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STRONGLY PARACOMPACT METRIZABLE SPACES

BY

VALENTIN GUTEV (Msida)

Abstract. Strongly paracompact metrizable spaces are characterized in terms of
special S-maps onto metrizable non-Archimedean spaces. A similar characterization of
strongly metrizable spaces is obtained as well. The approach is based on a sieve-construc-
tion of “metric”-continuous pseudo-sections of lower semicontinuous mappings.

1. Introduction. All spaces in this paper are assumed to be Haus-
dorff topological spaces. A cover U of a space X is star-finite if the set
{W ∈ U : W ∩ U 6= ∅} is finite for every U ∈ U . A space X is strongly
paracompact (also called hypocompact) if every open cover of X has a star-
finite open refinement. Every strongly paracompact space is paracompact,
but the converse is not necessarily true (see for instance [4]).

A space Z is non-Archimedean if it has a base such that if B1 and B2 are
members of this base with B1 ∩ B2 6= ∅, then either B1 ⊂ B2 or B2 ⊂ B1.
Sometimes a base with this property is said to be of rank 1 (see [15]).
A typical example of a metrizable non-Archimedean space is the countable
power Tω of a discrete space T . This space is often called the Baire space
of weight τ = |T |, and denoted by B(τ).

According to a result of Morita [13] (see also [18, Theorem 2.3]), every
strongly paracompact metrizable space X is a subset of [0, 1]ω × B(τ) for
τ = w(X) being the weight of X. A similar result was obtained by Smirnov
[19, Theorem 5], namely that every strongly paracompact metrizable space
can be mapped continuously onto a non-Archimedean metrizable space by an
S-map. Here, a map g : X → Z is an S-map if each g−1(z), z ∈ Z, is second
countable. Smirnov’s paper [19] contains a list of examples of such S-images
of metrizable spaces. Briefly, it was shown in [19] that there exists a metriz-
able space which cannot be mapped continuously onto a non-Archimedean
metrizable space by an S-map; that there exists a metrizable space which
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is not strongly paracompact, but can be mapped continuously onto a non-
Archimedean metrizable space by an S-map; that there exists a metrizable
strongly paracompact space which cannot be mapped continuously onto a
non-Archimedean metrizable space by a closed S-map. To these examples,
let us also add a result of Nagata [14] that the product (0, 1)×B(ω1) is not
strongly paracompact. Hence, not every subset of [0, 1]ω ×B(τ) is strongly
paracompact.

In this paper, we are interested in S-maps with an extra property of being
inversely “subcontinuous” (see Section 4). Let (X, ρ) be a metric space. For
ε > 0, the open ε-ball centred at x ∈ X is Bρ

ε (x) = {y ∈ X : ρ(y, x) < ε}.
We say that g : X → Z is a strongly S-map if for every ε > 0, every z ∈ Z
has a neighbourhood V ⊂ Z such that g−1(V ) is covered by countably many
open ε-balls. The following theorem will be proved.

Theorem 1.1. A metrizable space X is strongly paracompact if and only
if for every compatible (with the topology) metric ρ on X, the metric space
(X, ρ) can be mapped continuously onto a non-Archimedean metrizable space
by a strongly S-map.

A metrizable space is called strongly metrizable if it has a base which
is the union of countably many star-finite open covers. Following the argu-
ments in [18], it was shown in [17, Proposition 3.27] that each strongly
metrizable space of weight τ is a subset of [0, 1]ω × B(τ). Accordingly,
strongly metrizable spaces of weight ≤ τ are precisely the subsets of [0, 1]ω×
B(τ). Another interesting result is that X is strongly metrizable if and only
if it admits a compatible metric d such that, for each ε > 0, the collec-
tion of all open ε-balls Bd

ε (x), x ∈ X, is locally finite [1]. Let d1 be a
metric on [0, 1]ω, d2 be a metric on B(τ), and d = max{d1, d2} be the box-
metric on [0, 1]ω × B(τ), all compatible with the corresponding topologies.
Given a subset X ⊂ [0, 1]ω × B(τ), let ρ be the restriction of d on X, and
g = π�X be the restriction of the projection π : [0, 1]ω×B(τ)→ B(τ). Then
g : X → Z = g(X) ⊂ B(τ) is a continuous strongly S-map of X onto the
non-Archimedean space Z. This shows that the requirement “for every com-
patible (with the topology) metric ρ on X” in Theorem 1.1 is essential. In
fact, this gives the following characterization of strongly metrizable spaces
illustrating the subtle difference from strongly paracompact metrizable ones.

