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1. Introduction. For k = 0, 1, 2, . . . set

fk(x) =
k∑
i=0

i∏
j=0

(x+ j).

For the first few values of k we have

f0(x) = x, f1(x) = x+ x(x+ 1) = x(x+ 2),

f2(x) = x+ x(x+ 1) + x(x+ 1)(x+ 2) = x(x+ 2)2.

In general, fk(x) is a monic polynomial of degree k + 1. Further, the coeffi-
cients of the fk(x) are positive integers, which could easily be expressed as
sums of consecutive Stirling numbers of the first kind.

In this paper we are interested in the equation

(1.1) fk(x) = yn

in integers x, y, k, n with k ≥ 0 and n ≥ 2. Without loss of generality,
throughout the paper we shall assume that n is a prime.

Equation (1.1) is closely related to several classical problems and results.
Here we only briefly mention some of them.

When we take only one block (i.e. consider the equation fk+1(x)− fk(x)
= yn), then we get a classical problem of Erdős and Selfridge [14]. For re-
lated results one can see e.g. [17, 30] and the references there. An important
generalization of this problem is when instead of products of consecutive
integers one takes products of consecutive terms of an arithmetic progres-
sion. For this case, see e.g. the papers [5, 19, 20, 22, 31, 33, 36, 38] and the
references there.
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If instead of sums, we take products of blocks of consecutive integers,
we get classical questions of Erdős and Graham [12, 13]. For results in this
direction, see e.g. [3, 10, 37, 39] and the references there.

Finally, if in (1.1) the products of blocks of consecutive integers are
replaced by binomial coefficients, then we arrive at classical problems again.
In the case of one summand see the papers of Erdős [11] and Győry [18].
In the case of more summands, we mention a classical problem of Mordell
[26, p. 259], solved by Ljunggren [25] (see Pintér [27] for a related general
finiteness theorem).

In this paper we obtain a general finiteness result concerning (1.1). Fur-
ther, we provide all solutions to this equation for k ≤ 10. These results are
given in the next section. Our first theorem is proved in Section 3. To prove
our result describing all solutions for k ≤ 10, we need more preparation.
We introduce the tools needed in Section 4. Then we give the proof of our
second theorem in Section 5 for the case n ≥ 3, and in Section 6 for the case
n = 2. Altogether, in our proofs we need to combine several tools and tech-
niques, including Baker’s method, local arguments, Runge’s method, and a
method of Gebel, Pethő and Zimmer [15] and Stroeker and Tzanakis [34] to
find integer points on elliptic curves.

2. New results. Our first theorem gives a general effective finiteness
result for equation (1.1).

Theorem 2.1. For the solutions of equation (1.1) we have:

(i) if k ≥ 1 and y 6= 0,−1 then n < c1(k),
(ii) if k ≥ 1 and n ≥ 3 then max(n, |x|, |y|) < c2(k),

(iii) if k ≥ 1, k 6= 2, and n = 2 then max(|x|, |y|) < c3(k).

Here c1(k), c2(k), c3(k) are effectively computable constants depending only
on k.

The following theorem describes all solutions of equation (1.1) for k ≤ 10.

Theorem 2.2. Let 1 ≤ k ≤ 10 be such that k 6= 2 if n = 2. Then
equation (1.1) has the only solutions (x, y) = (−2, 0), (0, 0), k, n arbitrary;
(x, y) = (−1,−1), k, n arbitrary with n ≥ 3; (x, y, k, n) = (−4, 2, 1, 3),
(2, 2, 1, 3), (2, 2, 2, 5).

Remark. Note that the assumptions in Theorems 2.1 and 2.2 are nec-
essary: equation (1.1) has infinitely many solutions (x, y, k, n) with k = 0,
with y = 0 or −1, and with k = 2, n = 2. These solutions can be described
easily.

3. Proof of Theorem 2.1. To prove Theorem 2.1 we need three lem-
mas. To formulate them, we have to introduce some notation. Let g(x) be
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a non-zero polynomial with integer coefficients, of degree d and height H.
Consider the diophantine equation

(3.1) g(x) = yn

in integers x, y, n with n being a prime.
The next lemma is a special case of a result of Tijdeman [38]. For a more

general version, see [32].

Lemma 3.1. If g(x) has at least two distinct roots and |y| > 1, then
in equation (3.1) we have n < c4(d,H), where c4(d,H) is an effectively
computable constant depending only on d,H.

