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JORDAN SUPERDERIVATIONS AND
JORDAN TRIPLE SUPERDERIVATIONS OF SUPERALGEBRAS

BY

HE YUAN (Changchun and Siping) and LIANGYUN CHEN (Changchun)

Abstract. We study Jordan (θ, θ)-superderivations and Jordan triple (θ, θ)-super-
derivations of superalgebras, using the theory of functional identities in superalgebras. As
a consequence, we prove that ifA = A0⊕A1 is a prime superalgebra with deg(A1) ≥ 9, then
Jordan superderivations and Jordan triple superderivations of A are superderivations of A,
and generalized Jordan superderivations and generalized Jordan triple superderivations
of A are generalized superderivations of A.

1. Introduction. Let A be an associative algebra. A Jordan derivation
d of A is a linear mapping from A into itself satisfying d(x2) = d(x)x+xd(x)
for all x ∈ A. In the 1950’s Herstein [15] proved that if A is a prime ring of
characteristic different from 2, then any Jordan derivation of A is a deriva-
tion of A. In 1988, Brešar [8] studied Jordan derivations on a 2-torsion free
semiprime ring. Fošner [13] extended Herstein’s theorem to superalgebras
and proved that a Jordan superderivation on a prime associative super-
algebra whose even part is noncommutative is a superderivation. Later,
Fošner [14] considered Jordan superderivations on semiprime superalgebras.

The concept of a generalized derivation was introduced by Brešar [11].
Generalized derivations on prime rings were studied by Hvala [16]. The fol-
lowing definition is a common generalization of Jordan derivations and gen-
eralized derivations. A linear mapping f : A → A is called a generalized
Jordan derivation if there exists a Jordan derivation d : A→ A such that

f(xy + yx) = f(x)y + yd(x) + xd(y) + f(y)x, x, y ∈ A.

Jing and Lu [17] considered generalized Jordan derivations of prime rings
and standard operator algebras. Their results were extended to semiprime
rings by Vukman [20] who proved that every generalized Jordan derivation
of a 2-torsion free semiprime ring is a generalized derivation.
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The following two notions correspond to Jordan derivations and gener-
alized Jordan derivations. A linear mapping J : A → A is called a Jordan
triple derivation if

J(xyx) = J(x)yx+ xJ(y)x+ xyJ(x), x, y ∈ A.

A linear mapping G : A→ A is called a generalized Jordan triple derivation
if there exists a Jordan triple derivation J of A such that

G(xyx) = G(x)yx+ xJ(y)x+ xyJ(x), x, y ∈ A.

Brešar [9] proved that every Jordan triple derivation on a 2-torsion free
semiprime ring is a derivation. It turns out that every Jordan derivation on
a 2-torsion free ring is a Jordan triple derivation. Jing and Lu [17] proved
that every generalized Jordan triple derivation on a prime ring is a general-
ized derivation. Liu and Shiue [18] proved that Jordan (θ, φ)-derivations and
Jordan triple (θ, φ)-derivations are (θ, φ)-derivations, and generalized Jor-
dan (θ, φ)-derivations and generalized Jordan triple (θ, φ)-derivations are
generalized (θ, φ)-derivations on a 2-torsion free semiprime ring.

On the other hand, a functional identity can be described as an identi-
cal relation involving elements in a ring together with functions. The goal
when studying a functional identity is to describe the form of these func-
tions or to determine the structure of the ring admitting the FI in ques-
tion. The theory of functional identities in rings originated from results on
commuting mappings [7]. The name “functional identity” was introduced
by Brešar [10]. The crucial tool in the theory of functional identities in
rings is the notion of d-free set, which was developed by Beidar and Cheb-
otar [4, 5]. Making use of the theory of functional identities in rings, Her-
stein’s conjectures on Lie mappings in rings have been settled [1, 2, 3].
Subsequently, Wang [22] established the theory of functional identities in
superalgebras and gave the definition of d-superfree sets. As an application,
Wang [23] described Lie superhomomorphisms from the set of skew elements
of a superalgebra with superinvolution into a unital superalgebra. For func-
tional identities and d-superfree sets of superalgebras we refer the reader
to [12], [21] and [22].

In this paper, we study Jordan (θ, θ)-superderivations, generalized Jor-
dan (θ, θ)-superderivations, Jordan triple (θ, θ)-superderivations and gener-
alized Jordan triple (θ, θ)-superderivations of superalgebras, using the theory
of functional identities in superalgebras. As a consequence, we prove that if
A = A0 ⊕ A1 is a prime superalgebra with deg(A1) ≥ 9, then Jordan su-
perderivations and Jordan triple superderivations of A are superderivations
of A, and generalized Jordan superderivations and generalized Jordan triple
superderivations of A are generalized superderivations of A.
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2. Preliminaries. Throughout the paper, by an algebra we shall mean
an algebra over a fixed unital commutative ring Φ. We assume without
further mention that 1/2 ∈ Φ.

An associative algebra A over Φ is said to be an associative superalgebra
if there exist two Φ-submodules A0 and A1 of A such that A = A0 ⊕ A1

and AiAj ⊆ Ai+j , i, j ∈ Z2. A superalgebra is called trivial if A1 = 0. The
elements of Ai are homogeneous of degree i and we write |ai| = i for all
ai ∈ Ai. For a superalgebra A, we define σ : A→ A by (a0 + a1)

σ = a0− a1,
then σ is an automorphism of A such that σ2 = 1. On the other hand, for
an algebra A, if there exists an automorphism σ of A such that σ2 = 1, then
A becomes a superalgebra A = A0⊕A1, where Ai = {x ∈ A | xσ = (−1)ix},
i = 0, 1. A superalgebra A is called prime if aAb = 0 implies a = 0 or b = 0,
whenever at least one of the elements a and b is homogeneous.