Theorem 1.2. A metrizable space X is strongly metrizable if and only
if X admits a compatible (with the topology) metric ρ so that (X, ρ) can be
mapped continuously onto a non-Archimedean metrizable space by a strongly
S-map.

The proof of Theorem 1.1 is based on a new sieve-construction of set-
valued mappings when the range is not necessarily completely metrizable;
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this is done in the next section. In Section 3, this is applied to construct
pseudo-sections of lower semicontinuous mappings defined on strongly para-
compact spaces (see Theorem 3.3). Section 4 is devoted to strongly S-maps,
relating them to separable ρ-subcontinuous set-valued mappings (see The-
orem 4.2). Finally, Theorems 1.1 and 1.2 are proved in Sections 5 and 6,
respectively.

2. A sieve-construction. A partially ordered set (T,�) is a tree if
{s ∈ T : s � t} is well ordered for every t ∈ T . For a tree (T,�), we use
T (0) to denote the set of all minimal elements of T . Given an ordinal α, if
T (β) is defined for every β < α, then T (α) denotes the minimal elements of
T \

⋃
β<α T (β). The set T (α) is called the αth level of T , while the height

of T is the least ordinal α such that T =
⋃
β<α T (β). We say that (T,�)

is an α-levelled tree if its height is α. A maximal linearly ordered subset of
a tree (T,�) is called a branch, and B(T ) is used to denote the set of all
branches of T . A tree (T,�) is pruned if every element of T has a successor
in T , equivalently if for every s ∈ T there exists t ∈ T with s ≺ t. In these
terms, an ω-levelled tree (T,�) is pruned if each branch β ∈ B(T ) is infinite.

Non-Archimedean spaces are naturally related to trees. According to
[16, Theorem 2.9], every non-Archimedean space has a base which is a tree
with respect to reverse inclusion. The relation is not formal, and following
Nyikos [16], for a tree (T,�) and t ∈ T , let

(2.1) O(t) = {β ∈ B(T ) : t ∈ β}.
If (T,�) is a pruned ω-levelled tree, then the family {O(t) : t ∈ T} is
a base for a completely metrizable non-Archimedean topology on B(T ).
We will refer to this topology as the branch topology, and to the resulting
topological space as the branch space. Throughout this paper, B(T ) will be
always endowed with the branch topology when it comes to consider it as a
topological space.

For a set Y , let 2Y be the collection of all subsets of Y . Given a pruned
ω-levelled tree (T,�), a set-valued mapping R : T → 2Y is a sieve on Y if

X =
⋃

t∈node(∅)

R(t) and R(t) =
⋃

s∈node(t)

R(s) for every t ∈ T .

Here, node(∅) = T (0) and node(t) ⊂ T is the set of all immediate successors
of t, called the node of t in T . To every sieve R : T → 2Y one can associate
the mapping ΩR : B(T ) → 2Y defined by ΩR(β) =

⋂
t∈β R(t), β ∈ B(T ).

It is commonly called the polar mapping associated to R. The inverse polar
mapping Ω−1R : Y → 2B(T ) is defined by Ω−1R (y) = {β ∈ B(T ) : y ∈ ΩR(β)},
y ∈ Y , and also denoted by fR . The polar mappings ΩR and fR were used
in several constructions (see for instance [6–9]).
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We now turn to another natural construction associating a set-valued
mapping to a sieve. Let (Y, ρ) be a metric space. For a subset A ⊂ Y , we
write

Bρ
ε (A) = {y ∈ Y : ρ(y,A) < ε} =

⋃
a∈A

Bρ
ε (a).

