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Abstract. We show that any compact semigroup of positive n×n matrices is similar
(via a positive diagonal similarity) to a semigroup bounded by

√
n. We give examples to

show this bound is best possible. We also consider the effect of additional conditions on
the semigroup and obtain improved bounds in some cases.

1. Introduction. It is an old and well-known result (originally shown
by Auerbach [1]) that if G is a compact group of n × n (real or complex)
matrices, then G is (simultaneously) similar to a group of unitary matrices.
In particular, as unitaries act as invertible isometries with respect to the
usual operator norm on Mn(R) (resp. Mn(C)), we see that given such a
group G, it is similar to a group whose elements are uniformly bounded in
(operator) norm by 1.

In [6], the first, second and fourth authors obtained a corresponding
result for compact semigroups of n × n matrices by showing that if S is a
compact semigroup of (real or complex) n×n matrices, then there exists an
invertible n× n matrix R such that with

T = R−1SR := {R−1SR : S ∈ S},
we find that

‖T ‖ = max{‖T‖ : T ∈ T } ≤
√
n.

Furthermore, this bound is optimal in the sense that there exist compact
semigroups S in Mn(R) (or Mn(C)) for which

inf{‖R−1SR‖ : R invertible} =
√
n.
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It is also shown in [6] that under additional assumptions on the semigroup
S the bound can be improved.

In this paper we consider analogous problems for semigroups of positive
matrices (matrices whose entries are non-negative).

The similarities which preserve positivity (i.e. the invertible matrices X
for which X−1AX is positive whenever A is positive) are those of the form
X = DP where D is a diagonal matrix with positive diagonal entries and P
is a permutation matrix. Since permutation matrices are norm-preserving,
the universal bound problems analogous to those answered in [6] (there, for
the case of general semigroups—i.e. semigroups not necessarily consisting of
positive matrices), one should consider similarity under a restricted set of
invertible matrices: the positive diagonal matrices.

There is a well-known result in the group case here as well. If G is a com-
pact group of positive n×n matrices, then G is (simultaneously) similar (via
a positive diagonal similarity) to a group of permutation matrices. (This is
an easy consequence of the Perron–Frobenius Theorem, and a self-contained
proof can be found in [9, Lemma 5.1.11].) As permutation matrices are in-
vertible isometries as well, we see that any such group is similar (via a pos-
itive diagonal similarity) to a group whose elements are uniformly bounded
in (operator) norm by 1.

What about the corresponding questions for semigroups of positive ma-
trices?

(1) Given a compact semigroup S of positive n × n matrices, for what
values of KS > 0 does there exist a positive invertible diagonal
matrix D such that

sup {‖D−1SD‖ : S ∈ S} ≤ KS?

(2) Do there exist universal constants Kn (independent of the semi-
group), for each n = 1, 2, . . . , such that for each compact semigroup
S of positive n × n matrices, we have a positive invertible diagonal
matrix D such that

sup {‖D−1SD‖ : S ∈ S} ≤ Kn?

Also, if such universal constants do exist, what is the best value
of Kn?

Perhaps surprisingly, in many cases, the answers for the general semi-
groups—using general similarities—and for the positive semigroups—using
positive diagonal similarities—are the same, despite the difference in struc-
ture of the semigroups and the difference in the methods used to obtain the
results.

Before proceeding, we provide a list of basic definitions and notation
used.
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Definition 1.1.

• A matrix A = [ai,j ]
n
i,j=1 is said to be positive if each entry is non-

negative (ai,j ≥ 0 for all i, j = 1, . . . , n). A set of matrices is positive if
each matrix in the set is positive. The set of all positive n×n matrices
will be denoted by Mn(R+).
• A semigroup of n × n matrices is a set S in Mn(R) which is closed

under matrix multiplication.
• The standard basis of Rn is the set of vectors {ei}ni=1, where ei is the

vector in Rn with a one in the ith entry and zeros elsewhere.
• A standard subspace is a subspace of Rn spanned by some subset of

the standard basis.
• A semigroup S in Mn(R) is indecomposable if it has no invariant stan-

dard subspaces other than {0} and Rn. If a semigroup is not indecom-
posable, then it is called decomposable.
• A semigroup S in Mn(R) is monomial (resp. submonomial) if for each
S ∈ S exactly (resp. at most) one entry of any row or column of S is
non-zero.
• The (`2) norm of a vector x in Rn is denoted ‖x‖ and is the square

root of the sum of squares of its entries. The (operator) norm of a
matrix A in Mn(R) is

‖A‖ = max{‖Ax‖ : ‖x‖ ≤ 1},
which is the norm of a largest vector in the image (under A) of the
unit ball in Rn.
• The spectral radius ρ(A) of a matrix A in Mn(R) is the modulus of

the largest eigenvalue and is also given by

ρ(A) = lim
k→∞

‖Ak‖1/k.