An element x ∈ A0 ∪ A1 is said to be algebraic over C of degree ≤ n if
there exist c0, c1, . . . , cn ∈ C, not all zero and such that

∑n
i=0 cix

n−i = 0.
The element x is said to be algebraic over C of degree n if it is algebraic
over C of degree ≤ n and is not algebraic over C of degree ≤ n − 1. By
deg(x) we shall mean the degree of x over C (if x is algebraic over C)
or ∞ (if x is not algebraic over C). Given a nonempty subset S ⊆ A0 ∪A1,
we set

deg(S) = sup{deg(x) | x ∈ S}.
Montaner [19] found that a prime superalgebra A is not necessarily a

prime algebra but a semiprime algebra. Hence one can define the maximal
right ring of quotients Q of A, and some useful properties of Q can be
found in [6]. By [6, Proposition 2.5.3] σ can be uniquely extended to Q.
Therefore Q is also a superalgebra. Moreover, we can show that Q is a
prime superalgebra.

For any x, y ∈ A0 ∪A1, we consider the Jordan superproduct

x ◦s y = xy + (−1)|x| |y|yx

and the Lie superproduct

[x, y]s = xy − (−1)|x| |y|yx.

Accordingly, a ◦s b = a0 ◦s b0 + a1 ◦s b0 + a0 ◦s b1 + a1 ◦s b1 and [a, b]s =
[a0, b0]s + [a1, b0]s + [a0, b1]s + [a1, b1]s, where a = a0 + a1, b = b0 + b1.

The following definitions will be needed throughout the paper.
Let A be a superalgebra and let θ be an automorphism of A. For i∈{0, 1},

a (θ, θ)-superderivation of degree i is a Φ-linear mapping di : A → A which
satisfies di(Aj) ⊆ Ai+j for j ∈ Z2 and

di(ab) = di(a)θ(b) + (−1)i|a|θ(a)di(b)

for all a, b ∈ A0 ∪A1. If d = d0 + d1, then d is a (θ, θ)-superderivation.
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For i ∈ {0, 1}. A Φ-linear mapping gi : A → A is called a generalized
(θ, θ)-superderivation of degree i if gi(Aj) ⊆ Ai+j , j ∈ Z2, and

gi(xy) = gi(x)θ(y) + (−1)i|x|θ(x)di(y)

for all x, y ∈ A0 ∪ A1, where di is a (θ, θ)-superderivation of degree i. If
g = g0 + g1, then g is called a generalized (θ, θ)-superderivation.

The following definition is an extension of Jordan derivations.

Definition 2.1. Let A be a superalgebra and let θ be an automorphism
of A. For i ∈ {0, 1}, a Φ-linear mapping αi : A → A is called a Jordan
(θ, θ)-superderivation of degree i if αi(Aj) ⊆ Ai+j , j ∈ Z2, and

αi(x ◦s y) = αi(x) ◦s θ(y) + (−1)i|x|θ(x) ◦s αi(y)

for all x, y ∈ A0 ∪ A1. If α = α0 + α1, then α is called a Jordan (θ, θ)-
superderivation.

According to the concepts of generalized Jordan derivations and gener-
alized (θ, θ)-superderivations, we will give the concept of generalized Jordan
(θ, θ)-superderivations.

Definition 2.2. Let A be a superalgebra and let θ be an automorphism
of A. For i ∈ {0, 1}, a Φ-linear mapping φi : A → A is called a generalized
Jordan (θ, θ)-superderivation of degree i if φi(Aj) ⊆ Ai+j , j ∈ Z2, and

φi(x ◦s y) = φi(x)θ(y) + (−1)i|y|+|x| |y|θ(y)αi(x)

+ (−1)i|x|θ(x)αi(y) + (−1)|x| |y|φi(y)θ(x)

for all x, y ∈ A0∪A1, where αi is a Jordan (θ, θ)-superderivation of degree i.
If φ = φ0 + φ1, then φ is called a generalized Jordan (θ, θ)-superderivation.

In trivial superalgebras, the concept of Jordan (θ, θ)-superderivations
(resp., generalized Jordan (θ, θ)-superderivations) coincides with that of Jor-
dan (θ, θ)-derivations (resp., generalized Jordan (θ, θ)-derivations).

Definition 2.3. Let A be a superalgebra and let θ be an automorphism
of A. For i ∈ {0, 1}, a Φ-linear mapping βi : A→ A is called a Jordan triple
(θ, θ)-superderivation of degree i if βi(Aj) ⊆ Ai+j , j ∈ Z2, and

βi(x ◦s y ◦s z) = βi(x) ◦s θ(y) ◦s θ(z) + (−1)i|x|θ(x) ◦s βi(y) ◦s θ(z)
+ (−1)i(|x|+|y|)θ(x) ◦s θ(y) ◦s βi(z)

for all x, y, z ∈ A0 ∪ A1. If β = β0 + β1, then β is called a Jordan triple
(θ, θ)-superderivation.