A mapping (usually nonempty-valued) ϕ : X → 2Y is called ρ-continuous
(sometimes also Hausdorff continuous) if for every ε > 0, every x ∈ X has
a neighbourhood U with ϕ(x) ⊂ Bρ

ε (ϕ(z)) and ϕ(z) ⊂ Bρ
ε (ϕ(x)) for every

z ∈ U . In the proposition below and the rest of the paper, we will use S (Y )
for the collection of all nonempty, closed and second countable subsets of Y :

S (Y ) = {S ⊂ Y : S is nonempty, closed and second countable}.

Proposition 2.1. Let (Y, ρ) be a metric space, (T,�) be a pruned ω-
levelled tree, and η : T → S (Y ) be a mapping such that η(s) ⊂ Bρ

2−n(η(t))
for every t ∈ T (n) and s ∈ node(t). Define Ση : B(T )→ S (Y ) by Ση(β) =⋃
t∈β η(t), β ∈ B(T ). Then Ση is ρ-continuous.

Proof. It is evident that Ση is separable-valued. Take ε > 0 and n < ω
with 2−n+1 < ε. Next, take t ∈ T (n) and branches α, β ∈ O(t) ⊂ B(T ). To
show that Ση is ρ-continuous, it suffices to show that Ση(α) ⊂ Bρ

ε (Ση(β)).
To this end, for convenience, let α = {sk : k < ω} and β = {tk : k < ω},
where sk, tk ∈ T (k), k < ω. Since η(sk+1) ⊂ Bρ

2−k(η(sk)) for every k < ω, it
follows that

η(sn+k+1) ⊂ Bρ

2−n+···+2−(n+k)(η(sn)) ⊂ Bρ
2−n+1(η(sn)), k ≥ 1.

By (2.1), sk = tk for every k ≤ n. Therefore, η(sk) = η(tk) ⊂ Ση(β) for
k ≤ n, and η(sk) ⊂ Bρ

2−n+1(η(sn)) = Bρ
2−n+1(η(tn)) ⊂ Bρ

2−n+1(Ση(β)) for

every k > n. Since 2−n+1 < ε, we finally have Ση(α) =
⋃
k<ω η(sk) ⊂

Bρ
ε (Ση(β)).

For a set D, let [D]≤ω = {S ⊂ D : 1 ≤ |S| ≤ ω}. Following [8], for
a pruned ω-levelled tree (T,�), set LT =

⋃
n<ω[T (n)]≤ω. Next, define a

relation � on LT by letting σ ≺ µ for σ, µ ∈ LT if

(2.2) µ ⊂
⋃
s∈σ

node(s) and µ ∩ node(s) 6= ∅, s ∈ σ.

Finally, extend the relation to a partial order on LT by making it transitive.
Thus, we get a pruned ω-levelled tree (LT ,�) because so is T . We now have
the following consequence (cf. [8, Theorem 2.2]).

Corollary 2.2. Let (Y, ρ) be a metric space, (T,�) be a pruned ω-
levelled tree, and h : T → Y be a map such that ρ(h(s), h(t)) < 2−(n+1) for
every t ∈ T (n) and s ∈ node(t). Define η : LT → S (Y ) by η(σ) = h(σ)
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for every σ ∈ LT . Then the mapping Ση : B(LT ) → S (Y ) defined by

Ση(β) =
⋃
σ∈β η(σ), β ∈ B(LT ), is ρ-continuous.

Proof. This follows from Proposition 2.1 because σ ∈ LT (n) and µ ∈
node(σ) implies η(µ) ⊂ Bρ

2−n(η(σ)) (see (2.2)).

3. Factorizing pseudo-sections. For a space Y , let F (Y ) be the col-
lection of all nonempty closed subsets of Y . A mapping Φ : X → F (Y ) is
lower semicontinuous, or l.s.c., if the set

Φ−1[U ] =
{
x ∈ X : Φ(x) ∩ U 6= ∅

}
is open in X for every open U ⊂ Y . The following characterization of
strongly paracompact spaces was obtained in [8, Theorem 1.3].

Theorem 3.1. A space X is strongly paracompact if and only if for
every complete metric space (Y, ρ), every l.s.c. mapping Φ : X → F (Y ) has
a ρ-continuous section ϕ : X → S (Y ).

