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1. Introduction. Let d(n) be the number of divisors of the positive in-
teger n. Positive integers n such that d(n) |n have been studied by Spiro [7].
She showed that for large x, the number of such n ≤ x is

(x/
√

log x)(log log x)−1+o(1)

as x → ∞. In [8], she studied the positive integers n such that d(n) is a
divisor of n + 1, showing that for large x, the number of such n ≤ x is
asymptotically equal to cx/

√
log x for some positive constant c.

Here, we look at positive integers n such that d(n + k) |n + k for k =
0, 1, . . . , s for some s ≥ 1. The first result we prove is the following.

Theorem 1.1. If d(n) |n and d(n+1) |n+1 and n > 1, then n is even.

In particular, it follows from Theorem 1.1 that there is no n such that
d(n+ k) |n+ k for k = 0, 1, 2. So, from now on, we set

N = {n : d(n) |n and d(n+ 1) |n+ 1}.
We have

N = {1, 8, 1520, 50624, 62000, 103040, 199808, 221840, 269360, 463760,

690560, 848240, 986048, 1252160, 1418480, 2169728, 2692880, 2792240,

3448448, 3721040, 3932288, 5574320, 5716880, 6066368, 6890624,

6922160, 8485568, . . .}.
We study the cardinality of the set N (x) = N ∩ [1, x] for large real x. We
have the following result.
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Theorem 1.2. We have

#N (x) =
x1/2(log log x)O(1)

(log x)c

as x→∞, where c = 2− 1/
√

3 = 1.42265 . . . .

Throughout this paper, we use the Landau symbols O and o and the
Vinogradov symbols � and � with their regular meanings. Recall that
A = O(B), A� B and B � A all mean that |A| < κB for some constant κ,
while A = o(B) means that A/B → 0. Further, A ∼ B means that A/B → 1.
We use logk x for the kth fold composition of the natural logarithm function
with itself, and assume that the input is large enough so that its value is
positive real.

2. The proof of Theorem 1.1. Suppose that n > 1 is odd and d(n) |n.
Then n = m2 for some odd m. Thus, n + 1 = m2 + 1 ≡ 2 (mod 4). Since
d(n + 1) |n + 1, it follows that there is exactly one prime p such that the
exponent of p in the factorization of n + 1 is odd, and all remaining prime
factors of n + 1 appear at even exponents. Since already 2 ‖n + 1, we get
n + 1 = 2u2 for some odd positive integer u. Hence, m2 − 2u2 = −1. We
now look at the factorization of u. Assume that there exists a prime p such
that p2α+1 ‖u. Then 4α + 3 | d(n + 1) |n + 1, so there exists a prime q ≡ 3
(mod 4) with q |n + 1. Reducing the equation m2 − 2u2 = −1 modulo q,
we get m2 ≡ −1 (mod q), contradicting the fact that q ≡ 3 (mod 4). This
shows that the exponent of every prime appearing in the factorization of u
is even, so u = v2. We get the equation

m2 − 2v4 = −1,

and its only solution in positive integers (m, v) with m > 1 is (m, v) =
(239, 13) by a result of Ljunggren [5]. Thus, n + 1 = 2 × 134, which is not
convenient because d(n+ 1) = 10 does not divide n+ 1.

3. The proof of Theorem 1.2

3.1. The upper bound. Let x be large. We coverN (x) with a bounded
number of sets labeled Ni(x) for i = 1, 2, 3 each of whose cardinalities has
the order of magnitude indicated by the conclusion of the theorem. By using
Theorem 1.1, we infer that if n ∈ N and n > 1, then n is even, so n + 1
is odd. Hence, d(n + 1) is odd, showing that n + 1 = m2 for some odd m.
Hence, if additionally n ∈ N (x), then m ≤

√
x+ 1.

