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THE R2 MEASURE FOR TOTALLY POSITIVE
ALGEBRAIC INTEGERS
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V. FLAMMANG (Metz)

Abstract. Let α be a totally positive algebraic integer of degree d, i.e., all of its
conjugates α1 = α, . . . , αd are positive real numbers. We study the set R2 of the quantities
(
∏d

i=1(1 + α2
i )1/2)1/d. We first show that

√
2 is the smallest point of R2. Then, we prove

that there exists a number l such that R2 is dense in (l,∞). Finally, using the method
of auxiliary functions, we find the six smallest points of R2 in (

√
2, l). The polynomials

involved in the auxiliary function are found by a recursive algorithm.

1. Introduction. Let P (x) = a0x
d + · · ·+ ad = a0(x−α1) · · · (x−αd),

a0 6= 0, P 6= x, be a polynomial with complex coefficients. M. Langevin [La]
defined three families of measures of polynomials, for p > 0:

Mp(P ) =
(1�

0

|P (e2iπt)|p dt
)1/p

,

Lp(P ) =
( d∑
i=1

|ai|p
)1/p

,

Rp(P ) = |a0|
d∏
i=1

(1 + |αi|p)1/p.

Note that limp→0 M(P ) = exp(
	1
0 log |P (e2iπt)| dt) is the well known Mahler

measure of P and L1(P ) is the well known length of P .

In this paper, we are interested in the R2 measure of P , which is R2(P ) =

|a0|
∏d
i=1(1 + |αi|2)1/2. If α is an algebraic integer, the R2 measure of α is

the R2 measure of its minimal polynomial. The absolute R2 measure of α is
the quantity r2(α) = R2(α)1/ deg(α).

From a well known theorem of Kronecker [Kr], it is easy to prove that if
α is an algebraic integer, then r2(α) =

√
2 if and only if α is a root of unity.
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Now, we suppose that α is a totally positive algebraic integer (all of its
conjugates are positive real numbers). We have

Theorem 1. If α is a nonzero totally positive algebraic integer then
r2(α) ≥

√
2. Equality holds if and only if α = 1.

This follows immediately from an inequality due to K. Mahler,( d∏
i=1

(ui + vi)
)1/d

≥
( d∏
i=1

ui

)1/d
+
( d∏
i=1

vi

)1/d
for ui, vi > 0.

In order to study the structure of the set R2 of the quantities r2(α), we
show the following

Theorem 2. R2 is dense in (l,∞) where l = limn→∞ r2(β2
n).

Here the β2
n were defined by C. J. Smyth [Sm1] as follows:

β2
0 = 1, β2

n = β2
n+1 + β−2

n+1 − 2.

β2
n is a totally positive algebraic integer of degree 2n.

Towards determining the structure of R2 in the gap (
√

2, l), we prove
the following

Theorem 3. If α is a totally positive algebraic integer whose minimal
polynomial is different from x − 1, x2 − 3x + 1, x4 − 7x3 + 13x2 − 7x + 1,
x8 − 15x7 + 83x6 − 220x5 + 303x4 − 220x3 + 83x2 − 15x + 1, x6 − 11x5 +
41x4−63x3 +41x2−11x+1 and x8−15x7 +84x6−225x5 +311x4−225x3 +
84x2 − 15x+ 1, then

r2(α) ≥ 1.866755.

Corollary 4. The six smallest points of R2 in (
√

2, l) are:

1.4142136 . . . = r2(x− 1) = r2(β2
0),

1.7320508 . . . = r2(x2 − 3x+ 1) = r2(β2
1),

1.8211603 . . . = r2(x4 − 7x3 + 13x2 − 7x+ 1) = r2(β2
2),

1.8530061 . . . = r2(x8 − 15x7 + 83x6 − 220x5 + 303x4 − 220x3 + 83x2

− 15x+ 1) = r2(β2
3),

1.8569376 . . . = r2(x6 − 11x5 + 41x4 − 63x3 + 41x2 − 11x+ 1),

1.8628205 . . . = r2(x8 − 15x7 + 84x6 − 225x5 + 311x4 − 225x3 + 84x2

− 15x+ 1).

We conjecture that the next point has minimal polynomial x14−27x13 +
308x12 − 1963x11 + 7790x10 − 20307x9 + 35763x8 − 43131x7 + 35763x6 −
20307x5 + 7790x4 − 1963x3 + 308x2 − 27x+ 1 and R2 measure 1.8698925.

Section 2 deals with the denseness of the setR2. In Section 3, we describe
the method of explicit auxiliary functions. We link these functions with
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the integer transfinite diameter. Then, we give a recursive algorithm which
enables us to obtain the constant of Theorem 3. All the computations were
done on a MacBookPro with the languages Pascal and Pari.