Here, ϕ is a section of Φ if ϕ(x) ∩ Φ(x) 6= ∅ for every x ∈ X. In fact,
Theorem 3.1 was obtained as a consequence of the following slightly more
general result (see [8, Corollary 3.5]).

Theorem 3.2. A space X is strongly paracompact if and only if for every
complete metric space (Y, ρ), every l.s.c. mapping Φ : X → F (Y ) admits a
ρ-continuous mapping ϕ : X → S (Y ) with

ρ(ϕ(x), Φ(x)) = inf{ρ(y, z) : y ∈ ϕ(x) and z ∈ Φ(x)} = 0, x ∈ X.
In the setting of these theorems, just paracompactness is enough to con-

struct a compact-valued l.s.c. mapping Ψ : X → F (Y ) with Ψ(x) ⊂ Φ(x),
x ∈ X [12, Theorem 1.1]. By Theorem 3.2 applied to this Ψ , there exists
a ρ-continuous ϕ : X → S (Y ) with ρ

(
ϕ(x), Ψ(x)

)
= 0 for every x ∈ X.

Accordingly, ϕ will be a section of Ψ (hence, of Φ as well) because Ψ is
nonempty-compact-valued. Thus, Theorem 3.2 implies Theorem 3.1. The
purpose of this section is to show that Theorem 3.2 remains valid without
the requirement on (Y, ρ) to be complete.

Theorem 3.3. Let X be a strongly paracompact space, (Y, ρ) be a metric
space, and Φ : X → F (Y ) be an l.s.c. mapping. Then there exists a non-
Archimedean metrizable space Z, a continuous map g : X → Z and a ρ-
continuous mapping ψ : Z → S (Y ) such that ρ

(
ψ(g(x)), Φ(x)

)
= 0 for

every x ∈ X.

Proof. It is a slight modification of the proof of [8, Theorem 3.3]. Namely,
take a nonempty-open-valued locally finite sieve M : T → 2Y on Y such
that diamρ(M (t)) < 2−(n+1) for every t ∈ T (n) and n < ω. This means that
each M (t), t ∈ T , is open and each collection {M (t) : t ∈ T (n)}, n < ω,
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is locally finite. Next, consider the tree (LT ,�) associated to T as in (2.2),
and define P : LT → 2X by

(3.1) P(σ) =
⋃
t∈σ

Φ−1[M (t)], σ ∈ LT .

Being strongly paracompact, by [8, Proposition 3.2], the space X has an
open-valued sieve L : LT → 2X such that L (σ) ⊂ P(σ), σ ∈ LT , and
each collection {L (σ) : σ ∈ LT (n)}, n < ω, is discrete. As in the proof
of [8, Theorem 3.3], the inverse polar mapping fL = Ω−1L : X → 2B(LT ) is
singleton-valued and continuous. So, we can take Z = B(LT ) and g = fL .

As for ψ : Z → S (Y ), define h : T → Y by h(t) ∈ M (t), t ∈ T ,
so that ρ(h(s), h(t)) < 2−(n+1) for every t ∈ T (n) and s ∈ node(t). Let
η : LT → S (Y ) and Ση : B(LT ) → S (Y ) be defined as in Corollary
2.2, associated to this h. Then, by this corollary, Ση is ρ-continuous and
we can take ψ = Ση. To show that these Z, g and ψ are as required, take
a point x ∈ X and the branch β ∈ B(LT ) such that x ∈ L (σ) for every
σ ∈ β. Write β = {σn : n < ω}, where σn ∈ LT (n) for each n < ω.
Since L (σ) ⊂ P(σ) for every σ ∈ β, by (3.1) for every n < ω there
exists tn ∈ σn with Φ(x) ∩M (tn) 6= ∅. Since h(tn) ∈ M (tn) and η(σn) =
h(σn), it follows that ρ(η(σn), Φ(x)) ≤ ρ(h(tn), Φ(x)) < 2−(n+1). Therefore,
ρ(ψ(g(x)), Φ(x)) = ρ(Ση(fL (x)), Φ(x)) = 0 because η(σn) ⊂ Ση(β) for
every n < ω.