Recall that a positive integer s is square-full if p2 | s whenever p is a prime
factor of s. By using a result of Erdős and Szekeres [2] to the effect that

#{s ≤ x : s square-full} ∼ κ
√
x (x→∞)
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for some positive constant κ, and the Abel summation formula, we get

(3.1)
∑
s≥t

s square-full

1

s
� 1√

t

for all t ≥ 1. We then set z := (log x)4 and

N1(x) := {n ∈ N (x) : s |m+i for i ∈ {−1, 0, 1} and some square-full s > z}.
For a fixed i ∈ {−1, 0, 1} and s > z, we have

m+ i ≤
√
x+ 1 + i ≤

√
x+ 1 + 1 and m+ i is a multiple of s > z,

and the number of such m is at most b(
√
x+ 1 + 1)/sc ≤ 2

√
x/s for x large.

Thus,

(3.2) #N1(x) ≤
∑

i∈{−1,0,1}

∑
s>z

s square-full

2
√
x

s
�

√
x

(log x)2
,

where for the last estimate we used (3.1) with t := z.
Next we set K := b15 log log xc and

N2(x) := {n ∈ N : Ω(m(m− 1)(m+ 1)) > K}.
If n ∈ N2(x), then there exists i ∈ {−1, 0, 1} such that

Ω(m+ i) ≥ K/3 ≥ b5 log log xc.
It then follows that

(3.3) #N2(x) ≤ 3
∑

m≤
√
x+1+1

Ω(m)≥K/3

1� K
√
x log x

2K/3
�

√
x

(log x)2
,

because 5 log 2− 1 > 2, where the middle inequality follows from [6, Lemma

13]. We now set U := (log x)4, V := x1/(log log x)
2

and

P :=
∏

U<p≤V
p.

Pick n ∈ N3(x) := N (x) \ (N1(x) ∪N2(x)). Let

M := gcd(m(m− 1)(m+ 1), P ).

Fix M . Since primes q ∈ (U, V ] have the property that q2 - m(m−1)(m+1)
(because n 6∈ N1(x)), it follows that M is square-free and the quotient
m(m− 1)(m+ 1)/M is coprime to P . Thus, we can write

(3.4) m− i = MiNi for i ∈ {−1, 0, 1},
where Mi |M and gcd(Ni,M) = 1 for i ∈ {−1, 0, 1}. Furthermore, let k :=
ω(M). Write k = r + s, where r := ω(M0) and s := ω(M−1M1). In what
follows, we assume that s ≥ 2, and the argument can be easily adapted to
s ∈ {0, 1}.
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Since n ∈ N , we deduce that 2s | d(n) = d(m2 − 1) |M1M−1N1N−1,
and 3r |m2 | (M0N0)

2. In particular, either 2s−1 |N−1 and 2 |N1, or 2s−1 |N1

and 2 |N−1. Furthermore, 3br/2c |N0. The above relations put m into two
progressions modulo 2s−13br/2cM of the form

m = 3br/2cM0(2
s−1M−1M1λ+A0),

with some nonnegative integer λ, and either

3br/2cM0A0 − 1 = 2s−1M−1A−1 and 3br/2cM0A0 + 1 = 2M1A1, or

3br/2cM0A0 − 1 = 2M−1A−1 and 3br/2cM0A0 + 1 = 2s−1M1A1

for some positive integers Ai with i ∈ {−1, 0, 1}. Here, we assume that
A0 < 2s−1M−1M1. We only treat the first case above since the second one
is similar. Hence,

m(m− 1)(m+ 1) = 2s3br/2cM(2s−1M−1M1λ+A0)(3
br/2cM0M1λ+A−1)

× (2s−23br/2cM−1M0λ+A1).

Consider the polynomial

f(X) := (2s−1M−1M1X +A0)(3
br/2cM0M1X +A−1)

× (2s−13br/2cM−1M0X +A−1).

