
STUDIA MATHEMATICA 231 (3) (2015)

Spatiality of derivations of Fréchet GB∗-algebras

by

Martin Weigt (Port Elizabeth) and Ioannis Zarakas (Athens)

Abstract. We show that every continuous derivation of a countably dominated Fré-
chet GB∗-algebra A is spatial whenever A is additionally an AO∗-algebra.

1. Introduction. Bounded and unbounded derivations of C∗-algebras
are well understood. For example, all derivations δ : A→ A of a C∗-algebra
A[‖ · ‖] are continuous [22]. By a derivation of an algebra A, we mean a
linear map δ : D(δ)→ A satisfying δ(xy) = xδ(y)+δ(x)y for all x, y ∈ D(δ),
where D(δ) denotes the domain of A. We recall that unbounded derivations
of C∗-algebras, in general, play an important role in mathematical physics
in that they are, in some cases, generators of one-parameter automorphism
groups of C∗-algebras, which model the dynamics of the underlying quantum
system of observables [22]. Since the observables are unbounded operators in
a Hilbert space, one is therefore motivated to study derivations of unbounded
operator algebras.

The first paper on derivations of unbounded operator algebras is [8].
A few more results appeared later in 1992, when R. Becker [7] proved,
amongst other things, that every derivation of a pro-C∗-algebra (an inverse
limit of C∗-algebras) is continuous. There are also some results on deriva-
tions of measurable operators affiliated with a von Neumann algebra, as can
be found in [1] and [2].

An important class of locally convex ∗-algebras is that of generalized
B∗-algebras, or GB∗-algebras for short, introduced by G. R. Allan [4].
As explained in Section 2, these algebras constitute a class of topological
∗-algebras A[τ ] which contain a C∗-algebra A[B0] as a dense ∗-subalgebra.
Every GB∗-algebra has a faithful representation as a ∗-algebra of unbounded
operators on a Hilbert space [10], and therefore GB∗-algebras can be re-
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garded as ∗-algebras consisting of unbounded operators. All of the above
provides sufficient motivation for a general study of derivations of GB∗-
algebras.

Recall that every derivation δ : A→ A of a C∗-algebra of bounded oper-
ators A on some Hilbert space H is spatial in the enveloping von Neumann
algebra of A, which is identified with the bidual A∗∗ of A. In this paper, we
extend this result to countably dominated Fréchet GB∗-algebras which are
also AO∗-algebras (see Proposition 3.19). As is the case for C∗-algebras, we
first show that the strong bidual A∗∗[ts] of a Fréchet GB∗-algebra A[τ ] is
also a Fréchet GB∗-algebra over the W∗-algebra A[B0]

∗∗. Most of Section 3
is devoted to proving this result. In Lemma 3.2, we show that every contin-
uous derivation δ : A → A of a Fréchet GB∗-algebra A[τ ] can be extended
to a derivation δ∗∗ : A∗∗[ts] → A∗∗[ts] of A∗∗[ts]. In [27], we proved that
every derivation δ : A → A of a GB∗-algebra A[τ ], for which A[B0] is a
W∗-algebra, is inner. Therefore δ∗∗ is inner, implying that every continuous
derivation of a certain Fréchet GB∗-algebra is spatial in its strong bidual.

Section 2 contains background on GB∗-algebras, necessary to understand
the main results of this paper. In Section 4, we give a nontrivial example of
a countably dominated Fréchet GB∗-algebra which is also an AO∗-algebra.

2. Preliminaries. All vector spaces in this paper are over the field C
of complex numbers and all topological spaces are assumed to be Hausdorff.
Moreover, all algebras are assumed to have an identity element denoted by 1.

A topological algebra is an algebra which is also a topological vector space
such that multiplication is separately continuous [12]. A topological ∗-algebra
is a topological algebra endowed with a continuous involution. A topological
∗-algebra which is also a locally convex space is called a locally convex ∗-
algebra. The symbol A[τ ] will stand for a topological (∗-)algebra A endowed
with a given topology τ .

Definition 2.1 ([4]). Let A[τ ] be a topological ∗-algebra and B∗ a col-
lection of subsets B of A with the following properties:

(i) B is absolutely convex, closed and bounded;
(ii) 1 ∈ B, B2 ⊂ B and B∗ = B.

For every B ∈ B∗, denote by A[B] the linear span of B, which is a normed
algebra under the gauge function ‖ · ‖B of B. If A[B] is complete for every
B ∈ B∗, then A[τ ] is called pseudo-complete.

An element x ∈ A is called (Allan) bounded if for some nonzero complex
number λ, the set {(λx)n : n = 1, 2, . . .} is bounded in A. We denote by A0

the set of all bounded elements in A.
A topological ∗-algebra A[τ ] is called symmetric if, for every x ∈ A, the

element (1 + x∗x)−1 exists and belongs to A0.
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In [10], the collection B∗ in the definition above is defined to be the
same as above, except that B ∈ B∗ is no longer assumed to be absolutely
convex. The notion of a bounded element is a generalization of the concept of
bounded operator on a Banach space, and was introduced by G. R. Allan [3]
in order to develop a spectral theory for general locally convex ∗-algebras.

Definition 2.2 ([4]). A symmetric pseudo-complete locally convex ∗-
algebra A[τ ] such that the collection B∗ has a greatest member denoted
by B0, is called a GB∗-algebra over B0.

Every sequentially complete locally convex algebra is pseudo-complete
[3, Proposition 2.6]. In [10], P. G. Dixon extended the notion of GB∗-algebras
to include topological ∗-algebras which are not locally convex. In this defi-
nition, GB∗-algebras are not assumed to be pseudo-complete, B0 is the only
element in B∗ which is necessarily absolutely convex (see the paragraph be-
fore Definition 2.2), and only A[B0] is assumed to be complete with respect
to the gauge function ‖ · ‖B0 . For a survey on GB∗-algebras, see [13].

Every C∗-algebra is a GB∗-algebra, but the Arens algebra Lω[0, 1] is a
GB∗-algebra over L∞[0, 1] which is not a C∗-algebra. For further examples,
see [4], [10].

Proposition 2.3 ([4, Theorem 2.6]). If A[τ ] is a GB∗-algebra, then the
Banach ∗-algebra A[B0] is a C∗-algebra which is sequentially dense in A,
and (1 + x∗x)−1 ∈ A[B0] for every x ∈ A. Furthermore, B0 is the unit ball
of A[B0].

If A is commutative, then A0 = A[B0] [4, p. 94]. In general, A0 is not a
∗-subalgebra of A, and A[B0] contains all normal elements of A0 [4, p. 94].

It is well known that every commutative C∗-algebra is topologically and
algebraically ∗-isomorphic to C(X) for some compact Hausdorff space (in
fact, X is the maximal ideal space of A). More generally, any commutative
GB∗-algebra is algebraically ∗-isomorphic to an algebra of functions on a
compact Hausdorff space X, which are allowed to take the value infinity
at most on a nowhere dense subset of X [4, Theorem 3.9]. This algebraic
∗-isomorphism extends the Gelfand isomorphism of A[B0] onto the corre-
sponding C(X).

