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COMPONENT CLUSTERS FOR ACYCLIC QUIVERS

BY

SARAH SCHEROTZKE (Bonn)

Abstract. The theory of Caldero–Chapoton algebras of Cerulli Irelli, Labardini-
Fragoso and Schröer (2015) leads to a refinement of the notions of cluster variables and
clusters, via so-called component clusters. We compare component clusters to classical
clusters for the cluster algebra of an acyclic quiver. We propose a definition of mutation
between component clusters and determine the mutation relations of component clusters
for affine quivers. In the case of a wild quiver, we provide bounds for the size of component
clusters.

1. Introduction. In [7] Cerulli Irelli, Labardini-Fragoso and Schröer
propose a broad generalization of the theory of cluster algebras [12]. They
give a recipe to attach to any basic algebra Λ a subalgebra AΛ of a ring
of rational functions: AΛ is the Caldero–Chapoton algebra of Λ. Similarly
to cluster algebras, Caldero–Chapoton algebras come with an interesting
collection of sets of generators which are called CC-clusters. In this pa-
per, we investigate various properties of Caldero–Chapoton algebras and
CC-clusters in the special case when Λ is the path algebra of an acyclic
quiver.

Note that if Q is an acyclic quiver and Λ = kQ is its path algebra, the
Caldero–Chapoton algebra of Λ is equal to the ordinary cluster algebra AQ
of Q.

However even in this case the set of generators of AQ that we obtain by
viewing it as a Caldero–Chapoton algebra is larger than the set of classical
cluster variables. Further, contrary to classical clusters, CC-clusters can have
smaller cardinality than the vertex set of Q: the classical clusters of AQ
coincide with the CC-clusters of maximal size.

The construction of the CC-clusters in [7] builds on work of Caldero,
Chapoton and Keller on the cluster character [5], [6]. The authors first in-
troduce component clusters, which are families of irreducible components of
the representation varieties of Λ having some special properties. CC-clusters
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are then obtained by applying the Caldero–Chapoton map to the component
clusters (see [7] for a fuller explanation).

In this paper we study the structure of component clusters when Λ = kQ,
and Q is an acyclic quiver. We show that, as a consequence of Kac’s the-
orem [15], component clusters are in bijection with sets of pairwise ext-
orthogonal distinct Schur roots. Hence component clusters are closely linked
with generic decompositions of dimension vectors [15], which have been
studied also by Schofield [20] and more recently by Derksen and Wey-
man [9].

When Q is affine, we give a complete description of component clusters:
they are either of size n or n − 1, where n is the number of vertices of Q.
Component clusters are of size n− 1 if and only if they contain the unique
positive isotropic Schur root. The situation is considerably more complicated
when Q is of wild type. However, in this case, we are able to obtain an
optimal upper bound for the number of imaginary Schur roots appearing in
a component cluster. We also show that, if Q is of wild type, we always have
an infinite number of component clusters of size one. Further, motivated
by the exchange relations between cluster variables, we give a definition
of exchange relations between component clusters. For affine quivers, we
explicitly determine these exchange relations.

The paper is structured as follows: In Section 2, we recall Kac’s generic
decomposition theorem and classical results on root systems of quivers. We
introduce negative Schur roots in order to define generic decompositions
for any vector in Zn. In Section 3, we determine the cluster components for
affine quivers. In Section 4, we study the sizes of component clusters if Q is of
wild type. Finally, in Section 5, we define mutations of component clusters
and give an interpretation of exchange relations between two component
clusters that are connected by a mutation. We work out the exact exchange
relations for affine quivers.

2. Generalized generic decompositions and cluster components
of quivers

2.1. Back to the roots. In this section, we introduce notation and
recall some basic facts on root systems of acyclic quivers. We refer to [1],
[21] and [22] for a complete introduction to the representation theory of
finite, affine and wild quivers and the related background.

Throughout this paper, Q is a finite quiver without oriented cycles, and
k is a field. We denote the set of vertices by Q0. We assume that the vertices
are equipped with a total order and we denote them by 1, . . . , n. We denote
by Q1 the set of arrows. Furthermore, s, t : Q1 → Q0 are the maps which
send an arrow to its source and to its target respectively.
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To a dimension vector d : Q0 → N we associate the variety of represen-
tations

repdQ :=
⊕
a∈Q1

Hom(kd(s(a)), kd(t(a))).

It is a finite-dimensional vector space, hence an irreducible affine variety.
There is a canonical action of

∏
i∈Q0

Gld(i)(k) on repdQ having the prop-
erty that the Gd orbits are in bijection with the isomorphism classes of
kQ-modules of dimension vector d.

The support of a dimension vector d ∈ Nn is the subset

supp d := {i ∈ Q0 | d(i) 6= 0}
of Q0. We say that the support is connected if the full subquiver of Q
generated by the vertices belonging to supp d is connected. A dimension
vector d is called a root if repdQ contains an indecomposable representation.
A Schur root is a dimension vector of a representation whose endomorphism
ring is isomorphic to k. Such a representation is necessarily indecomposable
and is called a Schurian representation.

Let d and b be dimension vectors. The functions

hom(−,−) : repdQ× repbQ→ N, (M,N) 7→ dim homQ(M,N),

ext(−,−) : repdQ× repbQ→ N, (M,N) 7→ dim Ext1Q(M,N),

end(−) : repdQ→ N, N 7→ dim EndQ(N),

are upper semicontinuous. Hence there are open subsets in repdQ× repbQ
on which ext and hom are constant of minimal value, and there is an open
subset of repdQ on which end is constant of minimal value. We set ext(d, b),
hom(d, b) and end(d) to be the minimal value of these functions. Note that
all open subsets of an irreducible variety are dense.