2. Denseness of the set R2

2.1. Study of the sequence (r2(β2
n))n≥0. We first prove the following

Lemma 5.

r2(β2
n) =

(
2

n−1∏
i=1

(1 + λi)
1/2i
)1/2

where

λ0 =
1

2
and λi+1 =

λi
(1 + λi)2

for i ≥ 0.

Proof. For n ≥ 0, we set γn = β2
n, so γn = γn+1 + γ−1

n+1 − 2 and γ2
n+1 +

γ−2
n+1 = γ2

n + 4γn + 2. Therefore, we can write

R2(β2
n) = R2(γn) =

2n∏
i=1

(1 + γ2
n,i)

1/2

where, for 1 ≤ i ≤ 2n, γn,i denote the conjugates of γn. Then we have

R2(β2
n) =

2n−1∏
i=1

(
(1 + γ2

n,i)(1 + γ−2
n,i )
)1/2

=
2n−1∏
i=1

(
2 + γ2

n,i + γ−2
n,i )

1/2

=

2n−1∏
i=1

(2 + γ2
n−1,i + 4γn−1,i + 2)1/2 =

2n−1∏
i=1

(γn−1,i + 2)

= 22n−1
2n−1∏
i=1

(
1 +

1

2
γn−1,i

)
.

Then the result follows immediately from the following more general lemma
that we proved in [F]:

Lemma 6. Under the above notation,

2n∏
i=0

(1 + λ0γn,i) =
( n∏
i=0

(1 + λi)
1/2i
)2n

.

The lemma shows that the sequence (r2(β2
n))n≥0 is increasing. Further-

more, as log(1 + x) ≤ x for all x ≥ 0, we have log r2(β2
n) ≤ 1

2 +
∑n−1

i=0
λi
2i

.

The series
∑n−1

i=0
λi
2i

is convergent because 0 ≤ λi ≤ 1 for i ≥ 0.

Thus, the sequence (r2(β2
n))n≥0 is also convergent and its limit is l =

1.874348 . . . . Note that l gives an upper bound for the first accumulation
point of R2.
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2.2. Proof of Theorem 2. The proof and notation follow those of
C. J. Smyth [Sm1]. For a given function g : [0,∞)→ R, letM(g) be the set
of all means

Mg(α) =
1

d

d∑
i=1

g(|αi|)

for α a totally real algebraic integer, i.e., all its conjugates α1 = α, . . . , αd
are real numbers. When the limits exist, set

a(g) = lim
n→∞

Mg(βn) and c(g) = lim
n→∞

Mg(2 cos(2π/n)).

Here a convenient choice for g is g : x 7→ 1
2 log(1 + x4) because then

Mg(α) = log r2(α2).
The proof consists of two parts.

2.2.1. First step of the proof. C. J. Smyth [Sm1] proved the following

Theorem 7. Let g : R+ → R+ be an increasing function, zero on [0, 1],
such that

lim
x→∞

g(x+ 1)/g(x) = 1

and the values of log2 g(2k + 1) mod 1 (k = 0, 1, . . .) are everywhere dense
in (0, 1). Then the limit a(g) exists and M(g) is dense in (a(g),∞).

We replace the function g by the function g∗ which satisfies the hypoth-
esis of Theorem 7:

g∗(x) =

{
g(x) + g(1/x) if x > 1,

0 if 0 ≤ x ≤ 1.

As β−1
n,i or −β−1

n,i is a conjugate of βn,i, we have

Mg(βn) =
1

2n

2n∑
i=1

g(βn,i) =
1

2n

2n−1∑
i=1

(
g(βn,i) + g(β−1

n,i )
)

= Mg∗(βn).

Thus, the existence of a(g∗) implies that of a(g), and a(g∗) = a(g).
It is easy to see that g∗ satisfies the first hypothesis of Theorem 7. So,

it is sufficient to study the denseness of the set F = {log2 g(2k + 1) mod 1:
k ∈ N}.

Let t ∈ [0, 1] and ε > 0. Does there exist f ∈ F such that |f − t| < ε?
We search for n and k satisfying

|log2 g
∗(2k + 1)− t− n| < ε,

i.e.,

(2.1) |log g∗(2k + 1)− t′ − n log 2| < ε′.

The uniform continuity of log on [1,∞) gives

∀ε′ > 0 ∃η(ε′) ∀x, y > 0, |x− y| < η(ε′)⇒ |log x− log y| < ε′.
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We choose n with 2−n < η(ε′) and k such that |(2k+1)− (g∗)−1(2net
′
)| ≤ 1.