4. Separable subcontinuity. A map f : X → Y is a selection (or
a single-valued selection) for Φ : X → 2Y if f(x) ∈ Φ(x) for every x ∈ X.
A mapping ψ : X → 2Y is a set-valued selection (also called a multi-selection,
or a subset-selection) for Φ : X → 2Y if ψ(x) ⊂ Φ(x) for every x ∈ X. For
convenience, we sometimes write ψ ⊂ Φ to express that ψ is a set-valued
selection for Φ. A mapping ψ : X → F (Y ) is called upper semicontinuous,
or u.s.c., if the set

ψ#[U ] = X \ ψ−1[Y \ U ] = {x ∈ X : ψ(x) ⊂ U}

is open in X for every open U ⊂ Y . We often say that ψ : X → F (Y ) is
usco if it is u.s.c. and compact-valued.

In this section, we are interested in those set-valued mappings which
are set-valued selections for separable-valued “metric”-u.s.c. mappings. The
problem seems naturally related to a property known as subcontinuity.Amap
f : X → Y is called subcontinuous if for every net {xα : α ∈ D} ⊂ X
convergent in X, the net {f(xα) : α ∈ D} ⊂ Y has a convergent subnet [5].
It was shown in [5, Theorem 3.4] that, for a Hausdorff space Y , a map
f : X → Y is continuous if and only if it is subcontinuous and has a closed
graph. The result was naturally extended to set-valued mappings in [20],
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where a nonempty-valued mapping ϕ : X → 2Y was called subcontinuous if
for every net {xα : α ∈ D} ⊂ X convergent in X and yα ∈ ϕ(xα), α ∈ D,
the net {yα : α ∈ D} ⊂ Y has a convergent subnet.

It was shown in [20, Theorem 3.1] that each subcontinuous mapping ϕ :
X → 2Y with a closed graph {(x, y) : y ∈ ϕ(x)} ⊂ X × Y is usco. A natural
characterization of closed-graph mappings was given in [10, Theorem 3.3],
where it was shown that a nonempty-valued ϕ : X → 2Y has a closed
graph if and only if ϕ(x) =

⋂
{ϕ[V ] : V ⊂ X is open and x ∈ V } for

every x ∈ X. Here, ϕ[V ] =
⋃
x∈V ϕ(x) is the image of V by ϕ. Another

natural characterization of subcontinuity of set-valued mappings was stated
in [3, Theorem 7.1] and credited to [11]. It asserts that a nonempty-valued
ϕ : X → 2Y is subcontinuous if and only if for every open cover U of Y ,
every x ∈ X has a neighbourhood V such that ϕ[V ] is covered by finitely
many members of U . Gathering all these results, we have the following
interesting characterization of subcontinuity.

Theorem 4.1. For a nonempty-valued mapping ϕ : X → 2Y into a reg-
ular space Y , the following are equivalent :

(a) ϕ is subcontinuous.
(b) For every open cover U of Y , every x ∈ X has a neighbourhood V

such that ϕ[V ] is covered by finitely many members of U .
(c) ϕ is a set-valued selection for some usco mapping.

In the present section, we are interested in the equivalence of (b) and (c),
which allows us to extend subcontinuity to separable-valued mappings in
metric spaces. Namely, given a metric space (Y, ρ), we shall say that a
nonempty-valued mapping ϕ : X → 2Y is separable ρ-subcontinuous if for
every ε > 0, every x ∈ X is contained in an open set V ⊂ X such that ϕ[V ]
is covered by countably many open ε-balls. The following theorem will be
proved.

Theorem 4.2. Let X be a paracompact space and (Y, ρ) be a metric
space. Then a nonempty-valued mapping ϕ : X → 2Y is separable ρ-sub-
continuous if and only if it is a set-valued selection for some ρ-u.s.c. mapping
ψ : X → S (Y ).

Here, ψ : X → 2Y is ρ-u.s.c. if for every ε > 0, every x ∈ X has a
neighbourhood U ⊂ X with ψ(z) ⊂ Bρ

ε (ψ(x)) for every z ∈ U .

The proof of Theorem 4.2 is based on the technique of sieves developed
in the previous sections, and the following observations.