In Section 2, we give an affirmative answer to question (2) above, showing
that every compact semigroup of positive matrices is similar (via a positive
diagonal similarity) to a semigroup which is bounded in norm by

√
n.

In Section 3, we consider compact semigroup of positive matrices with ad-
ditional conditions (such as commutativity, self-adjointness, rank conditions,
etc.) and in some cases we obtain strict improvements to the bound

√
n.

2. Universal bound theorem. One of our main results is the follow-
ing.

Main Theorem 2.1. If S is a compact semigroup in Mn(R+), then
there is a positive diagonal n × n matrix D such that D−1SD is bounded
by
√
n.

We will need a few basic facts about positive vectors:



146 L. Livshits et al.

(1) the usual (`2) norm on Rn is monotonic, in the sense that for vectors
x and y in Rn, if 0 ≤ x ≤ y (entrywise) then ‖x‖ ≤ ‖y‖;

(2) for x and y vectors in Rn with 0 ≤ x ≤ y, and S a positive n × n
matrix, we have Sx ≤ Sy;

(3) if, for each x in Rn we let |x| denote the vector in Rn+ whose entries
are the absolute values of the corresponding entries of x, then for
any positive matrix S,

‖Sx‖ ≤
∥∥S|x|∥∥

(so positive matrices achieve their norms at positive vectors) and

S|x+ y| ≤ S|x|+ S|y| for all x, y ∈ Rn and S ∈ S.
Another key component of our proof is the Fritz John Theorem [4] on

symmetric convex bodies. A symmetric convex body K is a bounded convex
set in Rn with non-empty interior and with the property that if x ∈ K then
−x ∈ K. The Fritz John Theorem relates such sets to ellipsoids.

Theorem 2.2 (Fritz John [4]). Let K ⊂ Rn be a symmetric convex body.
Then there is a unique ellipsoid E ⊆ K of maximum volume, and for this
ellipsoid, K ⊆

√
nE.

Proof of Theorem 2.1. With no loss of generality we assume that the
identity matrix I is in S. Then we define a new norm ‖ ·‖S on Rn as follows:
for x ∈ Rn let

‖x‖S = sup
S∈S

∥∥S|x|∥∥.
Using the basic facts mentioned above (especially (3)), it is easy to verify
that this is a norm on Rn.

All norms on Rn are equivalent, so the unit ball of this new norm,

B = {x ∈ Rn : ‖x‖S ≤ 1},
is a compact, convex set with non-empty interior. Clearly y ∈ B implies
−y ∈ B, so B is a symmetric convex body. Since S is a semigroup, S(B) ⊆ B
for all S ∈ S.

It is immediate from the definition that B is also invariant under an
application of any diagonal matrix with diagonal entries 1 or −1. Hence
the ellipsoid E in B (from the Fritz John Theorem) is also invariant under
an application of any diagonal matrix with diagonal entries 1 or −1 (i.e.
reflections in the standard axes), and hence is a standard ellipsoid (all its
axes are in the direction of standard vectors). Of course, also by the Fritz
John Theorem,

E ⊂ B ⊂
√
n E .

Any ellipsoid in Rn which is centered at the origin (like the Fritz John
ellipsoid) is the image of the unit ball (in the usual `2 norm) under an
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invertible matrix X. With no loss of generality we may assume that X
is positive definite, since (by polar decomposition), X = DU where D is
positive definite and U is unitary, but the unitary part leaves the unit ball
invariant. Since E is a standard ellipsoid, the positive definite invertible
D can be taken to be a diagonal matrix (whose diagonal entries are the
stretching factors required in each standard direction to deform the unit
ball into E).

So if B1 = {x ∈ Rn : ‖x‖ ≤ 1}, then D(B1) = E .
Now, apply the similarity corresponding to this diagonal D to our semi-

group. For any S in S,

D−1SDB1 = D−1SE ⊆ D−1SB
⊆ D−1B ⊆ D−1

√
n E =

√
nB1.