Then λ is a nonnegative integer such that

2s−1M−1M1λ+A0 ≤
√
x+ 1

3br/2cM0

and f(λ) is coprime to P . If q ∈ (U, V ], the polynomial f(X) has three roots
modulo q except when q |M , in which case it has only one root. Note also
that √

x

2s3r/2M
>
x1/2−K/(log log x)

2

(log x)K log 3
> V

for all x > x0 sufficiently large. Thus, by the sieve, the number of such λ is

�
√
x

2s3r/2M

( ∏
U<p≤V

(
1− 3

p

))(
M

φ(M)

)2

�
√
x(log log x)2

2s3r/2M

(
logU

log V

)3

=

√
x(log log x)O(1)

2s3r/2M(log x)3
.

Here, we have used, aside from the sieve, the minimal order φ(M)/M �
1/log log x of the Euler function φ when M ≤ x, as well as the estimate∏

p≤t

(
1− 3

p

)
=

c0
(log t)3

(1 + o(1))

as t → ∞ with a suitable positive constant c0, with t = U and t = V ,
respectively. This was when M0, M−1 and M1 were fixed. By keeping only
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M, r and s fixed, the divisor M0 of M can be chosen in
(
r+s
r

)
ways. Choosing

M0 determines M−1M1 uniquely, but then M−1 (so also M1) can be chosen
in 2s additional ways. By accounting for all such possibilities, we find that
the number of possibilities when M , r and s are all fixed is

�
(
r + s

r

)
1

3r/2

√
x(log log x)O(1)

M(log x)3
.

We now vary r and s so that r + s = k and sum up the above bounds,
getting a bound of

ck1
√
x(log log x)O(1)

M(log x)3
,

where c1 := 1 + 1/
√

3, and where we have used the binomial formula∑
r+s=k

(
r + s

r

)
1

3r/2
= ck1.

We now sum up over all the possibilities for M , a square-free number with
k prime factors all in (U, V ], and use the fact that∑

µ2(M)=1
ω(M)=k

p |M⇒p∈(U,V ]

1

M
≤ 1

k!

( ∑
U<p≤V

1

p

)k
≤ 1

k!

(
log log x+O(log3 x)

)k
,

where we have also used Mertens’ estimate

(3.5)
∑
p≤t

1

p
= log log t+O(1)

with t ∈ {U, V }. Using the inequality k! ≥ (k/e)k shows that the above
bound is

≤
(
e log log x+O(log3 x)

k

)k
(3.6)

≤
(
e log log x

k

)k(
1 +O

(
log3 x

k

))k
�
(
e log log x

k

)k
(log log x)O(1).

For the last inequality above, we have used the fact that (1 + z)u < euz for
all positive real numbers u and z with u := k and z := c2(log3 x)/k, where
c2 is the constant implied by the O in (3.6) above. Thus, we get a bound of

√
x(log log x)O(1)

(log x)3

(
c1e log log x

k

)k
.
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By finally summing this up over k ≤ K = O(log log x), we get

#N3(x)�
√
x(log log x)O(1)

(log x)3
max

{(
c1e log log x

k

)k
: k ≤ K

}
.

For a fixed positive real number A, the maximum of t 7→ (eA/t)t is obtained
when t = A, and equals eA. By applying this with A = c1 log log x, we see
that the maximum of the expression on the right-hand side above is

≤ ec1 log log x = (log x)c1 .

We thus get

(3.7) #N3(x)�
√
x(log log x)O(1)

(log x)3−c1
.

The desired upper bound from Theorem 1.2 follows from (3.2), (3.3) and
(3.7) because

#N (x) = #
( 3⋃
j=1

Nj(x)
)
≤ #N1(x) + #N2(x) + #N3(x).

3.2. The lower bound. We let x be large. Set K := log2 x, h :=
blog3 xc, s := bKc and r := b(1/

√
3)Kc. We define

s1 := s+A, where A ∈ [h, 2h]

is such that the minimal prime factor of s1 exceeds h. This is possible by an
extension of Bertrand’s postulate due to Sylvester. Next, we take

r1 := r +B, where B ∈ [h, 2h],

such that:

(i) the smallest prime factor of r1 exceeds log h;
(ii) gcd(r1, s1) = 1.