Recall that every C∗-algebra is topologically-algebraically ∗-isomorphic
to a norm closed ∗-subalgebra of B(H) for some Hilbert space H. In general,
for every GB∗-algebra A[τ ], there exists a faithful ∗-representation π : A→
π(A), which we shall call the universal representation of A, such that π(A)
is an algebra of closable and densely defined operators in a Hilbert space H
with B0 being identified with {x ∈ π(A) ∩ B(H) : ‖x‖ ≤ 1} [10, Theorem
7.6]. Therefore, for every a ∈ A, it follows that ‖(1 + a∗a)−1‖B0 ≤ 1 (see
also [4, Theorem 2.6]) and a(1 + a∗a)−1 ∈ A[B0].
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The algebra π(A), where π is the universal representation of A, acts
on the invariant domain D which is the algebraic direct sum

⊕
f∈F A/Nf ,

where F denotes the set of all positive linear functionals on A, Nf = {a ∈ A :
f(a∗a) = 0} and A/Nf is an inner product space under the inner product
〈a + Nf , b + Nf 〉 = f(b∗a), a, b ∈ A. The domain D is an inner product
space under the inner product 〈(ξf )f∈F , (ηf )f∈F 〉 =

∑
f∈F 〈ξf , ηf 〉, and the

Hilbert space H related to the universal representation π is taken to be the
norm completion of D. The representation π is defined by

π(a)((ξf )f∈F ) = (πf (a)ξf )f∈F , a ∈ A, (ξf )f∈F ∈ D,
where

πf (a)(b+Nf ) = ab+Nf , a, b ∈ A, f ∈ F.
The domain D is also equipped with the graph topology tπ(A), which is
defined by the seminorms ξ ∈ D 7→ ‖π(a)ξ‖, a ∈ A. The algebra π(A) can
be viewed as being a ∗-subalgebra of

L†(D) = {T : D → D is a closable linear map : D ⊂ D(T ∗), T ∗(D) ⊂ D},
where D(T ∗) is the domain of the adjoint T ∗ of the densely defined opera-
tor T . For a dense domain D in some Hilbert space H, the algebra L†(D) is
a ∗-algebra of closable operators with involution given by T † = T ∗|D, and
was introduced by G. Lassner [21]. A ∗-subalgebra U of L†(D) is said to
be closed if D =

⋂
a∈U D(a), where a denotes the smallest closed extension

of a.

A ∗-subalgebra of L†(D) containing the identity operator on D is called
an O∗-algebra on D [21]. An O∗-algebra B on D is endowed with the uniform
topology τD [21], which is defined by the family of seminorms pM(a) =
sup{|〈aξ, η〉| : ξ, η ∈ M}, for all subsets M of D which are bounded with
respect to the graph topology tB.

A locally convex ∗-algebra A[τ ] is said to be an AO∗-algebra if it is
algebraically and topologically ∗-isomorphic to an O∗-algebra B[τD] which
is complete.

For an O∗-algebra A on D, an operator a ∈ A is called positive, denoted
by a ≥ 0, if 〈aξ, ξ〉 ≥ 0 for all ξ ∈ D. For such an operator a ≥ 0, the
following vector subspace of A is defined:

ηa = {b ∈ A : ρa(b) <∞}, where ρa(b) = sup
ξ∈D

|〈bξ, ξ〉|
〈aξ, ξ〉(

λ
0 = ∞ for λ > 0

)
. For every a ∈ A+ := {b ∈ A : b ≥ 0}, the space

ηa is a normed space under the norm ρa, and the subspaces ηb, b ∈ A+,
form an inductive system of normed spaces. The locally convex induc-
tive limit topology of the system (ηa, ρa)a∈A+ of normed spaces is denoted
by ρ [18].
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An O∗-algebra A on a dense domain D in some Hilbert space H for
which the topology ρ can be constructed by a sequence of subspaces ηan ,
an ∈ A+, n ∈ N, is called countably dominated [19, p. 756]. Countably domi-
nated algebras occur frequently in analysis, as pointed out in [19]. Particular
examples of countably dominated algebras are studied in [6, Section 2]. As
noted in [19, p. 756], an O∗-algebra A on D is countably dominated if and
only if its positive cone admits a cofinal sequence for its natural order (i.e.
there exists a sequence (an)n∈N in A+ such that for every a ∈ A+ there is
some n ∈ N with a ≤ an), which is equivalent to the fact that the domain D
is a metrizable space with respect to the graph topology tA (for a proof of
this fact, see Lemma 3.6). We recall that for a given vector topology τ on A,
its positive cone A+ is called normal if there exists a base of neighborhoods
of 0 for the topology τ consisting of order convex sets. A subset V of A is
order convex if {z ∈ A : x ≤ z ≤ y} ⊂ V whenever x, y ∈ V and x ≤ y.

Recall that a derivation δ : D(δ)→ A is a linear map satisfying δ(xy) =
xδ(y) + δ(x)y for all x, y ∈ D(δ). From here on we will only consider deriva-
tions whose domain is the entire algebra A, i.e. derivations δ : D(δ) → A
with D(δ) = A. If δ : A → A is a derivation of an algebra A which is a
subalgebra of an algebra B, then we say that δ is spatial if there exists an
element b ∈ B such that

δ(x) = bx− xb for all x ∈ A.
If this element b can be found in A, then we say that δ is an inner derivation.

3. Main results. Let A[τ ] be a locally convex algebra and δ : A→ A a
τ -τ continuous derivation of A. We denote by A∗ the dual of A endowed with
the dual topology, i.e. the topology of uniform convergence on τ -bounded
subsets of A. Moreover A∗∗ stands for the bidual of A endowed with the
bidual topology, denoted by ts, i.e. the topology of uniform convergence on
bounded subsets of A∗ with respect to the dual topology.

Since δ : A→ A is τ -τ continuous, the map δ∗ : A∗ → A∗, δ∗(f) = f ◦ δ,
is a well-defined linear map.

Lemma 3.1. For a locally convex algebra A[τ ] and δ : A → A a τ -τ
continuous derivation, the map δ∗ : A∗ → A∗, f 7→ f ◦ δ, is continuous with
respect to the dual topology on A∗.

Proof. Let (fi)i∈I ⊂ A∗ be such that fi → 0 with respect to the dual
topology on A∗. Then sup{|fi(a)| : a ∈ B} → 0 for every τ -bounded subset
B of A. Hence sup{|δ∗(fi)(a)| : a ∈ B} = sup{|fi(δ(a))| : a ∈ B} → 0, since
δ(B) is τ -bounded because B is τ -bounded and δ is τ -τ continuous.

We now consider the map δ∗∗ : A∗∗ → A∗∗, δ∗∗(x∗∗)(f) = x∗∗(δ∗(f)),
where x∗∗ ∈ A∗∗ and f ∈ A∗. By similar arguments to those in the proof of
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the previous lemma, we easily find that δ∗∗ is a well-defined ts-ts continuous
linear map.

Suppose that A[τ ] is a Fréchet locally convex algebra. Then A[τ ] is bar-
relled and hence multiplication on A is hypocontinuous [25, p. 160]. More-
over, since A[τ ] is metrizable, A∗∗[ts] is a Fréchet space [23, Corollary 2,
p. 153].

As in [16, Lemma 3.4], the following multiplication is defined on A∗∗,
which we will denote by �: for x∗∗, y∗∗ ∈ A∗∗,

x∗∗ � y∗∗ ∈ A∗∗, where (x∗∗ � y∗∗)(f) = x∗∗(y∗∗ · f), f ∈ A∗;
y∗∗ · f ∈ A∗, where (y∗∗ · f)(a) = y∗∗(f · a), a ∈ A;

f · a ∈ A∗, where (f · a)(b) = f(ab), b ∈ A.
The map � : (A∗∗, ts) × (A∗∗, ts) → (A∗∗, ts) is separately continuous [16,
Theorem 3.8], hence A∗∗ endowed with the multiplication � is a Fréchet
topological algebra [16, Theorem 3.9].

Lemma 3.2. Let A[τ ] be a Fréchet locally convex algebra and δ : A→ A
a τ -τ continuous derivation. The map δ∗∗ : A∗∗ → A∗∗ is a derivation when
A∗∗ is endowed with the multiplication �.

Proof. For x∗∗, y∗∗ ∈ A∗∗, f ∈ A∗, we have

δ∗∗(x∗∗ � y∗∗)(f) = (x∗∗ � y∗∗)(δ∗(f)) = x∗∗(y∗∗ · δ∗(f)).