Hence ‖D−1SD‖ ≤
√
n for all S ∈ S.

Example 2.3. If we let [0, 1]n = {y ∈ Rn : 0 ≤ yi ≤ 1 for i = 1, . . . , n}
then it can be shown that the positive semigroup

S[0,1]n = {S ∈Mn(R+) : S[0, 1]n ⊆ [0, 1]n}
is a compact semigroup of norm

√
n whose norm cannot be lowered by a

positive diagonal similarity.
In fact, if we let 1n denote the vector in Rn with all entries equal to 1,

then
Fn = {ei1∗n : i = 1, . . . , n}

is a finite subsemigroup of S[0,1]n which clearly has norm bound
√
n. If we

applied a positive diagonal similarityD = diag(α1, . . . , αn) to this semigroup
we would obtain the semigroup

{α−1i eiα
∗ : i = 1, . . . , n}

where α∗ = (α1, . . . , αn). Considering norms of elements of this new semi-
group we see that

‖D−1FnD‖2 = max
i
‖α−1i eiα

∗‖2 = max
i

1

α2
i

n∑
j=1

α2
j .

If D reduced the norm below
√
n we would have
n∑

j=1

α2
j < nα2

i

for all i = 1, . . . , n. Summing both sides over such i shows this is impossible.

3. Bounds under additional conditions on the semigroup. As in
the general (non-positive) case, we have a dichotomy based on the minimal
rank of the semigroup. Semigroups containing rank-one matrices are not (in
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general) similar to semigroups whose norm is less than
√
n, while groups of

invertibles are always similar to groups whose norm is equal to 1. There is
evidence to support the conjecture that for semigroups of constant rank r,
the higher r, the lower the norm bound that can be achieved. The following
example hints at the relation between r and the minimal norm bound that
can be achieved.

Example 3.1. Let r be a natural number less than or equal to n and
let Tr denote the semigroup in Mn(R+) consisting of all matrices T with the
following properties.

With respect to the decomposition Rn = Rn−r+1 ⊕R⊕ · · · ⊕R (r direct
summands):

(1) T is submonomial (that is, the matrix of T with respect to the above
decomposition has at most one non-zero entry in any row or column),

(2) T11 (the (n − r + 1) × (n − r + 1) block) is from Fn−r+1 = {ei1∗ :
i = 1, . . . , n} ∪ {0},

(3) T1,j for j = 2, . . . , r is from {ej : j = 1, . . . , n− r + 1} ∪ {0},
(4) Ti,1 for i = 2, . . . , r is either 1 or {0},
(5) Ti,j for i, j = 2, . . . , r is either 0 or 1

(where the {0} indicates a zero matrix of the appropriate size).

Then it is easily seen that this is a finite (hence compact) positive semi-
group, and since it includes the block diagonal semigroup

Fn−r+1 ⊕ {Ir−1},

it follows from the argument in Example 2.3 that its norm cannot be reduced
below

√
n− r + 1 by a positive diagonal similarity.

Conjecture 3.2. If S is a compact positive semigroup in Mn(R+) with
rank(S) = r for all S in S, then there exists a positive diagonal invertible
matrix D such that D−1SD is bounded by

√
n− r + 1.

One other case of interest is when our semigroup is singly generated and
indecomposable. Then, with a little work after using the Perron–Frobenius
Theorem (see [8], [3], or see [9] for a more modern treatment), it can be
shown that we can achieve a bound of norm 1 after a diagonal similarity. It
turns out that the hypothesis of being singly generated can be significantly
weakened and we can still achieve the same bound.

We need two preliminary lemmas before stating our general theorem in
this case. These lemmas are well known among mathematicians who work
with positive matrices, but we include their proofs for completeness.

Lemma 3.3. If S is an indecomposable semigroup in Mn(R+) and ρ(S)
= 1 for all S ∈ S, then S is bounded.
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Proof. If S is not bounded then there exist {Sn}∞n=1 in S and some (i, j)
such that (Sn)i,j →∞. But S is indecomposable so there exists T in S such
that Tj,i > 0. Then consider

(SnT )i,i ≥ (Sn)i,jTj,i.