To justify that it is possible to choose r1 satisfying both (i) and (ii) above
for large x, we argue as follows. Let I := [r + h, r + 2h]. This is an interval
of length h, so by the Erathostenes sieve, the number of integers fulfilling
(i) above in I is � h/log log h. For large x, the implied constant can be
chosen to be c3 := e−0.6 = .548812 . . . . Now let us give an upper bound for
the number of numbers in I failing (ii). Observe that since s1 has no prime
factor smaller than h, it follows that

Ω(s1) ≤
log s1
log h

� h

log h
.

The implied constant above can be chosen to be c4 := 2 for large enough x.
Let h < p1 < · · · < pt with t� h/log h be all the prime factors of s1. For each
i ∈ {1, . . . , t}, the interval I contains at most one multiple of pi. Thus, the
number of numbers in I which are not coprime to s1 is at most t� h/log h.
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Hence, the number of numbers r1 passing both (i) and (ii) above is

≥ c3
h

log log h
− c4

h

log h

for large x, and in particular it is positive.
Now let

S1 := min{S : s1 |S and d(S) is a power of 2}.
To estimate S1, observe that if we write

s1 =
∏

q∈Π(s1)

qαq ,

where Π(s1) is the set of prime factors of s1, then letting 2βq be the unique
power of 2 in the interval [αq + 1, 2αq], we get

S1 =
∏

q∈Π(s1)

q2
βq−1.

Since 2βq − 1 ≤ 2αq − 1 < 2αq, we infer that

(3.8) S1 ≤ s21 = O((log2 x)2) and Ω(S1) ≤ 2Ω(s1).

Similarly, we let

R1 := min{R : r1 |R and 2νq(R) + 1 is a power of 3 for all primes q | r1}.
Here, as is customary, we write, for a prime p and an integer n, νp(n) for the ex-
act exponent at which p appears in the factorization of n. If we write this time

r1 =
∏

q∈Π(r1)

qγq ,

then the interval [2γq + 1, 6γq + 1] contains a power of 3, say 3δq . Then

R1 =
∏

q∈Π(r1)

q(3
δq−1)/2.

Since (3δq − 1)/2 ≤ 3γq, it follows that

(3.9) R1 ≤ r31 = O((log2 x)3) and Ω(R1) ≤ 3Ω(r1).

Note that S1 and s1 have the same prime factors and so do R1 and r1, so in
particular gcd(R1, S1) = 1 because of condition (ii).

We once again let M be a square-free positive integer with exactly L :=
r+s prime factors all in (U, V ] as in the proof of the upper bound. We write
M = M0M−1M1, where ω(M0) = r and ω(M−1M1) = s. We let m be a
solution of the Chinese Remainder System

m ≡ 1 (mod 2s1−2S1M1),

m ≡ 0 (mod 3(r1−1)/2R1M0),

m ≡ −1 (mod 2M−1).
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Note that this system is similar to (3.4), except that (r, s) have been replaced
by (r1, s1) and there are the additional parameters R1, S1. The above system
is solvable because gcd(R1, S1) = 1, R1S1 is coprime to 6 for large x (since
its smallest prime factor exceeds log h), and R1S1 is coprime to M , since the
largest prime factor of R1S1 is ≤ 2 log log x < U for large x. The above con-
gruences putm into an arithmetic progression modulo 2s1−23(r1−1)/2R1S1M .
Writing

m = 3(r1−1)/2R1M0(2
s1−2S1M−1M1λ+A0)

for some integer A0 < 2s1−2S1M−1M1 shows that

3(r1−1)/2R1M0A0−1 = 2s1−2S1M1A1 and 3(r1−1)/2R1M0A0+1 = 2M−1A−1

for some positive integers A−1 and A1. Then

m(m− 1)(m+ 1) = 2s1−13(r1−1)/2R1S1Mf(λ),

where f(X) ∈ Z[X] is

f(X) = (2s1−2S1M−1M1X +A0)(3
(r1−1)/2R1M−1M0X +A1)

× (3(r1−1)/22s1−3R1S1M0M1X +A−1).