Definition 2.4. Let A be a superalgebra and let θ be an automorphism
of A. For i ∈ {0, 1}, a Φ-linear mapping ξi : A → A is called a generalized
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Jordan triple (θ, θ)-superderivation of degree i if ξi(Aj) ⊆ Ai+j , j ∈ Z2,
and

ξi(x ◦s y ◦s z)
= ξi(x)θ(y)θ(z) + (−1)|x| |y|ξi(y)θ(x)θ(z)

+ (−1)|x| |z|+|y| |z|ξi(z)θ(x)θ(y) + (−1)|x| |y|+|x| |z|+|y| |z|ξi(z)θ(y)θ(x)

+ (−1)i|x|θ(x)βi(y)θ(z) + (−1)i|y|+|x| |y|θ(y)βi(x)θ(z)

+ (−1)i|z|+|x| |y|+|x| |z|+|y| |z|θ(z)βi(y)θ(x)

+ (−1)i|z|+|x| |z|+|y| |z|θ(z)βi(x)θ(y) + (−1)i(|x|+|y|)θ(x)θ(y)βi(z)

+ (−1)i(|x|+|y|)+|x| |y|θ(y)θ(x)βi(z)

+ (−1)i(|x|+|z|)+|x| |z|+|y| |z|θ(z)θ(x)βi(y)

+ (−1)i(|y|+|z|)+|x| |y|+|x| |z|+|y| |z|θ(z)θ(y)βi(x)

for all x, y, z ∈ A0 ∪A1, where βi is a Jordan triple (θ, θ)-superderivation of
degree i. If ξ = ξ0 + ξ1, then ξ is called a generalized Jordan triple (θ, θ)-
superderivation.

It is clear that Jordan triple (θ, θ)-superderivations (resp., generalized
Jordan triple (θ, θ)-superderivations) of trivial superalgebras are Jordan
triple (θ, θ)-derivations (resp., generalized Jordan triple (θ, θ)-derivations).

3. Jordan superderivations. The following identity will be used fre-
quently:

(3.1) [[x, y]s, z]s = x◦s (y◦s z)−(−1)|x| |y|y◦s (x◦s z), x, y, z ∈ A0∪A1.

Lemma 3.1. Let A be a prime superalgebra with maximal right ring of
quotients Q and extended centroid C. Suppose that θ is an automorphism of
A and αi : A→ A is a Jordan (θ, θ)-superderivation of degree i ∈ {0, 1}. If
A is a 4-superfree subset of Q, then αi : A → A is a (θ, θ)-superderivation
of degree i.

Proof. Define δ : A×A→ Q by

δ(x, y) = αi(xy)− αi(x)θ(y)− (−1)i|x|θ(x)αi(y)

for all x, y ∈ A0 ∪ A1. Note that δ(x1, y0) = −δ(y0, x1) and δ(x1, y1) =
δ(y1, x1).

Applying αi to (3.1), we get

(3.2) αi([[x1, y1]s, z0]s) = αi(x1 ◦s (y1 ◦s z0)) + αi(y1 ◦s (x1 ◦s z0)).
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By [19, Lemma 1.2] and [18, Corollary 1], αi|A0 is a (θ, θ)-derivation. So

αi([[x1, y1]s, z0]s)

= [αi([x1, y1]s), θ(z0)]s + θ(x1)θ(y1)αi(z0) + θ(y1)θ(x1)αi(z0)

− αi(z0)θ(x1)θ(y1)− αi(z0)θ(y1)θ(x1)
and

αi(x1 ◦s (y1 ◦s z0)) + αi(y1 ◦s (x1 ◦s z0))
= αi(x1) ◦s θ(y1 ◦s z0) + (−1)iθ(x1) ◦s αi(y1 ◦s z0)

+ αi(y1) ◦s θ(x1 ◦s z0) + (−1)iθ(y1) ◦s αi(x1 ◦s z0)
= αi(x1) ◦s θ(y1z0 + z0y1) + (−1)iθ(x1) ◦s (αi(y1) ◦s θ(z0))

+ θ(x1) ◦s (θ(y1) ◦s αi(z0)) + αi(y1) ◦s θ(x1z0 + z0x1)

+ (−1)iθ(y1) ◦s (αi(x1) ◦s θ(z0)) + θ(y1) ◦s (θ(x1) ◦s αi(z0))
= αi(x1)θ(y1)θ(z0) + αi(x1)θ(z0)θ(y1)− (−1)iθ(y1)θ(z0)αi(x1)

− (−1)iθ(z0)θ(y1)αi(x1)+(−1)iθ(x1)αi(y1)θ(z0)+(−1)iθ(x1)θ(z0)αi(y1)

− αi(y1)θ(z0)θ(x1)− θ(z0)αi(y1)θ(x1) + θ(x1)θ(y1)αi(z0)

+ (−1)iθ(x1)αi(z0)θ(y1)− (−1)iθ(y1)αi(z0)θ(x1)− αi(z0)θ(y1)θ(x1)
+ αi(y1)θ(x1)θ(z0) + αi(y1)θ(z0)θ(x1)− (−1)iθ(x1)θ(z0)αi(y1)

− (−1)iθ(z0)θ(x1)αi(y1)+(−1)iθ(y1)αi(x1)θ(z0)+(−1)iθ(y1)θ(z0)αi(x1)

− αi(x1)θ(z0)θ(y1)− θ(z0)αi(x1)θ(y1) + θ(y1)θ(x1)αi(z0)

+ (−1)iθ(y1)αi(z0)θ(x1)− (−1)iθ(x1)αi(z0)θ(y1)− αi(z0)θ(x1)θ(y1)
for all x1, y1 ∈ A1, z0 ∈ A0. Comparing the above relations, we have

[αi([x1, y1]s), θ(z0)]s = αi(x1)θ(y1)θ(z0) + (−1)iθ(x1)αi(y1)θ(z0)

+ αi(y1)θ(x1)θ(z0) + (−1)iθ(y1)αi(x1)θ(z0)

− θ(z0)αi(x1)θ(y1)− (−1)iθ(z0)θ(x1)αi(y1)

− θ(z0)αi(y1)θ(x1)− (−1)iθ(z0)θ(y1)αi(x1).