The next lemma is a special case of a theorem of Brindza [8]. For prede-
cessors of this result see [1, 2], and for an earlier ineffective version [24].

Lemma 3.2. Suppose that one of the following conditions holds:

(i) n ≥ 3 and g(x) has at least two roots with multiplicities coprime
to n,

(ii) n = 2 and g(x) has at least three roots with odd multiplicities.

Then in equation (3.1) we have max(|x|, |y|) < c5(d,H), where c5(d,H) is
an effectively computable constant depending only on d,H.

The last assertion needed to prove Theorem 2.1 describes the root struc-
ture of the polynomial family fk(x).

Lemma 3.3. We have

f0(x) = x, f1(x) = x(x+ 2), f2(x) = x(x+ 2)2.

Moreover, for k ≥ 3 all the roots of the polynomial fk(x) are simple. In
particular, 0 is a root of fk(x) for all k ≥ 0, and −2 is a root of fk(x) for
all k ≥ 1.

Proof. For k = 0, 1, 2 the statement is obvious. In the rest of the proof
we assume that k ≥ 3.

It follows from the definition that x is a factor of fk(x) (or, 0 is a root
of fk(x)) for all k ≥ 0. Further, since

x+ x(x+ 1) = x(x+ 2),

the definition clearly implies that x+ 2 is a factor (or, −2 is a root) of fk(x)
for k ≥ 1. So it remains to prove that all the roots of fk(x) (k ≥ 3) are
simple.

For this observe that by the definition we have

fk(1) > 0, fk(−1) = −1 < 0, fk(−1.5) > 0.

The last inequality follows from the fact that writing

Pi(x) = x(x+ 1) . . . (x+ i)
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for i = 0, 1, 2, . . . , we find that Pi(−1.5) > 0 for i ≥ 1. Hence fk(−1.5) ≥
−1.5 + 0.75 + 0.375 + 0.5625 > 0 for k ≥ 3. Further, as one can easily check,
for i = −3, . . . ,−k − 1 we have

(−1)ifk(i) > 0.

These assertions (by continuity) imply that fk(x) has roots in the intervals

(−1, 1), (−1.5,−1), (−3,−1.5), (−4,−3), (−5,−4), . . . , (−k − 1,−k).

(Note that in the first and third intervals the roots are 0 and −2, respec-
tively.) Hence fk(x) has deg(fk(x)) = k + 1 distinct real roots, and the
lemma follows.

Proof of Theorem 2.1. (i) Let k ≥ 1. By Lemma 3.3, fk(x) is divisible by
x(x + 2) in Z[x]. In particular, it has two distinct roots, namely 0 and −2.
Further, observe that fk(x) does not take the value 1 for x ∈ Z. Indeed,
since x(x+ 2) divides fk(x), it would be possible only for x = −1. However,
for that choice by definition we clearly have fk(−1) = −1 for any k ≥ 0.
Hence equation (1.1) has no solution with y = 1, and our claim follows by
Lemma 3.1.

(ii) Let k ≥ 1 and n ≥ 3. Recall that n is assumed to be a prime.
By the explicit form of f1(x) and f2(x) we see that 0 and −2 are roots of
these polynomials of degrees coprime to n. Hence the statement follows from
part (i) of Lemma 3.2 in these cases. Let k ≥ 3. Then by Lemma 3.3, all
the roots of fk(x) are simple. Since now the degree k+ 1 of fk(x) is greater
than two, our claim follows from part (i) of Lemma 3.2.

(iii) Let k ≥ 1, k 6= 2 and n = 2. In the case of k = 1, equation (1.1)
now reads

x(x+ 2) = y2.

Since x(x + 2) = (x + 1)2 − 1, our claim obviously follows in this case. Let
now k ≥ 3. Then by Lemma 3.3, all the roots of fk(x) are simple. As now
the degree k+ 1 of fk(x) is greater than two, by part (ii) of Lemma 3.2 the
assertion follows also in this case.

4. Linear forms in logarithms. In this section, we use linear forms
in logarithms to give a bound for n for the solution (u, v, n) of equations of
the form

aun − bvn = c

under certain conditions. These bounds will be used in the proof of Theorem
2.2 for n ≥ 3. Such equations have been studied by many authors. Note that
bounds for such equations were obtained in [4, 21]. We refer to [4] for earlier
results. However, in these papers the restrictions put on the coefficients a, b, c
are not valid in the cases we need later on.
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We begin with some preliminaries for linear forms in logarithms. For an
algebraic number α of degree d over Q, the absolute logarithmic height h(α)
of α is given by

h(α) =
1

d

(
log |a|+

d∑
i=1

log max(1, |α(i)|)
)

where a is the leading coefficient of the minimal polynomial of α over Z and
the α(i)’s are the conjugates of α. When α = p/q ∈ Q with (p, q) = 1, we
have h(α) = max(log |p|, log |q|).