We take

λ <

√
x

2× 2s1−23(r1−1)/2R1S1M
.

Note that the above upper bound on λ is of the form
√
x

(log x)O(1)M
>

√
x

(log x)O(1)x(r+s)/(log log x)2
> x1/2−3/log log x

for large values of x. We let ρ(p) be the number of solutions of f(X) ≡ 0
(mod p). Note that ρ(p) = 3 if p - 6R1S1M , and ρ(p) = 1 otherwise.
By the Fundamental Lemma of Brun’s combinatorial sieve (see [3, Theo-
rem 2.5, p. 82]), there exists an absolute constant g such that the set of
λ <
√
x/(2s1−13(r1−1)/2R1S1M) such that the smallest prime factor of f(λ)

exceeds x1/g is of cardinality

�
√
x

2s13r1/2R1S1M

∏
p<x1/g

(
1− ρ(p)

p

)
�
√
x(log log x)O(1)

2s3r/2M(log x)3
.

Above, we have used the fact that∏
p<x1/g

(
1− ρ(p)

p

)
≥
∏
p≤x

(
1− 3

p

)
� 1

(log x)3
,

as well as the fact that

2s1 = 2s+A = 2s(log log x)O(1) and S1 = O(log log x),
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and similarly

3(r1−1)/2 = 3r/2+(B−1)/2 = 3r/2(log log x)O(1) and R1 = O((log log x)2).

We now argue that for most of our λ, m(m − 1)(m + 1) is not divisible by
the square of any prime p > x1/g. Indeed, let p > x1/g be a prime such
that p2 |m(m + 1)(m − 1) for some m ≤

√
x+ 1. This puts m into 1 of 3

arithmetic progressions modulo p2, and the number of such m is �
√
x/p2.

By summing this up over p, we find that the number of such m’s is bounded
above by

�
√
x
∑

p>x1/g

1

p2
� x1/2−1/g.

Thus, the number of λ’s yielding such n’s is also bounded by O(x1/2−1/g).
Since we have just said that the number of available λ’s is

�
√
x(log log x)O(1)

2s3r/2M
> x1/2−3/log log x,

it follows that for most of our λ’s, the number f(λ) is not a multiple of p2

for any prime p > x1/g. Hence, f(λ) is square-free and has at most g prime
factors.

Let us now show that n := m2 − 1 ∈ N (x).
Note that m2 − 1 = 2s1−1M1M−1S1f1(λ) and m2 = 3r1−1R2

1M0f2(λ),
where f1(X) and f2(X) are factors of degree 2 and 1 of f(X), respectively.
Since 2s1−1, M1M−1, S1 and f1(λ) are pairwise coprime, we have

d(m2 − 1) = d(2s1−1)d(M1M−1)d(S1)d(f1(λ)).

Clearly, d(2s1−1) = s1 |S1 |n and s1 is odd. Further, d(M1M−1) = 2s,
d(f1(λ)) = 2w for some w ≤ g, and d(S1) is a power of 2. Note also that

d(S1) ≤ 2Ω(S1) ≤ 22Ω(s1)

and Ω(s1) ≤ log s1/log h� h/log h. Thus,

ν2(d(n)) ≤ s+ g +O(h/log h)

and in particular ν2(d(n)) < s1− 1 = s+A− 1 for large values of x. Hence,
d(n) |n. Similarly,

d(n+ 1) = d(m2) = d(3r1−1)d(M2
0 )d(R2

1)d(f2(λ)2).

