source. For a non-Newtonian fluid, the linear Darcy law
is no longer valid, because the influence of many factors such as molecular
and ion effects has to be taken into account. Instead, one has the nonlinear
relation

(1.2) ρ~V = −λ|∇P |σ−2∇P,

where ρ~V and P denote the momentum velocity and pressure respectively,
and λ > 0 and σ ≥ 2 are some physical constants.

If the fluid considered is a polytropic gas, then the pressure and density
satisfy the following equation of state:

(1.3) P = cργ ,
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where c, γ > 0 are some constants. Thus, it follows from (1.1)–(1.3) that

(1.4) θ(x)
∂ρ

∂t
= cαλ div(|∇ργ |σ−2∇ργ) + η(ρ).

The parabolic equation (1.4) also appears in population dynamics and
chemical reactions, and it is usually called the non-Newtonian polytropic
filtration equation (see [K, V1, WZYL] and references therein).

In this paper we consider (1.4) with θ(x) = 1. Furthermore, we incor-
porate the zero boundary condition into this problem. Then we get the
following initial-boundary problem after changing variables and notation:

(1.5)


ut − div(|∇um|p−2∇um) = f(u), (x, t) ∈ QT ,
u(x, t) = 0, (x, t) ∈ ST ,
u(x, 0) = u0(x), x ∈ Ω,

where Ω is a bounded domain in RN , N ≥ 1, with smooth boundary ∂Ω,
QT = Ω × (0, T ), ST = ∂Ω × (0, T ), m ≥ 1 and p ≥ 2 are constants, u0 is a

non-negative function on Ω such that um0 ∈ L∞(Ω) ∩W 1,p
0 (Ω), and f is a

continuous function on R that satisfies the following condition:

(H) lim sup|s|→∞ |f(s)|/|s|m(r−1) < ∞ and smf(s) ≥ rF (s) ≥ |s|mr, where
r is a positive constant such that p < r < ∞ if N ≤ p, while p < r ≤
Np/(N − p) if N > p, and

F (s) := m

s�

0

τm−1f(τ) dτ.

For example, we can choose f(s) = |sm|r−2sm or f(s) = sq with q > m(r−1)
> 1 to satisfy (H).

During the last decade, problem (1.5) has enjoyed a growing attention.
Sattinger [Sa] constructed a stable set, which was used to construct global
solutions (see [I, Ts, TY]). Furthermore, a lot of work has been devoted to
singularity properties, such as blow-up, extinction and quenching (see [C,
GWDW, Le, LM, V1, V2, WZYL, X, XCM, XWY, ZW, ZM1, ZM2, ZM3]
and references therein).

In the above works, the authors discussed the blow-up properties by
constructing upper and lower solutions. To the best of our knowledge, only
a few papers deal with blow-up solutions when the initial energy is positive.

When m = 1, problem (1.5) degenerates to the p-Laplacian equation

(1.6)


ut − div(|∇u|p−2∇u) = f(u), (x, t) ∈ QT ,
u(x, t) = 0, (x, t) ∈ ST ,
u(x, 0) = u0(x), x ∈ Ω.

Zhao [Z] studied problem (1.6) and established global existence for f de-
pending on u as well as on ∇u. He also proved a blow-up result for (1.6)
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under the condition

(1.7)
1

p

�

Ω

|∇u0|p dx−
�

Ω

F (u0) dx ≤ −
4(p− 1)

pT̃ (p− 2)2

�

Ω

u20 dx,

where

F (s) =

s�

0

f(τ) dτ.

More precisely, he showed that if there exists T̃ > 0 for which (1.7) holds,
then the solution blows up before time T̃ . This type of results have been
extensively generalized and improved by Levine et al. [LPS], who proved
some global, as well as blow-up, existence theorems. Their results, when
applied to (1.6), require that

(1.8)
1

p

�

Ω

|∇u0|p dx−
�

Ω

F (u0) dx < 0.

Messaoudi [M] generalized the above result and proved that blow-up can be
obtained even for vanishing initial energy. More precisely, he got blow-up
under the condition

(1.9)
1

p

�

Ω

|∇u0|p dx−
�

Ω

F (u0) dx ≤ 0.

Recently, the above results were improved by Liu and Wang [LW], who
showed that certain solutions with positive initial energy can also blow up
in finite time. Furthermore, the blow-up time T∗ was estimated by

(1.10) T∗ ≤
2r

Cr
‖u0‖2−r2 .

When p = 2, problem (1.5) degenerates to the porous medium equation

(1.11)


ut −∆um = f(u), (x, t) ∈ QT ,
u(x, t) = 0, (x, t) ∈ ST ,
u(x, 0) = u0(x), x ∈ Ω.

The above problem was recently studied by Wu and Gao [WG]. As in [LW],
they got blow-up criteria for positive initial energy. Furthermore, the blow-
up time T∗ was estimated by

(1.12) T∗ ≤
(m+ 1)mr

C(mr −m− 1)
‖u0‖m+1−mr

m+1 .

