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A NEW REGULARITY CRITERION FOR STRONG

SOLUTIONS TO THE ERICKSEN–LESLIE SYSTEM

Abstract. A regularity criterion for strong solutions of the Ericksen–
Leslie equations is established in terms of both the pressure and orientation
field in homogeneous multiplier spaces.

1. Introduction and main result. In this paper, we are mainly inter-
ested to establish the regularity criteria for the following simplified version
of the Ericksen–Leslie system [14, 15] in R3:

(1.1)


∂tv + (v · ∇)v −∆v +∇π = −∇ · (∇u�∇u),

∂tu+ (v · ∇)u−∆u = |∇u|2u,
∇ · v = 0 and |u| = 1,

where v = v(x, t) and u = u(x, t) denote the unknown velocity vector field
and the orientation field, while v0, u0 with ∇ · v0 = 0 in the sense of dis-
tributions are given initial data, and π = π(x, t) is the pressure of the fluid
at the point (x, t) ∈ R3 × (0,∞). The notation ∇u�∇u denotes the 3× 3
matrix whose (i, j)th entry is given by ∂iu · ∂ju (1 ≤ i, j ≤ 3).

Throughout this paper, we always assume that (v, u) satisfies the follow-
ing boundary and initial conditions:

(1.2)
lim
|x|→∞

v(x, t) = 0, lim
|x|→∞

u(x, t) = a,

v(x, 0) = v0(x), u(x, 0) = u0(x), for x ∈ R3.

for some constant unit vector a.
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Ericksen–Leslie theory is one of the most successful models for nematic
liquid crystals. It was formulated by Ericksen [2] and Leslie [13], who derived
suitable constitutive equations. Due to its complexity, the earlier attempts
at a mathematical study of the Ericksen–Leslie system were focused on
simplified models, first considered by Lin and Liu [15, 16].

Very recently, there have been some important advances on (1.1). It has
been established that the three-dimensional Ericksen–Leslie system has only
local (strong) solutions [8, 19], and global (strong) solutions were obtained
under some smallness conditions on the initial data [17]. We also refer the
reader to [5] and the references therein for other related work on this system.

Since there is no general global existence result for strong solutions to
the 3D Ericksen–Leslie system, to understand the possible singularities, it is
of interest to find whether the solution (v(t), u(t)) really loses its regularity
at t = T and to establish some new regularity criteria.

Wen and Ding [19] have established the local existence and uniqueness
of strong solutions to system (1.1)–(1.2), while the existence of regular so-
lutions is still an open problem; there are many interesting sufficient condi-
tions which guarantee that a given weak solution is smooth. A well-known
condition states that if

(1.3)

v ∈ Lq(0, T ;Lp), ∇u ∈ Lr(0, T ;Ls) with

2

q
+

3

p
= 1,

2

r
+

3

s
= 1, 3 < p, s ≤ ∞,

then the solution u is actually regular [1, 4, 11]. A similar condition

(1.4)

rot v = ∇× v ∈ Lq(0, T ;Lp), ∇u ∈ Lr(0, T ;Ls) with

2

q
+

3

p
= 2,

2

r
+

3

s
= 1,

3

2
< p ≤ ∞, 3 < s ≤ ∞

also implies the regularity, as shown by Fan and Guo [4].

As regards (1.3) and (1.4) for p = s = ∞, Fan et al. [3] made an im-
provement to

v,∇u ∈ L2(0, T ; Ḃ0
∞,∞),

or

∇× v ∈ L1(0, T ; Ḃ0
∞,∞) and ∇u ∈ L2(0, T ; Ḃ0

∞,∞),

where Ḃ0
∞,∞ is the homogeneous Besov space. On the other hand, Fan and

Li [5] proposed another regularity criterion in terms of the pressure. They
showed that if the pressure π satisfies

π ∈ L2/(1+α)(0, T ; Ḃα
∞,∞), ∇u ∈ Lr(0, T ;Ls) with

−1 ≤ α ≤ 1,
2

r
+

3

s
= 1, 3 < s ≤ ∞,
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or

π ∈ L2/(1+r)(0, T ; Ḃα
∞,∞), ∇u ∈ L2(0, T ; BMO) with −1 ≤ α ≤ 1,

then (v, u) is smooth. Here, BMO is the space of functions of bounded mean
oscillations.

For convenience, we present definitions related to global strong solutions
before stating our main result. Let T > 0 be a given fixed time.