Proposition 4.3. Let X be a space, (Y, ρ) be a metric space and ϕ :
X → 2Y be a nonempty-valued mapping. For a point x ∈ X, the following
are equivalent :
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(a) There exists A ∈ S (Y ) such that ϕ#[Bρ
ε (A)] is a neighbourhood of x

for every ε > 0.
(b) For every ε > 0 there exists a neighbourhood V ⊂ X of x such that

ϕ[V ] is covered by countably many open ε-balls.

Proof. The implication (a)⇒(b) is obvious. Briefly, if A ∈ S (Y ) is as
in (a) and ε > 0, take an open set V ⊂ X with x ∈ V ⊂ ϕ#[Bρ

ε (A)].
Since A is separable, it has a countable dense subset C ⊂ A. Accordingly,
ϕ[V ] ⊂ Bρ

ε (A) = Bρ
ε (C), which is (b). Conversely, suppose that (b) holds

and, for every n ∈ N, let Vn be as in (b) corresponding to ε = 1/n. Next,
take a nonempty countable set Cn ⊂ Y with ϕ[Vn] ⊂ Bρ

1/n(Cn). Finally,

A =
⋃
n∈NCn is a nonempty separable closed subset of Y such that Vn ⊂

ϕ#[Bρ
1/n(A)] for every n ∈ N, which is (a).

Proposition 4.4. Let (Y, ρ) be a metric space and ϕ : X → 2Y be
separable ρ-subcontinuous. Whenever D ∈ S (Y ) and δ > 0, set XD =

ϕ#[Bρ
δ (D)] and YD = Bρ

2δ(D). Then the restriction ϕD = ϕ�XD is also
separable ρ-subcontinuous as a set-valued mapping from XD to 2YD .

Proof. Take a point x ∈ XD. By Proposition 4.3, there exists A ∈ S (Y )
such that ϕ#[Bρ

ε (A)] is a neighbourhood of x for every ε > 0. Whenever
0 < ε < δ/2, it follows that

Bρ
ε (A) ∩Bρ

δ (D) ⊂ Bρ
ε (A ∩Bρ

3δ/2(D)) ⊂ Bρ
2δ(D) ⊂ YD.

Indeed, for y ∈ Bρ
ε (A) ∩ Bρ

δ (D), there are s ∈ A and t ∈ D such that
ρ(y, s) < ε and ρ(y, t) < δ. Accordingly, ρ(s, t) < δ + ε and we have

s ∈ Bρ
δ+ε(D) ⊂ Bρ

3δ/2(D). We can now take AD = A ∩Bρ
3δ/2(D) ∈ S (YD),

which has the property that ϕ#[Bρ
ε (A)]∩XD ⊂ ϕ#

D[Bρ
ε (AD)]. By Proposition

4.3, ϕD is also separable ρ-subcontinuous.

Proposition 4.5. Let X be a paracompact space, (Y, ρ) be a metric
space and ϕ : X → 2Y be separable ρ-subcontinuous. Then for every ε > 0
there exists a locally finite open cover {Us : s ∈ S} of X and a map η : S →
S (Y ) such that Us ⊂ ϕ#[Bρ

ε (η(s))] for every s ∈ S.

Proof. By Proposition 4.3, for every x ∈ X there exists an open set
Vx ⊂ X and Ax ∈ S (Y ) such that x ∈ Vx ⊂ Vx ⊂ ϕ#[Bρ

ε (Ax)]. Since X
is paracompact, the open cover {Vx : x ∈ X} has an open locally finite
refinement {Us : s ∈ S}. For every s ∈ S there exists x(s) ∈ X with
Us ⊂ Vx(s). This defines a map η : S → S (Y ) by letting η(s) = Ax(s),
s ∈ S.

Lemma 4.6. Let X be a paracompact space, (Y, ρ) be a metric space and
ϕ : X → 2Y be a separable ρ-subcontinuous mapping. Then there exists a
nonempty-open-valued locally finite sieve U : T → 2X and η : T → S (Y )
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such that, for every t ∈ T (n) and s ∈ node(t),

U (t) ⊂ ϕ#[Bρ

2−(n+1)(η(t))] and η(s) ⊂ Bρ
2−n(η(t)).