The following result is due to Laurent [23, Theorem 2].

Theorem 4.1. Let a1, a2, h, % and µ be real numbers with % > 1 and
1/3 ≤ µ ≤ 1. Set

σ =
1 + 2µ− µ2

2
, λ = σ log %, H =

h

λ
+

1

σ
,

ω = 2

(
1 +

√
1 +

1

4H2

)
, θ =

√
1 +

1

4H2
+

1

2H
.

Let α1, α2 be non-zero algebraic numbers and let logα1 and logα2 be any de-
terminations of their logarithms. Without loss of generality we may assume
that |α1|, |α2| ≥ 1. Let

Λ = |b2 logα1 − b2 logα2|, b1, b2 ∈ Z, b1, b2 > 0,

where b1, b2 are positive integers. Suppose that α1 and α2 are multiplicatively
independent. Set D = [Q(α1, α2) : Q]/[R(α1, α2) : R] and assume that

h ≥ max

{
D

(
log

(
b1
a2

+
b2
a1

)
+ log λ+ 1.75

)
+ 0.06, λ,

D log 2

2

}
,

ai ≥ max{1, % log |αi| − log |αi|+ 2Dh(αi)} (i = 1, 2),

a1a2 ≥ λ2.

(4.1)

Then

logΛ ≥ −C
(
h+

λ

σ

)2

a1a2 −
√
ωθ

(
h+

λ

σ

)
− log

(
C ′
(
h+

λ

σ

)2

a1a2

)
with

C =
µ

λ3σ

(
ω

6
+

1

2

√
ω2

9
+

8λω5/4θ1/4

3
√
a1a2H1/2

+
4

3

(
1

a1
+

1

a2

)
λω

H

)2

,

C ′ =

√
Cσωθ

λ3µ
.

We use Theorem 4.1 to give a bound for n for the equation aun−bvn = c.
For this, we need the following lemma.
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Lemma 4.2. Let a, b, c be positive integers with b > a > 0 and abc ≤
4 · 2018957 · 99 · 467. Then the equation aun − bvn = ±c with u > v > 1
implies

u

v
≤


1.00462 if b ≤ 100 and n ≥ 1000,

1.00462 if b ≤ 10000 and n ≥ 2000,

1.00267 if n ≥ 10000

(4.2)

and

u > v ≥


217 if b ≤ 100 and n ≥ 1000,

217 if b ≤ 10000 and n ≥ 2000,

375 if n ≥ 10000.

(4.3)

Proof. From aun − bvn = ±c, we get
(
u
v

)n
= b

a ±
c
avn ≤ b + 1/4 since

n ≥ 1000 and c ≤ 2100a. Therefore

u

v
≤


1000
√

100 + 1/4 if b ≤ 100 and n ≥ 1000,
2000
√

10000 + 1/4 if b ≤ 10000 and n ≥ 2000,
10000
√

4 · 2018957 · 99 · 467 + 1/4 if n ≥ 10000,

implying (4.2). The assertion (4.3) follows easily from (4.2) by observing that
1 ≤ u− v ≤ 0.00462v, 0.00462v, 0.00267v according as b ≤ 100, n ≥ 1000, or
b ≤ 10000, n ≥ 2000, or n ≥ 10000, respectively.

Proposition 4.3. Let a, b, c be positive integers with c ≤ 2ab. Then the
equation

aun − bvn = ±c(4.4)

in integer variables u > v > 1, n > 3 implies

n ≤


max{1000, 824.338 log b+ 0.258} if b ≤ 100,

max{2000, 769.218 log b+ 0.258} if 100 < b ≤ 10000,

max{10000, 740.683 log b+ 0.234} if b > 10000.

(4.5)

In particular, n ≤ 3796, 7084, 19736 when b ≤ 100, 10000, 4 · 9 · 11 · 467 ·
2018957, respectively.

Remark. We note here that when c ≤ 3, we can get a much better
bound (see [6]). However, we will follow a more general approach.

Proof. We can rewrite (4.4) as∣∣∣∣ ba
(
u

v

)n
− 1

∣∣∣∣ =
c

aun
.