Also,

(δ∗∗(x∗∗) � y∗∗ + x∗∗ � δ∗∗(y∗∗))(f) = δ∗∗(x∗∗)(y∗∗ · f) + x∗∗(δ∗∗(y∗∗) · f).

So it suffices to show that

δ∗(y∗∗ · f) + δ∗∗(y∗∗) · f = y∗∗ · δ∗(f).

On the one hand, for a ∈ A, we have

(δ∗(y∗∗ · f) + δ∗∗(y∗∗) · f)(a) = (y∗∗ · f)(δ(a)) + δ∗∗(y∗∗)(f · a)

= y∗∗(f · δ(a) + δ∗(f · a)).

Moreover, (f · δ(a) + δ∗(f · a))(b) = f(δ(a)b) + (f · a)(δ(b)) = f(δ(ab)) for
all b ∈ A.

On the other hand, (y∗∗ · δ∗(f))(a) = y∗∗(δ∗(f) · a), where, for b ∈ A,

(δ∗(f) · a)(b) = δ∗(f)(ab) = f(δ(ab)),

hence we have the result.

Note that δ∗∗ is an extension of δ, since for a ∈ A and f ∈ A∗, we have

δ∗∗(a)(f) = â(δ∗(f)) = δ∗(f)(a)

= f(δ(a)) = δ̂(a)(f), so δ∗∗|A = δ,

where ̂ : A→ A∗∗ denotes the canonical embedding of A into A∗∗.
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Let now A[τ ] be a GB∗-algebra. We consider A as being faithfully repre-
sented, via the universal representation π (see Section 2), as a ∗-subalgebra
of L†(D) for a domain D dense in some Hilbert space H. Throughout what
follows, we refer to π as the universal representation of a GB∗-algebra. The
weak topology, w, on π(A) is the topology induced by the family of the
seminorms

pξ,η(π(a)) = |〈π(a)ξ, η〉|, a ∈ A, ξ, η ∈ D

[17, p. 101]. The σ-weak topology, σw, on π(A) is the topology induced by
the seminorms

p(ξn)n, (ηn)n(π(a)) =
∣∣∣ ∞∑
n=1

〈π(a)ξn, ηn〉
∣∣∣,

where (ξn)n∈N and (ηn)n∈N are sequences inD such that
∑∞

n=1 ‖π(a)ξn‖2 <∞
for every a ∈ A, and similarly for (ηn)n [17, p. 101].

Since A is a GB∗-algebra, π(A) is a closed symmetric ∗-algebra [10,
Theorem 7.11]. Therefore, from [17, Theorem 3], we see that π(A)cc =
[(π(A))b]

w = [(π(A))b]
σw, where [ ]w (resp. [ ]σw) stands for the weak (resp.

the σ-weak) closure of π(A)b in L†(D), and π(A)b is the bounded part of
π(A), i.e. π(A)b = {x ∈ π(A) : x ∈ B(H)}. Furthermore,

π(A)c = {S ∈ L†(D) : Sπ(a) = π(a)S for all a ∈ A},
π(A)cc = {S ∈ L†(D) : ST = TS for all T ∈ π(A)c}

are the commutant and bicommutant of π(A) respectively [17, p. 98].

Lemma 3.3. Let A[τ ] be a GB∗-algebra and π the universal representa-
tion of A. Then:

(1) π(A)b = π(A[B0]).
(2) [π(A[B0])]

w = [π(A)]w = [π(A)]σw.

Proof. (1) B0 is the unit ball of A[B0] (see Proposition 2.3) and π(B0) =
{x ∈ π(A) ∩ B(H) : ‖x‖ ≤ 1} [10, Theorem 7.6]. Therefore π(B0) =
(π(A)b)1, where ( )1 stands for the unit ball of the space in brackets. Since
π is faithful, we get the result.

(2) On the one hand, π(A[B0]) = π(A)b ⊂ π(A), which implies that
[π(A[B0])]

w ⊂ [π(A)]w. On the other hand, π(A) ⊂ π(A)cc = [π(A[B0])]
w,

which implies that [π(A)]w ⊂ [π(A[B0])]
w. Similarly, we show that [π(A)]σw

= [π(A)b]
σw = π(A)cc = [π(A)]w.

Remark 3.4. From [17, Proposition 1], π(A)cc is a symmetric closed
∗-algebra on D whose bounded part is the von Neumann algebra

π(A[B0])
′′ = {S ∈ B(H) : SX = XS for all X ∈ π(A[B0])

′}.
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Since π(A[B0]) is a C∗-algebra, (π(A[B0]))
′′ is its enveloping von Neumann

algebra of π(A[B0]), i.e.

(π(A[B0]))
′′ = [π(A[B0])]

wot = [π(A[B0])]
sot,

where [ ]wot (resp. [ ]sot) denotes the closure of the set in brackets with
respect to the weak (resp. strong) operator topology on B(H). Therefore,
as we have seen above,

[π(A[B0])]
wot = (π(A[B0]))

′′ ⊂ π(A)cc = [π(A[B0])]
w = [π(A)]w.

Let us now assume that A is a GB∗-algebra whose image π(A) through its
universal representation π is a countably dominated algebra. Then there ex-
ists a cofinal sequence, say (π(an))n∈N, in π(A)+ such that π(A) =⋃
n∈N ηπ(an). Note that π(an) ∈ π(A)+ implies that an ∈ A+ for all n ∈ N.

Indeed, first, an is self-adjoint for all n ∈ N, as can be easily seen from the
faithfulness of π. Furthermore, since 〈π(an)ξ, ξ〉 ≥ 0 for all ξ ∈ D and from
the way π is constructed, we see that f(an) ≥ 0 for every positive linear
functional f on A. Therefore an ∈ A+ from [10, Theorem 6.7]. Now since
π(an) ≤ π(an + 1), n ∈ N, we can assume without loss of generality that
π(an) ≥ 1 for all n ∈ N. Then, from [5, Lemma 4.1], we have π(an)2 ≥ π(an),
n ∈ N, so π(A) =

⋃
n∈N η(π(1+a2n)). Since for all n ∈ N, (1 + a2n)−1 exists and

belongs to A[B0], we find that π((1 + a2n)−1) = (π(1 + a2n))−1 exists and
belongs to π(A[B0]). Therefore π(1 + a2n)D = D. Thus the positive cone
π(A)+ is normal with respect to the ρ-topology [5, Theorem 1]. This yields
the following result.

Corollary 3.5. Let A[τ ] be a GB∗-algebra such that π(A) is countably
dominated, where π is the universal representation of A. Then every ρ-
continuous linear functional on π(A) is σw-continuous.

Proof. Let f be a ρ-continuous linear functional on π(A). Since π(A)+ is
normal with respect to the ρ-topology, there exist positive and ρ-continuous
linear functionals f1 and f2 on π(A) such that f = f1 − f2 [23, Chapter 5,
§3.3, Corollary 1]. From the way the representation π is constructed (see
Section 2), there exist ξ1, ξ2 ∈ D such that fi(π(a)) = 〈π(a)ξi, ξi〉, a ∈ A, i =
1, 2. Therefore f1 and f2 are weakly continuous, and hence σw-continuous,
and so f is σw-continuous.

The following simple lemma can be found in [19, p. 756] (without proof).

Lemma 3.6. Let A ⊆ L†(D) be a GB∗-algebra, for a domain D dense in
a Hilbert space H. The positive cone A+ admits a countable cofinal subset,
hence A is countably dominated, if and only if D is a metrizable space under
the graph topology tA, defined by the seminorms ξ ∈ D 7→ ‖aξ‖, a ∈ A.

