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STRONGLY PARACOMPACT METRIZABLE SPACES

VALENTIN GUTEV (Msida)

Abstract. Strongly paracompact metrizable spaces are characterized in terms of
special S-maps onto metrizable non-Archimedean spaces. A similar characterization of
strongly metrizable spaces is obtained as well. The approach is based on a sieve-construc-
tion of “metric”-continuous pseudo-sections of lower semicontinuous mappings.

1. Introduction. All spaces in this paper are assumed to be Haus-
dorff topological spaces. A cover % of a space X is star-finite if the set
{W e :WnU # 0} is finite for every U € % . A space X is strongly
paracompact (also called hypocompact) if every open cover of X has a star-
finite open refinement. Every strongly paracompact space is paracompact,
but the converse is not necessarily true (see for instance [4]).

A space Z is non-Archimedean if it has a base such that if B; and By are
members of this base with By N By # (), then either By C By or By C Bjy.
Sometimes a base with this property is said to be of rank 1 (see [15]).
A typical example of a metrizable non-Archimedean space is the countable
power T of a discrete space T'. This space is often called the Baire space
of weight 7 = |T'|, and denoted by B(T).

According to a result of Morita [13] (see also |18, Theorem 2.3]), every
strongly paracompact metrizable space X is a subset of [0,1]“ x B(r) for
7 = w(X) being the weight of X. A similar result was obtained by Smirnov
[19, Theorem 5], namely that every strongly paracompact metrizable space
can be mapped continuously onto a non-Archimedean metrizable space by an
S-map. Here, a map g : X — Z is an S-map if each g~1(z), z € Z, is second
countable. Smirnov’s paper [19] contains a list of examples of such S-images
of metrizable spaces. Briefly, it was shown in [19] that there exists a metriz-
able space which cannot be mapped continuously onto a non-Archimedean
metrizable space by an S-map; that there exists a metrizable space which
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is not strongly paracompact, but can be mapped continuously onto a non-
Archimedean metrizable space by an S-map; that there exists a metrizable
strongly paracompact space which cannot be mapped continuously onto a
non-Archimedean metrizable space by a closed S-map. To these examples,
let us also add a result of Nagata [14] that the product (0,1) x B(w;) is not
strongly paracompact. Hence, not every subset of [0,1]“ x B(7) is strongly
paracompact.

In this paper, we are interested in S-maps with an extra property of being
inversely “subcontinuous” (see Section [d]). Let (X, p) be a metric space. For
e > 0, the open e-ball centred at z € X is Bf(z) = {y € X : p(y,z) < e}
We say that g : X — Z is a strongly S-map if for every € > 0, every z € Z
has a neighbourhood V' C Z such that g=!(V) is covered by countably many
open e-balls. The following theorem will be proved.

THEOREM 1.1. A metrizable space X is strongly paracompact if and only
if for every compatible (with the topology) metric p on X, the metric space
(X, p) can be mapped continuously onto a non-Archimedean metrizable space
by a strongly S-map.

A metrizable space is called strongly metrizable if it has a base which
is the union of countably many star-finite open covers. Following the argu-
ments in [18], it was shown in [17, Proposition 3.27] that each strongly
metrizable space of weight 7 is a subset of [0,1]* x B(7). Accordingly,
strongly metrizable spaces of weight < 7 are precisely the subsets of [0, 1] x
B(7). Another interesting result is that X is strongly metrizable if and only
if it admits a compatible metric d such that, for each ¢ > 0, the collec-
tion of all open e-balls B%(z), x € X, is locally finite [1]. Let d; be a
metric on [0, 1]“, d2 be a metric on B(7), and d = max{d;,ds} be the box-
metric on [0,1]* x B(7), all compatible with the corresponding topologies.
Given a subset X C [0,1]“ x B(7), let p be the restriction of d on X, and
g = m[X be the restriction of the projection = : [0, 1] x B(7) — B(7). Then
g: X — Z =g(X) C B(7) is a continuous strongly S-map of X onto the
non-Archimedean space Z. This shows that the requirement “for every com-
patible (with the topology) metric p on X” in Theorem is essential. In
fact, this gives the following characterization of strongly metrizable spaces
illustrating the subtle difference from strongly paracompact metrizable ones.