Definition 1.1. A couple (v, u) is a strong solution to system (1.1)–(1.2)
on R3 × (0, T ) if

v,∇u ∈ C([0, T ], H1(R3)) ∩ L2(0, T ;H2(R3)),

∂tv ∈ L2(0, T ;L2(R3)), ∂tu ∈ L2(0, T ;H1(R3)),

and (v, u) satisfies (1.1) a.e. on R3 × (0, T ), and the initial condition (1.2).

Our main result is the following criterion in terms of the gradient of the
pressure.

Theorem 1.2. Let (v0,∇u0) ∈ H1(R3) be given initial data with div v0
= 0 in R3 and |u0| = 1. Let (v, u) be the unique local strong solution of (1.1)
in [0, T ). If ∇π and ∇u satisfy Serrin’s type condition

(1.5)

T�

0

(
‖∇π(s)‖2/3BMO + ‖∇u(s)‖2/(1−r)

Ẋr

)
ds <∞ for some 0 ≤ r ≤ 1,

then the solution (v, u) to the problem (1.1) remains smooth on [0, T ].

Remark 1.1. This result extends the previous work by Fan and Guo [4].

Corollary 1.3. Let T > 0. Assume that (v0,∇u0) ∈ H1(R3) with
div v0 = 0 in R3 and |u0| = 1. Let (v, u) be the unique local strong solution
of (1.1) in [0, T ). If ∇π and ∇× u satisfy Serrin’s type condition

T�

0

(
‖∇π(s)‖2/3BMO + ‖ω(s)‖2/(1−r)

Ẋr

)
ds <∞ for some 0 ≤ r ≤ 1,

then the solution (v, u) to the problem (1.1) remains smooth on [0, T ], where
ω = ∇× u.

Remark 1.2. Note that

‖∇u‖Ẋr
≤ C‖ω‖Ẋr

, ‖∇u‖BMO ≤ C‖ω‖BMO

by Calderón–Zygmund estimates.

2. The proof of Theorem 1.2. In this section, we shall give the proof
of Theorem 1.2. Let us first recall the definition of the multiplier space.
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Definition 2.1. For 0 ≤ r < 3/2, define Ẋr(R3) as the space of func-
tions f ∈ L2

loc(R3) such that

‖f‖Ẋr
= sup
‖g‖Ḣr≤1

‖fg‖L2 <∞,

where we denote by Ḣr(R3) the completion of C∞0 (R3) with respect to the
norm ‖u‖Ḣr := ‖(−∆)r/2u‖L2 .

The multiplier space Ẋr(R3) has the following homogeneity properties:
for all x0 ∈ R3 and λ > 0,

f(·+ x0)Ẋr
= ‖f(·)‖Ẋr

, ‖f(λ·)‖Ẋr
=

1

λr
‖f(·)‖Ẋr

.

Moreover, the following imbedding holds:

L3/r(R3) ↪→ L3/r,∞(R3) ↪→ Ẋr(R3) for 0 ≤ r < 3/2.

It is easy to verify that

v :=

(
x2
|x|1+r

,− x1
|x|1+r

, 0

)
∈ Ẋr(R3) for 0 ≤ r < 3/2

and div v = 0, but v /∈ L3/r(R3). Thus Ẋr(R3) with 0 ≤ r < 3/2 is much
wider than the Lebesgue space L3/r(R3). For more detailed properties of
Ẋr(R3), we refer to [12].

Remark 2.1. Since Ẋr(R3) with 0 ≤ r ≤ 1 is wider than L3/r(R3), our
result (1.5) shows that condition (1.3) still implies that the weak solution
(v, u) is regular on R3×(0, T ). We also notice that the result of Theorem 1.2
is still valid for the direction regularity problem for the 3D Navier–Stokes
equations. Hence it is an improvement of the recent result obtained by Fan
and Ozawa [6].

Remark 2.2. When r=0, we notice that Ẋ0(R3)∼=BMO(R3) (see [12]).
Hence, Theorem 1.2 shows that the condition

∇π ∈ L2/3(0, T ; BMO(R3)) and ∇u ∈ L2(0, T ; BMO(R3))

still implies that the weak solution (v, u) is regular on R3 × (0, T ).

We will use the elementary interpolation inequalities (see e.g. [10])

(2.1) ‖f‖2L2q ≤ C‖f‖BMO‖f‖Lq , 1 ≤ q <∞,

and

‖f‖Ḣr ≤ C‖f‖1−rL2 ‖f‖rḢ1 , 0 ≤ r ≤ 1.

To prove Theorem 1.2, we will use the following result of Giga [7] (see
also [9]).
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Proposition 2.2. Suppose (v0, u0) ∈ Lq(R3)×Ẇ 1,q(R3) for some q > 3
and div v0 = 0. Then there exist a constant T0 and a unique classical solution

(v, u) ∈ BC([0, T0);L
q(R3)× Ẇ 1,q(R3)).