Therefore
[δ(x1, y1) + δ(y1, x1), θ(z0)]s = 0

for all x1, y1 ∈ A1, z0 ∈ A0. From δ(x1, y1) = δ(y1, x1), we obtain

(3.3) [δ(x1, y1), θ(z0)]s = 0.

Since A is a 4-superfree subset of Q, [22, Theorem 3.8] implies that

δ(x1, y1) = λ1θ(x1)θ(y1)(3.4)

+ λ2θ(y1)θ(x1) + µ1(x1)θ(y1) + µ2(y1)θ(x1) + ν1(x1, y1),

where λ1, λ2 ∈ C + Cω, µ1, µ2 : A1 → C + Cω, ν1 : A1 × A1 → C + Cω.
Substituting (3.4) into (3.3), we find that
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• the coefficient of θ(x1)θ(y1)θ(z0) in (3.3) is λ1;
• the coefficient of θ(y1)θ(x1)θ(z0) in (3.3) is λ2;
• the coefficient of θ(y1)θ(z0) in (3.3) is µ1(x1);
• the coefficient of θ(x1)θ(z0) in (3.3) is µ2(y1).

In view of 4-superfreeness of A, [22, Theorem 3.7] now forces that

λ1 = λ2 = µ1 = µ2 = 0.

So δ(x1, y1) = ν1(x1, y1) and δ(y1, x1) = ν1(x1, y1). Therefore

αi([x1, y1]s) = αi(x1y1 + y1x1)

= αi(x1y1) + αi(y1x1)

= [αi(x1), θ(y1)]s + (−1)i[θ(x1), αi(y1)]s + 2ν1(x1, y1).

Again applying αi to (3.1), we get

αi([[x1, y0]s, z1]s) = αi(x1 ◦s (y0 ◦s z1))− αi(y0 ◦s (x1 ◦s z1)).
Extending the above expression, we have

αi([[x1, y0]s, z1]s)

= [αi([x1, y0]s), θ(z1)]s + (−1)i[θ([x1, y0]s), αi(z1)]s + 2ν1([x1, y0]s, z1)

= [αi([x1, y0]s), θ(z1)]s + (−1)iθ(x1)θ(y0)αi(z1)− (−1)iθ(y0)θ(x1)αi(z1)

+ αi(z1)θ(x1)θ(y0)− αi(z1)θ(y0)θ(x1) + 2ν1([x1, y0]s, z1)

and

αi(x1 ◦s (y0 ◦s z1))− αi(y0 ◦s (x1 ◦s z1))
= αi(x1) ◦s θ(y0 ◦s z1) + (−1)iθ(x1) ◦s αi(y0 ◦s z1)
− αi(y0) ◦s θ(x1 ◦s z1)− θ(y0) ◦s αi(x1 ◦s z1)

= αi(x1) ◦s θ(y0 ◦s z1) + (−1)iθ(x1) ◦s (αi(y0) ◦s θ(z1))
+ (−1)iθ(x1) ◦s (θ(y0) ◦s αi(z1))− αi(y0) ◦s (θ(x1) ◦s θ(z1))
− θ(y0) ◦s (αi(x1) ◦s θ(z1))− (−1)iθ(y0) ◦s (θ(x1) ◦s αi(z1))

= αi(x1)θ(y0)θ(z1) + αi(x1)θ(z1)θ(y0)− (−1)iθ(y0)θ(z1)αi(x1)

− (−1)iθ(z1)θ(y0)αi(x1) + (−1)iθ(x1)αi(y0)θ(z1) + θ(x1)θ(z1)αi(y0)

− αi(y0)θ(z1)θ(x1)− (−1)iθ(z1)αi(y0)θ(x1) + (−1)iθ(x1)θ(y0)αi(z1)

+ (−1)iθ(x1)αi(z1)θ(y0)− θ(y0)αi(z1)θ(x1)− αi(z1)θ(y0)θ(x1)
− αi(y0)θ(x1)θ(z1) + αi(y0)θ(z1)θ(x1)− θ(x1)θ(z1)αi(y0)
+ θ(z1)θ(x1)αi(y0)− θ(y0)αi(x1)θ(z1) + (−1)iθ(y0)θ(z1)αi(x1)

− αi(x1)θ(z1)θ(y0) + (−1)iθ(z1)αi(x1)θ(y0)− (−1)iθ(y0)θ(x1)αi(z1)

+ θ(y0)αi(z1)θ(x1)− (−1)iθ(x1)αi(z1)θ(y0) + αi(z1)θ(x1)θ(y0)
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for all x1, z1 ∈ A1, y0 ∈ A0. Comparing the above expressions, we obtain

[αi([x1, y0]s), θ(z1)]s + 2ν1([x1, y0]s, z1)

= αi(x1)θ(y0)θ(z1) + (−1)iθ(x1)αi(y0)θ(z1)− αi(y0)θ(x1)θ(z1)
− θ(y0)αi(x1)θ(z1) + (−1)iθ(z1)αi(x1)θ(y0) + θ(z1)θ(x1)αi(y0)

− (−1)iθ(z1)αi(y0)θ(x1)− (−1)iθ(z1)θ(y0)αi(x1)

= [αi(x1)θ(y0) + (−1)iθ(x1)αi(y0), θ(z1)]s

− [αi(y0)θ(x1) + θ(y0)αi(x1), θ(z1)]s.