We call two dimension vectors a and b ext-orthogonal if ext(a, b) and
ext(b, a) vanish. It also follows from upper semicontinuity that for any Schur
root d there is a dense open subset of Schurian representations in repdQ.
Let n be the cardinality of Q0. The Euler form is the bilinear form

〈−,−〉 : Zn×Zn → Z, (a, b) 7→
∑
i∈Q0

aibi −
∑
f∈Q1

as(f)bt(f).

By [20], the Euler form can alternatively be described by the formula

〈a, b〉 = dim Hom(M,N)− dim Ext(N,M)

for any M ∈ repaQ and any N ∈ repbQ. As two open sets intersect non-
trivially in an irreducible variety, we also have the identity

〈a, b〉 = hom(a, b)− ext(a, b).
The symmetrized Euler form is the bilinear form on Zn×Zn given by

(a, b) 7→ 〈a, b〉+ 〈b, a〉,
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and the Tits form is the quadratic form q(a) := 〈a, a〉, for all a, b ∈ Zn.
Roots are classified by their Tits form into three types. We refer to a root
d as real if q(d) = 1, imaginary if q(d) ≤ 0, and isotropic if q(d) = 0.
A representation M in repdQ is rigid if Ext1(M,M) vanishes. This is the
case if and only if the representations isomorphic to M form an open subset
of repdQ. If d is a root and repdQ contains a rigid representation, then d is
a real Schur root. Conversely, if d is a real Schur root then repdQ contains a
rigid representation M , which is necessarily Schurian. Further, all Schurian
representations of dimension vector d are isomorphic to M .

Kac’s generic decomposition theorem shows that Schur roots play an
important role in understanding the variety of representations of a quiver:

Theorem 2.1 ([15]).

(1) Every dimension vector d has a unique decomposition

d = d1 ⊕ · · · ⊕ ds
as a sum of Schur roots di such that the image of the natural embed-
ding s∐

i=1

repdi Q→ repdQ, (M1, . . . ,Ms) 7→
s⊕
i=1

Mi,

is an open set. In this case the generic extensions ext(di, dj) vanish
for all i 6= j.

(2) Conversely, every decomposition of d into a sum of Schur roots di
such that the generic extensions ext(di, dj) vanish for all i 6= j gives
rise to an open embedding of

∐s
i=1 repdi Q into repdQ.

This unique decomposition of a dimension vector into a sum of Schur
roots is called the generic decomposition.

We will use the following standard notation. We denote by Pi, Ii and
Si respectively the projective indecomposable, injective indecomposable and
simple module associated to the vertex i ∈ Q0.

2.2. The cluster category. Here we briefly summarize the relations
between quiver representations and the theory of cluster algebras.

We refer to [17] for a fuller account. We assume that the ground field
k has characteristic 0. Let DQ denote the bounded derived category of kQ-
modules. It is a triangulated category and we denote its suspension functor
by Σ : DQ → DQ. As kQ has finite global dimension, Auslander–Reiten
triangles exist in DQ by [13, Theorem 1.4]. We denote the Auslander–Reiten
translation of DQ by τ . On non-projective modules, it coincides with the
Auslander–Reiten translation of mod kQ. The cluster category [4]

CQ = DQ/(τ−1Σ)Z
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is the orbit category of DQ under the action of the cyclic group generated
by τ−1Σ. One can show [16] that CQ admits a canonical structure of trian-
gulated category such that the projection functor π : DQ → CQ becomes a
functor of triangulated categories.

We refer to [6] for the definition of the cluster character L 7→ XL from
the set of isomorphism classes of objects L of CQ to the ring of Laurent

polynomials k[x±11 , . . . , x±1n ]. We have XτPi = xi for all vertices i of Q, and
XM⊕N = XMXN for all objects M and N of CQ. We call an object M in CQ
rigid if it has no self-extensions, that is, Ext1CQ(M,M) vanishes. The next
theorem explains in which way the cluster character allows us to view the
cluster category as a categorification of AQ.

Theorem 2.2 ([6]).

(a) The map L 7→ XL induces a bijection from the set of isomorphism
classes of rigid indecomposable objects of the cluster category CQ
onto the set of cluster variables of the cluster algebra AQ.

(b) If L and M are indecomposables and Ext1CQ(L,M) is one-dimen-
sional, then we have a generalized exchange relation

(2.1) XLXM = XE +XE′

where E and E′ are the middle terms of the ‘unique’ non-split tri-
angles

(2.2) L→ E →M → ΣL and M → E′ → L→ ΣM

Let L and M be two indecomposable objects in the cluster category such
that Ext1CQ(M,L) is one-dimensional. If both L and M are rigid, then so

are E and E′, and the sequence Theorem 2.1 is an exchange relation of the
cluster algebra AQ. For this reason, in this case, we call the triangles in (2.2)
exchange triangles. If L or M is not rigid, we call them generalized exchange
triangles.

For all dimension vectors d the cluster character is a constructible func-
tion on repdQ. Hence it takes a constant value Xd on an open subset of
repdQ. We call Xd the generic cluster character of d. The generic cluster
characters have been conjectured to be a basis of the cluster algebra, called
the generic basis (we refer to [7, Section 1.2] for further details on this
conjecture).

2.3. Generalized Schur roots and generic decompositions. Let
e1, . . . , en be the standard basis of Zn. It will be useful to consider also the
negative Schur roots, −ei for i ∈ Q0. Indeed, all indecomposable objects
in the cluster category CQ are isomorphic either to a stalk complex of an
indecomposable representation ofQ or to ΣPi. We will interpret the negative
Schur root −ei as the dimension vector of ΣPi.
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An alternative point of view on negative Schur roots is given by the dec-
orated representations introduced in [10]. Decorated representations yield
a combinatorial construction of the representations associated to negative
Schur roots. In this article we rely instead on the categorical setup of cluster
categories that was described in the previous paragraph.