THEOREM 1.2. A metrizable space X is strongly metrizable if and only
if X admits a compatible (with the topology) metric p so that (X, p) can be
mapped continuously onto a non-Archimedean metrizable space by a strongly
S-map.

The proof of Theorem is based on a new sieve-construction of set-
valued mappings when the range is not necessarily completely metrizable;
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this is done in the next section. In Section [3] this is applied to construct
pseudo-sections of lower semicontinuous mappings defined on strongly para-
compact spaces (see Theorem . Section [4|is devoted to strongly S-maps,
relating them to separable p-subcontinuous set-valued mappings (see The-

orem . Finally, Theorems and are proved in Sections |5| and @

respectively.

2. A sieve-construction. A partially ordered set (7, <) is a tree if
{s € T : s <t} is well ordered for every ¢t € T. For a tree (T, <), we use
T(0) to denote the set of all minimal elements of T'. Given an ordinal «, if
T'(B) is defined for every 5 < «, then T'(«) denotes the minimal elements of
T\ Ug<o T(B). The set T(a) is called the ath level of T', while the height
of T is the least ordinal a such that T = (Js, T(B). We say that (T, =)
is an a-levelled tree if its height is . A maximal linearly ordered subset of
a tree (T, <) is called a branch, and Z(T) is used to denote the set of all
branches of T'. A tree (T, <) is pruned if every element of 7" has a successor
in T, equivalently if for every s € T there exists t € T with s < ¢. In these
terms, an w-levelled tree (7', <) is pruned if each branch § € %(T) is infinite.

Non-Archimedean spaces are naturally related to trees. According to

[16, Theorem 2.9], every non-Archimedean space has a base which is a tree
with respect to reverse inclusion. The relation is not formal, and following
Nyikos [16], for a tree (T, <) and t € T, let
(2.1) ot)y={p8€B(T):tecp}
If (T,=) is a pruned w-levelled tree, then the family {€(t) : ¢t € T} is
a base for a completely metrizable non-Archimedean topology on Z(T).
We will refer to this topology as the branch topology, and to the resulting
topological space as the branch space. Throughout this paper, Z(T) will be
always endowed with the branch topology when it comes to consider it as a
topological space.

For a set Y, let 2¥ be the collection of all subsets of Y. Given a pruned
w-levelled tree (T, <), a set-valued mapping Z : T — 2V is a sieve on Y if

X = U Z(t) and Z(t) = U H(s) foreveryteT.
tenode(0) s€node(t)

Here, node()) = T'(0) and node(t) C T is the set of all immediate successors
of t, called the node of t in T. To every sieve % : T — 2¥ one can associate
the mapping 24 : B(T) — 2¥ defined by 24(8) = MNies Z(t), B € B(T).
It is commonly called the polar mapping associated to Z. The inverse polar
mapping 2, 1Y — 2%(T) is defined by 2,,' (y) = {8 € B(T) : y € 24(8)},
y € Y, and also denoted by Ug. The polar mappings {25, and Uz were used
in several constructions (see for instance [6(9]).
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We now turn to another natural construction associating a set-valued
mapping to a sieve. Let (Y, p) be a metric space. For a subset A C Y, we
write

B(A)={yeY :p(y,A) <e} =[] B(a)
acA
A mapping (usually nonempty-valued) ¢ : X — 2" is called p-continuous
(sometimes also Hausdorff continuous) if for every € > 0, every x € X has
a neighbourhood U with ¢(z) C Bf(¢(2)) and ¢(z) C BE(p(x)) for every
z € U. In the proposition below and the rest of the paper, we will use . (Y’)
for the collection of all nonempty, closed and second countable subsets of Y:

L (Y)={S CY :S is nonempty, closed and second countable}.

PROPOSITION 2.1. Let (Y, p) be a metric space, (T, =) be a pruned w-
levelled tree, and n: T — (Y) be a mapping such that n(s) C BY_,, (n(t))
for everyt € T(n) and s € node(t). Define Xy, : B(T) — L (Y) by X (B) =
Usesn(t), B € B(T). Then X is p-continuous.