Moreover, let (0, T∗) be the maximal interval such that (v, u) solves system
(1.1)–(1.2) in C((0, T∗);L

q(R3)× Ẇ 1,q(R3)). Then, for any t ∈ (0, T∗),

‖v(·, t)‖Lq ≥ C

(T∗ − t)
q−3
2q

and ‖∇u(·, t)‖Lq ≥ C

(T∗ − t)
q−3
2q

,

with the constant C independent of T∗ and q.

Proof of Theorem 1.2. To establish blow up criteria for the Ericksen–
Leslie system, following the argument in [5], we derive a priori estimates for
smooth solutions of (1.1)–(1.2). To this end, multiplying both sides of the
first equation of (1.1)1 by v, after integration by parts we get

(2.2)
1

2

d

dt
‖v‖2L2 + ‖∇v‖2L2 = −

�

R3

(v · ∇)u ·∆udx.

Testing (1.1)2 with −(∆u+ |∇u|2u), and using the fact that ∇·v = 0, shows
that

(2.3)
1

2

d

dt
‖∇u‖2L2 +

∥∥∆u+ |∇u|2u
∥∥2
L2 =

�

R3

(v · ∇)u ·∆udx.

Here, we have used the fact that u · ut = 0 and (v · ∇u) · u = 0 guaranteed
by |u| = 1. Summing up (2.2) and (2.3), we get

1

2

d

dt
(‖v‖2L2 + ‖∇u‖2L2) + ‖∇v‖2L2 +

∥∥∆u+ |∇u|2u
∥∥2
L2 = 0.

Taking the inner product of the second equation of (1.1)1 with |v|2v and
integrating by parts yields

(2.4)
1

4

d

dt
‖v‖4L4 +

∥∥|v| |∇v|∥∥2
L2 +

1

2

∥∥∇|v|2∥∥2
L2

= −
�

R3

v|v|2 div(∇u�∇u) dx−
�

R3

v · ∇π |v|2 dx

=
�

R3

∇(v|v|2)(∇u�∇u) dx−
�

R3

v · ∇π |v|2 dx.

In a similar way, applying the operator ∇ to (1.1)2, taking the inner product
of the result with |∇u|2∇u and integrating by parts yields
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(2.5)
1

4

d

dt
‖∇u‖4L4 +

∥∥|∇u| |∇2u|
∥∥2
L2 +

1

2

∥∥∇|∇u|2∥∥2
L2

=
�

R3

∇(|∇u|2u− v · ∇u) : |∇u|2∇u dx

=
�

R3

(v · ∇u− |∇u|2u) · div(|∇u|2∇u) dx

≤ C
�

R3

(|v| |∇u|+ |∇u|2)|∇u|2|∇2u| dx,

where in the last step we have used the initial condition |u| = 1. Summing
(2.4) and (2.5), we get

(2.6)
1

4

d

dt
(‖v‖4L4 + ‖∇u‖4L4) +

∥∥|v| |∇v|∥∥2
L2 +

∥∥|∇u| |∇2u|
∥∥2
L2

+
1

2

(∥∥∇|v|2∥∥2
L2 +

∥∥∇|∇u|2∥∥2
L2

)
≤

�

R3

∇(v|v|2)(∇u�∇u) dx−
�

R3

v · ∇π |v|2 dx

+ C
�

R3

(
|v| |∇u|+ |∇u|2

)
|∇u|2|∇2u| dx.

With the use of Young’s inequality, we bound the first terms on the right-
hand side of (2.6):

(2.7)
�

R3

∇(v|v|2)(∇u�∇u) dx

≤ C
�

R3

|∇v| |v|2|∇u|2 dx ≤ C
�

R3

|∇v| |v|(|v|2 + |∇u|2)|∇u| dx

≤ C
∥∥|v| |∇v|∥∥

L2

∥∥(|v|2 + |∇u|2)|∇u|
∥∥
L2

≤ 1
4

∥∥|v| |∇v|∥∥2
L2 + C

∥∥(|v|2 + |∇u|2)|∇u|
∥∥2
L2

≤ 1
4

∥∥|v| |∇v|∥∥2
L2 + C‖∇u‖2

Ẋr

∥∥|v|2 + |∇u|2
∥∥2
Ḣr

≤ 1
4

∥∥|v| |∇v|∥∥2
L2 + C‖∇u‖2

Ẋr

∥∥|v|2 + |∇u|2
∥∥2(1−r)
L2

∥∥|v|2 + |∇u|2
∥∥2r
Ḣ1

≤ 1
4

∥∥|v| |∇v|∥∥2
L2 + C‖∇u‖2/(1−r)

Ẋr

∥∥|v|2 + |∇u|2
∥∥2
L2

+ 1
8

∥∥∇|v|2 +∇|∇u|2
∥∥2
L2

≤ 1
4

(∥∥|v|∇v∥∥2
L2 +

∥∥|∇u|∇2u
∥∥2
L2

)
+ C‖∇u‖2/(1−r)

Ẋr
(‖v‖4L4 + ‖∇u‖4L4).