Negative Schur roots allow us to define generic decompositions for any
dimension vector with integer values. They are real Schur roots, as ΣPi
has no self-extensions in the cluster category. We define a negative Schur
root −ei to be ext-orthogonal to a positive Schur root d if there is an M in
repdQ such that Ext1CQ(M,ΣPi) vanishes. This is the case if and only if di

vanishes. As Ext1CQ(ΣPi, ΣPj) and Ext1CQ(ΣPj , ΣPi) vanish for all i 6= j, all

negative Schur roots are pairwise ext-orthogonal.
We say that a general dimension vector d : Q0 → Z has a generic decom-

position d = d1⊕· · ·⊕ds into generalized Schur roots di if the di are pairwise
ext-orthogonal. A generic decomposition of d always exists and is unique. If
d is non-negative, then it coincides with Kac’s generic decomposition.

2.4. Component cluster. Let Λ be a basic algebra. Component clus-
ters for Λ have first been introduced in [7, Section 6]. They are maximal
collections of indecomposable strongly reduced components of the represen-
tation variety of Λ with pairwise vanishing generic extensions. We refer to [7]
for additional details.

In the case where Λ = kQ is the path algebra of Q, the representation
varieties repv Q, for a fixed dimension vector v, are vector spaces and thus
in particular irreducible. Furthermore, they are strongly reduced. Also, by
Kac’s generic decomposition theorem, repv Q is indecomposable if and only
if v is a Schur root.

Hence, we can give an alternative definition of component clusters for
Λ = kQ in terms of roots. The component graph of Q is a graph with
vertices corresponding to the Schur roots and arrows connecting two Schur
roots b and d if and only if b 6= d and they are ext-orthogonal. The maximal
complete subgraphs are called component clusters.

The component clusters consisting only of real Schur roots correspond
to the classical clusters and are in bijection with the cluster-tilting objects
of the cluster category. These objects have been studied extensively in the
context of categorification of cluster algebras. In fact the cluster character
establishes a bijection between the cluster-tilting objects and the clusters
of AQ (see Theorem 2.2). We know by [14] that these component clusters
have size n. Their mutations can be entirely described using cluster combi-
natorics (see [6]).

In this paper we will consider all component clusters, and not just the
component clusters corresponding to cluster-tilting objects; we will study
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their structure, calculate their size, and provide an interpretation of their
mutations.

3. Component cluster for affine quivers. We first determine the
size and composition of component clusters of affine quivers. We refer to
[21, Chapter XIII] for a complete introduction to the representation theory
of affine quivers.

The roots of affine quivers are either real or isotropic. Let δ denote the
smallest positive isotropic root. All other isotropic roots are Z-multiples of δ.

Considering the Auslander–Reiten component of Q gives a natural clas-
sification of indecomposable representations into three types:

• The preprojective component consists of τ−1-orbits of projective inde-
composable modules. The roots x associated to these representations
are real Schur roots. Furthermore, 〈x, δ〉 > 0.
• The preinjective component consists of τ -orbits of injective indecom-

posable modules. The roots x associated to these representations are
also real Schur roots and satisfy 〈x, δ〉 < 0.
• Finally, the third type of representations are the regular indecompos-

able modules appearing in tubes. They are τ -periodic representations.
The roots x associated to these representations satisfy 〈x, δ〉 = 0.

We distinguish two types of tubes in the Auslander–Reiten quiver: the
exceptional tubes, which are of size greater than one and form a finite set,
and the homogeneous tubes, which are parametrized by the projective line.
By [8] an indecomposable regular representation is Schurian if and only if
its dimension vector is smaller than or equal to δ (that is, all the entries of
the dimension vector are smaller than or equal to the entries of δ).

These are exactly the dimension vectors of the regular representations
that lie in the first p rows of a tube of rank p. The dimension vectors of the
regular representations in the first p−1 rows are real Schur roots. The dimen-
sion vector of the regular representation in the row p is always the isotropic
root δ. Hence there are infinitely many isomorphism classes of indecompos-
able modules with dimension vector δ. It follows that hom(δ, δ) vanishes
and as a consequence the generic extension ext(δ, δ) vanishes, even though
every indecomposable module of dimension vector δ has non-vanishing self-
extension.

The additive category of regular modules appearing in one tube is abelian
and closed under extensions. Its simple objects are called regular simple
and the number of isomorphism classes of regular simple modules equals
the rank of the tube. The indecomposable regular modules are uniserial
with respect to the regular simple modules appearing in the same tube.
The maximal rigid objects in the exceptional tubes have been described by
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Buan and Krause [2], [3]. From [2, Corollary 3.8] and [3, Corollary 2.4 and
Theorem 5.2] we derive the next result.

Theorem 3.1. A maximal basic rigid object in a tube of rank p has p−1
pairwise non-isomorphic indecomposable direct summands, each of which has
at most p− 1 regular simples in its regular composition series.

We determine next which Schur roots appearing in tubes are ext-orthog-
onal. We say that a Schur root belongs to a tube if it is the dimension vector
of a regular representation.

Lemma 3.2. Two Schur roots belonging to different tubes are ext-orthog-
onal. The isotropic Schur root δ is ext-orthogonal to a Schur root α if and
only if α is regular.

Proof. It is well-known that two indecomposable regular representations
A and B lying in different tubes have no extension. As there exists a Schurian
representation of dimension vector δ that does not appear in an exceptional
tube, δ is ext-orthogonal to all regular roots.

Let d be a preinjective or preprojective root. In the preinjective case
〈d, δ〉 is negative, and in the preprojective case 〈δ, d〉 is negative. It follows
that either ext(d, δ) or ext(δ, d) is non-zero.

We can now determine the component clusters.