Proof. 1t is evident that ), is separable-valued. Take ¢ > 0 and n < w
with 277"+ < &, Next, take ¢ € T'(n) and branches o, 8 € 0(t) C B(T). To
show that X, is p-continuous, it suffices to show that X, (a) C BE(X,(8)).
To this end, for convenience, let & = {s : k < w} and f = {tx : k < w},
where sy, t, € T(k), k < w. Since 1(sp11) C By_,.(n(sk)) for every k < w, it
follows that

N(sntks1) C Bg - (n+k)(77(5n)) 2 n+1(77( n))s k>1.

By (2.1)), sy = tx for every k < n. Therefore, n(s;) = (tk) C X,(B) for
k < n, and n(sk) C By_na(n(sn)) = By v (n(tn)) C B h-nr1 (Zn(8)) for
every k > n. Since 27" < ¢, we finally have Xy (a) = Uy, n(sk) C

BE(Zy(B))- =

For a set D, let [D]* = {S C D : 1 < |S| < w}. Following [8], for
a pruned w-levelled tree (T, =), set Ly = {J,.,[T(n)]=*. Next, define a
relation =< on Ly by letting o < u for o, u € Ly if

(2.2) uwC U node(s) and pNnode(s) # 0, s € o.

seo
Finally, extend the relation to a partial order on L7 by making it transitive.
Thus, we get a pruned w-levelled tree (Lp, <) because so is T. We now have
the following consequence (cf. [8, Theorem 2.2]).

=) be a pruned w-
h(t)) < 2=+ for
Y) by n(o) = h(o)

COROLLARY 2.2. Let (Y,p) be a metric space, (T,
levelled tree, and h : T —'Y be a map such that p(h(s),
every t € T(n) and s € node(t). Define n : Ly — 7(




STRONGLY PARACOMPACT METRIZABLE SPACES 207

for every o € Lp. Then the mapping %, : B(Lr) — S (Y) defined by
Zn(B) =U,epnlo), B € #B(Lr), is p-continuous.

Proof. This follows from Proposition because 0 € Lr(n) and p €
node(o) implies n(p) C BY_,.(n(c)) (see (2.2)). =

3. Factorizing pseudo-sections. For a space Y, let .#(Y") be the col-
lection of all nonempty closed subsets of Y. A mapping ¢ : X — Z(Y) is
lower semicontinuous, or l.s.c., if the set

U ={z€X:0(x)NU #0}

is open in X for every open U C Y. The following characterization of
strongly paracompact spaces was obtained in [8, Theorem 1.3].

THEOREM 3.1. A space X is strongly paracompact if and only if for
every complete metric space (Y, p), every l.s.c. mapping @ : X — F(Y) has
a p-continuous section ¢ : X — 7 (Y).

Here, ¢ is a section of @ if o(x) N ®(x) # () for every z € X. In fact,
Theorem was obtained as a consequence of the following slightly more
general result (see |8, Corollary 3.5]).

THEOREM 3.2. A space X is strongly paracompact if and only if for every
complete metric space (Y, p), every l.s.c. mapping ¢ : X — F(Y) admits a
p-continuous mapping ¢ : X — L (Y) with

plp(x),®(x)) = inf{p(y,2) :y € p(z) and z € P(z)} =0, x€ X.

In the setting of these theorems, just paracompactness is enough to con-
struct a compact-valued l.s.c. mapping ¥ : X — Z(Y) with ¥(x) C &(x),
x € X [12, Theorem 1.1]. By Theorem applied to this ¥, there exists
a p-continuous ¢ : X — (V) with p(p(z),¥(z)) = 0 for every z € X.
Accordingly, ¢ will be a section of ¥ (hence, of ¢ as well) because ¥ is
nonempty-compact-valued. Thus, Theorem implies Theorem [3.1] The
purpose of this section is to show that Theorem remains valid without
the requirement on (Y, p) to be complete.