For the general case of m ≥ 1 in problem (1.5), Yin, Li and Jin [YLJ]
studied the problem

(1.13)


ut − div(|∇um|p−2∇um) = λuq, (x, t) ∈ QT ,
u(x, t) = 0, (x, t) ∈ ST ,
u(x, 0) = u0(x), x ∈ Ω,
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where q > m(p− 1) ≥ 1 and λ > 0 are constants. They showed that if

(1.14)
1

p

�

Ω

|∇um0 |p dx−
λm

q +m

�

Ω

uq+m0 dx ≤ 0,

then the solution of (1.13) blows up at a finite time. Furthermore, the blow-
up time T∗ was estimated by

(1.15) T∗ ≤
(m+ 1)(q +m)|Ω|

q−1
m+1

λ(q − 1)(q +m−mp)

(
1

m+ 1

�

Ω

um+1
0

)(1−q)(m+1)

.

Motivated by the above works, in this paper, we study the blow-up so-
lutions of (1.5). We point out the following four problems:

1. In estimates (1.10) and (1.12), C is just some positive constant. Nei-
ther the exact value nor a lower bound of C were given in the above
mentioned papers, so we cannot derive an exact upper bound of the
blow-up time T∗.

2. In [YLJ], the authors give blow-up conditions when the initial energy
is non-positive, but no blow-up conditions for positive initial energy
are given.

3. When blow-up occurs, the blow-up time cannot usually be computed
exactly. It is therefore of great importance in practice to bound it
from above and below (see [BH, BS, Liu1, Liu2, LW, P, PP, PS, So]
and references therein). However, no lower bound was given in the
above papers.

4. As mentioned in [GV], when studying blow-up problems, it is impor-
tant to calculate the blow-up rate. But none of the papers did it.

Based on the above questions, the main tasks of this paper are the fol-
lowing:

1. We will study the blow-up of solutions of (1.5) with positive initial
energy.

2. We will give exact upper and lower bounds of the blow-up time T∗.
3. We will consider the blow-up rate.

It is well known that problem (1.5) is degenerate if m > 1 or p > 2, and
therefore there is no classical solution in general. By a solution of (1.5), we

mean a function u(x, t) with um ∈ L∞(QT ) ∩ Lp(0, T ;W 1,p
0 (Ω)), (um)t ∈

L2(QT ) satisfying

(1.16)
� �

QT

(uψt − |∇um|p−2∇um · ∇ψ + fψ) dx dt+
�

Ω

u0ψ(x, 0) dx = 0

for all ψ ∈ C1(QT ) such that ψ(x, T ) = 0 and ψ = 0 on ∂Ω × (0, T ).

We first state a local existence theorem.
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Theorem 1.1. Let f ∈ C(R) satisfy (H) and

(1.17) |mum−1f(u)| ≤ g(um)

for some C1 function g. Then for any non-negative function u0 with um0 ∈
L∞(Ω)∩W 1,p

0 (Ω), there exists T1 ∈ (0, T ] such that (1.5) has a non-negative
solution u(x, t) satisfying

um ∈ L∞(QT1) ∩ Lp(0, T1;W 1,p
0 (Ω)), (um)t ∈ L2(QT1).

The proof follows the methods of [WG], and will be given in the appendix
for the readers’ convenience.

Next, we give blow-up results for solutions of (1.5). By assumption (H)
we know that there exist positive constants a and b such that

(1.18) rF (s) ≤ |s|m|f(s)| ≤ |s|m(a+ b|s|m(r−1)).

Then it follows from the assumptions on r in (H) and (1.18) that

1

B
:= inf

um∈W 1,p
0 (Ω), u 6≡0

‖∇um‖p
(
	
Ω rF (u) dx)1/r

≥ ‖∇um‖p
(a‖um‖L1(Ω) + b‖um‖rLr(Ω))

1/r
> 0,

that is,

(1.19)
( �
Ω

rF (u) dx
)1/r

≤ B‖∇um‖p, ∀um ∈W 1,p
0 (Ω).

Let u(x, t) be the solution obtained in Theorem 1.1. The energy func-
tional E(t) related to (1.5) is

(1.20) E(t) =
1

p

�

Ω

|∇um(x, t)|p dx−
�

Ω

F (u(x, t)) dx.

It is easy to verify that

(1.21) E′(t) = −m
�

Ω

um−1u2t dx = − 4m

(m+ 1)2

�

Ω

(u(m+1)/2)2t dx.

The next results are about the blow-up condition, the upper bound of
the blow-up time and the blow-up rate.

Theorem 1.2. Let f ∈ C(R) satisfy (H) and (1.17). Assume the initial

value u0 with 0 ≤ um0 ∈ L∞(Ω) ∩W 1,p
0 (Ω) satisfies

E(0) < E1,(1.22)

‖∇um0 ‖p > α1,(1.23)

where

(1.24) α1 = B−r/(r−p), E1 =

(
1

p
− 1

r

)
B
− rp
r−p .
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Then the non-negative solution u(x, t) of (1.5) blows up in finite time. More-
over, the blow-up time T∗ and the blow-up rate can be estimated by

(1.25) T∗ ≤
(m+ 1)

mr
m+1

ζ(mr −m− 1)
‖u0‖m+1−mr

m+1

and

(1.26) ‖u(·, t)‖m+1 ≤
(m+ 1)

mr
(m+1)(mr−m−r)

(ζ(mr −m− 1))
1

mr−m−1

(T∗ − t)−
1

mr−m−r ,

where

ζ =
(r − p)(m+ 1)

mr
m+1

(
1− (r/p− E(0)rα−p1 )

− r
r−p
)

r|Ω|
mr
m+1

−1 .