Theorem 3.3. The component clusters are of size either n or n − 1.
They are of size n− 1 if and only if they contain δ.

Proof. If δ is not contained in a component cluster, then the component
cluster corresponds to a cluster-tilting object, hence it is of size n. Suppose
now that δ is contained in a component cluster. Then all other Schur roots in
the component cluster belong to tubes and are real. In a tube of rank p > 1
the maximal number of pairwise ext-orthogonal real Schur roots is p − 1
by Theorem 3.1. By Lemma 3.2 all Schur roots appearing in different tubes
are ext-orthogonal. So a component cluster containing δ will also contain
p− 1 Schur roots for each exceptional tube of the Auslander–Reiten quiver.
As the sum over all ranks minus 1 is equal to n − 2 by [8], the component
clusters containing δ are of size n− 1.

Note that, as there are only finitely many regular Schur roots, there
are only finitely many component clusters of size n− 1 but infinitely many
component clusters of size n.

Lemma 3.4. The Z-span of Schur roots appearing in a component cluster
of size n− 1 forms a pure sublattice of Zn of rank n− 1.

Proof. For n pairwise ext-orthogonal real Schur roots, their Z-span is
the entire lattice Zn. If δ, α1, . . . , αn−2 is a component cluster, then there
is a dimension vector of a representation τ−lPe which is ext-orthogonal to
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α1, . . . , αn−2. This is equivalent to the fact that τ l+1(α1 + · · ·+ αn−2) does
not have support in e. Hence the Z-span of τ l+1α1, . . . , τ

l+1αn−2 is the
lattice 0 × U , where U is a pure sublattice of rank n − 2. It follows that
τ l+1δ = δ, τ l+1α1, . . . , τ

l+1αn−2 span a pure sublattice of rank n − 1. As τ
is a bijective integral linear form on Zn, the Z-span of δ, α1, . . . , αn−2 is a
pure sublattice of rank n− 1.

4. Component clusters for wild quivers. In this section we obtain
an optimal bound for the maximal number of imaginary Schur roots appear-
ing in a component cluster.

The fundamental domain

F := {d ∈ Zm | (d, ei) ≤ 0 for all i ∈ {1, . . . ,m} and supp(d) is connected}
is a subset of the positive imaginary roots. We call these roots fundamental.
The set of positive imaginary roots is given by the image of the Weyl group
action on F . Note that the symmetrized Euler form is invariant under the
Weyl group W , that is,

(α, β) = (wα,wβ)

for all w ∈ W . The set of positive imaginary roots is invariant under the
action of W , but the set of real roots is not. Indeed, if α is a real Schur root,
wα will not be positive in general. Furthermore, the Weyl group action does
not map Schur roots to Schur roots and does not preserve ext-orthogonality.

Lemma 4.1. Let α be a fundamental root. Then either α is isotropic and
α =

⊕n
i=1 β, where n ∈ N and β is an isotropic fundamental Schur root, or

α is a Schur root.

Proof. If α is isotropic and fundamental, then its support is an affine
quiver. As every affine quiver has a unique positive isotropic non-divisible
positive root β, we have α =

⊕n
i=1 β for some n ∈ N. Suppose that α is not

a Schur root and is not isotropic; then by [20, Theorem 6.2] it contains at
least one real Schur root β in its decomposition, and (α, β) is positive. But
this contradicts the fact that α is fundamental.

For any dimension vector α, its null-cone is given by

Nα := {i ∈ Q0 | (ei, α) = 0}.
We say that a dimension vector α is sincere if all its entries are positive
integers.

Lemma 4.2. Suppose that α lies in the fundamental domain and is sin-
cere. Then either Q is an affine quiver and α is isotropic, or the full sub-
quiver on the set of vertices Nα is a union of Dynkin quivers.

In the previous section we have determined the component clusters of
affine quivers.
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Lemma 4.3. Assume that either

• α and β are positive imaginary ext-orthogonal roots, or
• α is an imaginary fundamental root and β real and ext-orthogonal to α.

Then hom(α, β), hom(β, α) and (α, β) vanish.

Proof. In the first case, we can consider a Weyl group element w such
that wα lies in the fundamental domain. Then wβ is a positive root and
we have (α, β) = (wα,wβ) ≤ 0. In the second case, since α is fundamental,
(α, β) ≤ 0. As α and β are ext-orthogonal, we also have 0 = (α, β) =
hom(α, β) + hom(β, α).

Note that the previous lemma does not hold if, in the second part, we
replace the assumption that α is fundamental with the assumption that α
is imaginary.

Lemma 4.4. Let α and β be two positive imaginary roots which are
ext-orthogonal. Suppose that α lies in the fundamental domain. Then the
support of β is totally disconnected from the support of α.

Proof. If β and α are ext-orthogonal, then (α, β) = 0. Therefore the
support of β is totally disconnected from the support of α or it is contained
in Nα∩suppα. Note that the quiver generated by the vertices of Nα∩suppα
is a Dynkin quiver. Thus, since β is an imaginary root, its support cannot
be contained in Nα ∩ suppα.

Let α be an imaginary Schur root which is fundamental and not sincere.
Then a component cluster contains α if and only if it contains all the negative
Schur roots corresponding to the vertices connected to the support of α.

Lemma 4.5. Let α1, . . . , αn be imaginary Schur roots appearing in the
same component cluster. Then there exists a Weyl group element w such that
the wαi are all fundamental and the supports of wαi and wαj are totally
disconnected for all i 6= j. Also, there is a component cluster containing
wα1, . . . , wαn.