THEOREM 3.3. Let X be a strongly paracompact space, (Y, p) be a metric
space, and ¢ : X — F(Y) be an l.s.c. mapping. Then there exists a non-
Archimedean metrizable space Z, a continuous map g : X — Z and a p-
continuous mapping ¢ : Z — L (Y) such that p(¢(g(z)),P(z)) = 0 for
everyr € X.

Proof. Tt is a slight modification of the proof of [8, Theorem 3.3]. Namely,
take a nonempty-open-valued locally finite sieve .# : T — 2 on Y such
that diam, (. (t)) < 2=(*1 for every ¢t € T(n) and n < w. This means that
each . (t), t € T, is open and each collection {Z(t) : t € T(n)}, n < w,
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is locally finite. Next, consider the tree (Lp, <) associated to T" as in ([2.2)),
and define & : Ly — 2% by

(3.1) P(o) =o' 2 (1)], oeclr.
teo

Being strongly paracompact, by [8, Proposition 3.2], the space X has an
open-valued sieve .Z : Ly — 2% such that Z(0) C (o), 0 € Ly, and
each collection {Z(c) : ¢ € Lp(n)}, n < w, is discrete. As in the proof
of |8, Theorem 3.3], the inverse polar mapping Uy = Qp_gl : X — 2%L7) g
singleton-valued and continuous. So, we can take Z = Z(Ly) and g = U g.

As for ¢ : Z — S (Y), define h : T — Y by h(t) € #(t), t € T,
so that p(h(s),h(t)) < 2=*D for every t € T(n) and s € node(t). Let
n:Ly - ZY) and X, : B(Lr) - L (Y) be defined as in Corollary
associated to this h. Then, by this corollary, X is p-continuous and
we can take ¢ = X,. To show that these Z, g and 1 are as required, take
a point x € X and the branch 8 € #(Lr) such that x € Z(0) for every
o € B. Write 8 = {0, : n < w}, where o, € Ly(n) for each n < w.
Since Z(0) C P(o) for every o € 3, by (B.1) for every n < w there
exists t, € o, with &(z) N .4 (t,) # 0. Since h(t,) € 4 (t,) and n(cy,) =
h(oy), it follows that p(n(o,), ®(x)) < p(h(tp),d(x)) < 2= "D, Therefore,
p((g(2)), B(z)) = p(5y(O2(x)), () = 0 because 1(cn) < y(B) for

every n < w. m

4. Separable subcontinuity. A map f : X — Y is a selection (or
a single-valued selection) for & : X — 2Y if f(x) € &(z) for every z € X.
A mapping 1 : X — 2Y is a set-valued selection (also called a multi-selection,
or a subset-selection) for & : X — 2Y if ¢)(z) C &(z) for every x € X. For
convenience, we sometimes write ¢y C @ to express that i is a set-valued
selection for @. A mapping ¢ : X — Z#(Y) is called upper semicontinuous,
or u.s.c., if the set

WU = X\ o Y\ U] = {x € X : () C U}

is open in X for every open U C Y. We often say that ¢ : X — .Z(Y) is
usco if it is w.s.c. and compact-valued.

In this section, we are interested in those set-valued mappings which
are set-valued selections for separable-valued “metric”’-u.s.c. mappings. The
problem seems naturally related to a property known as subcontinuity. A map
f X — Y is called subcontinuous if for every net {zo, : « € D} C X
convergent in X, the net {f(z,) : « € D} C Y has a convergent subnet [5].
It was shown in [5, Theorem 3.4] that, for a Hausdorff space Y, a map
f: X — Y is continuous if and only if it is subcontinuous and has a closed
graph. The result was naturally extended to set-valued mappings in [20],
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where a nonempty-valued mapping ¢ : X — 2Y was called subcontinuous if
for every net {z, : @ € D} C X convergent in X and y, € ¢(zq), a € D,
the net {y, : « € D} C Y has a convergent subnet.