Let

Λ =

∣∣∣∣n log
u

v
− log

b

a

∣∣∣∣.
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Then Λ ≤ 2c
aun , implying

logΛ ≤ −n log u+ log
2c

a
≤ −n log u+ log 4b(4.6)

since c ≤ 2ab. We now apply Theorem 4.1 to get a lower bound for Λ. We
follow the proof of [23, Corollaries 1, 2]. Let

α1 =
u

v
, α2 =

b

a
, b1 = n, b2 = 1

so that h(α1) = log u, h(α2) = log b and D = 1. Let m = 8 and we choose
%, µ, q0, u0, b0 as follows:

b % µ q0 u0 b0

b ≤ 100 5.7 0.54 log 1.00462 218 log 4

b ≤ 10000 5.6 0.57 log 1.00462 218 log 5

b > 10000 5.6 0.59 log 1.00267 log 376 log 10000

By Lemma 4.2, we have u ≥ u0, log(u/v) ≤ q0 and b ≥ b0. We take

a1 = (%− 1)q0 + 2 log u, a2 = (%+ 1) log b

and

h = max

{
m, log

(
n

a2
+

1

a1

)
+ 1.81 + log λ

}
.

Then (4.1) is satisfied. In fact, we have

h ≥ m, a1 ≥ (%− 1)q0 + 2 log u0, a2 ≥ (%+ 1) log b0.

As in the proof of [23, Corollaries 1, 2], we get

logΛ ≥ −C ′′m(%+ 1)(log b)
(
(%− 1)q0 + 2 log u

)
h2

where C ′′m is the constant C ′′ obtained in [23, Section 4, (28)] by setting
h = m, a1 = (% − 1)q0 + 2 log u0 and a2 ≥ (% + 1) log b0. Writing Cm =
C ′′m(%+ 1), we get

logΛ ≥ −Cm(log b)
(
(%− 1)q0 + 2 log u

)
(max(m,hn))2,

where

hn = log

(
n

(%+ 1) log b
+

1

2 log u+ (%− 1)q0

)
+ εm

and

(Cm, εm) =


(5.8821, 2.2524) if b ≤ 100,

(5.4890, 2.2570) if b ≤ 10000,

(5.3315, 2.2662) if b > 10000.
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Comparing this lower bound of logΛ with the upper bound (4.6), we obtain

n ≤ Cm(max(m,hn))2(log b)

(
2 +

(%− 1)q0
log u

)
+

log 4b

log u
(4.7)

≤ Cm(max(m,hn))2(log b)

(
2 +

(%− 1)q0
log u0

+
1

log u0

)
+

log 4

log u0

since u ≥ u0. Recall that m = 8. We now consider two cases.

Assume hn ≥ 8. Then

n ≥ n0 :=

{
exp(m− εm)− 1

2 log u+ (%− 1)q0

}
(%+ 1) log b

and hn0 = 8. Since the last expression of (4.7) is a decreasing function of n,
for n ≥ n0 we have

0 ≤
Cmh

2
n(log b)

(
2 + (%−1)q0

log u0
+ 1

log u0

)
+ log 4

log u0
− n

log b

≤
Cmh

2
n0

(log b)
(
2 + (%−1)q0

log u0
+ 1

log u0

)
+ log 4

log u0
− n0

log b

≤ Cmm2

(
2 +

(%− 1)q0
log u0

+
1

log u0

)
+

log 4

(log u0)(log b)

− (%+ 1) exp(m− εm) +
%+ 1

2 log u+ (%− 1)q0

≤ Cmm2

(
2 +

(%− 1)q0
log x0

+
1

log u0

)
+

log 4

(log u0)(log b0)

− (%+ 1) exp(m− εm) +
%+ 1

2 log u0 + (%− 1)q0
< 0

since u ≥ u0 and b ≥ b0. This is a contradiction.

Therefore hn < 8. Then from (4.7), we get

n ≤ Cmm2(log b)

(
2 +

(%− 1)q0
log u0

+
1

log u0

)
+

log 4

log u0
,

where m = 8. Hence we get (4.5) by putting explicit values of m = 8, Cm, %,
µ, q0, u0, b0 in the above inequality. The statement following (4.5) is clear.

5. Proof of Theorem 2.2 for n ≥ 3. Throughout this section we
assume that n ≥ 3 is a prime.

Suppose first that k = 1 or 2. Then equation (1.1) can be rewritten as

x(x+ 2)k = yn.