Remark 1.3. From r > p, (2.3) and (2.13), we know that mr > m + 1
and ζ > 0, so (1.25) and (1.26) are valid.

Next we consider lower bounds of the blow-up time and the blow-up
rate. Let q = m(r− 1). By assumption (H), there exist positive constants a
and b such that

(1.27) f(s) ≤ a+ bsm(r−1) = a+ bsq, s ≥ 0.

To state the first result, we need the following constants:

C1 = k(k + 1)mp−1
(

p

k +m(p− 1)

)p
,

C2(ε0) = (k + 1)

(
akε0
k + q

+ b

)
,

C3(ε0) =
(k + 1)aq|Ω|

k + q
ε
−k/q
0 ,

ε1 =
(N − p)(k + 1)(q + 1)

pk +mN(p− 1) + p−N
,

ε2 =
k +m(p− 1)

q − 1 + ε1
− 1,

ε =
C1(1 + ε2)

C2(ε0)
C
− p(q+1+ε1)(1+ε2)

k+m(p−1)

S ,

(1.28)

where ε0 is any positive constant, k is a constant satisfying

(1.29) k >
ε1(k +m(p− 1))

q − 1 + ε1
,

and CS is the best Sobolev constant of W 1,p
0 (Ω) ↪→ L

Np
N−p (Ω), given by

(see [Ta])
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CS = π−1/2N−1/p
(
p− 1

N − p

)1−1/p[ Γ (1 +N/2)Γ (N)

Γ (N/p)Γ (1 +N −N/p)

]1/N
,

where Γ (·) is the Γ -function.

Let Y1 : R+ → R+ be defined by

(1.30) Y1(ρ) =

∞�

ρ

dη

C3(ε0) + C2(ε0)
ε2

1 + ε2
ε−1/ε2η

(k+1−ε1)(1+ε2)
(k+1)ε2

.

Obviously, Y1 is a decreasing function, which means its inverse function Y −11

exists and it is also decreasing.

Theorem 1.4. Assume N > p, and f ∈ C(R) satisfies (H) and (1.17).
Let k be so large that it satisfies (1.29) and

k > max

{
0,

(N − p)(q + 1)−mN(p− 1)− p+N

p

}
,(1.31)

k >
(N − p)(q − 1)

N
−m(p− 1) +

N − p
N

ε1,(1.32)

k > q − 1−m(p− 1)ε1.(1.33)

If the non-negative solution u(x, t) of (1.5) blows up at a finite time t = T∗,
then T∗ ≥ Y1(‖u0‖k+1

k+1) and ‖u(·, t)‖k+1 ≥ (Y −11 (T∗ − t))1/(k+1).

Remark 1.5. We give some remarks about the above theorem.

1. By (1.29), we know that (k+1−ε1)(1+ε2)
(k+1)ε2

> 1, so Y1 is well-defined.

2. From

(1.34) lim
k→∞

ε1 =
(N − p)(q + 1)

p
,

we know that (1.32) and (1.33) hold if k is large enough. Since q > 1 and
(1.34), we know that (1.29) holds if k is large enough.

3. If t is close enough to T∗, then

C2(ε0)
ε2

1 + ε2
ε−1/ε2‖u(·, t)‖

(k+1−ε1)(1+ε2)
ε2

k+1 ≥ C3(ε0),

and it follows from ‖u(·, t)‖k+1 ≥ (Y −11 (T∗ − t))1/(k+1) that

T∗ − t ≥ Y1(‖u(·, t)‖k+1
k+1)

≥ (1 + ε2)ε
1/ε2
2

2C2(ε0)ε2

∞�

‖u(·,t)‖k+1
k+1

η
− (k+1−ε1)(1+ε2)

(k+1)ε2 dη

=
(k + 1)(1 + ε2)ε

1+1/ε2
2

2C2(ε0)ε2(k + 1− ε1(1 + ε2))
‖u(·, t)‖

− k+1−ε1(1+ε2)
ε2

k+1 ,
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which means that

‖u(·, t)‖k+1 ≥
(

(k + 1)(1 + ε2)ε
1+1/ε2
2

2C2(ε0)ε2(k + 1− ε1(1 + ε2))

) ε2
k+1−ε1(1+ε2)

× (T ∗ − t)−
ε2

k+1−ε1(1+ε2) .

Theorem 1.4 does not give a lower bound of the blow-up time if N ≤ p.
But for N = 3, we can obtain the following result using the method of
[LMX].