So [δ(x1, y0)−δ(y0, x1), θ(z1)]s=−2ν1([x1, y0]s, z1). As δ(x1, y0) =−δ(y0, x1),
we have

(3.5) [δ(x1, y0), θ(z1)]s = −ν1([x1, y0]s, z1).
By [22, Theorem 3.8], we have

δ(x1, y0) = λ′1θ(x1)θ(y0) + λ′2θ(y0)θ(x1)(3.6)

+ µ′1(x1)θ(y0) + µ′2(y0)θ(x1) + ν2(x1, y0),

where λ′1, λ
′
2 ∈ C + Cω, µ′1 : A1 → C + Cω, µ′2 : A0 → C + Cω, and

ν2 : A1 ×A0 → C + Cω. Substituting (3.6) into (3.5), we find that

• the coefficient of θ(x1)θ(y0)θ(z1) in (3.5) is λ′1;
• the coefficient of θ(y0)θ(x1)θ(z1) in (3.5) is λ′2;
• the coefficient of θ(y0)θ(z1) in (3.5) is µ′1(x1);
• the coefficient of θ(x1)θ(z1) in (3.5) is µ′2(y0).

Again applying [22, Theorem 3.7], we get

λ′1 = λ′2 = µ′1 = µ′2 = 0.

Therefore δ(x1, y0) = ν2(x1, y0) and δ(x0, y1) = −δ(y1, x0) = −ν2(y1, x0).
We shall now compute αi(x1y0z1) in two different ways. On the one hand,

αi(x1y0z1) = αi(x1y0)θ(z1) + (−1)iθ(x1)θ(y0)αi(z1) + ν1(x1y0, z1)

=
(
αi(x1)θ(y0) + (−1)iθ(x1)αi(y0) + ν2(x1, y0)

)
θ(z1)

+ (−1)iθ(x1)θ(y0)αi(z1) + ν1(x1y0, z1).

On the other hand,

αi(x1y0z1) = αi(x1)θ(y0z1) + (−1)iθ(x1)αi(y0z1) + ν1(x1, y0z1)

= αi(x1)θ(y0)θ(z1) + (−1)iθ(x1)
(
αi(y0)θ(z1)

+ θ(y0)αi(z1)− ν2(z1, y0)
)

+ ν1(x1, y0z1)

for all x1, z1 ∈ A1, y0 ∈ A0. Comparing both expressions, we get

ν2(x1, y0)θ(z1) + ν1(x1y0, z1) = −(−1)iθ(x1)ν2(z1, y0) + ν1(x1, y0z1).

By [22, Theorem 3.7], we have ν2(x1, y0) = 0. So δ(x1, y0) = δ(y0, x1) = 0.
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Computing αi(x1y1z1) in two different ways, we have

αi(x1y1z1) = αi(x1)θ(y1z1) + (−1)iθ(x1)αi(y1z1)

= αi(x1)θ(y1)θ(z1) + (−1)iθ(x1)
(
αi(y1)θ(z1)

+ (−1)iθ(y1)αi(z1) + ν1(y1, z1)
)

and

αi(x1y1z1) = αi(x1y1)θ(z1) + θ(x1y1)αi(z1)

=
(
αi(x1)θ(y1) + (−1)iθ(x1)αi(y1) + ν1(x1, y1)

)
θ(z1)

+ θ(x1)θ(y1)αi(z1)

for all x1, y1, z1 ∈ A1. Comparing the above relations, we get

(−1)iθ(x1)ν1(y1, z1) = ν1(x1, y1)θ(z1).

By [22, Theorem 3.7], we have ν1(x1, y1) = 0. It follows that δ(x1, y1) = 0.
Therefore αi is a (θ, θ)-superderivation of degree i.

By [22, Theorem 4.16] and Lemma 3.1, we have

Theorem 3.2. Let A = A0 ⊕A1 be a prime superalgebra with maximal
right ring of quotients Q and extended centroid C. Suppose that θ is an
automorphism of A and α : A → A is a Jordan (θ, θ)-superderivation. If
deg(A1) ≥ 9, then α : A→ A is a (θ, θ)-superderivation.

The remainder of this section will be devoted to the study of generalized
Jordan (θ, θ)-superderivations.

Lemma 3.3. Let A be a prime superalgebra with maximal right ring of
quotients Q and extended centroid C. Suppose that θ is an automorphism of
A and φi : A → A is a generalized Jordan (θ, θ)-superderivation of degree
i ∈ {0, 1}. If A is a 4-superfree subset of Q, then φi : A→ A is a generalized
(θ, θ)-superderivation of degree i.