It was shown in [20, Theorem 3.1] that each subcontinuous mapping ¢ :
X — 2Y with a closed graph {(z,y) :y € ¢(z)} C X x Y is usco. A natural
characterization of closed-graph mappings was given in [10, Theorem 3.3],
where it was shown that a nonempty-valued ¢ : X — 2¥ has a closed
graph if and only if ¢(x) = {e[V] : V C X isopenand z € V} for
every v € X. Here, ¢[V] = U,c () is the image of V' by ¢. Another
natural characterization of subcontinuity of set-valued mappings was stated
in [3, Theorem 7.1] and credited to |11]. It asserts that a nonempty-valued
¢ : X — 2Y is subcontinuous if and only if for every open cover % of Y,
every x € X has a neighbourhood V' such that ¢[V] is covered by finitely
many members of 7. Gathering all these results, we have the following
interesting characterization of subcontinuity.

THEOREM 4.1. For a nonempty-valued mapping ¢ : X — 2Y into a reg-
ular space Y, the following are equivalent:

(a) ¢ is subcontinuous.

(b) For every open cover % of Y, every x € X has a neighbourhood V
such that p[V] is covered by finitely many members of % .

(¢) ¢ is a set-valued selection for some usco mapping.

In the present section, we are interested in the equivalence of (b) and (c),
which allows us to extend subcontinuity to separable-valued mappings in
metric spaces. Namely, given a metric space (Y, p), we shall say that a
nonempty-valued mapping ¢ : X — 2 is separable p-subcontinuous if for
every € > 0, every x € X is contained in an open set V' C X such that ¢[V]
is covered by countably many open e-balls. The following theorem will be
proved.

THEOREM 4.2. Let X be a paracompact space and (Y, p) be a metric
space. Then a nonempty-valued mapping ¢ : X — 2¥ is separable p-sub-

continuous if and only if it is a set-valued selection for some p-u.s.c. mapping
v: X = L(Y).

Here, 1 : X — 2Y is p-u.s.c. if for every ¢ > 0, every € X has a
neighbourhood U C X with (z) C Bf(¢(x)) for every z € U.

The proof of Theorem is based on the technique of sieves developed
in the previous sections, and the following observations.

PROPOSITION 4.3. Let X be a space, (Y,p) be a metric space and ¢ :
X — 2Y be a nonempty-valued mapping. For a point x € X, the following
are equivalent:
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(a) There exists A € 7 (Y) such that ¥ [BE(A)] is a neighbourhood of x
for every e > 0.

(b) For every e > 0 there exists a neighbourhood V- C X of x such that
©[V] is covered by countably many open -balls.

Proof. The implication (a)=-(b) is obvious. Briefly, if A € #(Y) is as
in (a) and ¢ > 0, take an open set V C X with x € V C ¢*[Bf(A))].
Since A is separable, it has a countable dense subset C' C A. Accordingly,
¢[V] € BE(A) = BE(C), which is (b). Conversely, suppose that (b) holds
and, for every n € N, let V,, be as in (b) corresponding to € = 1/n. Next,
take a nonempty countable set C,, C Y with ¢[V,] C B} /n(C’n). Finally,
A = J,en Cn is a nonempty separable closed subset of Y such that V;, C
o7 [Bf/n(A)] for every n € N, which is (a). =

PROPOSITION 4.4. Let (Y,p) be a metric space and ¢ : X — 2¥ be
separable p-subcontinuous. Whenever D € #(Y) and § > 0, set Xp =

¢#[Bf(D)] and Yp = Bb5(D). Then the restriction pp = ¢ Xp is also
separable p-subcontinuous as a set-valued mapping from Xp to 2YP.

Proof. Take a point x € Xp. By Proposition there exists A € ./(Y')
such that p#[Bf(A)] is a neighbourhood of z for every & > 0. Whenever
0 < e <§/2, it follows that

B2(A) N BY(D) € BY(AN BY; (D)) € Bys(D) C Y.