Let Y2 : R+ → R+ be defined by

(1.35) Y2(ρ) =

∞�

ρ

dη

`1ηδ1 + `2ηδ2
,

where `i and δi, i = 1, 2, are the positive constants given by

σ = 3p−m(p− 1) + 1,

δ1 =
σ − 1

σ
,

δ2 =
3p+ 3m+ 3q − 3pm

3p+m+ 1− pm
,

`1 = σa|Ω|1/σ,

`2 =
16b3σπ2(3p)2pλ

3/2−p
1 |Ω|2−δ2

27(σ − 1)24p33/2m2(p−1) ;

(1.36)

here λ1 is the principal eigenvalue of the eigenvalue problem

(1.37)

{−∆w(x) = λw, x ∈ Ω,
w(x) = 0, x ∈ ∂Ω.

Obviously, Y2 is a decreasing function, which means its inverse function Y −12

exists and is also decreasing.

Theorem 1.6. Let 3q > 2m(p− 1) + 1. Assume N = 3 and

(1.38) 3 >


m(p−1)

p
if 2m(p−1)+1 < 3q ≤ 2m(p−1)+2,

3q−m(p−1)−2

p
if 3q > 2m(p−1)+2,

and f ∈ C(R) satisfies (H) and (1.17). If the non-negative solution u(x, t) of
(1.5) blows up at a finite time t = T∗, then T∗ ≥ Y2(‖u0‖σσ) and ‖u(·, t)‖σ ≥
(Y −12 (T∗ − t))1/σ.

Remark 1.7. We give some remarks about the above theorem.

1. Since 3q > 2m(p− 1) + 1, we know δ2 > 1. Thus Y2(ρ) is well-defined.
2. By (1.38), we know that σ > 1 and δ2 < 2.
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3. If t is close enough to T∗, then `2‖u(·, t)‖σδ2σ ≥ `1‖u(·, t)‖σδ1σ , and since
δ2 > 1 > δ1, it follows from ‖u(·, t)‖σ ≥ (Y −12 (T∗ − t))1/σ that

T∗ − t ≥ Y2(‖u(·, t)‖σσ) ≥ 1

2`2

∞�

‖u(·,t)‖σσ

η−δ2 dη =
1

2`2(δ2 − 2)
‖u(·, t)‖σ(1−δ2)σ ,

which means that

‖u(·, t)‖σ ≥ (2`2(δ2 − 2))
− 1
σ(δ2−1) (T∗ − t)

− 1
σ(δ2−1) .

The rest of this paper is organized as follows. In Section 2, we will give
the proofs of the main results. The proof of the local existence will be given
in Section 3.

2. Proofs of the main theorems. In this section, we prove the main
theorems of Section 1. Firstly, we consider Theorem 1.2. To prove it, we
need the following two lemmas by using the idea in [Vi].

Lemma 2.1. Let u be a solution of (1.5). Assume (1.22) and (1.23) hold.
Then there exists a positive constant α2 > α1 such that

‖∇um(·, t)‖p ≥ α2, t ≥ 0,(2.1) (
r
�

Ω

F (u(·, t)) dx
)1/r

≥ Bα2, t ≥ 0.(2.2)

α2

α1
≥
(
r

p
− E(0)rα−p1

)1/(r−p)
> 1.(2.3)

Proof. Denote α = ‖∇um‖p. We deduce from (1.19) and (1.20) that

E(t) =
1

p
‖∇um‖pp −

�

Ω

F (u) dx ≥ 1

p
‖∇um‖pp −

1

r
Br‖∇um‖rp(2.4)

=
1

p
αp − 1

r
Brαr =: h(α).

If h′(α) = 0, then α = α1. Set E1 = g(α1). From r > p ≥ 2, we get
limα→∞ h(α) = −∞, h(0) = 0, h is increasing in [0, α1] and decreasing in
[α1,∞). Since E(0) < E1, there exists a positive constant α2 > α1 such that
E(0) = h(α2). Let α0 = ‖∇um0 ‖p. By (1.21), we have g(α0) ≤ E(0) = g(α2).
Since α0, α2 ≥ α1, we get α0 ≥ α2. So (2.1) holds for t = 0.

To prove (2.1), we suppose on the contrary that ‖∇um(·, t0)‖p < α2 for
some t0 > 0. Since α1 < α2, we may choose t0 such that ‖∇um(·, t0)‖p > α1.
Then it follows from (2.4) and monotonicity of h that

E(0) = h(α2) < h(‖∇um(·, t0)‖p) ≤ E(t0).

This is impossible since E(t) ≤ E(0) for all t > 0. Hence (2.1) is established.
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It follows from (1.20), (1.21), (2.1) and (2.4) that
�

Ω

F (u) dx =
1

p
‖∇um‖pp − E(t) ≥ 1

p
‖∇um‖pp − E(0)

≥ 1

p
αp2 − h(α2) =

1

r
(Bα2)

r.

Thus (2.2) follows.

To prove (2.3), denote β = α2/α1. Then β > 1 since α2 > α1. So it
follows from E(0) = g(α2) and Br = αp−r1 that

E(0) = h(βα1) = (βα1)
p

(
1

p
− 1

r
Br(βα1)

r−p
)

= (βα1)
p

(
1

p
− 1

r
βr−p

)
≥ αp1

(
1

p
− 1

r
βr−p

)
.