Proof. It is enough to construct U and η on node(∅) = T (0), and illus-
trate how to extend them to node(t) for a given t ∈ node(∅). The existence
of U : T (0)→ 2X and η : T (0)→ S (Y ) such that U (t) ⊂ ϕ#[Bρ

2−1(η(t))],
t ∈ T (0), follows from Proposition 4.5. Take t ∈ T (0), and consider the
paracompact space Xt = U (t). Since ϕ(x) ⊂ Bρ

2−1(η(t)) ⊂ Bρ
20

(η(t)), we

can view ϕt = ϕ�Xt as a mapping from Xt to the subsets of Yt = Bρ
20

(η(t)).
According to Proposition 4.4, ϕt remains separable ρ-subcontinuous. Hence,
we can apply Proposition 4.5 to get a locally finite open cover {Us : s ∈ St}
of Xt and a map η : St → S (Yt) such that Us ⊂ ϕ#[Bρ

2−2(η(s))] for every
s ∈ St. Finally, take node(t) = St, and define U (s) = Us∩U (t), s ∈ node(t).
The proof can be extended by induction.

Proof of Theorem 4.2. Let U : T → 2X and η : T → S (Y ) be as
in Lemma 4.6. Set U (t) = U (t), t ∈ T . According to [6, Lemma 5.3],
the inverse polar mapping fU : X → 2B(T ) is usco, namely nonempty-

compact-valued and u.s.c. Define Ση : B(T )→ S (Y ) by Ση(β) =
⋃
t∈β η(t)

for β ∈ B(T ). By Proposition 2.1 and Lemma 4.6, Ση is ρ-continuous. We fi-
nalize the proof by showing that the composite mapping ψ(x) = Ση[fU (x)],
x ∈ X, is as required. Since fU is usco, ψ is ρ-u.s.c.; moreover, each ψ(x),
x ∈ X, is separable because each fU (x) is compact. It is also easy to see
that each ψ(x), x ∈ X, is closed. Finally, take a point x ∈ X, a branch
β ∈ fU (x) and t ∈ β ∩ T (n). By the properties of U (see Lemma 4.6), it
follows that

ϕ(x) ⊂ Bρ

2−(n+1)(η(t)) ⊂ Bρ
2−n(Ση(β)) ⊂ Bρ

2−n(Ση[fU (x)]) = Bρ
2−n(ψ(x)).

Accordingly, ϕ(x) ⊂ ψ(x), and the proof is complete.

For a metric space (Y, ρ), a mapping ϕ : X → F (Y ) is ρ-l.s.c. if for every
ε > 0, every x ∈ X has a neighbourhood U such that ϕ(x) ⊂ Bρ

ε (ϕ(z)) for
every z ∈ U . It is evident that ϕ is ρ-continuous if and only if it is both
ρ-l.s.c. and ρ-u.s.c. In the proof of Theorem 4.2, the inverse polar mapping
fU is nonempty-compact-valued and l.s.c. [6, Propositions 5.1 and 5.2].
Hence, the composition φ(x) = Ση[fU (x)], x ∈ X, is a ρ-l.s.c. mapping
with φ ⊂ ψ. This gives the following consequence.

Corollary 4.7. Let X be a paracompact space, (Y, ρ) be a metric space
and ϕ : X → 2Y be a separable ρ-subcontinuous mapping. Then there exists
a (completely) metrizable non-Archimedean space Z, a pair (Φ, Ψ) : X →
F (Z) of nonempty-compact-valued mappings and θ : Z → S (Y ) such that:

(a) Φ is l.s.c., Ψ is u.s.c. and Φ ⊂ Ψ ,
(b) θ is ρ-continuous with ϕ ⊂ θ ◦ Φ ⊂ θ ◦ Ψ .
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5. Proof of Theorem 1.1. Suppose that X is a strongly paracompact
metrizable space and ρ is a metric on X compatible with the topology of X.
We follow the idea of [8, Corollary 4.3]. Namely, define an l.s.c. mapping
Φ : X → F (X) by Φ(x) = {x}, x ∈ X. By Theorem 3.3, there exists a non-
Archimedean (completely) metrizable space Z, a continuous map g : X → Z
and a ρ-continuous mapping ψ : Z → S (X) such that ρ(ψ(g(x)), Φ(x)) = 0
for every x ∈ X. Since Φ(x) = {x}, we have x ∈ ψ(g(x)), and hence g−1 is
a set-valued selection for ψ. Accordingly, g is a strongly S-map because ψ
is ρ-continuous (see Theorem 4.2).