Indeed, for y € BE(A) N BJ(D), there are s € A and t € D such that
p(y,s) < e and p(y,t) < 0. Accordingly, p(s,t) < § + ¢ and we have
s € Bf, (D) C B§5/2(D). We can now take Ap = AN B§5/2(D) e S (Yp),
which has the property that o# [BZ(A)|NXp C gp% [BZ(Ap)]. By Proposition
pp is also separable p-subcontinuous. =

PROPOSITION 4.5. Let X be a paracompact space, (Y,p) be a metric
space and ¢ : X — 2Y be separable p-subcontinuous. Then for every e > 0
there ezists a locally finite open cover {Us : s € S} of X and a mapn: S —
S (Y) such that Us C 7 [B2(n(s))] for every s € S.

Proof. By Proposition for every x € X there exists an open set
Ve, C X and A, € Z(Y) such that z € V, C V, C p*[Bf(A,)]. Since X
is paracompact, the open cover {V, : x € X} has an open locally finite
refinement {Us : s € S}. For every s € S there exists z(s) € X with
Us C Vy(s)- This defines a map n : S — (Y) by letting n(s) = Ays),
se€S. n

LEMMA 4.6. Let X be a paracompact space, (Y, p) be a metric space and

©: X —2Y be a separable p-subcontinuous mapping. Then there exists a
nonempty-open-valued locally finite sieve % : T — 2% and n: T — .Z(Y)
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such that, for every t € T'(n) and s € node(t),

U(t) C o [BY ()] and n(s) C By (n(t)).

Proof. Tt is enough to construct % and n on node()) = 7'(0), and illus-
trate how to extend them to node(t) for a given ¢t € node()). The existence
of % : T(0) — 2% and n : T(0) — #(Y) such that % (t) C ¢*[B5_, (n(t))],
t € T(0), follows from Proposition Take t € T'(0), and consider the
paracompact space X; = % (t). Since @(x) C By_,(n(t)) C Bhy(n(t)), we

can view @; = [ X; as a mapping from X; to the subsets of Y; = BS, (n(t)).
According to Proposition [4.4] ¢; remains separable p-subcontinuous. Hence,
we can apply Proposition to get a locally finite open cover {Us : s € S;}
of X; and a map n : Sy — . (V;) such that Uy C ¢#[Bh_,(n(s))] for every
s € S;. Finally, take node(t) = S, and define % (s) = UsN% (t), s € node(t).
The proof can be extended by induction. =

Proof of Theorem . Let # : T — 2%X andn: T — Z(Y) be as
in Lemma Set % (t) = %(t), t € T. According to |6, Lemma 5.3],
the inverse polar mapping Uz : X — 2%(T) ig usco, namely nonempty-
compact-valued and u.s.c. Define X, : Z(T') — S (Y) by Xy (8) = U n(t)
for 5 € B(T). By Propositionand Lemma Xy is p-continuous. We fi-
nalize the proof by showing that the composite mapping ¢ (z) = £,[07(z)],
r € X, is as required. Since Uy, is usco, 1 is p-u.s.c.; moreover, each ¢(x),
r € X, is separable because each Uz (x) is compact. It is also easy to see
that each ¥ (z), x € X, is closed. Finally, take a point x € X, a branch
p € Uzy(x) and t € BN T(n). By the properties of % (see Lemma , it
follows that

p(x) C By iy (n(t)) C By, (Zy(B)) C By (Zy[Uz(2)]) = By, (1h(x))-
Accordingly, ¢(z) C ¢(z), and the proof is complete. m

For a metric space (Y, p), a mapping ¢ : X — % (Y) is p-Ls.c. if for every
e > 0, every x € X has a neighbourhood U such that ¢(z) C BE(p(2)) for
every z € U. It is evident that ¢ is p-continuous if and only if it is both
p-l.s.c. and p-u.s.c. In the proof of Theorem the inverse polar mapping
Uy is nonempty-compact-valued and ls.c. [6, Propositions 5.1 and 5.2].
Hence, the composition ¢(z) = X,[Uz(x)], + € X, is a p-l.s.c. mapping
with ¢ C 1. This gives the following consequence.