Proof. There is a Weyl group element w1 such that w1α1 is fundamen-
tal. Then all w1αi are positive imaginary roots satisfying (w1αi, w1α1) = 0.
Hence the support of w1αi is totally disconnected from the support of w1α1

for all i 6= 1.
If we restrict w1α2 to the quiver Q2 generated by its support, then w1α2

is a positive imaginary root for that quiver. Hence there is a Weyl group
element w2 which is a product of simple reflections on vertices of Q2 such
that w2w1α2 is fundamental in Q2. Then w1w2α2 is also fundamental in Q
with support contained in Q2 and w2w1α1 = w1α1. It follows that the
support of w2w1αi is totally disconnected from the support of w2w1α1 and
w2w1α2 for all i 6= 1, 2. By induction on n, there is an element w := wn · · ·w1
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such that wαi are all fundamental roots with pairwise totally disconnected
supports.

Roots with totally disconnected supports are always ext-orthogonal and
fundamental roots are always Schur by Lemma 4.1. Hence there is a com-
ponent cluster containing wα1, . . . , wαn.

Corollary 4.6. The maximal number of imaginary Schur roots that
can appear in a component cluster is given by the maximal number of totally
disconnected subgraphs of wild or tame type.

Proof. By Lemma 4.5, we can assume without loss of generality that the
imaginary Schur roots in a cluster are fundamental and have totally disjoint
supports. The supports of the roots are quivers of tame or wild type.

Note that by [9, Corollary 21] the number of real Schur roots in a com-
ponent cluster is bounded by the number of vertices of Q minus twice the
number of imaginary Schur roots appearing in the component cluster.

Lemma 4.7. Let α1, . . . , αk, β1, . . . βs be a component cluster such that
α1, . . . , αk are imaginary non-isotropic Schur roots. Then for all n ∈ N,
nα1, . . . , nαk, β1, . . . βs is also a component cluster.

Proof. By [20, Theorem 3.7] the N-multiple of an imaginary non-isotropic
Schur root αi is also a Schur root. Let α and β be two positive roots, and
let n ∈ N. We show that they are ext-orthogonal if and only if nα and β
are ext-ortogonal. If α and β are ext-orthogonal there are representations A
and B of dimension vector α and β respectively such that Ext1(A,B) and
Ext1(B,A) vanish. Note that this holds if and only if Ext1(

⊕n
i=1A,B) and

Ext1(B,
⊕n

i=1A) vanish. Thus α and β are ext-orthogonal if and only if nα
and β are ext-orthogonal.

Remark 4.8. For any wild quiver there is a sincere fundamental imag-
inary root α such that Nα is empty. Clearly, this Schur root appears as the
only element of a component cluster. As the null-cone of a root and the
null-cone of its positive multiples coincide, we conclude that wild quivers
always have infinitely many component clusters of size one.

The next example shows that the size of component clusters also depends
on the orientation of the quiver: suppose α is a Schur roots for two quivers Q
andQ′ with isomorphic underlying (non-oriented) graphs. Then the maximal
size of component clusters containing α may be different for Q and Q′.

Example 4.9. Let α be given by
1

�� ��
1 2oo 2oo 1oo

It is a fundamental root, and hence Schur.



256 S. SCHEROTZKE

We change the orientation of one arrow and consider the fundamental
Schur root β:

1

��
1 2oo 2oo

^^

1oo

Direct computation shows that the component cluster containing α has ex-
actly two elements α and α′, where α′ is given by

0

�� ��
0 1oo 1oo 1oo

On the other hand, β appears alone in a component cluster. Note also that
by Corollary 4.6 the number of imaginary roots appearing in the same com-
ponent cluster is at most one.

Remark 4.10. As the orientation of the quiver affects the size of com-
ponent clusters but the Tits form is independent of it, we cannot hope for
an exact upper bound involving the Tits form of a root. Another way to
see this is as follows. Start with a fundamental sincere root α of a quiver
Q and add a vertex x to Q and n > 2 arrows from x to y, where y is a
vertex of Q which is totally disconnected from Nα. Let us denote the new
quiver by Q′, and let α′ be a new root with α′(z) = α(z) for all z ∈ Q0

and α′(x) = 1. Then the root α′ is fundamental and sincere, and there is
a canonical bijection between the component clusters containing α and the
component clusters containing α′, but q(α′) can be made arbitrarily small
by increasing n.

Lemma 4.11. Let α be a fundamental non-divisible isotropic root. Then
α appears in a component cluster of size |Q0| − 1.

Proof. The support of α is an affine quiver and we know by Theorem 3.3
that α is ext-orthogonal to |suppα| − 1 real Schur roots that have supports
contained in suppα. Now for every vertex connected to suppα we add the
negative Schur root −ej to this collection. We can now complete the ext-
orthogonal collection by real Schur roots with supports in the vertices totally
disconnected from suppα.

Note that the previous lemma is false in general if we drop the hypothesis
that α is fundamental. Also, non-divisible isotropic roots are not necessarily
Schur (see [9, Example 27]).

It is clear by the uniqueness of the generic decomposition that n Schur
roots appearing in the same component cluster are linearly independent.
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5. Mutation of component clusters. Motivated by the cluster mu-
tations and exchange relations which appear in the definition of cluster
algebras, we propose a definition of mutations and exchange relations of
component clusters.

Definition 5.1. Two component clusters C1 and C2 are connected by
a mutation if their intersection has cardinality min(|C1|, |C2|)− 1.

If a component cluster consists of real Schur roots, then they correspond
uniquely to clusters of the cluster algebra AQ, and the above definition
recovers the ordinary definition of cluster mutation.

Proposition 5.2. The mutation graph is connected.

Proof. Clearly, by the Bongartz completion, there is a path of length
at most n from a component cluster to a classical cluster. By [14] the full
subgraph consisting of classical clusters is connected by mutation. Hence all
component clusters are connected by mutation.

In order to define exchange relations, we recall a few preliminary results.