In order to estimate −
	
R3 v · ∇π |v|2 dx, we first establish some estimates

between the pressure and the velocity. Taking the operator div on both sides
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of the second equation of (1.1)1 gives

−∆π = div div(v ⊗ v +∇u�∇u).

Applying Lq (1 < q <∞) boundedness of singular integral operators yields

‖π‖Lq ≤ C(‖v‖2L2q + ‖∇u‖2L2q),

‖∇π‖Lq ≤ C
(∥∥|v|∇v∥∥

Lq +
∥∥∇u |∇2u|

∥∥
Lq

)
.

Then employing Hölder’s inequality, we estimate∣∣∣ �
R3

v · ∇π |v|2 dx
∣∣∣ ≤ �

R3

|∇π| |v|3 dx ≤ ‖∇π‖L4‖v3‖L4/3

≤ C‖∇π‖1/2BMO‖∇π‖
1/2
L2 ‖v‖3L4

≤ (C‖∇π‖2/3BMO‖v‖
4
L4)3/4(‖∇π‖2L2)1/4

≤ C‖∇π‖2/3BMO‖v‖
4
L4 + 1

2

∥∥|v|∇v∥∥2
L2

≤ C‖∇π‖2/3BMO‖v‖
4
L4 + 1

2

(∥∥|v|∇v∥∥2
L2 +

∥∥|∇u|∇2u
∥∥2
L2

)
,

where we have used the estimate

‖∇π‖2L4 ≤ C‖∇π‖BMO‖∇π‖L2 .

Similarly, we estimate the third term on the right-hand side of (2.6). Direct
calculations give

(2.8)
�

R3

(
|v| |∇u|+ |∇u|2

)
|∇u|2|∇2u| dx

≤ C
�

R3

|∇u|
(
|v|2 + |∇u|2

)
|∇u| |∇2u| dx

≤ C
∥∥|∇u| |∇2u|

∥∥
L2

∥∥(|v|2 + |∇u|2)|∇u|
∥∥
L2

≤ 1
4

∥∥|∇u| |∇2u|
∥∥2
L2 + C

∥∥(|v|2 + |∇u|2)|∇u|
∥∥2
L2

≤ 1
4

∥∥|∇u| |∇2u|
∥∥2
L2 + C‖∇u‖2

Ẋr

∥∥|v|2 + |∇u|2
∥∥2
Ḣr

≤ 1
4

(∥∥|v|∇v∥∥2
L2 +

∥∥|∇u|∇2u
∥∥2
L2

)
+ C‖∇u‖2/(1−r)

Ẋr
(‖v‖4L4 + ‖∇u‖4L4).

Substituting (2.7)–(2.8) into (2.6), and using (1.5), we arrive at

sup
0≤t≤T

(‖v‖L4 + ‖∇u‖L4) <∞,

by Gronwall’s inequality.

Now, we are in a position to complete the proof of Theorem 1.2. From
Proposition 2.2, since v0 ∈ H1(R3) ∩ L4(R3) with div v0 = 0, and u0 ∈
H1(R3)∩Ẇ 1,4(R3), there is a maximal interval [0, T∗) such that there exists
a unique solution (ṽ(x, t), ũ(x, t)) ∈ BC([0, T∗);L

4(R3) × Ẇ 1,4(R3)). Since
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(v(x, t), u(x, t)) is a weak solution, by using the uniqueness criterion of Ser-
rin [18], we have

(v, u) ≡ (ṽ, ũ) on [0,min{T∗, T}).
By the a priori estimate (2.3) ensured by Theorem 1.2 and the standard
continuation argument, we see that T < T∗ provided that

T�

0

(
‖∇π(s)‖2/3BMO + ‖∇u(s)‖2/(1−r)

Ẋr

)
ds <∞ for some 0 ≤ r ≤ 1.

Hence, we obtain (v, u) ∈ BC([0, T ];L4(R3)× Ẇ 1,4(R3))∩C∞(R3× [0, T ]).
This completes the proof of Theorem 1.2.
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