Proof. By definition, we set

φi(x ◦s y) = φi(x)θ(y) + (−1)i|y|+|x| |y|θ(y)αi(x)

+ (−1)i|x|θ(x)αi(y) + (−1)|x| |y|φi(y)θ(x)

and π : A×A→ Q to satisfy

π(x, y) = φi(xy)− φi(x)θ(y)− (−1)i|x|θ(x)αi(y)

for all x, y ∈ A0 ∪ A1, where αi is a Jordan (θ, θ)-superderivation of degree
i ∈ {0, 1}. Note that π(x1, y0) = −π(y0, x1) and π(x1, y1) = π(y1, x1).

Applying φi to (3.1), we get

(3.7) φi([[x1, y1]s, z0]s) = φi(x1 ◦s (y1 ◦s z0)) + φi(y1 ◦s (x1 ◦s z0)).
By [18, Corollary 2], φi|A0 is a generalized (θ, θ)-derivation. Since αi is a
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(θ, θ)-superderivation of degree i, we obtain

φi([[x1, y1]s, z0]s) = φi([x1, y1]s)θ(z0) + θ([x1, y1]s)αi(z0)

− φi(z0)θ([x1, y1]s)− θ(z0)αi([x1, y1]s)
= φi([x1, y1]s)θ(z0) + θ(x1)θ(y1)αi(z0) + θ(y1)θ(x1)αi(z0)

− φi(z0)θ(x1)θ(y1)− φi(z0)θ(y1)θ(x1)
− θ(z0)

(
αi(x1)θ(y1) + (−1)iθ(x1)αi(y1) + αi(y1)θ(x1)

+ (−1)iθ(y1)αi(x1)
)

and

φi(x1 ◦s (y1 ◦s z0)) + φi(y1 ◦s (x1 ◦s z0))
= φi(x1)θ(y1 ◦s z0)− (−1)iθ(y1 ◦s z0)αi(x1) + (−1)iθ(x1)αi(y1 ◦s z0)
− φi(y1 ◦s z0)θ(x1) + φi(y1)θ(x1 ◦s z0)− (−1)iθ(x1 ◦s z0)αi(y1)
+ (−1)iθ(y1)αi(x1 ◦s z0)− φi(x1 ◦s z0)θ(y1)

= φi(x1)θ(y1z0 + z0y1)− (−1)iθ(y1z0 + z0y1)αi(x1)

+ (−1)iθ(x1)
(
αi(y1)θ(z0)+(−1)iθ(y1)αi(z0)+αi(z0)θ(y1)+θ(z0)αi(y1)

)
−
(
φi(y1)θ(z0) + θ(z0)αi(y1) + (−1)iθ(y1)αi(z0) + φi(z0)θ(y1)

)
θ(x1)

+ φi(y1)θ(x1z0 + z0x1)− (−1)iθ(x1z0 + z0x1)αi(y1)

+ (−1)iθ(y1)
(
αi(x1)θ(z0)+(−1)iθ(x1)αi(z0)+αi(z0)θ(x1)+θ(z0)αi(x1)

)
−
(
φi(x1)θ(z0) + θ(z0)αi(x1) + (−1)iθ(x1)αi(z0) + φi(z0)θ(x1)

)
θ(y1)

for all x1, y1 ∈ A1, z0 ∈ A0. Comparing the above relations, we have

φi([x1, y1]s)θ(z0) = φi(x1)θ(y1)θ(z0) + (−1)iθ(x1)αi(y1)θ(z0)

+ φi(y1)θ(x1)θ(z0) + (−1)iθ(y1)αi(x1)θ(z0).

Therefore (
π(x1, y1) + π(y1, x1)

)
θ(z0) = 0.

Since π(x1, y1) = π(y1, x1), we obtain

π(x1, y1)θ(z0) = 0.

Since A is a 4-superfree subset of Q, [22, Theorems 3.8 and 3.7] imply that
π(x1, y1) = 0. Therefore φi(x1y1) = φi(x1)θ(y1) + (−1)iθ(x1)αi(y1).

Again applying φi to (3.1), we get

φi([[x1, y0]s, z1]s) = φi(x1 ◦s (y0 ◦s z1))− φi(y0 ◦s (x1 ◦s z1))
for all x1, z1 ∈ A1, y0 ∈ A0. Extending the above expression, we have

φi([x1, y0]s)θ(z1) = φi(x1)θ(y0)θ(z1) + (−1)iθ(x1)αi(y0)θ(z1)

− φi(y0)θ(x1)θ(z1)− θ(y0)αi(x1)θ(z1).
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So (π(x1, y0)− π(y0, x1))θ(z1) = 0. Since π(x1, y0) = −π(y0, x1), we have

π(x1, y0)θ(z1) = 0.

By [22, Theorems 3.8 and 3.7], we get π(x1, y0) = π(y0, x1) = 0. So φi is a
generalized (θ, θ)-superderivation of degree i.

By [22, Theorem 4.16] and Lemma 3.3, we have

Theorem 3.4. Let A = A0 ⊕ A1 be a prime superalgebra with max-
imal right ring of quotients Q and extended centroid C. Suppose that θ
is an automorphism of A and φ : A → A is a generalized Jordan (θ, θ)-
superderivation. If deg(A1) ≥ 9, then φ : A → A is a generalized (θ, θ)-
superderivation.

In particular, when θ = 1 in Theorems 3.2 and 3.4, we have

Corollary 3.5. Let A = A0⊕A1 be a prime superalgebra with maximal
right ring of quotients Q and extended centroid C. Suppose α : A → A is
a Jordan superderivation. If deg(A1) ≥ 9, then α : A → A is a super-
derivation.