Lemma 5.3. Let N and M be kQ-modules. Then we have a canonical
isomorphism Ext1CQ(M,N) ∼= Ext1kQ(M,N)⊕DExt1kQ(N,M).

Proof. This is [4, Proposition 1.7(c)].

Let C1 and C2 be two clusters connected by mutation. Then there exist
unique roots α, α′ such that {α} = C1−C2 and {α′} = C2−C1. An exchange
relation between C1 and C2 is a polynomial equation in the cluster algebra
AQ relating the cluster characters Xα, Xα′ and Xd for d ∈ C1∩C2. Here we
are working one categorical level up, on the level of roots. Hence for us an
exchange relation will be given by a generic decomposition of α+α′, where
α ∈ C2−C1 and α′ ∈ C1−C2. We will show that the generic decomposition
involves roots which are ext-orthogonal to all roots in C1 ∩ C2.

Lemma 5.4. Let α and β be two roots which are ext-orthogonal to a root
d and suppose that ext(α, β) 6= 0. Then there are open subsets Uα, Uβ and
Ud of repαQ, repβ Q and repdQ respectively such that for all A ∈ Uα and
C ∈ Uβ and all non-split triangles

A→ B → C → ΣA and C → B′ → A→ ΣC

the spaces Ext1CQ(B,D) and Ext1CQ(B′, D) vanish for all D ∈ Ud.
Proof. By the irreducibility of the varieties of representations, there are

open subsets Uα, Ud and Uβ of repαQ, repdQ and repβ Q respectively such

that Ext1CQ(A,D) = Ext1CQ(C,D) = 0 by Lemma 5.3 and Ext1CQ(A,C) 6= 0

for all A ∈ Ua, C ∈ Uc and D ∈ Ud. So by the 2-Calabi–Yau property we

obtain the existence of two non-split triangles

A→ B → C → ΣC and C → B′ → A→ ΣA
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in CQ. Applying Hom(−, D) to the distinguished triangles allows us to con-
clude that Ext1CQ(B,D) and Ext1CQ(B′, D) vanish for all D ∈ Ud.

Proposition 5.5. Let α1, . . . , αn be a collection of ext-rthogonal Schur
roots. Suppose that α′1 6= α1 is a Schur root ext-orthogonal to α2, . . . , αn
and ext(α1, α

′
1) does not vanish. Then the generic decomposition of α1 +α′1

involves only Schur roots that are different from both α1 and α′1 and are
ext-orthogonal to α2, . . . , αn.

Proof. As ext(α1, α
′
1) does not vanish, there are open sets Uα1 and Uα′

1

such that, for all A1 ∈ Uα1 and A′1 ∈ Uα′
1
, the space Ext1(A1, A

′
1) does not

vanish. Hence there is a non-split exact sequence

0→ A1 → A→ A′1 → 0

and A has dimension vector α1 + α′1. By Lemma 5.4, for all i = 2, . . . , n
there is a representation Ai with dimension vector αi such that Ext1CQ(A,Ai)

vanishes. Let d1⊕· · ·⊕ds be a generic decomposition of α1+α′1. Then the di’s
and the αj ’s are all pairwise ext-orthogonal. Further, the di’s are different
from both α1 and α′1 by [20, Theorem 3.3].

The next statement follows immediately from the previous two.

Theorem 5.6. Let C1 and C2 be two component clusters that are related
by mutation. Then for every pair (α, α′) with α ∈ C1−C2 and α′ ∈ C2−C1

there is a component cluster C3 containing C1∩C2 such that all Schur roots
in the generic decomposition of α+ α′ are contained in C3.

Hence we obtain an exchange relation between two component clusters
which are related by mutation for every pair α ∈ C1−C2 and α′ ∈ C2−C1 in
terms of a third cluster C3 containing C1∩C2 and all Schur roots appearing in
the generic decomposition of α+α′. In the case of classical clusters containing
only real Schur roots, we have a more precise result: the Schur roots in a
decomposition of α + α′ are contained in the intersection C1 ∩ C2. In the
next section we will see that this result cannot be extended to component
clusters, as it fails for affine quivers.

5.1. Exchange relations for affine quivers. In the case of an affine
quiver, we have concrete descriptions of the component clusters. We will use
these to obtain exchange relations between the cluster characters of Schur
roots appearing in component clusters which are related by mutation.

In the first part, we work out the exchange relations arising from muta-
tion between a component cluster of size n and a component cluster of size
n − 1. In the second part we will consider exchange relations arising from
mutation between two component clusters of size n− 1.

Lemma 5.7 ([11, Theorem 3.14]). Let N and M be two regular simple
kQ-modules whose dimension vectors equal δ. Then XM equals XN .
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The regular simple modules of dimension vector δ form an open subset
of repδ Q. Hence the generic cluster character Xδ equals XM for any regular
simple module M with dimension vector δ.

Recall that a vertex e of Q is extending if δe = 1.

Lemma 5.8. Let δ, α1, . . . , αn−2 be a component cluster. Then there ex-
ists a positive Schur root β 6= δ such that β is ext-orthogonal to α1, . . . , αn−2.
In this case β is either the dimension vector of the preprojective module
τ−lPe or the dimension vector of the preinjective module τ lIe, where l ∈ N
and e is an extending vertex.

Proof. The existence of β is clear by [14]. As β is a real root it is either
preprojective or preinjective. So β is the dimension vector of either the
preprojective module τ−lPe or the preinjective module τ lIe, for some positive
integer l and some vertex e of Q.

By the Auslander formula, the ext-vanishing condition is equivalent to
the vanishing of hom(dim τ−lPe, ταi) or hom(τ−1αi, dim τ lIe) respectively
for all 1 ≤ i ≤ n− 2. Both conditions are equivalent to the fact that

τ (l+1)(α1 + · · ·+ αn−2)

has no support in e. It remains to show that e is an extending vertex. If Q
is an orientation of a Kronecker quiver or of Ãn, there is nothing to show,
as every vertex is extending.