We see that for every n odd, (x, n) = (−1, n) is a solution. Hence we may
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suppose that x /∈ {−2,−1, 0}. Hence gcd(x, x+ 2) ≤ 2 gives

x = 2αun, x+ 2 = 2βvn

with non-negative integers α, β and coprime integers u, v. This implies

2βvn − 2αun = 2 · 1n.
Using now results of Darmon and Merel [9] and Ribet [28], our statement
easily follows in this case.

Let k ≥ 3. Then equation (1.1) can be rewritten as

yn = fk(x) = x(x+ 2)gk(x)

where gk(x) is a polynomial of degree k−1. We see that for every k, (x, n) =
(−1, n) is a solution. Hence we may suppose that x /∈ {−2,−1, 0}. Then we
have either x > 0 or x < x+ 2 < 0.

We see that (x, x+ 2) = 1, 2 with 2 only if x is even, (x, gk(x))|gk(0) and
(x+ 2, gk(x))|gk(−2). Also gk(x) is odd for every x. The values of gk(0) and
−gk(−2) are given in Table 1.

Table 1. Values of g(0) and −g(−2) for 3 ≤ k ≤ 10

k 3 4 5 6 7 8 9 10

gk(0) 5 17 7 · 11 19 · 23 2957 23117 204557 2018957

−gk(−2) 1 3 32 3 · 11 32 · 17 32 · 97 34 · 73 32 · 11 · 467

If x = vn, x + 2 = un are both nth powers, then we have un − vn = 2,
giving the trivial solution x + 2 = 1, x = −1 which is already excluded.
Hence we can suppose that either x or x+ 2 is not an nth power. Thus we
can write

x = 2δ1s1t
n−1
1 un1 , x+ 2 = 2δ23ν2s2t

n−1
2 un2 , gk(x) = 3ν3(s1s2)

n−1t1t2u
n
3 ,

where

s1t1 | gk(0), s2t2 | gk(−2) with (s1, t1) = (s2, t2) = 1, 3 - s1s2t1t2,
and

δ1, δ2 ∈ {(0, 0), (1, n− 1), (n− 1, 1)},
and (ν2, ν3) = (0, 0) or

ν2 ∈ {1, . . . , ord3(gk(−2))}, ν3 = n− ν2, or vice versa.

Further, each of si, ti is positive and u1, u2 are of the same sign. From x +
2− x = 2, we get

3ν2s2t1(t2u2)
n − s1t2(t1u1)n = 2t1t2 if δ1 = δ2 = 0, ν2 ≤ ord3(gk(−2));

s2t1(3t2u2)
n − 3ν3s1t2(t1u1)

n = 2 · 3ν3t1t2
if δ1 = δ2 = 0, ν2 > ord3(gk(−2));
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3ν2s2t1(2t2u2)
n − 4s1t2(t1u1)

n = 4t1t2 if δ1 = 1, ν2 ≤ ord3(gk(−2));

4 · 3ν2s2t1(t2u2)n − s1t2(2t1u1)n = 4t1t2 if δ2 = 1, ν2 ≤ ord3(gk(−2));

s2t1(6t2u2)
n − 4 · 3ν3s1t2(t1u1)n = 4 · 3ν3t1t2 if δ1 = 1, ν2 > ord3(gk(−2));

4s2t1(3t2u2)
n − 3ν3s1t2(2t1u1)

n = 4 · 3ν2t1t2 if δ2 = 1, ν2 > ord3(gk(−2)).

These equations are of the form aun − bvn = c with u, v of the same sign.
Note that from the equation aun − bvn = c, we can get back x, x+ 2 by

x =
2bvn

c
, x+ 2 =

2aun

c
.

We see from Table 1 that the largest value of max(a, b) is given by k = 10
and the equation

(6 · 11 · 467u2)
n − 4 · 32 · 11 · 467 · 2018957un1 = 4 · 32 · 11 · 467.

We observe that |c| ≤ 2ab/(s1s2) ≤ 2ab. Further, from (gk(0), gk(−2)) = 1,
we get (s2t1, s1t2) = 1, giving (a, b) = 1. We first exclude the trivial cases.

1. Let a = b. Then a = b = 1 since gcd(a, b) = 1. Further s1t2 = s2t1 = 1
and 3ν2 = 1 or 3ν3 = 1, implying c = 2, and we have un − vn = 2 for which
we have the trivial solution u = 1, v = −1. Then x = −1, x+ 2 = 1, which
gives fk(x) = (−1)n for all odd n, which is a trivial solution. Thus we now
assume a 6= b and further x 6= −1.