As (g∗)′ is bounded by 1, the mean value theorem for g∗ on (1,∞) gives

|g∗(2k + 1)− 2net
′ | ≤ 1,

i.e.,
|2−ng∗(2k + 1)− et′ | ≤ 2−n < η(ε′),

and the inequality (2.1) follows immediately. Thus, we have proved that
M(g) is dense in (a(g∗),∞) = (a(g),∞).

2.2.2. Second step of the proof. C. J. Smyth [Sm1] established the fol-
lowing

Theorem 8. Let g : R+ → R+ be a function such that limx→∞ g(x) =∞
and which satisfies a Lipschitz condition

|g(x)− g(y)| < B(λ)|x− y|
for x, y ∈ [0, λ], for each λ > 0. Then M(g) is dense in (c(g),∞), where

c(g) =
2

π

π/2�

0

g(2 cos θ) dθ.

It is easy to see that, for our function g, the Lipschitz condition is satisfied
with B(λ) = 4λ3.

2.2.3. Conclusion. We have shown that M(g) is dense in the interval
(min(a(g), c(g)),∞), which means that R2 is dense in (l,∞), where l =
limn→∞ r2(β2

n) = 1.874348 . . . .

3. Proof of Theorem 3

3.1. The explicit auxiliary function. The auxiliary function involved
in Theorem 3 is of the following type:

(3.1) f(x) =
1

2
log(1 + x2)− c0 log x−

∑
1≤j≤J

cj log |Qj(x)| for x > 0,

where the cj are positive real numbers and the Qj are nonzero polynomials
in Z[x].

Let α be a totally positive algebraic integer with conjugates α1 =α, . . . , αd
and minimal polynomial P . Then

d∑
i=1

f(αi) ≥ md,

where m denotes the minimum of the function f , i.e.,

log R2(α) ≥ md+
∑

1≤j≤J
cj log

∣∣∣ d∏
i=1

Qj(αi)
∣∣∣.
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We assume that P does not divide anyQj . Then
∏d
i=1Qj(αi) is a nonzero

integer because it is the resultant of P and Qj .

Therefore, if α is not a root of Qj , we have

r2(α) ≥ em.

It is possible to reduce the domain of study of the function f . If we
consider the function g(x) = 1

2 [f(x) + f(1/x)], we get a minimum greater
than or equal to that of f . But g is invariant under the change x 7→ 1/x,
so it is sufficient to study g on (0, 1). Thus, without loss of generality,
we can limit our study to auxiliary functions invariant under this trans-
formation. This implies that we can take for Qj reciprocal polynomials,
i.e., Qj(x) = xdegQjQj(1/x). The condition f(x) = f(1/x) gives 2c0 +∑

1≤j≤J cj deg(Qj) = 1.

We denote deg(Qj) = 2dj for 1 ≤ j ≤ J .

On (0, 1), the auxiliary function f can be written

f(x) =
1

2
log x+

1

2
log(x+ 1/x)− c0 log x−

∑
1≤j≤J

cj log

∣∣∣∣Qj(x)

xdj

∣∣∣∣
−
∑

1≤j≤J
cj log xdj ≥ m.

Thus, if we set y = x+ 1/x− 2, f(x) becomes

g(y) =
1

2
log(y + 2)−

∑
1≤j≤J

cj log |Uj(y)| ≥ m for y > 0,

where deg(Uj) = dj .

The main problem is to find a good list of polynomials Qj which gives
a value of m as large as possible. Thus, we link the auxiliary function with
the integer transfinite diameter in order to find the polynomials by means
of our recursive algorithm.

3.2. Auxiliary functions and integer transfinite diameter. In this
section, we shall need the following definition. Let K be a compact subset
of C. If ϕ is a positive function defined on K, the ϕ-integer transfinite
diameter of K is defined as

tZ,ϕ(K) = lim inf
n≥1
n→∞

inf
P∈Z[Y ]

deg(P )=n

sup
y∈K
|P (y)|1/nϕ(y).

This weighted version of the integer transfinite diameter was introduced by
F. Amoroso [A] and is an important tool in the study of rational approxi-
mation of logarithms of rational numbers.
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In the auxiliary function (3.1), we replace the numbers cj by rational
numbers. Then we can write

(3.2) f(y) =
1

2
log(y + 2)− t

r
log |Q(y)| ≥ m for y > 0,

where Q ∈ Z[Y ] is of degree r and t is a positive real number. We want to
get a function whose minimum m is as large as possible. Thus we search for
a polynomial Q ∈ Z[Y ] such that

sup
y>0
|Q(y)|t/r(y + 2)−1/2 ≤ e−m.