In the remaining cases the Auslander–Reiten quiver contains at least one
exceptional tube of size 2. Let α and β := τ(α) denote the dimension vectors
of the regular simples in such a tube. We assume without loss of generality
that α belongs to α1, . . . , αn−2. Then α has no support in e by the first part
of the proof. As α and β are roots, their supports have to be connected. As
α+β = δ by [8] and δ is sincere, we know that e is contained in the support
of β. So the supports of α and β are disconnected and they are linked by
one arrow e′ → e with α(e′) non-zero. As α is a real Schur root, we have

hom(α, β) = ext(α, α) = 0 and ext(α, β) = hom(α, α) = 1.

Suppose e is not extending. Then

2 ≤ δ(e)δ(e′) = −〈α, β〉 = ext(α, β)− hom(α, β) = 1,

a contradiction. Hence e has to be an extending vertex.

We denote by g the smallest common multiple of the tube ranks.

Corollary 5.9. Let α1, . . . , αn−2 be a collection of pairwise ext-orthog-
onal exceptional Schur roots, and let β be a preprojective Schur root which
is ext-orthogonal to this collection. Then, for all m ∈ N, τ−mgβ is also
ext-orthogonal to α1, . . . , αn−2.
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Proof. Clearly, τ preserves ext-orthogonality and τ g acts as the identity
on regular modules. Hence, for all m ∈ N, τ−mgβ is also ext-orthogonal to
α1, . . . , αn−2.

From this result it follows immediately that there are infinitely many
clusters which are connected by mutation to a component cluster contain-
ing δ. The next theorem gives the exchange relations between a component
cluster and a cluster. In this case, we also obtain exchange relations of generic
cluster characters.

Theorem 5.10. Let δ, α1, . . . , αn−2 be a component cluster. Let β be a
preprojective Schur root such that β, α1, . . . , αn−2 is a collection of pair-
wise ext-orthogonal Schur roots. Then there are exactly two completions
β, β1, α1, . . . , αn−2 and β, β′1, α1, . . . , αn−2 to clusters satisfying:

• δ + β = β1 and β1 is the dimension vector of a preprojective module;
• either β′1 is the dimension vector of a preinjective module, or β′1 is the

dimension vector of a preprojective module and δ + β′1 = β;
• the generic cluster characters satisfy XδXβ = Xβ1 +Xβ′

1
.

Proof. By Lemma 5.8 the real Schur root β is the dimension vector of a
module in the τ -orbit of the projective indecomposable module associated
with an extending vertex e. Therefore 〈δ, β〉 = δe = 1 and for every indecom-
posable regular simple representation C ∈ repδ Q and every indecomposable
representation A ∈ repβ Q, there is a non-split exact sequence

0→ A→ B → C → 0.

By [8] the module B is preprojective and indecomposable and therefore its
dimension vector is a Schur root, which we denote by β1. As ext(β, β) =
ext(β, δ) = 0, we also have ext(β, β1) = 0.

From 1 = 〈β, δ〉+ 〈δ, δ〉 = 〈β1, δ〉 and 1 = 〈β1, β1〉 = 〈β1, δ〉+ 〈β1, β〉, we
deduce that 〈β1, β〉 vanishes. We conclude from the vanishing of ext(β, β1)
that every non-zero map in hom(β1, β) has to be surjective. As β is a Schur
root, hom(β1, β) vanishes and so does ext(β1, β). Therefore β and β1 are
ext-orthogonal. We conclude by Lemma 5.6 that β1, β, α1, . . . , αm−2 is a
cluster.

By the 2-Calabi–Yau property of the cluster category, there exists a
non-split triangle

C → B′ → A
f→ ΣC.

In the cluster category, the object ΣC is isomorphic to τ(C) ∼= C. Hence we
have HomCQ(A,C) =

⊕
i∈Z HomDb(Q)(A,Σ

iC), and as Ext1(A,C) vanishes,

we can view f as a morphism of modules f : A → C. Then the object B′

splits into B′1 ⊕ Σ−1B′2, where B′1 is isomorphic to the kernel of f and B′2
is isomorphic to the cokernel of f .
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We assume first that B′1 does not vanish. Clearly, B′1 is preprojective and
indecomposable as 〈dimB′1, δ〉 = 1. The dimension vector of B′1 is therefore
a Schur root, which we denote by β′1. If B′1 does not vanish, the image of f is
a regular module and hence B′2 is also a regular module of dimension vector
smaller than δ. As the generic hom-space between δ and any exceptional
Schur root vanishes, B′2 vanishes and f is surjective.

Now, β′1 is ext-orthogonal to β, as can be seen by applying 〈β,−〉 to
the exact sequence 0 → ker f → A → Im f → 0. Then ext(β, β1) =
〈β, β1〉 = 〈β, β〉 − 〈β, δ〉 = 0. Furthermore we have ext(β′1, β) ≤ ext(β′1, β

′
1)

+ ext(β′1,dim Im f) and the last term vanishes as Im f is regular. Hence
β, β′1, α1, . . . , αn−2 is a cluster and β′1 + δ = β.

If ker f vanishes, then the cokernel of f satisfies 〈dimB′2, δ〉=−1, hence it
has a preinjective direct summand. Applying hom(−, B′2) induces the exact
sequence

0→ Hom(B′2, B
′
2)→ Hom(C,B′2)→ Hom(A,B′2) = 0.