Proof. For the reverse implication, assume that (D, tA) is a metrizable
space. Then it has a countable basis of 0-neighborhoods, say {Vn}n∈N. We
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can suppose that there exists an ∈ A such that Vn = {ξ ∈ D : ‖anξ‖ ≤ 1},
n ∈ N. Observe that

‖anξ‖2 = 〈a∗nanξ, ξ〉 ≤ ‖(1 + a∗nan)1/2ξ‖2.
Therefore if

Ωn = {ξ ∈ D : ‖(1 + a∗nan)1/2ξ‖ ≤ 1},
then Ωn ⊂ Vn, hence {Ωn}n∈N is a basis of 0-neighborhoods of D for the
topology tA, and from functional calculus for GB∗-algebras we know that
(1 + a∗nan)1/2 ∈ A+ [10, Theorem 4.12 and Proposition 5.1]. For brevity let
us denote (1 + a∗nan)1/2 by bn for all n ∈ N. Note that for every ξ ∈ D,
ξ 6= 0, we have ‖bnξ‖ 6= 0 for all n ∈ N.

Now let a ∈ A+. Then for V = {ξ ∈ D : ‖aξ‖ ≤ 1}, there exists n ∈ N
such that Ωn ⊂ V. So for ξ ∈ D, we get ‖a(ξ/‖bn(ξ)‖)‖ ≤ 1 and thus
‖aξ‖ ≤ ‖bnξ‖. Hence for every ξ ∈ D, from the geometric mean inequality
we have

〈aξ, ξ〉 ≤ 〈aξ, aξ〉1/2〈ξ, ξ〉1/2

≤ 1

2
〈(a∗a+ 1)ξ, ξ〉 ≤ 1

2
〈(b2n + 1)ξ, ξ〉.

Hence we deduce that a ≤ 1
2(b2n+ 1), which implies that A+ has a countable

cofinal subset, namely the set {12(b2n + 1) : n ∈ N} = {12a
∗
nan + 1 : n ∈ N}.

For the forward implication, suppose that A+ has a cofinal sequence, say
{an : n ∈ N}. Let V be a 0-neighborhood in D, say

V ≡ Vε,a = {ξ ∈ D : ‖aξ‖ ≤ ε},
where ε > 0 and a ∈ A. Then there exists n ∈ N such that a∗a ≤ an, hence
‖aξ‖2 = 〈a∗aξ, ξ〉 ≤ 〈anξ, ξ〉 ≤ ‖anξ‖ ‖ξ‖. Now we can assume that 1/n < ε,
where ε is as above, for otherwise there exists m > n such that 1/m < ε and
an ≤ am, if we suppose without loss of generality that (an)n is increasing
since it is cofinal. So, if

Vn = {ξ ∈ D : ‖ξ‖ ≤ 1/n, ‖anξ‖ ≤ 1/n},
then ‖aξ‖2 ≤ (1/n)‖ξ‖ < ε‖ξ‖ < ε2 for all ξ ∈ Vn. Thus ‖aξ‖ < ε, so
Vn ⊂ Vε,a. Hence {Vn}n∈N is a countable basis of 0-neighborhoods for D
with respect to tA, i.e. (D, tA) is a metrizable space.

Now and in what follows, we shall make the assumption that A is a GB∗-
algebra such that π(A) is countably dominated. For brevity we will refer to
such a GB∗-algebra as a countably dominated GB∗-algebra.

We now consider the map j : D × D → π(A)∗, (ξ, η) 7→ ωξ,η, where
ωξ,η(π(a)) = 〈π(a)ξ, η〉 for all a ∈ A, and π(A)∗ denotes the set of all
ρ-continuous linear functionals on π(A). Since ωξ,η is weakly continuous on
π(A), it is ρ-continuous (see [19, p. 761]) and thus j is well-defined. Since A is
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assumed to be countably dominated and say (π(an))n∈N is the cofinal sequence
in π(A)+, we can easily deduce that the graph topology on D is equivalently
described by the seminorms ‖ · ‖π(an), n ∈ N, where ‖ξ‖π(an) = ‖π(an)ξ‖ for
every ξ ∈ D. Since for all n ∈ N, π(an) : D → D is tπ(A)-‖ · ‖ continuous, all

π(an) extend to the completion D̃ of D with respect to the graph topology
tπ(A). Therefore the extensions of the seminorms ‖·‖π(an), n ∈ N, to D̃ define

the tπ(A) topology on D̃. Hence, without loss of generality, we can suppose
that the metrizable space D is tπ(A)-complete, i.e. a Fréchet space.

Lemma 3.7. Let A[τ ] be a countably dominated GB∗-algebra acting on a
domain D via its universal representation π. The map j : D ×D → π(A)∗,
(ξ, η) 7→ ωξ,η, is continuous when D is endowed with the graph topology tπ(A)
and π(A)∗ is endowed with the dual topology.

Proof. Let η0 ∈ D and (ξn)n∈N ⊂ D be such that ξn → 0 with respect
to tπ(A). Let W be a ρ-bounded subset of π(A). From [6, Proposition 1.2],
there is an am ∈ A+, m ∈ N, such that |〈Tξ, ξ〉| ≤ 〈π(am)ξ, ξ〉 for all ξ ∈ D
and T ∈ W . Hence T ∈ ηπ(am), and so, as is implied in [18, p. 471], there
exists M <∞ such that

|〈Tξ, η〉| ≤M〈π(am)ξ, ξ〉〈π(am)η, η〉, ξ, η ∈ D, T ∈W.
Therefore

sup{|j(ξn, η0)(T )| : T ∈W} = sup{|〈Tξn, η0〉| : T ∈W}
≤M〈π(am)ξn, ξn〉 〈π(am)η0, η0〉
≤M‖π(am)ξn‖ ‖ξn‖〈π(am)η0, η0〉 → 0

as n→∞. Similarly it can be shown that j(η0, ξn)→ 0, with respect to the
dual topology in π(A)∗. Hence j is separately continuous, therefore jointly
continuous since D is assumed to be a Fréchet space.

Remark 3.8. (1) From the previous lemma, j extends to a continuous
linear map from D ⊗̂D into π(A)∗, for which we retain the same symbol j.
The space D ⊗̂D is the completion of the projective tensor product D⊗

π
D

when D is equipped with the graph topology tπ(A). Every σw-continuous
linear functional f on π(A) is of the form f(T ) =

∑∞
n=1 λn〈Tξn, ηn〉 for a

unique element u =
∑∞

n=1 λnξn ⊗ ηn ∈ D ⊗̂D, where (ξn)n∈N and (ηn)n∈N
are sequences in D converging to zero with respect to tπ(A), and (λn)n∈N ⊂ C
is such that

∑∞
n=1 |λn| <∞ [5, p. 1017]. Then, from Corollary 3.5, the map

j is onto, hence π(A)∗ is vectorially isomorphic to D ⊗̂D/ker j, via the map
induced from j, for which we keep the same symbol.

(2) Since π(A) is countably dominated, its dual π(A)∗ is a Fréchet space
(see [19, p. 756]). Therefore j is an injective continuous map from the Fréchet
space D ⊗̂D/ker j onto the Fréchet space π(A)∗. Then from the open map-
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ping theorem for Fréchet spaces we see that j is a topological isomorphism.
Therefore π(A)∗∗ is topologically and vectorially isomorphic, via the trans-
pose map j∗ of j, to the set {f ∈ (D ⊗̂ D)∗ : f |ker j = 0}, which, up to
topological vector space isomorphism, is equal to π(A)◦◦, the bipolar of
π(A) with respect to the duality (D ⊗̂ D,B(D,D)) (for this duality see
[19, Corollary 1]). The symbol B(D,D) stands for the set of all continuous
sesquilinear forms on D×D, and π(A) is viewed as a subset of B(D,D) via
the relation π(a)(ξ, η) = 〈π(a)ξ, η〉, a ∈ A, ξ, η ∈ D. The bipolar of π(A)
equals [π(A)]σw = [π(A)]w by the bipolar theorem.