That is,

α2

α1
= β ≥

(
r

p
− E(0)rα−p1

)1/(r−p)
.

Since r > p, to complete the proof we only need to prove r/p−E(0)rα−p1 > 1.

Since E(0) < E1 and Br = αp−r1 , it follows from (1.24) that

r

p
− E(0)rα−p1 >

r

p
− E1rα

−p
1 =

r

p
−
(

1

p
− 1

r

)
B
− rp
r−p rα−p1 = 1.

Now we consider the case of E(0) < E1 and ‖∇um0 ‖p > α1. We set

(2.5) H(t) = E1 − E(t), t ≥ 0.

Then we have

Lemma 2.2. For all t ≥ 0,

(2.6) 0 < H(0) ≤ H(t) ≤
�

Ω

F (u) dx.

Proof. By (1.21) we see that H is non-decreasing. Thus

(2.7) H(t) ≥ H(0) = E1 − E(0) > 0.

Combining (1.20), (1.24), (2.1), (2.4) and α2 > α1, we obtain

H(t) = E1 −
1

p
‖∇um‖pp +

�

Ω

F (u) dx(2.8)

≤
(

1

p
− 1

r

)
αp1 −

1

p
αp1 +

�

Ω

F (u) dx ≤
�

Ω

F (u) dx.

Then (2.6) follows from (2.7) and (2.8).
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Proof of Theorem 1.2. We define

(2.9) M(t) =
1

m+ 1

�

Ω

um+1(x, t) dx.

Then by (H), (1.20) and (2.5), we obtain

M ′(t) =
�

Ω

umf(u) dx− ‖∇um‖pp(2.10)

=
�

Ω

umf(u) dx− p
�

Ω

F (u) dx+ pH(t)− pE1

≥ (r − p)
�

Ω

F (u) dx+ pH(t)− pE1.

By using (1.24) and (2.2), we get

pE1 = p

(
1

p
− 1

r

)
BrB

− rp
r−p−r =

r − p
r

(Bα1)
r(2.11)

=
r − p
r

(
α1

α2

)r
(Bα2)

r

≤ (r − p)
(
α1

α2

)r �
Ω

F (u) dx.

It follows from (2.10) and (2.11) that

(2.12) M ′(t) ≥ C̃
�

Ω

F (u) dx+ pH(t),

where

C̃ = (r − p)(1− (α1/α2)
r) > 0.

Since r > p ≥ 2 and m > 1, we know that

(2.13)
mr

m+ 1
> 1.

By Hölder’s inequality and (H), we have

(2.14) M(t)
mr
m+1 ≤ C‖um‖rr ≤ rC

�

Ω

F (u) dx,

where

C =

(
1

m+ 1

) mr
m+1

|Ω|
mr
m+1

−1.

So by (2.6), (2.12) and (2.14), we obtain

(2.15) M ′(t) ≥ CM(t)
mr
m+1 ,

where C = C̃/(rC). By (2.13) and (2.15),
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M(t) ≥
(
M(0)1−

mr
m+1 −

(
mr

m+ 1
− 1

)
Ct

)1− mr
m+1

=

((
1

m+ 1
‖u0‖m+1

m+1

)1− mr
m+1

− mr −m− 1

m+ 1
Ct

)1− mr
m+1

.

Let

(2.16) T ∗ :=
(m+ 1)

mr
m+1

C(mr −m− 1)
‖u0‖m+1−mr

m+1 .

Then M(t) blows up at time T ∗. Therefore, u(x, t) ceases to exist at some
finite time T∗ ≤ T ∗. That is, u(x, t) blows up at a finite time T∗.

To derive an upper bound of T ∗, we need to find a lower bound of C. It
follows from (2.3) that

C =
C̃

rC
=

(r − p)(m+ 1)
mr
m+1 (1− (α1/α2)

r)

r|Ω|
mr
m+1

−1(2.17)

≥ (r − p)(m+ 1)
mr
m+1 (1− (r/p− E(0)rα−p1 )

− r
r−p )

r|Ω|
mr
m+1

−1 .

Then (1.25) follows from (2.16) and (2.17).

Since limt→T∗M(t) =∞, we integrate (2.15) from t to T∗ to get

(2.18)
1

m+1
‖u(·, t)‖m+1

m+1 = M(t) ≤
(
C(mr−m−1)

m+1
(T∗− t)

)− m+1
mr−m−1

.

Then (1.26) follows from (2.17) and (2.18).

Proof of Theorem 1.4. Define

(2.19) φ(t) =
�

Ω

uk+1 dx,

where k is a constant satisfying (1.29) and (1.31)–(1.33). Multiplying the
first equation of (1.5) by uk, integrating by parts and using (1.27), we get

1

k + 1
φ′(t) = −

�

Ω

|∇um|p−2∇uk · ∇um dx+
�

Ω

ukf(u) dx

≤ −kmp−1
�

Ω

uk−1+(p−1)(m−1)|∇u|p dx+ a‖u‖kk + b‖u‖k+qk+q

= −kmp−1
(

p

k +m(p− 1)

)p∥∥∇u k+m(p−1)
p

∥∥p
p

+ a‖u‖kk + b‖u‖k+qk+q.