As hom(δ, dimB′2) = 〈δ, dimB′2〉 = 1, the module B′2 is indecomposable
and its dimension vector is a real Schur root. If B′2 is not injective, then
the Schur root of τ−1B′2 extends the ext-orthogonal collection α1, . . . , αn−2.
Furthermore, hom(β,dimB′2) = 〈β, β′2〉 = 〈β, δ〉−〈β, β〉 = 0. Hence τ−1B′2 is
ext-orthogonal to β and its Schur root β′1 completes β, α1, . . . , αn−2 to a
cluster.

If B′2 is the injective module associated to the vertex i, then the roots
β, α1, . . . , αn−2 have vanishing supports in i. Hence the Schur root −ei asso-
ciated with the decorated representation ΣPi completes β, α1, . . . , αn−2 to
a cluster.

Finally, the multiplication formula yields the relation

XCXB = XB1 +XB′
1
.

As B, B1 and B′1 are indecomposable and rigid, their cluster characters
equal the generic cluster character of their Schur roots. By Lemma 5.7, we
also have XC = Xδ.

Remark 5.11. Note that if β′1 is preinjective we obtain similar exchange
relations: there is a unique preinjective root β′′1 such that β′1, β

′′
1 , α1, . . . , αn−2

is a cluster and δ + β′1 = β′′1 . The proof is similar.

Next we study the exchange relations between two component clusters
of size n−1. It is useful to restrict first to ext-orthogonal collections of Schur
roots appearing in the same exceptional tube T . Let T be of rank m and
let S ∈ T be a regular simple module.

In order to study exchange relations between two regular clusters, we
need to introduce the combinatorics as in [3, Appendix A]. We consider
the intervals [i, j] := {i, i + 1, . . . , j} mod m + 1 for i, j ∈ {0, . . . ,m} with
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i 6= j. Let I(m) denote the set of all these intervals. We call two intervals
compatible if as sets either they are disjoint or one is a subset of the other.
Then there is a bijection between the Schur roots of T and I(m) sending
[i, j] to the Schur root of the indecomposable representation with regular
composition series τ−iS, . . . , τ−j+1S. Then the Schur root δ corresponds to
the interval [0,m]. The proof of the following fact is elementary.

Lemma 5.12. Two Schur roots in T are ext-orthogonal if and only if the
corresponding intervals are compatible. Every set of compatible intervals can
be completed to a set of m compatible intervals.

We next consider the set B of maximal sets of compatible intervals con-
taining [0,m].

Lemma 5.13. Let α1, . . . , αm be a maximal set of ext-orthogonal Schur
roots in T . Then there is exactly one Schur root α′1 6= α1 in T such that
α′1, α2, . . . , αm is a maximal ext-orthogonal collection.

Furthermore, there are at most two distinct Schur roots

α, β ∈ {δ, α2, . . . , αm}
such that there is up to isomorphism exactly one non-split exact sequence

0→ A1 → A→ A′1 → 0

where A1 and A′1 are indecomposable regular representations with dimension
vectors α1 and α′1, and A is the direct sum of two indecomposable regular
representations of T with dimension vectors α and β.

Proof. Let I be the interval corresponding to α1, and let Z ∈ B be the
set of maximal compatible intervals containing the m intervals associated
to α1, . . . , αm. Without loss of generality, we can assume that inf I = 0.
Then there is an interval I+ in Z − {I} such that either inf I = inf I+

or sup I = sup I+. We assume without loss of generality that the first case
holds and pick the smallest interval I+ with that property. By compatibility,
we also assume that I is a subset of I+. The converse case of I+ being
contained in I can be treated similarly. Set I ′ := [i, j] where j := sup I+

and i := min{inf S | S ∈ Z − {I}, supS = sup I} or i = sup I if the set is
empty. Then I ′ is the unique interval different from I and compatible with
Z − {I}. We can see this as follows. Assume that there is another interval
I ′′ 6= I ′ compatible with Z − {I}. Then I ′′ is not compatible with I and I ′.
Furthermore, by the compatibility with Z−{I}, we see that I ′′ is contained
in I+. Hence

inf I < inf I ′′ < inf I ′ ≤ sup I < sup I ′′ ≤ sup I ′.

Then A := [inf I ′′, sup I ′] is compatible with Z −{I}∪ {I ′}. But A does not
lie in Z−{I} as it is not compatible with I. Hence we obtain a contradiction
to the assumption that Z is maximal.
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We have I+ = I ∪ I ′, and I− := I ∩ I ′ is also contained in Z, as it is
compatible by construction with all intervals in Z − {I}. If I− consists of
only one point, then it is not an element of I and we ignore it.

Let α′1, α and β be the Schur roots corresponding to I ′, I+ and I−.
Furthermore, let A′1 and A1 be the Schurian representations associated to
α1 and α′1, and let A be the direct sum of the two indecomposable represen-
tations associated to the roots α and β. Then there exists a non-split exact
sequence

0→ A1 → A→ A′1 → 0.

It is uniquely determined up to isomorphism, as extensions between two
Schurian representations in a tube are at most one-dimensional. The second
case follows analogously.

Note that it is not clear whether we can obtain exchange relations on the
level of generic cluster characters. Indeed, A could have an indecomposable
direct summand C of dimension vector δ. Then C would not be a regular
simple representation, and in this case it is not known wether XC is equal
to the generic cluster character Xδ.

Theorem 5.14. Let δ, α1, . . . , αn−2 be a component cluster ordered in
such a way that α1, . . . , αm belong to the same tube. Then there is exactly
one Schur root α′1 6= α1 such that δ, α′1, . . . , αn−2 is a component cluster.

In this case α1 and α′1 belong to the same tube, and α1 + α′1 has a
generic decomposition as a direct sum of either one or two Schur roots in
{δ, α2, . . . , αm}.

Proof. By Lemma 5.13, there is exactly one Schur root α′1 different from
α1 which belongs to the same tube of α1, and which completes δ, α2, . . . , αm
to a component cluster. The second part follows immediately from the pre-
vious lemma.
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