COROLLARY 4.7. Let X be a paracompact space, (Y, p) be a metric space
and ¢ : X — 2Y be a separable p-subcontinuous mapping. Then there exists
a (completely) metrizable non-Archimedean space Z, a pair (P,¥) : X —
F(Z) of nonempty-compact-valued mappings and 0 : Z — (Y') such that:

(a) @ isl.s.c., ¥ is u.s.c. and ® C V¥,
(b) 0 is p-continuous with p CGod C oW,
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5. Proof of Theorem Suppose that X is a strongly paracompact
metrizable space and p is a metric on X compatible with the topology of X.
We follow the idea of [8, Corollary 4.3]. Namely, define an l.s.c. mapping
&: X - Z(X) by &(x) ={z}, x € X. By Theorem there exists a non-
Archimedean (completely) metrizable space Z, a continuous map g : X — Z
and a p-continuous mapping ¢ : Z — (X)) such that p(¢(g(z)), @(z)) =0
for every € X. Since @(x) = {x}, we have = € 1(g()), and hence g~ ! is
a set-valued selection for 1. Accordingly, ¢ is a strongly S-map because ¥
is p-continuous (see Theorem |4.2)).

Conversely, let % be a locally finite open cover of X, and {V; : U € %'}
be another open cover of X such that Vy C U for all U € % . For every
U € %, take a continuous function & : X — [0, 1] such that

(5.1) (1) =V and &;1(0) =X \U.

Take a compatible metric d on X, and next define another metric p by

(52)  pla,y) =d(x,y) + Y (@) - o) :UeZ}, wzyeX.

Because the functions &, U € %, are continuous and d < p, the metrics d
and p are equivalent. We take a nonempty subset A C X, and check that

(5.3) UNA=0 implies VynB{(A) =0.

Indeed, if y € Viy N BY(A), then there exists € A with p(z,y) < 1.
According to (5.2)), this implies that |{y(z) — &u(y)| < 1. On the other
hand, by (5.1)), we have &y (y) = 1. Hence, £y(z) > 0, and therefore z € U.
Thus, U N A = () implies Vy N B{(A) = 0.

We now complete the proof in the following way. Since p is a compat-
ible metric on X, by the conditions of the theorem, there exists a non-
Archimedean metrizable space Z and a continuous map ¢ : X — Z such
that the mapping g~1 : Z — .#(X) is a set-valued selection for some p-u.s.c.
mapping ¢ : Z — . (X); the latter follows by Theorem Take a point
z € Z. Since ¢(z) € L (X) and % is locally finite, the set % (z) = {U € % :
UnNy(z) # 0} is countable. So, by (5.3), BY(¢(z)) is covered by countably
many elements of {Vyy : U € %}, in fact B{(¢(z)) C |UZ(z). Since 9 is
p-us.c. and g~! C 9, we deduce that O(z) = ¢#[Bf(1(2))] is a neighbour-
hood of z such that

(54) g1 06) cJ7 ).

Since {O(z) : z € Z} is an open cover of the metrizable non-Archimedean
space Z, it is refined by a discrete open cover & of Z. According to ,
W = g 1(2) is a discrete open cover of X which refines the collection of
all countable unions of elements of % . Thus, X is strongly paracompact
(see |2, Theorem 2.3)).
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6. Proof of Theorem As was shown in the Introduction, every
strongly metrizable space has this property. Conversely, suppose that p is
a metric on X compatible with the topology of X, and such that (X, p)
can be mapped onto a non-Archimedean space Z by a continuous strongly
S-map g : X — Z. For any n € N and = € X, there exists an open set
V() containing g(z) such that g=*(V,,(z)) is covered by countably many
open (1/n)-balls in (X,p). Since Z is non-Archimedean, the open cover
{Vo(x) : o € X} is refined by a discrete cover ¥;,. Thus, each h=1(V),
V € ¥, is covered by a collection Ay of countably many open (1/n)-balls
in (X,p). Since h~1(V) is countably paracompact (being metrizable), the
countable open cover {B N h~ (V) : B € By} of h=1(V) is refined by a
star-finite open refinement %4, in h=1(V) (see |4, Theorem 5.2.6]). Thus,
Un = Uy ey, %y is an open start-finite cover of X with diam,(U) < 2/n for
every U € %,. Accordingly, % = J,,cy % is a base for the topology of X,
and X is strongly metrizable.