2. Suppose uv = 1. Then c | 2a and c | 2b, giving c = 2 since (a, b) = 1,
and hence a − b = ±2. This implies 3ν2s2(±1) − s1(±1) = 2, as in other
cases c > 2. We find that the only such possibilities are 3(1) − 1(1) = 2,
9(−1) − 11(−1) = 2, 9(1) − 7(1) = 2. Hence x ∈ {1,−11, 7}. This with
x = 2δ1s1t

n−1
1 un1 = s1(±1) gives x = 1, k ≤ 10 or (x, k) ∈ {(−11, 5), (7, 5)},

and we check that x = 1, k = 2 is the only solution. Thus we now suppose
that uv > 1.

3. Suppose u = v. Then (a − b)vn = c, implying c/(a− b) ∈ Z. Further
c/(a− b) = vn is an nth power. We can easily find such triples (a, b, c) and
exponents n. For such triples, we have x = bc/(a− b) and we check for fk(x)
being an nth power. There are no solutions. Thus we can now suppose u 6= v.

4. Suppose u = ±1. Then c | 2a, v 6= ±1 and vn = (±a− c)/b ∈ Z. We
find all such triplets (a, b, c) and the exponents n. Then x + 2 = ±2a/c or
x = ±2a/c− 2. We check for fk(x) being an nth power. We find that there
are no solutions. Hence we now assume u 6= ±1.

5. Suppose v = ±1. Then c | 2b and un = (c−±b)/a ∈ Z is a power. We
find such triples (a, b, c) and the exponent n. Then x = ±2b/c and we check
for fk(x) being an nth power. There are no solutions.

Hence from now on, we consider the equation aun − bvn = c with

a, b ≥ 1, c > 1, |u|, |v| > 1 and a 6= b, u 6= v.
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If u, v is a solution of aun − bvn = c with u, v negative, then we have
a(−u)n − b(−v)n = −c with −u,−v positive. Therefore it is sufficient to
consider the equation aun − bvn = ±c with u, v > 1. Recall that abc ≤
4 · 9 · 11 · 467 · 2018957. Hence for n ≥ 40 we have(

u

v

)n
=
b

a
± c

vn
≥ b

a
− c

2n
≥ 1 +

1

a
− c

240
> 1 if a < b;(

v

u

)n
=
a

b
± c

un
≥ a

b
− c

2n
≥ 1 +

1

b
− c

240
> 1 if a > b.

Thus for n > 37, we have u > v if a < b and v > u if a > b. By Proposition
4.3, we get

n ≤


max{1000, 824.338 log b+ 0.258} if b ≤ 100,

max{2000, 769.218 log b+ 0.258} if 100 < b ≤ 10000,

max{10000, 740.683 log b+ 0.234} if b > 10000,

(5.1)

when a < b. We now exclude these values of n.

For every prime n, let r be the least positive integer such that nr+1 = p
is a prime. Then both un and vn are rth roots of unity modulo p. Since
fk(x) = yn, fk(x) is also an rth root of unity modulo p. Let U(p, r) be the
set of rth roots of unity modulo p. Recall that x = 2bvn/c.

For every 3 ≤ k ≤ 10, we first list all possible triples (a, b, c). Given
a triple (a, b, c), we have a bound n ≤ n0 := n0(a, b, c) given by (5.1).
For every prime n ≤ n0, we check for solutions aα − bβ ≡ ±c modulo p
for α, β ∈ U(p, r). We now restrict to such pairs (α, β). For any such pair
(α, β), we check if fk(2β/c) modulo p is in U(p, r). We find that there are
no such pairs (α, β). The case a > b can be handled similarly, and now new
solutions arise.

Therefore, we have no further solutions (k, x, y) of the equation fk(x, y).
Hence the proof of Theorem 2.2 is complete for n ≥ 3.

6. Proof of Theorem 2.2 for n = 2. For k = 1 equation (1.1) reads

f1(x) = (x+ 1)2 − 1 = y2.

Hence in this case the statement follows trivially.

Let k = 3. Equation (1.1) has the form

x4 + 7x3 + 15x2 + 10x = x(x+ 2)(x2 + 5x+ 5) = y2.

Here we use the MAGMA [7] procedure

IntegralQuarticPoints([1,7,15,10,0])

to determine all integral points. We only obtain the solutions with x = 0,−2
and y = 0.
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Consider the case k = 4. The hyperelliptic curve is as follows:

x(x+ 2)(x3 + 9x2 + 24x+ 17) = y2.