In the proposition that follows, j∗ denotes the transpose of j, and
π∗, π∗∗ denote the transpose and the bi-transpose maps of π respectively.
With regard to the above mentioned topological vector space isomorphism of
(D⊗̂D/ ker j)∗ with [π(A)]w, we are going to view an element (j∗◦π∗∗)(x∗∗),
x∗∗ ∈ A∗∗, interchangeably as an element of these two spaces, via the fol-
lowing equality, which holds up to topological vector space isomorphism:

〈(j∗ ◦ π∗∗)(x∗∗)ξ, η〉 = j∗(π∗∗(x∗∗))(ξ ⊗ η + ker j), x∗∗ ∈ A∗∗, ξ, η ∈ D.
Proposition 3.9. Let A[τ ] be a countably dominated Fréchet GB∗-al-

gebra. The map j∗ ◦ π∗∗ : A∗∗ → [π(A)]w is a σ(A∗∗, A∗)-weak continuous
algebraic morphism.

Proof. Consider a net (x∗∗i )i∈I in A∗∗ such that x∗∗i → 0 with respect to
σ(A∗∗, A∗). Then, for every ξ ∈ D, we have

〈(j∗ ◦ π∗∗)(x∗∗i )ξ, ξ〉 = j∗(π∗∗(x∗∗i ))(ξ ⊗ ξ + ker j)

= π∗∗(x∗∗i )(j(ξ ⊗ ξ + ker j)) = π∗∗(x∗∗i )(ωξ,ξ)

= x∗∗i (π∗(ωξ,ξ))→ 0,

since π∗(ωξ,ξ) ∈ A∗. Therefore (j∗ ◦ π∗∗)(x∗∗i )→ 0 weakly. Hence j∗ ◦ π∗∗ is
σ(A∗∗, A∗)-weak continuous.

Also, j∗ is an algebraic morphism when restricted to π(A): indeed, if
c ∈ A, then π(c) induces a continuous linear map on D ⊗̂D/ker j given by

π(c)
( n∑
k=1

ξk ⊗ ηk + ker j
)

=
n∑
k=1

〈π(c)ξk, ηk〉, (ξk)
n
k=1, (ηk)

n
k=1 ⊂ D.

Then

j∗(π(c))
( n∑
k=1

ξk ⊗ ηk + ker j
)

= π(c)
(
j
( n∑
k=1

ξk ⊗ ηk + ker j
))

= π(c)
( n∑
k=1

ωξk,ηk

)
=

n∑
k=1

〈π(c)ξk, ηk〉

= π(c)
( n∑
k=1

ξk ⊗ ηk + ker j
)
.
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Therefore j∗|π(A) can be identified with the representation π, hence j∗◦π∗∗|A
is an algebraic morphism. For a ∈ A, the map A∗∗ → A∗∗, x∗∗ 7→ â � x∗∗,
is σ(A∗∗, A∗)-σ(A∗∗, A∗) continuous [16, Lemma 3.6]. Therefore, if a ∈ A,
b∗∗ ∈ A∗∗ and (bi)i∈I ⊂ A is a net such that bi → b∗∗ with respect to
σ(A∗∗, A∗), then

(j∗ ◦ π∗∗)(â � b∗∗) = (j∗ ◦ π∗∗)
(

lim
σ(A∗∗,A∗)

abi

)
= lim

w
(j∗ ◦ π∗∗)(abi) = j∗(π∗∗(a))(j∗ ◦ π∗∗)

(
lim

σ(A∗∗,A∗)
bi

)
= (j∗ ◦ π∗∗)(a)(j∗ ◦ π∗∗)(b∗∗).

Also, for b∗∗ ∈ A∗∗, the map A∗∗ → A∗∗, a∗∗ → a∗∗ � b∗∗, is σ(A∗∗, A∗)-
σ(A∗∗, A∗) continuous [16, Lemma 3.4]. So, if a∗∗, b∗∗ ∈ A∗∗ and (ai)i∈I ⊂ A
with ai → a∗∗ with respect to σ(A∗∗, A∗), we get

(j∗ ◦ π∗∗)(a∗∗ � b∗∗) = (j∗ ◦ π∗∗)
(

lim
σ(A∗∗,A∗)

âi � b
∗∗
)

= lim
w

(j∗ ◦ π∗∗)(âi � b∗∗)

=
(

lim
w

(j∗ ◦ π∗∗)(ai)
)

(j∗ ◦ π∗∗)(b∗∗)

= (j∗ ◦ π∗∗)(a∗∗)(j∗ ◦ π∗∗)(b∗∗).

So, j∗ ◦ π∗∗ is an algebraic morphism.

Lemma 3.10. Let A[τ ] be a countably dominated Fréchet GB∗-algebra.
There exists a ts-ts continuous vector space involution, say [, on A∗∗, such
that

(j∗ ◦ π∗∗)((x∗∗)[) = ((j∗ ◦ π∗∗)((x∗∗)))†, x∗∗ ∈ A∗∗,

where † stands for the involution of L†(D).

Proof. For x∗∗ ∈ A∗∗, let

(x∗∗)[(f) := x∗∗(f ]), f ∈ A∗, where f ](a) := f(a∗), a ∈ A.

Observe that f ] ∈ A∗, due to the continuity of the involution ∗ on A. The
map [ is well-defined, i.e. (x∗∗)[ ∈ A∗∗. Indeed, if (fi)i∈I ⊂ A∗ is such

that fi → 0 with respect to the dual topology on A∗, then f ]i → 0 with
respect to the dual topology: for every τ -bounded subset V of A, we have
sup{|f ]i (a)| : a ∈ V } = sup{|fi(a∗)| : a∗ ∈ C} → 0, since C = {a∗ : a ∈ V } is
a bounded subset of A due to the continuity of the involution on A. Therefore
x∗∗(f ]i ) → 0, hence (x∗∗)[ ∈ A∗∗. Similarly, it can easily be shown that [ is
a ts-ts continuous map which defines a vector space involution on A∗∗.

Clearly, for every a ∈ A, â[ is identified with a∗, the adjoint element of
a in A, since

â[(f) = â(f ]) = f ](a) = f(a∗) = â∗(f), f ∈ A∗.
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Let x∗∗ ∈ A∗∗ and (xi)i∈I ⊂ A be such that xi → x∗∗ with respect to

σ(A∗∗, A∗). Then, for every f ∈ A∗, we have (x̂i)
[(f) = x̂i(f ])→ x∗∗(f ]) =

(x∗∗)[(f), which implies that x̂i
[ → (x∗∗)[ with respect to σ(A∗∗, A∗). There-

fore

(j∗ ◦ π∗∗)((x∗∗)[) = (j∗ ◦ π∗∗)
(

lim
σ(A∗∗,A∗)

(xi)
∗
)

= lim
w
j∗((π(xi)

∗))

=
(

lim
w
j∗((π(xi)))

)†
= ((j∗ ◦ π∗∗)((x∗∗)))†.

For a countably dominated Fréchet GB∗-algebra, let us now consider a
second product onA∗∗ denoted by♦ and defined as follows. Forx∗∗, y∗∗ ∈ A∗∗,

(x∗∗ ♦ y∗∗)(f) = y∗∗(f · x∗∗), f ∈ A∗,
where f · x∗∗ ∈ A∗ such that (f · x∗∗)(a) = x∗∗(a · f), a ∈ A, and a · f ∈ A∗
with (a · f)(b) = f(ba), b ∈ A. Since multiplication on A is hypocontinuous,
the well-definedness of all of these actions can be seen by using exactly the
same arguments as those applied in [16, p. 75].