For some n we must have

(SnT )i,i = α > 1,

and hence, taking powers, (SnT )m has a diagonal entry larger than αm. But
then

ρ(SnT ) = lim
m→∞

‖(SnT )m‖1/m ≥ lim
m→∞

((SnT )mi,i)
1/m ≥ α > 1,

a contradiction.

Lemma 3.4. If A in Mn(R+) is such that there exists x ∈ Rn with all
entries strictly positive and Ax = x then ρ(A) = 1.

Proof. Take a maximal chain {Ni} of standard invariant subspaces for A
and then apply the Perron–Frobenius Theorem toA restricted toNi	Ni−1.

Theorem 3.5. Let S be an indecomposable semigroup in Mn(R+) with
ρ(S) = 1 for all S in S. If among the elements of minimal non-zero rank in
the closure of S there is an idempotent E such that

SE = ES

for all S in S, then there exists a positive diagonal similarity D such that

‖D−1SD‖ ≤ 1 for all S ∈ S.

Proof. Since the spectral radius is continuous, we can pass to closure
and assume without loss of generality that S is a closed semigroup. Let E
be an idempotent satisfying the conditions of the theorem. Since both the
range and the kernel of E are invariant under S, the indecomposability of
S implies that E has no zero rows or columns, and consequently (see, for
example, [9, Lemma 5.1.9]) there are standard subspaces {Mi}ri=1 such that
Rn = M1⊕· · ·⊕Mr and, with respect to this decomposition, E is the direct
sum of indecomposable rank-one matrices. So

E =


x1y
∗
1

. . .

xry
∗
r

 ,
where each xi and yi is a vector with strictly positive entries and y∗i xi = 1
for all i = 1, . . . , r (see [2]). Let D be the positive diagonal matrix such that
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(restricted to Mi) D
2xi = yi. Then

P = DED−1 =


z1z
∗
1

. . .

zrz
∗
r

 ,
where each zi is a unit vector with strictly positive entries. By applying
this diagonal similarity to our semigroup, which clearly does not affect the
assumption that ρ(S) = 1 for all S ∈ S), we may now assume that E = P
is self-adjoint and we need to show that all elements of S are contractions.

Denote the block matrix of S in S with respect to the decomposition
Rn = M1 ⊕ · · · ⊕Mr by [Si,j ]. Now SP = PS, so

S1,1 S1,r
. . .

Sr,1 Sr,r



z1z
∗
1

. . .

zrz
∗
r



=


z1z
∗
1

. . .

zrz
∗
r



S1,1 S1,r

. . .

Sr,1 Sr,r

 .
Multiplying, we obtain

Si,jzjz
∗
j = ziz

∗
i Si,j .

For these rank-one matrices to be equal, there must exist constantsαi,j(S) ≥ 0
for i, j = 1, . . . , r such that

Si,jzj = αi,j(S) · zi and (Si,j)
∗zi = (Si,j)

T zi = αi,j(S) · zj .
In particular,

(Si,j)
TSi,jzj = α2

i,j(S) · zj .
By Lemma 3.4, if αi,j(S) 6= 0 then

‖Si,j‖2 = ‖(Si,j)∗Si,j‖ = ρ((Si,j)
∗Si,j) = α2

i,j(S).

On the other hand, since Si,jzj = αi,jzi and zj is strictly positive,

αi,j = 0 ⇔ Si,j = 0.

It follows that we have a general formula:

‖Si,j‖ = αi,j(S)

for all S ∈ S and all i, j.
Let ẑi denote the vector in Rn whose ith entry with respect to the de-

composition Rn = M1 ⊕ · · · ⊕Mr is zi and whose other entries are zero.
Next, consider the subspace P (Rn), which is the span of {ẑi}ri=1. Since, for
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each S in S, SP = PS, this subspace is reducing for S. With respect to the
decomposition Rn = P (Rn)⊕ P⊥ (Rn), each S in S has the form

S =

[
AS 0

0 BS

]
,

where AS = [‖Si,j‖] and BS is some (possibly non-positive) matrix. Clearly[
AS 0

0 0

]
= PSP ∈ S = S,

so that ρ(AS) = 1, and by the minimality of the rank of P , each AS is
invertible.