We obtain

x = d1u
2
1,

x+ 2 = d2u
2
2,

x3 + 9x2 + 24x+ 17 = d3u
2
3,

where d3 ∈ {±1,±3,±17,±3·17}. It remains to determine all integral points
on certain elliptic curves defined by the third equation, that is, we use the
MAGMA procedure

IntegralPoints(EllipticCurve([0, 9d3, 0, 24d23, 17d33])).

We note that these procedures are based on methods developed by Gebel,
Pethő and Zimmer [15], and independently by Stroeker and Tzanakis [34].
Once again, we obtain the solutions with x = 0,−2 and y = 0.

We apply Runge’s method [16, 29, 40] in the cases k = 5, 7, 9. We follow
the algorithm described in [35]. First we determine the polynomial part
of the Puiseux expansions of

√
fk(x). These expansions yield polynomials

P1(x) and P2(x) such that either

d2fk(x)− P1(x)2 > 0,

d2fk(x)− P2(x)2 < 0

or

d2fk(x)− P1(x)2 < 0,

d2fk(x)− P2(x)2 > 0

for some d ∈ Z and x /∈ Ik, where Ik is a finite interval. We summarize some
data in Table 2.

Table 2. Data corresponding to k = 5, 7, 9

k d P1(x), P2(x) Ik

5 1 P1(x) = x3 + 8x2 + 16x+ 5 [−10, 3]

P2(x) = x3 + 8x2 + 16x+ 6

7 16 P1(x) = 16x4 + 232x3 + 1070x2 + 1693x+ 473 [−282, 148]

P2(x) = 16x4 + 232x3 + 1070x2 + 1693x+ 474

9 2 P1(x) = 2x5 + 46x4 + 378x3 + 1331x2 + 1819x+ 528 [−291, 278]

P2(x) = 2x5 + 46x4 + 378x3 + 1331x2 + 1819x+ 530

We only provide details of the method in the case of k = 9; the other
two cases can be solved in a similar way. We obtain
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4f9(x)− P1(x)2 = 4x5−1045x4−17958x3−108973x2−284408x−278784,

4f9(x)− P2(x)2 = −4x5−1229x4−19470x3−114297x2−291684x−280900.

If x > 278, then

(P1(x)− 2y)(P1(x) + 2y) < 0 < (P2(x)− 2y)(P2(x) + 2y).

If P2(x)− 2y < 0 and P2(x) + 2y < 0, then P1(x)− 2y < −2 and P1(x) + 2y
< −2, which implies that (P1(x) − 2y)(P1(x) + 2y) > 0, a contradiction. If
P2(x) − 2y > 0 and P2(x) + 2y > 0, then P1(x) − 2y > −2 and P1(x) + 2y
> −2. It follows that

P1(x)− 2y = −1 or P1(x) + 2y = −1.

Consider the case x < −291. Here we get

(P2(x)− 2y)(P2(x) + 2y) < 0 < (P1(x)− 2y)(P1(x) + 2y).

If P1(x) − 2y > 0 and P1(x) + 2y > 0, then we have a contradiction. If
P1(x)−2y < 0 and P1(x) + 2y < 0, then P2(x)−2y < 2 and P2(x) + 2y < 2,
therefore

P2(x)− 2y = 1 or P2(x) + 2y = 1.

Thus if we have a solution (x, y) ∈ Z2, then either x ∈ I9 (provided in
Table 2) or y = ±(x5 + 23x4 + 189x3 + 1331/2x2 + 1819/2x + 529/2). We
obtain only the trivial integral solutions (x, y) = (−2, 0), (0, 0).

It remains to handle the cases k = 6, 8, 10. Observe that since in this
case the degree of fk(x) is odd, the solutions to (1.1) with x ≤ 0 can be
easily found. In fact, we see that all such solutions have x = 0,−2. So in
what follows, without loss of generality we may assume that x > 0.