Corollary 3.6. Let A = A0⊕A1 be a prime superalgebra with maximal
right ring of quotients Q and extended centroid C. Suppose that φ : A→ A
is a generalized Jordan superderivation. If deg(A1) ≥ 9, then φ : A→ A is
a generalized superderivation.

4. Jordan triple superderivations. In the section, we will be con-
cerned with Jordan triple superderivations and generalized Jordan triple
superderivations. The following identity will be used frequently:

(4.1) [x, [y, z]s]s = x ◦s y ◦s z − (−1)|y| |z|x ◦s z ◦s y, x, y, z ∈ A0 ∪A1.

Lemma 4.1. Let A be a prime superalgebra with maximal right ring
of quotients Q and extended centroid C. Suppose that θ is an automor-
phism of A and βi : A → A is a Jordan triple (θ, θ)-superderivation of
degree i ∈ {0, 1}. If A is a 4-superfree subset of Q, then βi : A → A is a
(θ, θ)-superderivation of degree i.

Proof. As in the proof of Lemma 3.1, we define δ : A×A→ Q by

δ(x, y) = βi(xy)− βi(x)θ(y)− (−1)i|x|θ(x)βi(y)

for all x, y ∈ A0 ∪ A1. Moreover, δ(x1, y0) = −δ(y0, x1) and δ(x1, y1) =
δ(y1, x1).

Applying βi to (4.1), we get

(4.2) βi([x0, [y1, z1]s]s) = βi(x0 ◦s y1 ◦s z1) + βi(x0 ◦s z1 ◦s y1).
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By [18, Theorem 1], βi|A0 is a (θ, θ)-derivation. So

βi([x0, [y1, z1]s]s) = βi(x0)θ(y1)θ(z1) + βi(x0)θ(z1)θ(y1)− θ(y1)θ(z1)βi(x0)
− θ(z1)θ(y1)βi(x0) + [θ(x0), βi([y1, z1]s)]s

and

βi(x0 ◦s y1 ◦s z1) + βi(x0 ◦s z1 ◦s y1)
= βi(x0) ◦s θ(y1) ◦s θ(z1) + θ(x0) ◦s βi(y1) ◦s θ(z1)

+ (−1)iθ(x0) ◦s θ(y1) ◦s βi(z1) + βi(x0) ◦s θ(z1) ◦s θ(y1)
+ θ(x0) ◦s βi(z1) ◦s θ(y1) + (−1)iθ(x0) ◦s θ(z1) ◦s βi(y1)

= βi(x0)θ(y1)θ(z1) + (−1)iθ(y1)βi(x0)θ(z1)− (−1)iθ(z1)βi(x0)θ(y1)

− θ(z1)θ(y1)βi(x0) + θ(x0)βi(y1)θ(z1) + βi(y1)θ(x0)θ(z1)

− (−1)iθ(z1)θ(x0)βi(y1)− (−1)iθ(z1)βi(y1)θ(x0)+(−1)iθ(x0)θ(y1)βi(z1)

+ (−1)iθ(y1)θ(x0)βi(z1)− βi(z1)θ(x0)θ(y1)− βi(z1)θ(y1)θ(x0)
+ βi(x0)θ(z1)θ(y1) + (−1)iθ(z1)βi(x0)θ(y1)− (−1)iθ(y1)βi(x0)θ(z1)

− θ(y1)θ(z1)βi(x0) + θ(x0)βi(z1)θ(y1) + βi(z1)θ(x0)θ(y1)

− (−1)iθ(y1)θ(x0)βi(z1)− (−1)iθ(y1)βi(z1)θ(x0)+(−1)iθ(x0)θ(z1)βi(y1)

+ (−1)iθ(z1)θ(x0)βi(y1)− βi(y1)θ(x0)θ(z1)− βi(y1)θ(z1)θ(x0)
for all x0 ∈ A0, y1, z1 ∈ A1. Comparing the above relations, we have

[δ(y1, z1), θ(x0)]s = 0.

Analysis similar to that in the proof of Lemma 3.1 shows that δ(x1, y1) =
ν ′1(x1, y1) for all x1, y1 ∈ A1, where ν ′1 : A1 ×A1 → C + Cω. Therefore

βi([x1, y1]s) = [βi(x1), θ(y1)]s + (−1)i[θ(x1), βi(y1)]s + 2ν ′1(x1, y1)

for all x1, y1 ∈ A1.
Again applying βi to (4.1), we get

βi([x1, [y1, z0]s]s) = βi(x1 ◦s y1 ◦s z0)− βi(x1 ◦s z0 ◦s y1)
for all x1, y1 ∈ A1 and z0 ∈ A0. Extending the above expression, we have

[θ(x1), δ(y1, z0)]s = −(−1)iν ′1(x1, [y1, z0]s).

By [22, Theorems 3.8 and 3.7], we get

δ(x1, y0) = ν ′2(x1, y0) and δ(x0, y1) = −δ(y1, x0) = −ν ′2(y1, x0)
for all x0, y0 ∈ A0 and x1, y1 ∈ A1, where ν ′2 : A1×A0 → C+Cω. Computing
βi(x1y0z1) and βi(x1y1z1) in two different ways, we have

ν ′1(x1, y1) = ν ′2(x1, y0) = 0 and δ(x1, y0) = δ(y0, x1) = δ(x1, y1) = 0

for all x1, y1 ∈ A1 and y0 ∈ A0. So βi is a (θ, θ)-superderivation of degree i.
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By [22, Theorem 4.16] and the above result, we have

Theorem 4.2. Let A = A0 ⊕A1 be a prime superalgebra with maximal
right ring of quotients Q and extended centroid C. Suppose that θ is an
automorphism of A and β : A→ A is a Jordan triple (θ, θ)-superderivation.
If deg(A1) ≥ 9, then β : A→ A is a (θ, θ)-superderivation.