Therefore {AS : S ∈ S} is a closed semigroup of invertible positive
matrices, all with spectral radius 1. Furthermore, one can check that we
have the right ingredients in play to be able to apply [9, Lemma 5.2.1(ii)],
and to conclude that {AS : S ∈ S} is indecomposable. This can also be seen
directly as follows: if {AS : S ∈ S} were decomposable, there would be an
index pair (i, j) such that

‖Sij‖ = AS(i, j) = 0 for all S ∈ S,
which implies that Sij = 0 for all S ∈ S, contradicting the decomposability
of S (see [9, Lemma 5.1.5]).

By Lemma 3.3, {AS : S ∈ S} is bounded, and hence compact. In
particular, the spectrum of each AS , S ∈ S, must lie on the unit circle
T = {z ∈ C : |z| = 1}.

Observe that powers of a Jordan block corresponding to an eigenvalue
of modulus at least 1 are bounded if and only if the block is 1 × 1 and
the eigenvalue has modulus 1. It follows that each AS is similar to a unitary
matrix, and consequently a sequence of powers of AS converges to A−1S . This
shows that {AS : S ∈ S} is a compact indecomposable group of positive
matrices, all of which have spectral radius 1.

By [9, Lemma 5.1.11] all matrices in this group are monomial matrices,
with at least one non-zero entry equal to 1 and the rest falling into the
interval (0, 1]. It is easy to see (via cycle decomposition of permutations and
a consideration of the limits of the powers of the matrices) that all elements
of {AS (= [‖Sij‖]) : S ∈ S} must be permutation matrices.

It follows that each element of S is block-monomial, and the non-zero
blocks have norm 1. This shows that S has norm 1, as desired.

Corollary 3.6. Let S be a semigroup in Mn(R+) generated by an in-
decomposable positive matrix A with ρ(A) = 1. Then there exists a positive
diagonal similarity D such that

‖D−1SD‖ ≤ 1 for all S ∈ S.
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Proof. The Perron–Frobenius Theorem (see [9, Corollary 5.2.13]) guar-
antees the existence of a minimal idempotent E satisfying the conditions of
Theorem 3.5.

The hypothesis that our semigroup is indecomposable (in Theorem 3.5
and Corollary 3.6) can be removed, if we are willing to replace the bound
of 1 by 1 + ε for ε > 0. In general, we have the following:

Theorem 3.7. Let S be a compact semigroup in Mn(R+), and let

M0 = {0} ⊂M1 ⊂ · · · ⊂Mk = Rn

be a chain of standard invariant subspaces S. Let PNi denote the projection
onto Ni = Mi 	Mi−1 and let Si = PNiS|Ni. If there exists γ ∈ R+ and
positive diagonal invertible matrices Di acting on Ni such that

‖D−1i SiiDi‖ ≤ γ for all Sii in Si,
then for all ε > 0 there exists a positive diagonal invertible matrix D such
that

‖D−1SD‖ ≤ γ + ε for all S in S.

Proof. Given ε > 0, by compactness there is a δ > 0 such that the
matrix D, which is block diagonal with respect to the decomposition Rn =
N1 ⊕ · · · ⊕Nk and defined as follows:

D = D1 ⊕ δD2 ⊕ δ2D3 ⊕ · · · ⊕ δk−1Dk,

has the required property.

Corollary 3.8. Let S be a semigroup in Mn(R+) generated by a pos-
itive matrix A with ρ(A) = 1 and let ε > 0. Then there exists a positive
diagonal similarity D such that

‖D−1SD‖ ≤ 1 + ε for all S ∈ S.

In closing, we note that, while we have looked only at the finite-dimen-
sional case, Theorem 3.5 admits an infinite-dimensional analogue whose
proof is almost identical to the one given above.

Theorem 3.9. Let S be an indecomposable semigroup acting on L2(X,µ),
where X is Hausdorff–Lindelöf and µ is a σ-finite regular Borel measure
on X. If S consists of positive compact operators with ρ(S) = 1 for all S
in S, and a minimal idempotent E in S satisfies the condition that

SE = ES for all S ∈ S,

then there exists a positive invertible multiplication operator Mϕ (so ϕ ∈
L∞(X,µ)) such that

‖M−1ϕ SMϕ‖ ≤ 1 for all S ∈ S.
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The proof follows the lines of the proof of Theorem 3.5. The continuity
of spectral radius on compact operators [7] is needed, and finite-dimensional
results on the structure of positive idempotents and the Perron–Frobenius
Theorem are replaced by infinite-dimensional versions [10], [5].
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