Consider the equation related to k = 6. We have

x = d1u
2
1,

x+ 2 = d2u
2
2,

x5 + 20x4 + 151x3 + 529x2 + 833x+ 437 = d3u
2
3,

with some positive integers d1, d2, d3. Checking the possible values of d1, d2,
d3, we get

x = 2α119α423α5u21,

x+ 2 = 2α13α211α3u22,

x5 + 20x4 + 151x3 + 529x2 + 833x+ 437 = 3α211α319α423α5u23,

where αi ∈ {0, 1} and ui ∈ Z. Working modulo 720 it follows that the above
system of equations has solutions only if (α2, α3, α4, α5) is in

{(0, 0, 0, 1), (0, 0, 1, 0), (0, 0, 1, 1), (0, 1, 0, 0),

(0, 1, 0, 1), (0, 1, 1, 1), (1, 0, 0, 0), (1, 0, 0, 1),

(1, 0, 1, 1), (1, 1, 0, 1), (1, 1, 1, 0), (1, 1, 1, 1)}.
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We describe an argument which works for all cases except the one with
(α2, α3, α4, α5) = (0, 0, 0, 1). Combining the first two equations yields

(x+ 1)2 − 3α211α319α423α5(2α1u1u2)
2 = 1,

a Pell equation. Computing the fundamental solution of the Pell equation
provides a formula for x. Substituting it into the equation

x5 + 20x4 + 151x3 + 529x2 + 833x+ 437 = 3α211α319α423α5u23
we get a contradiction modulo some positive integer m. The following table
contains the possible tuples and the corresponding integer m.

(α2, α3, α4, α5) m (α2, α3, α4, α5) m

(0, 0, 1, 0) 11 (0, 0, 1, 1) 13

(0, 1, 0, 0) 13 (0, 1, 0, 1) 29

(0, 1, 1, 1) 37 (1, 0, 0, 0) 5

(1, 0, 0, 1) 11 (1, 0, 1, 1) 29

(1, 1, 0, 1) 13 (1, 1, 1, 0) 29

(1, 1, 1, 1) 43

As an example we deal with (α2, α3, α4, α5) = (0, 1, 1, 1). The fundamen-
tal solution of the Pell equation is

208− 3
√

11 · 19 · 23.

If there exists a solution, then

x =
(208− 3

√
11 · 19 · 23)k + (208 + 3

√
11 · 19 · 23)k

2
− 1

for some k ∈ N. If x satisfies the above equation, then

x5 + 20x4 + 151x3 + 529x2 + 833x+ 437 (mod 37) ∈ {17, 20, 22, 29}
and 11 · 19 · 23u23 (mod 37) is in

{0, 1, 3, 4, 7, 9, 10, 11, 12, 16, 21, 25, 26, 27, 28, 30, 33, 34, 36},
a contradiction. It remains to solve the equation corresponding to the tuple
(α2, α3, α4, α5) = (0, 0, 0, 1). Here we have

F (x) = x(x5 + 20x4 + 151x3 + 529x2 + 833x+ 437) = (23u1u3)
2,

a Diophantine equation satisfying Runge’s condition. Define

P1(x) = 2x3 + 20x2 + 51x+ 18,

P2(x) = 2x3 + 20x2 + 51x+ 20.

The two cubic polynomials

4F (x)− P1(x)2 = 4x3 + 11x2 − 88x− 324,

4F (x)− P2(x)2 = −4x3 − 69x2 − 292x− 400

have opposite signs if x /∈ [−12, 5]. The inequalities
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P1(x)2 − 4y2 < 0 < P2(x)2 − 4y2,

P2(x)2 − 4y2 < 0 < P1(x)2 − 4y2

imply that if there exists a solution, then y = x3 + 10x2 + 51
2 x + 19

2 . The
polynomial

(x+ 2)F (x)−
(
x3 + 10x2 + 51

2 x+ 19
2

)2
has no integral root. Thus it remains to check the cases x ∈ [−12, 5]. We
obtain only the trivial solutions.

The above procedure also works in the cases k = 8 and 10. For k = 8 we
get

x = 2α123117α4u21,

x+ 2 = 2α13α297α3u22,

f8(x)

x(x+ 2)
= 3α297α323117α4u23

for some αi ∈ {0, 1} and ui ∈ Z, and in the case of k = 10 we can write

x = 2α12018957α5u21,

x+ 2 = 2α13α211α3467α4u22,

f10(x)

x(x+ 2)
= 3α211α3467α42018957α5u23

for some αi ∈ {0, 1} and ui ∈ Z. Next, we exclude as many putative expo-
nent tuples working modulo 720 as we can. The remaining exponent tuples
are treated via Pell equations and congruence arguments. Everything works
much as previously. The largest modulus used to eliminate tuples is 37.

Remark. We note that the total running time of our calculations was
only half an hour on an Intel Core i5 2.6GHz PC. The most time consum-
ing part was the computation of fundamental solutions of Pell equations
and appropriate moduli to eliminate tuples. It took approximately twenty
minutes.
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(2008), 259–264.
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