The above inequality and Young’s inequality imply

(2.20) φ′(t) ≤ −C1

∥∥∇u k+m(p−1)
p

∥∥p
p

+ C2(ε0)‖u‖k+qk+q + C3(ε0),

where ε0 is any positive constant and C1, C2(ε0), C3(ε0) are given in (1.28).
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Let ε1 be the constant defined in (1.28). By (1.31) and (1.32), we know
that 0 < ε1 < k + 1 and

N(k +m(p− 1))

(N − p)(q − 1 + ε1)
> 1.

Thus Hölder’s inequality gives

(2.21) ‖u‖k+qk+q ≤ ‖u‖
k+1−ε1
k+1

∥∥u k+m(p−1)
p

∥∥ p(q−1+ε1)
k+m(p−1)
Np
N−p

.

By applying Young’s inequality to (2.21), we obtain

(2.22)

‖u‖k+qk+q ≤
ε2

1 + ε2
ε−1/ε2‖u‖

(k+1−ε1)(1+ε2)
ε2

k+1 +
ε

1 + ε2

∥∥u k+m(p−1)
p

∥∥ p(q−1+ε1)(1+ε2)
k+m(p−1)

Np
N−p

,

where ε and ε2 are the constants given in (1.28); ε2 is positive by (1.33).
Then a direct calculation shows that

(q − 1 + ε1)(1 + ε2)

k +m(p− 1)
= 1.

Note that

(2.23)
∥∥u k+m(p−1)

p
∥∥ p(q−1+ε1)(1+ε2)

k+m(p−1)
Np
N−p

≤ C
p(q+1+ε1)(1+ε2)

k+m(p−1)

S

(∥∥∇u k+m(p−1)
p

∥∥p
p

) (q−1+ε1)(1+ε2)
k+m(p−1)

= C
p(q+1+ε1)(1+ε2)

k+m(p−1)

S

∥∥∇u k+m(p−1)
p

∥∥p
p
.

It follows from (2.20), (2.22) and (2.23) that

φ′(t) ≤
(
C2(ε0)C

p(q+1+ε1)(1+ε2)
k+m(p−1)

S

ε

1 + ε2
− C1

)∥∥∇u k+m(p−1)
p

∥∥p
p

(2.24)

+
C2(ε0)ε2
1 + ε2

ε−1/ε2‖u‖
(k+1−ε1)(1+ε2)

ε2
k+1 + C3(ε0).

By the definition of ε in (1.28),

C2(ε0)C
p(q+1+ε1)(1+ε2)

k+m(p−1)

S

ε

1 + ε2
− C1 = 0.

Then we deduce from (2.24) that

(2.25) φ′(t) ≤ C2(ε0)ε2
1 + ε2

ε−1/ε2φ(t)
(k+1−ε1)(1+ε2)

(k+1)ε2 + C3(ε0).

Since limt→T∗ φ(t) = ∞, integrating (2.25) from 0 to T∗ we finally get
T∗ ≥ Y1(‖u0‖k+1

k+1). Similarly, we can integrate (2.25) from t to T∗ to get

‖u(·, t)‖k+1 ≥ (Y −11 (T∗ − t))1/(k+1).
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Proof of Theorem 1.6. Define

(2.26) φ(t) =
�

Ω

uσ dx,

where σ = 3p−m(p− 1) + 1. Since u(m−1)(p−1)+σ−2|∇u|p = 3−p|∇u3|p, by
a similar calculation to (2.20) and Hölder’s inequality we obtain

φ′(t) = −σ(σ − 1)mp−1

3p
‖∇u3‖pp + aσ‖u‖σ−1σ−1 + bσ‖u‖σ+q−1σ+q−1(2.27)

≤ −σ(σ − 1)mp−1

3p
‖∇u3‖pp + aσ|Ω|1/σφ(t)

σ−1
σ + bσ‖u‖σ+q−1σ+q−1.

For simplicity, denote v = u3 and γ = q − m(p − 1) > 0 (as r > p and
q = m(r − 1)). Then (2.27) can be written as

(2.28) φ′(t) ≤ −σ(σ − 1)mp−1

3p
‖∇v‖pp + aσ|Ω|1/σφ(t)

σ−1
σ + bσ‖v‖p+γ/3p+γ/3.

Next we estimate the term ‖v‖p+γ/3p+γ/3. By using the Sobolev inequality

(see [Ta])

‖w‖6 ≤ 41/33−1/2π2/3‖∇w‖2, ∀w ∈ H1
0 (Ω),

Hölder’s inequality and Schwarz’s inequality, we get

‖v‖p+γ/3p+γ/3 ≤
( �
Ω

v2p dx
)1/3( �

Ω

v(p+γ)/2 dx
)2/3

(2.29)

≤
( �
Ω

vp dx
)1/6( �

Ω

v3p dx
)1/6( �

Ω

v(p+γ)/2 dx
)2/3

≤ 41/33−1/2π2/3‖∇vp/2‖2
( �
Ω

vp dx
)1/6( �

Ω

v(p+γ)/2 dx
)2/3

.