As noted in the proof of Proposition 3.9, for every a ∈ A, b∗∗ ∈ A∗∗, the
maps x∗∗ 7→ â�x∗∗ and x∗∗ → x∗∗�b∗∗ are σ(A∗∗, A∗)-σ(A∗∗, A∗) continuous.
Therefore, if x∗∗, y∗∗ ∈ A∗∗ and (xi)i∈I , (yj)j∈J ⊂ A are such that xi → x∗∗

and yj → y∗∗ with respect to the σ(A∗∗, A∗)-topology, then we get

x∗∗ � y∗∗ = lim
i

lim
j
x̂iyj

in the σ(A∗∗, A∗)-topology (for a statement of this fact in the normed case,
see [9, p. 824]). Similarly, since the maps x∗∗ 7→ x∗∗♦ â and x∗∗ 7→ b∗∗♦x∗∗
are σ(A∗∗, A∗)-σ(A∗∗, A∗) continuous,

x∗∗ ♦ y∗∗ = lim
j

lim
i
x̂iyj

with respect to the σ(A∗∗, A∗)-topology.

Proposition 3.11. Let A[τ ] be a countably dominated Fréchet GB∗-
algebra which is also an AO∗-algebra. Then the two products, �,♦, on A∗∗

coincide.

Proof. Let x∗∗, y∗∗ ∈ A∗∗ and (xi)i∈I , (yj)j∈J ⊂ A be such that xi → x∗∗

and yj → y∗∗ with respect to the σ(A∗∗, A∗)-topology. Also let f be a positive
linear functional on A. From the construction of the universal representation
π of A, there exists ξf ∈ D such that f(a) = 〈π(a)ξf , ξf 〉, a ∈ A. Then, by
Proposition 3.9, Lemma 3.10 and the comments which follow it, we have

(x∗∗ � y∗∗)(f) = lim
i

lim
j
〈π(xiyj)ξf , ξf 〉

= lim
i

lim
j
〈(j∗ ◦ π∗∗)(yj)ξf , (j∗ ◦ π∗∗)(x∗i )ξf 〉

= 〈(j∗ ◦ π∗∗)(y∗∗)ξf , ((j∗ ◦ π∗∗)(x∗∗))†ξf 〉
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= lim
j

lim
i
〈π(xiyj)ξf , ξf 〉 = lim

j
lim
i
x̂iyj(f)

= (x∗∗ ♦ y∗∗)(f).

Based on the previous equality and on the fact that on A, as an AO∗-algebra,
every continuous linear functional is a linear combination of continuous pos-
itive linear functionals [24, Corollary 4.4], we get the result.

Based on the previous proposition, we derive the following result.

Proposition 3.12. Let A[τ ] be a countably dominated Fréchet GB∗-
algebra which is also an AO∗-algebra. Then A∗∗[ts], endowed with the invo-
lution [, is a Fréchet locally convex ∗-algebra.

Proof. As noted in the remarks before Lemma 3.2, A∗∗[ts], endowed with
the multiplication �, is a Fréchet topological algebra. Also the map [ is a
ts-continuous vector involution on A∗∗ (see Lemma 3.10). So it suffices to
show that [ is an algebraic involution. Let a ∈ A, y∗∗ ∈ A∗∗, f ∈ A∗. We have

(â � y∗∗)[(f) = (â � y∗∗)(f ]) = (y∗∗ · f ])(a) = y∗∗(f ] · a)

= y∗∗((a∗ · f)]) = (y∗∗)[(a∗ · f) = ((y∗∗)[ � â∗)(f)

= ((y∗∗)[ � â[)(f).

Let x∗∗, y∗∗ ∈ A∗∗ and (xi)i∈I ⊂ A be such that xi → x∗∗ with respect to the
σ(A∗∗, A∗)-topology. Then, from the ts-continuity of [ and from Proposition
3.11, we get

(x∗∗ � y∗∗)[ = lim
σ(A∗∗,A∗)

(x̂i � y
∗∗)[ = lim

σ(A∗∗,A∗)
(y∗∗)[ � x̂i

[

= lim
σ(A∗∗,A∗)

(y∗∗)[ ♦ x̂i[ = (y∗∗)[ ♦ (x∗∗)[

= (y∗∗)[ � (x∗∗)[.

Proposition 3.13. Let A[τ ] be a countably dominated Fréchet GB∗-al-
gebra. The universal map π : A→ π(A) ⊂ L†(D) is τ -ρ continuous.

Proof. Following the argument in [19, p. 771, last paragraph of §2], we
are going to prove that every equicontinuous subset of π(A)∗ corresponds to
a tπ(A)-bounded subset of the domain D. Let Ω be an equicontinuous subset
of π(A)∗. Since π(A)+ is normal, we can focus on Ω consisting of positive
linear functionals (see [23, Corollary 1, pp. 219–220]). Then for every f ∈ Ω,
there exists ξf ∈ D such that f(π(a)) = 〈π(a)ξf , ξf 〉 for all a ∈ A. Hence
for every a ∈ A, we get

sup
f∈Ω
‖ξf‖π(a) = sup

f∈Ω
‖π(a)ξf‖ = sup

f∈Ω
〈π(a∗a)ξf , ξf 〉1/2

= sup
f∈Ω

f(π(a∗a))1/2 <∞,
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since Ω is equicontinuous. Therefore the set {ξf : f ∈ Ω}, to which Ω corre-
sponds, is a bounded subset of D with respect to the graph topology tπ(A).

Let now (an)n∈N ⊂ A be such that an →τ 0. Then, from [21, The-
orem 4.2], we see that π(an) → 0 with respect to the uniform topology
τD on L†(D), i.e. supξ,η∈M |〈π(an)ξ, η〉| →n 0, where M runs through the
bounded subsets of D with respect to the graph topology tπ(A). So if Ω is an
equicontinuous subset of π(A)∗ consisting of positive linear functionals, and
BΩ = {ξf : f ∈ Ω}, the tπ(A)-bounded subset of D to which Ω corresponds,

we get sup{|π̂(ai)(f)| : f ∈ Ω} = sup{|〈π(ai)ξ
f , ξf 〉| : ξf ∈ BΩ} → 0.

Hence, π(ai) → 0 with respect to the topology of uniform convergence on
equicontinuous subsets of π(A)∗ (see [23, Corollary 3, p. 220]). Therefore
π(ai)→ 0 with respect to the ρ-topology and thus π is τ -ρ continuous.

Lemma 3.14. Let A[τ ] be a countably dominated Fréchet GB∗-algebra
such that π(A)[ρ] is a Fréchet space, where π is the universal representation
of A. Then the map j∗ ◦ π∗∗ : A∗∗ → (D ⊗̂D/ker j)∗ = [π(A)]w ⊂ L†(D) is
an algebraic and topological isomorphism from A∗∗, endowed with the bidual
topology, onto (D ⊗̂D/ker j)∗, endowed with the dual topology.

Proof. The fact that j∗ ◦ π∗∗ is an algebraic morphism was shown in
Proposition 3.9. From Proposition 3.13 and the hypothesis, the universal
map π : A → π(A) is a τ -ρ continuous, injective and surjective linear map
between the Fréchet spaces A[τ ] and π(A)[ρ]. Thus, from the open mapping
theorem for Fréchet spaces, π is a topological isomorphism. Hence π∗∗ is a
topological isomorphism. Moreover, from Remark 3.8(2), we find that the
map j : D ⊗̂ D/ ker j → π(A)∗ is a topological isomorphism, so its trans-
pose j∗ is a topological isomorphism too. From the above facts, the result
follows.

Remark 3.15. (1) In the proof of Proposition 3.13, we have seen that
for a countably dominated Fréchet GB∗-algebra A, the uniform topology
τD is stronger than the ρ-topology on π(A). Let us now assume that for
a GB∗-algebra A, π(A) is ρ-closed, i.e. π(A) is countably dominated, say
π(A) =

⋃
n∈N ηπ(an), and (ηπ(an), ρπ(an)) is a Banach space for every n ∈ N

[6, Definition 1.2]. Consider a tπ(A)-bounded subset B of D and for every
ξ ∈ B, let fξ : π(A)→ C be defined by

fξ(π(a)) = 〈π(a)ξ, ξ〉, a ∈ A.