Next we will study generalized Jordan triple (θ, θ)-superderivations of
superalgebras.

Lemma 4.3. Let A be a prime superalgebra with maximal right ring of
quotients Q and extended centroid C. Suppose that θ is an automorphism
of A and ξi : A→ A is a generalized Jordan triple (θ, θ)-superderivation of
degree i ∈ {0, 1}. If A is a 4-superfree subset of Q, then ξi : A → A is a
generalized (θ, θ)-superderivation of degree i.

Proof. By assumption, we define π : A×A→ Q by

π(x, y) = ξi(xy)− ξi(x)θ(y)− (−1)i|x|θ(x)βi(y)

for all x, y ∈ A0 ∪ A1, where βi is a Jordan triple (θ, θ)-superderivation of
degree i ∈ {0, 1}. Note that π(x1, y0) = −π(y0, x1) and π(x1, y1) = π(y1, x1).

Applying ξi to (4.1), we get

(4.3) ξi([x0, [y1, z1]s]s) = ξi(x0 ◦s y1 ◦s z1) + ξi(x0 ◦s z1 ◦s y1).

By [18, Theorem 3], ξi|A0 is a generalized (θ, θ)-derivation. Since βi is a
(θ, θ)-superderivation of degree i, we have

ξi([x0, [y1, z1]s]s) = ξi(x0)θ(y1)θ(z1) + ξi(x0)θ(z1)θ(y1) + θ(x0)
(
βi(y1)θ(z1)

+ (−1)iθ(y1)βi(z1) + βi(z1)θ(y1) + (−1)iθ(z1)βi(y1)
)

− ξi([y1, z1]s)θ(x0)−θ(y1)θ(z1)βi(x0)−θ(z1)θ(y1)βi(x0)

and

ξi(x0 ◦s y1 ◦s z1) + ξi(x0 ◦s z1 ◦s y1)
= ξi(x0)θ(y1)θ(z1) + ξi(y1)θ(x0)θ(z1)− ξi(z1)θ(x0)θ(y1)− ξi(z1)θ(y1)θ(x0)

+ θ(x0)βi(y1)θ(z1) + (−1)iθ(y1)βi(x0)θ(z1)− (−1)iθ(z1)βi(y1)θ(x0)

− (−1)iθ(z1)βi(x0)θ(y1)+(−1)iθ(x0)θ(y1)βi(z1)+(−1)iθ(y1)θ(x0)βi(z1)

− (−1)iθ(z1)θ(x0)βi(y1)− θ(z1)θ(y1)βi(x0) + ξi(x0)θ(z1)θ(y1)

+ ξi(z1)θ(x0)θ(y1)− ξi(y1)θ(x0)θ(z1)− ξi(y1)θ(z1)θ(x0)
+ θ(x0)βi(z1)θ(y1) + (−1)iθ(z1)βi(x0)θ(y1)− (−1)iθ(y1)βi(z1)θ(x0)

− (−1)iθ(y1)βi(x0)θ(z1)+(−1)iθ(x0)θ(z1)βi(y1)+(−1)iθ(z1)θ(x0)βi(y1)

− (−1)iθ(y1)θ(x0)βi(z1)− θ(y1)θ(z1)βi(x0)
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for all x0 ∈ A0, y1, z1 ∈ A1. Since A is a 4-superfree subset of Q, we have
ξi(x1y1) = ξi(x1)θ(y1) + (−1)iθ(x1)βi(y1) for all x1, y1 ∈ A1.

Likewise, applying ξi to (4.1), we get

π(x1, y0) = π(y0, x1) = 0

for all x1 ∈ A1, y0 ∈ A0. Therefore ξi is a generalized (θ, θ)-superderivation
of degree i.

By [22, Theorem 4.16] and the above result, we have

Theorem 4.4. Let A = A0 ⊕A1 be a prime superalgebra with maximal
right ring of quotients Q and extended centroid C. Suppose that θ is an
automorphism of A and ξ : A → A is a generalized Jordan triple (θ, θ)-
superderivation. If deg(A1) ≥ 9, then ξ : A → A is a generalized (θ, θ)-
superderivation.

In particular, when θ = 1 in Theorems 4.2 and 4.4, we have

Corollary 4.5. Let A = A0⊕A1 be a prime superalgebra with maximal
right ring of quotients Q and extended centroid C. Suppose that β : A→ A
is a Jordan triple superderivation. If deg(A1) ≥ 9, then β : A → A is a
superderivation.

Corollary 4.6. Let A = A0⊕A1 be a prime superalgebra with maximal
right ring of quotients Q and extended centroid C. Suppose that ξ : A→ A is
a generalized Jordan triple superderivation. If deg(A1) ≥ 9, then ξ : A→ A
is a generalized superderivation.

An easy computation shows that Jordan superderivations (resp., gen-
eralized Jordan superderivations) are Jordan triple superderivations (resp.,
generalized Jordan triple superderivations). We can also get Corollaries 3.5
and 3.6 from Corollaries 4.5 and 4.6.
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