By virtue of the Rayleigh principle, we have

λ1‖w‖22 ≤ ‖∇w‖22, ∀w ∈ H1
0 (Ω).

Then it follows from (2.29) that

(2.30) ‖v‖p+γ/3p+γ/3 ≤ 41/33−1/2π2/3λ
−1/6
1 ‖∇vp/2‖4/32

( �
Ω

v(p+γ)/2 dx
)2/3

.

Since |∇vp/2|2 = (p2/4)vp−2|∇v|2, it follows by Hölder’s inequality that

‖∇vp/2‖2 ≤
p

2
‖∇v‖p

( �
Ω

vp dx
)1/2−1/p

≤ p

2
λ
1/p−1/2
1 ‖∇v‖p‖∇vp/2‖1−2/p2 ,

which implies

‖∇vp/2‖2 ≤ (p/2)p/2λ
1/2−p/4
1 ‖∇v‖p/2p .
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By the above inequality and (2.30), we have

(2.31) ‖v‖p+γ/3p+γ/3

≤ 41/33−1/2π2/3(p/2)2p/3λ
1/2−p/3
1 ‖∇v‖2p/3p

( �
Ω

v(p+γ)/2 dx
)2/3

.

Now by Hölder’s inequality, we obtain

(2.32)
�

Ω

v(p+γ)/2 dx =
�

Ω

u3(p+γ)/2 dx ≤ |Ω|1−δ2/2φ(t)δ2/2,

where
δ2 =

3p+ 3m+ 3q − 3pm

3p+m+ 1− pm
∈ (1, 2).

Then it follows from (2.31) and (2.32) that

(2.33) ‖v‖p+γ/3p+γ/3

≤ 41/33−1/2π2/3(p/2)2p/3λ
1/2−p/3
1 |Ω|(2−δ2)/3φ(t)δ2/3‖∇v‖2p/3p .

We now use Young’s inequality to get

(2.34) φ(t)δ2/3‖∇v‖2p/3p ≤ 1

3ε2
φ(t)δ2 +

2ε

3
‖∇v‖pp,

where ε is any positive constant. Choosing

ε =
(σ − 1)mp−1λ

p/3−1/2
1

3p−3/245/6π2/3(p/2)2p/3|Ω|(2−δ2)/3b

yields σ(σ − 1)mp−1/3p = bσ41/33−1/2π2/3(p/2)2p/3λ
1/2−p/3
1 |Ω|(2−δ2)/32ε/3.

From (2.28), (2.33) and (2.34), we obtain

(2.35) φ′(t) ≤ `1φ(t)δ1 + `2φ(t)δ2 ,

where

δ1 =
σ−1

σ
, `1 = aσ|Ω|1/σ, `2 =

bσ41/33−1/2π2/3
(p
2

)2p/3
λ
1/2−p/3
1 |Ω|(2−δ2)/3

3ε2
.

Since limt→T∗ φ(t) =∞, integrating (2.35) from 0 to T∗, we finally get T∗ ≥
Y2(‖u0‖σσ). Similarly, we can integrate (2.35) from t to T∗ to get ‖u(·, t)‖σ ≥
(Y −12 (T∗ − t))1/σ.

3. Appendix. In this section we prove the local existence result by
using the methods of [WG].

Proof of Theorem 1.1. In the proof, we denote by c a positive constant
independent of n, which may change from line to line. Consider the problem

(3.1)


ut − div((|∇um|2 + 1/n)(p−2)/2∇um) = f(u), (x, t) ∈ QT ,
u(x, t) = 1/n, (x, t) ∈ ST ,
u(x, 0) = u0n(x) + 1/n, x ∈ Ω,
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where n = 1, 2, . . . , 0 ≤ u0n ∈ C∞(Ω), such that

‖(u0n + 1/n)m‖∞ ≤ ‖(u0 + 1)m‖∞,
‖∇(u0n)m‖p ≤ c‖∇(u0)

m‖p,
(u0n + 1/n)m → (u0)

m as n→∞, strongly in W 1,p(Ω).

By [LSU, Theorem 4.1], (3.1) has a classical solution un. By the maxi-
mum principle for parabolic equations, we obtain

(3.2) un(x, t) ≥ 1/n.

Now we claim that there exists T1 ∈ (0, T ] such that

(3.3) ‖(un)m‖L∞(QT1 )
≤ c for all n = 1, 2, . . . .

To see this, let w(t) be the solution of the ODE

(3.4)


dw

dt
= g(w),

w(0) = ‖(u0 + 1)m‖∞.

By [ZFC, Chapter 2, Theorem 5.1], there exists a T0 ∈ (0, T ), which depends
on the initial value ‖(u0 + 1)m‖∞, such that w exists on [0, T0]. Let ϕ =
(un)m − w. By (1.17), we have

m(un)m−1f(un)− g(w) ≤ ((un)m − w)

1�

0

(θ(un)m + (1− θ)w) dθ

= Cn(x, t)ϕ.