Since fξ is bounded on π(A) (as can be easily seen) and (π(A), ρ) is bornolog-
ical [18, Theorem 1(1)], we see that fξ ∈ π(A)∗. Let ΩB = {fξ : ξ ∈ B}.
Then ΩB is a simply bounded subset of π(A)∗ (i.e. bounded with respect
to the topology of uniform convergence on finite subsets of π(A)). From our
assumption of π(A) being ρ-closed, π(A)[ρ] is a barrelled space, and hence,
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from [23, Theorem 4.2, p. 83], we conclude that ΩB is an equicontinuous
subset of π(A)∗.

Let now (π(ai))i∈I ⊂ π(A) be such that π(ai) → 0 with respect to ρ.
Then π(ai) → 0 with respect to the topology of uniform convergence on
equicontinuous subsets of π(A)∗ [23, Corollary 4, p. 127]. Therefore for every
tπ(A)-bounded subset B of D,

sup{|〈π(ai)ξ, ξ〉| : ξ ∈ B} = sup{|fξ(π(ai))| : fξ ∈ ΩB}

= sup{|π̂(ai)(fξ)| : fξ ∈ ΩB} → 0.

Hence π(ai) → 0 with respect to τD. Therefore, for a GB∗-algebra A such
that π(A) is ρ-closed, the ρ-topology is stronger than the uniform topology
τD on π(A).

(2) If a Fréchet GB∗-algebra A is such that π(A) =
⋃
n∈N ηπ(an) is ρ-

closed, then, from [15, Theorem 1, p. 147], there is an m ∈ N such that
π(A) = ηπ(am). Consequently, by Proposition 3.13 and the open mapping
theorem, π is a topological isomorphism.

(3) Let A[τ ] be a countably dominated GB∗-algebra. Then, from the
paragraph just before Corollary 3.5, the positive cone π(A)+ is normal with
respect to the ρ-topology. If, in addition, the countably dominated GB∗-
algebra A is assumed to be Fréchet and such that π(A)[ρ] is a Fréchet locally
convex algebra, then from the open mapping theorem for Fréchet spaces,
A[τ ] is topologically isomorphic to π(A)[ρ]. Hence, from the aforementioned
isomorphism and a useful characterization of normality given in [23, §3.1,
(a)⇔(c), p. 215] we can easily conclude that A+ is normal with respect to τ .
Therefore, from [24, Theorem 5.1(II)], A[τ ] is an AO∗-algebra.

We are now able to prove the following result.

Proposition 3.16. Let A[τ ] be a countably dominated Fréchet GB∗-
algebra. The following statements are equivalent:

(i) A[τ ] is an AO∗-algebra.
(ii) π(A)[ρ] is a Fréchet locally convex ∗-algebra.

Proof. (ii)⇒(i). This is Remark 3.15(3).
(i)⇒(ii). Suppose that A[τ ] is an AO∗-algebra. We first define a topology

τ ′ on π(A). Let (pn) be a family of ∗-seminorms on A defining the topology τ .
Then we define a family (qn) of ∗-seminorms on π(A) by qn(π(x)) = pn(x)
for all x ∈ A and n ∈ N. The topology τ ′ on π(A) defined by the family (qn)
has the property that π is a topological ∗-isomorphism of A[τ ] onto π(A)[τ ′]
and π(A)[τ ′] is complete.

Since A[τ ] is an AO∗-algebra, it follows that A+ is τ -normal, and hence
π(A)+ is τ ′-normal. By [23, Corollary 1, pp. 219–220], τ ′ is the topology
of uniform convergence on equicontinuous subsets of (π(A)+)′, the set of
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all τ ′-continuous positive linear functionals on π(A). Recall that since A
is countably dominated, π(A)+ is ρ-normal. Therefore, the topology ρ on
π(A) is the topology of uniform convergence of equicontinuous subsets of
(π(A)+)∗, the set of all ρ-continuous positive linear functionals on π(A). By
[18, Theorem 1(3)], every positive linear functional on π(A) is ρ-continuous.
Since π(A)[τ ′] is complete, every positive linear functional on π(A) is τ ′-
continuous [10, Corollary 8.2]. It is now immediate from the above that the
topologies τ ′ and ρ of π(A) coincide. Therefore π(A)[ρ] is a Fréchet locally
convex ∗-algebra.

The following theorem is the main result of this article.

Theorem 3.17. Let A[τ ] be a Fréchet countably dominated GB∗-algebra
which is also an AO∗-algebra. Then A∗∗[ts] endowed with the multiplication
� is a Fréchet GB∗-algebra.

Proof. By Propositions 3.16 and 3.12, π(A)[ρ] and A∗∗[ts] are Fréchet
locally convex ∗-algebras. To show that A∗∗[ts] is a GB∗-algebra, by [20] it
suffices to show that the following three conditions hold:

(1) A∗∗ contains a ∗-subalgebra B that is a C∗-algebra with respect to
some norm.

(2) (1 + (x∗∗)[ � x∗∗)−1 ∈ B for all x∗∗ ∈ A∗∗.
(3) The unit ball of B is ts-bounded.

(1) Clearly A∗∗ contains A[B0]
∗∗, the bidual of A[B0] with respect to

the norm topology on A[B0]. The latter is isomorphic as a Banach space to
the enveloping von Neumann algebra of A[B0], namely to π(A[B0])

′′. If we
define a norm ‖ · ‖0 on A[B0]

∗∗ by ‖x∗∗‖0 := ‖j∗ ◦ π∗∗(x∗∗)‖, x∗∗ ∈ A[B0]
∗∗,

then A[B0]
∗∗ endowed with the multiplication � is a C∗-algebra. In fact,

(j∗ ◦ π∗∗)(A[B0]
∗∗) = π(A[B0])

′′.

(2) Let x∗∗ ∈ A∗∗. Since [π(A)]w is a closed symmetric ∗-algebra over
π(A[B0])

′′ = (j∗ ◦ π∗∗)(A[B0]
∗∗) by [17, Proposition 1], we deduce that

(1 + (j∗ ◦ π∗∗)(x∗∗)†(j∗ ◦ π∗∗)(x∗∗))−1 exists in π(A[B0])
′′. Therefore, since

j∗◦π∗∗ is injective and onto (see Lemma 3.14), we have (1+(x∗∗)[�x∗∗)−1 ∈
A[B0]

∗∗.

(3) The unit ball of (j∗ ◦ π∗∗)((A[B0])
∗∗) coincides with the unit ball of

(π(A[B0]))
∗∗, where the former set is ‖ · ‖-bounded. Hence, for every T in

the unit ball of (π(A[B0]))
∗∗ and for all ξ ∈ D,

〈Tξ, ξ〉 ≤ ‖T‖〈1ξ, ξ〉 ≤ 〈1ξ, ξ〉,
where the identity operator, 1, belongs to [π(A)]w. Thus the unit ball of
(π(A[B0]))

∗∗ is ρ-bounded. Now (D ⊗̂ D/ker j)∗ is bornological since, by
Lemma 3.14, it is topologically isomorphic to A∗∗[ts] and the latter space is
bornological since it is a Fréchet space provided that A is Fréchet. Therefore,



236 M. Weigt and I. Zarakas

from the proof of [19, Proposition 7], the ρ-bounded subsets of [π(A)]w and
the bounded subsets of (D ⊗̂ D/ker j)∗ with respect to the dual topology
coincide. Hence, the unit ball (π(A[B0]))

∗∗, when considered as a subset of
(D ⊗̂D/ker j)∗, is bounded with respect to the dual topology. So, by Lemma
3.14 the unit ball of A[B0]

∗∗ is ts-bounded: for this, recall that A∗∗ contains
A[B0]

∗∗.

In [27], we have proved the following result.

Theorem 3.18. Every derivation of a Fréchet GB∗-algebra A[τ ] such
that A[B0] is a W ∗-algebra is inner, and hence continuous.

From Theorems 3.17 and 3.18, we obtain the following result.