Note that d(3r1−1) = r1 |R1 |m |n + 1 and r1 is coprime to 3. Further,
d(M2

0 ) = 3r, d(f2(λ)2) = 3u for some u ≤ g, and d(R2
1) is a power of 3. As

in the previous case,

d(R2
1) ≤ 3Ω(R2

1) = 32Ω(R1) ≤ 36Ω(r1)

and Ω(r1)� log r1/log log h� h/log log h. Hence,

ν3(d(n+ 1)) ≤ r + g +O(h/log log h),
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so in particular ν3(d(n+ 1)) < r1− 1 = r+B− 1 for large values of x. This
shows that d(n+ 1) |n+ 1.

So, we have created several suitable values of n from a fixed M and for a
fixed choice of the divisors M0, M1, M1 of M such that ω(M0) = r. Keeping
M fixed and looping over all the

(
r+s
s

)
2s possibilities of choosing such triples

of divisors {M−1,M0,M1} of M , we get a lower bound of(
r + s

s

)
1

3r/2

√
x(log log x)O(1)

(log x)3M

on the number of possibilities when M is fixed. Let us notice that

(3.10)

(
r + s

s

)
1

3r/2
� cL1√

log log x
.

Indeed, let us go through the details. Using the Stirling formula k! =
(k/e)k

√
2πkeo(1) and our choices for r and s, we get

(3.11)

(
r + s

s

)
1

3r/2
� 1√

K

(r + s)r+s

(
√

3 r)rss

=
1√
K

exp

(
−(r + s)

(
− s

r + s
log

(
s

r + s

)
− r

r + s
log

( √
3r

r + s

)))
.

Since
s

r + s
=

1

c1
+O

(
1

K

)
,

√
3 r

r + s
=

1

c1
+O

(
1

K

)
,

it follows that the expression inside the exponential is

(r + s)

(
− s

r + s
log

(
s

r + s

)
− r

r + s
log

(√
3 r

r + s

))
= (r + s)(log c1 +O(1/K)) = (r + s) log c1 +O(1),

which together with (3.11) gives us (3.10). Recalling that L = r + s, we
deduce that the number of possibilities for n ∈ N (x) created by our con-
struction for a fixed M is

�
√
x cL1 (log log x)O(1)

(log x)3M
.

We now sum up over all the square-free M ’s with L prime factors all in
(U, V ], getting a bound of

√
x cL1 (log log x)O(1)

(log x)3

∑
µ2(M)=1
ω(M)=L

p |M⇒U<p≤V

1

M
.
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We need to find a lower bound on the last sum. A simple combinatorial
argument shows that∑
µ2(M)=1
ω(M)=L

p |M⇒U<p≤V

1

M
≥ 1

L!

( ∑
U<p≤V

1

p

)L
− 1

(L− 1)!

( ∑
U<p≤V

1

p2

)( ∑
U<p≤V
α≥1

1

pα

)L−1
.

Set

T1 :=
∑

U<p≤V

1

p
, T2 :=

∑
U<p≤V
α≥1

1

pα
, T3 :=

∑
U<p≤V

1

p2
.

Clearly, using estimate (3.5), we have

(3.12) T1 = log log V − log logU +O(1) = log log x+O(log3 x),

while

T2 = T1 +
∑

U<p≤V

∑
α≥2

1

pα
= T1 +O(T3) = T1 +O

(
1

U

)
.

Thus,

1

L!
TL1 −

T3
(L− 1)!

TL−12 =
TL1
L!

(
1− T3

(
L

T1

)(
T2
T1

)L−1)
.

Now T3 � 1/U , L/T � 1 and(
T2
T1

)L−1
=

(
1 +O

(
1

T1U

))L−1
= exp

(
L

UT1

)
= exp(o(1)) = 1 + o(1)

as x→∞. Thus,

1− T3
(
L

T1

)(
T2
T1

)L−1
≥ 1

2

for all large enough x. So, we arrived at the conclusion that the number of
n ∈ N (x) is of order at least

√
x cL1 (log log x)O(1)

(log x)3
TL1
L!
.