REFERENCES

[1] Z.Balogh and G. Gruenhage, When the collection of e-balls is locally finite, Topology
Appl. 124 (2002), 445-450.
[2] D. Buhagiar, Invariance of strong paracompactness under closed-and-open maps,
Proc. Japan Acad. Ser. A Math. Sci. 74 (1998), 90-92.
[3] S. Dolecki and A. Lechicki, On structure of upper semicontinuity, J. Math. Anal.
Appl. 88 (1982), 547-554.
[4] R. Engelking, General Topology, 2nd ed., Heldermann, Berlin, 1989.
[5] R. V. Fuller, Relations among continuous and various non-continuous functions,
Pacific J. Math. 25 (1968), 495-509.
[6] V. Gutev, Completeness, sections and selections, Set-Valued Anal. 15 (2007), 275—
295.
[7] V. Gutev, Closed graph multi-selections, Fund. Math. 211 (2011), 85-99.
[8] V. Gutev, Hausdorff continuous sections, J. Math. Soc. Japan 66 (2014), 523-534.
[9] V. Gutev and T. Yamauchi, Strong paracompactness and multi-selections, Topology
Appl. 157 (2010), 1430-1438.
[10] R. Hrycay, Noncontinuous multifunctions, Pacific J. Math. 35 (1970), 141-154.
[11] A. Lechicki, Certain problems from the theory of continuous and measurable multi-
functions, PhD thesis, Univ. of Poznan, 1980.
[12]] E. Michael, A theorem on semi-continuous set-valued functions, Duke Math. J. 26
(1959), 647-651.
[13]] K. Morita, Normal families and dimension theory for metric spaces, Math. Ann.
128 (1954), 350-362.
[14] J. Nagata, On imbedding theorem for non-separable metric spaces, J. Inst. Polytech.
Osaka City Univ. Ser. A 8 (1957), 9-14.
[15] J. Nagata, On dimension and metrization, in: General Topology and Its Relations
to Modern Analysis and Algebra, Academic Press, New York, 1962, 282—285.
[16]| P.J. Nyikos, On some non-Archimedean spaces of Alexandroff and Urysohn, Topol-
ogy Appl. 91 (1999), 1-23.


http://dx.doi.org/10.1016/S0166-8641(01)00251-6
http://dx.doi.org/10.3792/pjaa.74.90
http://dx.doi.org/10.1016/0022-247X(82)90213-X
http://dx.doi.org/10.2140/pjm.1968.25.495
http://dx.doi.org/10.1007/s11228-007-0041-0
http://dx.doi.org/10.4064/fm211-1-5
http://dx.doi.org/10.2969/jmsj/06620523
http://dx.doi.org/10.1016/j.topol.2009.06.017
http://dx.doi.org/10.2140/pjm.1970.35.141
http://dx.doi.org/10.1215/S0012-7094-59-02662-6
http://dx.doi.org/10.1007/BF01360142
http://dx.doi.org/10.1016/S0166-8641(97)00239-3

214

V. GUTEV

[17]
[18]
[19]

20]

A. R. Pears, Dimension Theory of General Spaces, Cambridge Univ. Press, Cam-
bridge, 1975.

V. Sedivé, On collectionwise normal and hypocompact spaces, Czechoslovak Math.
J. 9 (84) (1959), 50-62 (in Russian).

Yu. M. Smirnov, On strongly paracompact spaces, Izv. Akad. Nauk SSSR Ser. Mat.
20 (1956), 253-274 (in Russian).

R. E. Smithson, Subcontinuity for multifunctions, Pacific J. Math. 61 (1975), 283—
288.

Valentin Gutev

Department of Mathematics
Faculty of Science

University of Malta

Msida MSD 2080, Malta

E-mail: valentin.gutev@um.edu.mt


http://dx.doi.org/10.2140/pjm.1975.61.283

	1 Introduction
	2 A sieve-construction
	3 Factorizing pseudo-sections
	4 Separable subcontinuity
	5 Proof of Theorem 1.1
	6 Proof of Theorem 1.2
	REFERENCES