Corollary 3.19. Let A[τ ] be a Fréchet countably dominated GB∗-al-
gebra which is also an AO∗-algebra. Then every τ -τ continuous derivation
δ : A→ A is spatial and implemented by an element of A∗∗.

It is an open question whether every derivation of a Fréchet GB*-algebra
is continuous, as is the case for C∗-algebras. In addition to Theorem 3.18,
we recently proved in [26] that every derivation of a smooth Fréchet nuclear
GB∗-algebra is continuous. By a smooth Fréchet nuclear GB∗-algebra A[τ ],
we mean a Fréchet GB∗-algebra A[τ ] for which the C∗-algebra A[B0] is
nuclear, and for which there is a family (pλ)λ∈Λ of seminorms defining the
topology τ on A such that for every λ ∈ Λ, there exists µ ∈ Λ such that
pλ(ab) ≤ pµ(a)pλ(b) for all a, b ∈ A. Nuclear GB∗-algebras are introduced
in [14], and some characterizations and examples can be found therein.

4. An example of a countably dominated Fréchet GB*-algebra
which is an AO*-algebra. In this section, we give examples of count-
ably dominated Fréchet GB∗-algebras which are also AO∗-algebras. All C∗-
algebras are trivial examples of such algebras. This section is therefore de-
voted to an example of a countably dominated Fréchet GB∗-algebra which
is an AO∗-algebra, but not necessarily a C∗-algebra.

We begin by sketching an example of a GB∗-algebra given in [11].

Definition 4.1 ([11, Definition 1.1]). A set R of bounded self-adjoint
linear operators on a Hilbert space H is called a generating family if it
satisfies the following conditions:

(i) 0 ≤ a ≤ 1 for all a ∈ R,
(ii) ab = ba for all a, b ∈ R,
(iii) for all a, b ∈ R, there exists c ∈ R such that a ≤ c and b ≤ c,
(iv) for every a ∈ R, there exists b ∈ R such that a ≤ b2.
Observe that the identity operator 1 need not be in R. In what fol-

lows, we equip the set LR =
⋃
a∈R aH with the inductive limit topology
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[11, Definition 1.3]. Let x be a densely defined linear operator on H whose
domain contains LR. Then x is called R-bounded if xa is a bounded linear
operator for every a ∈ R [11, Definition 2.1]. We use RB(H) to denote the
vector space of all R-bounded linear operators. For every x ∈ RB(H), the
restriction of x to LR is a continuous linear operator into H, and conversely,
every continuous linear operator from LR into H is R-bounded [11, remark,
p. 112]. It is clear that R ⊂ RB(H).

On RB(H), we define seminorms pa, a ∈ R, by pa(x) = ‖xa‖ for every
x ∈ RB(H). It follows from the previous paragraph that if pa(x) = 0 for all
a ∈ R, then x = 0 [11, p. 112], implying that RB(H) is a Hausdorff locally
convex space.

If A ⊂ RB(H), then we define Ac ⊂ RB(H) to be the set [11, Definition
2.4]

{y ∈ RB(H) : yx ∈ RB(H), xy ∈ RB(H) and

yxa = xya for all x ∈ A and a ∈ R}.

Furthermore, we define Acc to be (Ac)c. Observe that (Ac)c is a subset of
RB(H).

The map x 7→ x+ := x∗|LR defines an involution on Rcc [11, Definition
3.3 and Lemma 3.4], and pa(x) = pa(x

+) for every a ∈ R and x ∈ Rcc [11,
Lemma 3.6(ii)]. For this, one also uses the facts that R ⊂ Rc, and therefore
Rcc ⊂ Rc.

Theorem 4.2 ([11, Theorem 3.10, Lemma 3.6(i) and Corollary 3.8]). Let
R be a generating family of bounded linear operators on H. Then Rcc is a
sequentially complete GB∗-algebra with respect to the locally convex topology
defined by the family of seminorms pa, a ∈ R, restricted to Rcc, and with
respect to the involution defined above.

The following lemma is trivial, and therefore we omit the proof.

Lemma 4.3. Let 0 ≤ a ∈ B(H), where H is a Hilbert space. Then there
exists n ∈ N such that a ≤ n1.

Now letR be a countable generating family for which there exists a0 ∈ R
invertible in B(H) with a−10 ∈ Rcc. From Theorem 4.2,Rcc is a commutative
Fréchet GB∗-algebra. Let x ∈ Rcc with x ≥ 0. Then xa is bounded for all
a ∈ R. Thus xa0 is bounded. Since Rcc is commutative, we get xa0 = a0x,
and therefore xa0 ≥ 0 (since also a0 ≥ 0, as a0 ∈ R). By Lemma 4.3, there
exists n ∈ N such that xa0 ≤ n1. Now

x = xa0a
−1
0 = xa−10 a0 = a−10 xa0,

since Rcc is commutative. Observe that we have n1− xa0 ≥ 0, a−10 ≥ 0 and
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a−10 (n1− xa0) = (n1− xa0)a−10 . It follows that

na−10 − x = a−10 (n1− xa0) ≥ 0,

i.e. x ≤ na−10 . Hence {na−10 : n ∈ N} is a countable cofinal sequence for
(Rcc)+, and therefore Rcc is a countably dominated Fréchet GB∗-algebra.
Since every commutative Fréchet GB∗-algebra is an AO∗-algebra ([4, Theo-
rem 4.3] and [24, Corollary 6.1]), it follows that Rcc is an AO∗-algebra.
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[11] S. J. L. van Eijndhoven and P. Kruszyński, GB∗-algebras associated with inductive

limits of Hilbert spaces, Studia Math. 85 (1987), 107–123.
[12] M. Fragoulopoulou, Topological Algebras with Involution, North-Holland Math.

Stud. 200, Elsevier, Amsterdam, 2005.
[13] M. Fragoulopoulou, A. Inoue and K.-D. Kürsten, Old and new results on Allan’s

GB∗-algebras, in: Banach Algebras 2009, Banach Center Publ. 91, Inst. Math.,
Polish Acad. Sci., Warszawa, 2010, 169–178.

[14] M. Fragoulopoulou, A. Inoue and M. Weigt, Tensor products of generalized B∗-al-
gebras, J. Math. Anal. Appl. 420 (2014), 1782–1802.

[15] A. Grothendieck, Topological Vector Spaces, Gordon and Breach, New York, 1973.

http://dx.doi.org/10.1016/j.jfa.2008.11.003
http://dx.doi.org/10.1016/j.jfa.2007.04.010
http://dx.doi.org/10.2977/prims/1195183293
http://dx.doi.org/10.1016/0022-1236(77)90066-0
http://dx.doi.org/10.1002/mana.19921550111
http://dx.doi.org/10.1002/mana.19750670107


Spatiality of derivations 239

[16] S. L. Gulick, The bidual of a locally multiplicatively-convex algebra, Pacific J. Math.
17 (1966), 71–96.

[17] A. Inoue, A commutant of an unbounded operator algebra, Proc. Amer. Math. Soc.
69 (1978), 97–102.

[18] J.-P. Jurzak, Simple facts about algebras of unbounded operators, J. Funct. Anal. 21
(1976), 469–482.

[19] J.-P. Jurzak, Unbounded operator algebras and DF-spaces, Publ. RIMS Kyoto Univ.
17 (1981), 755–776.

[20] W. Kunze, Zur algebraischen struktur der GC∗-Algebren, Math. Nachr. 88 (1979),
7–11.

[21] G. Lassner, Topological algebras of operators, Rep. Math. Phys. 3 (1972), 279–293.
[22] S. Sakai, Operator Algebras in Dynamical Systems: The Theory of Unbounded De-

rivations in C∗-Algebras, Encyclopedia Math. Appl. 41, Cambridge Univ. Press,
Cambridge, 1991.

[23] H. H. Schaefer, Topological Vector Spaces, Springer, Berlin, 1970.
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