Using the Stirling formula and the estimate (3.12) for T1 implies that this
last expression is

(3.13) �
√
x cL1 (log log x)O(1)

(log x)3

(
e log log x+O(log3 x)

L

)L
.
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The last factor is(
e log log x+O(log3 x)

L

)L
=

(
e

c1
+O

(
log3 x

log2 x

))L
=
eL

cL1

(
1 +O

(
log3 x

log2 x

))O(log2 x)

=
(log x)c1(log log x)O(1)

cL1
,

which inserted in (3.13) gives the desired bound

#N (x)�
√
x(log log x)O(1)

(log x)c
.

4. Comments. As pointed out in the introduction, Spiro proved that
the number of n ≤ x such that d(n) |n is x(log log x)−1+o(1)/(log x)1/2 as
x → ∞. Our result is a bit weaker in that we have not given an explicit
limiting exponent for the log log x in our version of the problem—we only
showed that it is bounded. Spiro also looked at positive integers n such that
d(n) |n+ 1. Following Spiro, we can also ask about the counting function of
the positive integers n such that d(n) |n + 1 and d(n + 1) |n, or both d(n)
and d(n+ 1) dividing n.

By weakening the condition that d(n+k) divides n+k for k = 0, 1, . . . , s
to d(n + k) |m + k for some positive integer m and all k = 0, 1, . . . , s, we
found several examples with s = 2. Here are a few such (n,m):

{(3, 2), (15, 4), (35, 8), (63, 6), (195, 8), (255, 8), (399, 104), (1023, 208), (1088, 350),
(1295, 24), (1599, 104), (2915, 104), (3135, 272), (4355, 80), (6399, 350), (7055, 224),
(8099, 224), (8835, 80), (12099, 80), (15375, 224), (15875, 224), (16899, 80),
(17955, 224), (22499, 44), (24335, 224), (25599, 32), (32399, 224), (33123, 728),
(33855, 272), (41615, 224), (44099, 80), (52899, 80), (55695, 224), (57599, 80),
(62499, 104), (65535, 16), (69695, 440), (72899, 188), (80655, 224), (89999, 224),
(93635, 224), (115599, 224), (122499, 224), (147455, 224), (156815, 224),
(159999, 224), (164835, 80), (176399, 404), (184899, 80), (190095, 224), (197135, 224),
(215295, 80), (217155, 80), (220899, 80), (240099, 224), (249999, 664), (287295, 272),
(295935, 32), (309135, 224), (324899, 80), (331775, 324), (352835, 944), (401955, 80),
(414735, 224), (417315, 80), (427715, 80), (462399, 944), (470595, 272), (476099, 80),
(484415, 944), (489999, 224), (495615, 896), (512655, 224), (547599, 224),
(562499, 440), (577599, 944), (608399, 944), (614655, 224), (665855, 80),
(739599, 224), (746495, 384), (792099, 80), (820835, 80), (846399, 440), (876095, 944),
(894915, 512), (902499, 224), (933155, 80), (972195, 512), (1008015, 224),
(1020099, 80), (1110915, 80), (1123599, 224), (1136355, 512), (1196835, 80),
(1201215, 272), (1223235, 512), (1299599, 944), (1313315, 80), (1322499, 224),
(1464099, 224), (1547535, 224), (1552515, 512), (1664099, 80), . . . }.

We do not know how to prove that the set of such n is infinite. However,
consider the following examples:

(i) m− 1, m, m+ 1 are all square-free.
(ii) m2 + 1 is prime.
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Then taking n := m2 − 1, the number n has the desired property for s = 3
since d(m2 − 1) is a power of 2, d(m2) is a power of 3 and d(m2 + 1) = 2.
That there should be infinitely many such examples is predicted by [4, Con-
jecture 5], which generalizes the Bateman–Horn conjectures, and which pre-
dicts that the number of such n ≤ x should be asymptotically C

√
x/log x

for some positive constant C. We also observe that many of examples have
the form n = 4k2 − 1.
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