If we suppose that t is fixed, it is clear that we need an effective upper bound
for the quantity

tZ,ϕ((0,∞)) = lim inf
r≥1
r→∞

inf
P∈Z[Y ]

deg(P )=r

sup
y>0
|P (y)|t/rϕ(y)

where we use the weight ϕ(y) = (y + 2)−1/2.
Even if we replace the compact subset K by the infinite interval (0,∞),

the weight ϕ ensures that the quantity tZ,ϕ((0,∞)) is finite.

3.3. Construction of the auxiliary function. The improvement
compared with Wu’s algorithm is that our polynomials are obtained by in-
duction. Suppose that we have Q1, . . . , QJ . Then we use semi-infinite linear
programming (introduced in number theory by C. J. Smyth [Sm2]) to opti-
mize f for this set of polynomials (i.e., to get the greatest possiblem). We ob-

tain the numbers c1, . . . , cJ and f in the form (3.2) with t =
∑J

i=1 cj deg(Qj).

For several values of k, we seek a polynomial R(y) =
∑k

l=0 aly
l ∈ Z[y]

such that

sup
y>0
|Q(y)R(y)|t/(r+k)(y + 2)−1/2 ≤ e−m,

i.e., such that

sup
y>0
|Q(y)R(y)|(y + 2)−(r+k)/2t

is as small as possible.
We apply the LLL algorithm to the linear forms in a0, . . . , ak

Q(yi)R(yi)(yi + 2)−(r+k)/2t

where yi are control points uniformly distributed in the interval [0, 70], in-
cluding the points where f has its least local minima. We get a polynomial
R whose factors Rj are good candidates to enlarge the set of polynomi-
als (Q1, . . . , QJ). We only keep the polynomials Rj which have a nonzero
coefficient cj in the new optimized auxiliary function f . After optimiza-
tion, some previous polynomials Qj may have a zero coefficient and are
removed.



52 V. FLAMMANG

Table 1

j cj dj Highest half coefficients of Qj

1 0.097723 2 1 −2

2 0.051674 2 1 −3

3 0.000533 2 1 −4 1

4 0.017814 4 1 −7 13

5 0.000985 4 1 −8 15

6 0.003163 6 1 −11 41 −63

7 0.000202 6 1 −12 48 −77

8 0.000371 6 1 −12 44 −67

9 0.001273 8 1 −15 84 −225 311

10 0.000221 8 1 −16 91 −244 337

11 0.000131 8 1 −16 92 −249 345

12 0.000060 8 1 −16 92 −248 343

13 0.006621 8 1 −15 83 −220 303

14 0.000284 10 1 −19 143 −557 1231 −1599

15 0.000069 10 1 −19 142 −548 1202 −1557

16 0.000418 12 1 −23 218 −1118 3438 −6651 8271

17 0.000145 12 1 −23 218 −1119 3446 −6675 8305

18 0.000044 14 1 −27 308 −1964 7800 −20348 35853 −43247 35853

19 0.000017 14 1 −27 309 −1979 7893 −20661 36484 −44041 36484

20 0.000023 14 1 −26 289 −1812 7124 −18484 32488 −39161

21 0.000202 14 1 −27 308 −1963 7790 −20307 35763 −43131

22 0.000496 14 1 −26 290 −1826 7205 −18741 32986 −39779

23 0.000278 14 1 −27 308 −1965 7812 −20404 35986 −43423

24 0.000376 14 1 −27 309 −1979 7894 −20668 36503 −44067

25 0.000232 16 1 −31 415 −3177 15538 −51389 118680 −194903 229733

26 0.000290 16 1 −30 391 −2932 14123 −46215 106000 −173418 204161

27 0.000092 16 1 −31 414 −3160 15414 −50875 117330 −192534 226883

28 0.000043 16 1 −31 415 −3179 15566 −51554 119216 −195961 231055

29 0.001203 16 1 −31 413 −3141 15261 −50187 115410 −189036 222621

30 0.000084 16 2 −58 732 −5330 25023 −80175 181020 −293277 344127

31 0.000045 18 1 −35 541 −4891 28887 −117982 344282 −731869 1146235 −1330340

32 0.000160 20 1 −38 645 −6492 43388 −204358 702800 −1804604 3509324 −5213890 5946449

In order to get the constant of Theorem 3, we take k from 4 to 15
successively.

The polynomials Qj of degree dj and the coefficients cj involved in the
auxiliary function of Theorem 3 are listed in Table 1. Only polynomials
numbered 1, 2, 4, 6, 9 and 13 from the list have r2 measure less than the
constant in the theorem.
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