Conversely, let U be a locally finite open cover of X, and {VU : U ∈ U }
be another open cover of X such that VU ⊂ U for all U ∈ U . For every
U ∈ U , take a continuous function ξU : X → [0, 1] such that

(5.1) ξ−1U (1) = VU and ξ−1U (0) = X \ U.
Take a compatible metric d on X, and next define another metric ρ by

(5.2) ρ(x, y) = d(x, y) +
∑
{|ξU (x)− ξU (y)| : U ∈ U }, x, y ∈ X.

Because the functions ξU , U ∈ U , are continuous and d ≤ ρ, the metrics d
and ρ are equivalent. We take a nonempty subset A ⊂ X, and check that

(5.3) U ∩A = ∅ implies VU ∩Bρ
1(A) = ∅.

Indeed, if y ∈ VU ∩ Bρ
1(A), then there exists x ∈ A with ρ(x, y) < 1.

According to (5.2), this implies that |ξU (x) − ξU (y)| < 1. On the other
hand, by (5.1), we have ξU (y) = 1. Hence, ξU (x) > 0, and therefore x ∈ U .
Thus, U ∩A = ∅ implies VU ∩Bρ

1(A) = ∅.
We now complete the proof in the following way. Since ρ is a compat-

ible metric on X, by the conditions of the theorem, there exists a non-
Archimedean metrizable space Z and a continuous map g : X → Z such
that the mapping g−1 : Z → F (X) is a set-valued selection for some ρ-u.s.c.
mapping ψ : Z → S (X); the latter follows by Theorem 4.2. Take a point
z ∈ Z. Since ψ(z) ∈ S (X) and U is locally finite, the set U (z) = {U ∈ U :
U ∩ ψ(z) 6= ∅} is countable. So, by (5.3), Bρ

1(ψ(z)) is covered by countably
many elements of {VU : U ∈ U }, in fact Bρ

1(ψ(z)) ⊂
⋃

U (z). Since ψ is
ρ-u.s.c. and g−1 ⊂ ψ, we deduce that O(z) = ψ#[Bρ

1(ψ(z))] is a neighbour-
hood of z such that

(5.4) g−1(O(z)) ⊂
⋃

U (z).

Since {O(z) : z ∈ Z} is an open cover of the metrizable non-Archimedean
space Z, it is refined by a discrete open cover D of Z. According to (5.4),
W = g−1(D) is a discrete open cover of X which refines the collection of
all countable unions of elements of U . Thus, X is strongly paracompact
(see [2, Theorem 2.3]).
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6. Proof of Theorem 1.2. As was shown in the Introduction, every
strongly metrizable space has this property. Conversely, suppose that ρ is
a metric on X compatible with the topology of X, and such that (X, ρ)
can be mapped onto a non-Archimedean space Z by a continuous strongly
S-map g : X → Z. For any n ∈ N and x ∈ X, there exists an open set
Vn(x) containing g(x) such that g−1(Vn(x)) is covered by countably many
open (1/n)-balls in (X, ρ). Since Z is non-Archimedean, the open cover
{Vn(x) : x ∈ X} is refined by a discrete cover Vn. Thus, each h−1(V ),
V ∈ Vn, is covered by a collection BV of countably many open (1/n)-balls
in (X, ρ). Since h−1(V ) is countably paracompact (being metrizable), the
countable open cover {B ∩ h−1(V ) : B ∈ BV } of h−1(V ) is refined by a
star-finite open refinement UV in h−1(V ) (see [4, Theorem 5.2.6]). Thus,
Un =

⋃
V ∈Vn

UV is an open start-finite cover of X with diamρ(U) < 2/n for
every U ∈ Un. Accordingly, U =

⋃
n∈N Un is a base for the topology of X,

and X is strongly metrizable.
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