Then ϕ satisfies the inequalities
ϕt −m(ϕ+ w)(m−1)/m div((|∇ϕ|2 + 1/n)(p−2)/p∇ϕ)

− Cn(x, t)ϕ ≤ 0, (x, t) ∈ QT0 ,
ϕ(x, t) ≤ (1/n)m − ‖(u0 + 1)m‖∞ ≤ 0, (x, t) ∈ ST0 ,
ϕ(x, 0) = (u0n(x) + 1/n)m − ‖(u0 + 1)m‖∞ ≤ 0, x ∈ Ω.

By the comparison theorem, we have ϕ(x, t) ≤ 0 for (x, t) ∈ QT0 , which
means that

‖(un)m‖L∞(QT0 )
≤ max

[0,T0]
w(t).

Setting T1 = T0/2 and c = w(T1) we obtain (3.3).

Multiplying the first equation of (3.1) by (un)m and integrating over QT1
yields
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1

m+ 1

( �
Ω

(un)m+1(x, T1) dx−
�

Ω

(u0n + 1/n)m+1 dx
)

=
� �

ST1

(|∇(un)m|2 + 1/n)(p−2)/2∇(un)m · ~ν(un)m ds dt

−
� �

QT1

(|∇(un)m|2 + 1/n)(p−2)/2|∇(un)m|2 dx dt+
� �

QT1

f(un)m dx dt,

where ~ν is the unit outward normal vector on ∂Ω. By the second equation
of (3.1), we get

(3.5)
� �

QT1

|∇(un)m|p dx dt ≤
� �

QT1

(|∇(un)m|2 + 1/n)(p−2)/2|∇(un)m|2 dx dt

≤ 1

m+ 1

( �
Ω

(u0n + 1/n)m+1 dx−
�

Ω

(un)m+1(x, T1) dx
)

+ c
� �

QT1

|f | dx dt ≤ c.

Multiplying the first equation of (3.1) by ((un)m)t and integrating, then
using Young’s inequality and (3.5), we obtain
� �

QT1

m(un)m−1|(un)t|2

=
� �

QT1

(|∇(un)m|2 + 1/n)(p−2)/2∇(un)m · ∇((un)m)t dx dt

+
� �

QT1

m(un)m−1(un)tf dx dt

= −1

2

T1�

0

∂

∂t

( �
Ω

|∇(un)m(x,t)|�

0

(s+ 1/n)(p−2)/2
)
dt+

� �

QT1

m(un)m−1(un)tf dx dt

=
1

2

�

Ω

|∇(u0n)m|2�

0

(s+ 1/n)(p−2)/2 ds dx

− 1

2

�

Ω

|∇(un)m(x,T1)|2�

0

(s+ 1/n)(p−2)/2 ds dx+
� �

QT1

m(un)m−1(un)tf dx dt

=
1

p

�

Ω

(|∇(u0n)m|2 + 1/n)p/2 dx

− 1

p

�

Ω

(|∇(un)m(x, T1)|2 + 1/n)p/2dx+
� �

QT1

m(un)m−1(un)tf dx dt

≤ c+
1

2

� �

QT1

m(un)m−1f2 dx dt+
1

2

� �

QT1

m(un)m−1((un)t)
2 dx dt.
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Then it follows from the above inequalities and (3.3) that

(3.6)
� �

QT1

∣∣∣∣∂(un)m

∂t

∣∣∣∣2 dx dt = m
� �

QT1

(un)m−1
(
m(un)m−1

∣∣∣∣∂(un)

∂t

∣∣∣∣2) ≤ c.
Since p ≥ 2, we deduce from (3.5) that� �

QT1

(1/n)(p−2)/2|∇(un)m|p/(p−1) ≤ c
� �

QT1

(1/n)(p−2)/2|∇(un)m|2 ≤ c.

The above inequality and (3.5) imply

(3.7)
� �

QT1

∣∣∣∣(|∇(un)m|2 + 1/n)(p−2)/2
∂(un)m

∂xi

∣∣∣∣p/(p−1) dx dt
≤ c
( � �

QT1

|∇(un)m|p dx dt+ (1/n)
p(p−2)
2(p−1)

� �

QT1

|∇(un)m|p/(p−1) dx dt
)

≤ c
( � �

QT1

|∇(un)m|p dx dt+ c(1/n)
p−2

2(p−1)

)
≤ c.

Inequalities (3.2), (3.3) and (3.5)–(3.7) imply that there is a subsequence
of {un} (denoted by {un} again) and a non-negative function u ∈ L∞(QT1)
such that:

• un → u and f(un)→ f(u) a.e. on QT1 as n→∞,

• ∇(un)m ⇀ ∇um weakly in Lp(QT1) as n→∞,

• ∂(un)m

∂t ⇀ ∂um

∂t weakly in L2(QT1) as n→∞,

• (|∇(un)m|2 + 1/n)(p−2)/2 ∂(un)
m

∂xi
⇀ wi weakly in Lp/(p−1)(QT1) as

n→∞.

By [Li, p. 12, Lemma 1.3], we know that wi = |∇um|p−2(um)xi . Theorem 1.1
follows by a standard limiting process (see for example [Li, pp. 13–14]).
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