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Spectral properties of weighted composition operators on
the Bloch and Dirichlet spaces
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Paweł Mleczko (Poznań)

Abstract. The spectra of invertible weighted composition operators uCϕ on the
Bloch and Dirichlet spaces are studied. In the Bloch case we obtain a complete description
of the spectrum when ϕ is a parabolic or elliptic automorphism of the unit disc. In the
case of a hyperbolic automorphism ϕ, exact expressions for the spectral radii of invertible
weighted composition operators acting on the Bloch and Dirichlet spaces are derived.

1. Introduction. The space of analytic functions on the open unit disc
D in the complex plane C is denoted by H(D). Every analytic selfmap
ϕ : D → D of the unit disc induces a composition operator Cϕf = f ◦ ϕ on
H(D). These operators have been studied for many decades starting from the
papers of Littlewood, Hardy and Riesz in the beginning of the 20th century.
For general information of composition operators on classical spaces of ana-
lytic functions the reader is referred to the excellent monographs by Cowen
and MacCluer [CM] and Shapiro [Sh]. In recent years this well-recognized
theory has received a new stimulus from the more general situation of lin-
ear weighted composition operators uCϕ(f) = u · (f ◦ ϕ), where u ∈ H(D).
The main objective when studying the operators uCϕ is to relate operator-
theoretic properties of uCϕ to function-theoretic properties of the inducing
symbols ϕ and u.

This paper is devoted to the study of spectral properties of invertible
weighted composition operators acting on the Bloch and Dirichlet spaces,
defined in the preliminaries section below. The main references are the pa-
pers [CGP] by Chalendar, Gallardo-Gutiérrez and Partington, and [HLNS]
by Hyvärinen et al. In [HLNS] the spectrum of weighted composition op-
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erators with automorphic symbols ϕ was extensively studied on spaces of
analytic functions satisfying certain general conditions introduced in [HLNS,
Section 2.2]. This class contains for example the weighted Bergman spaces
and Hardy spaces. However, the Bloch and Dirichlet spaces are not in this
class since the bounded analytic functions are not contained in the multi-
pliers of these spaces. A new approach is thus needed, and found partly in
[CGP, Section 3], where the spectra of invertible weighted composition oper-
ators induced by parabolic and elliptic automorphisms on the Dirichlet space
are completely described and the hyperbolic case is left as an open problem.

The paper is organized as follows. In Section 3 we study the multipliers
of the Bloch space, and obtain results similar to those in [CGP, Section 2].
Section 4 is devoted to the spectral theory of invertible weighted composition
operators uCϕ acting on the Bloch space. In particular, we give a descrip-
tion of the spectrum when ϕ is a parabolic or elliptic automorphism of D.
In the case of hyperbolic ϕ, the spectral radius is computed and we obtain
an inclusion of the spectrum in an annulus. Finally, in Section 5 we im-
prove the estimates in [CGP, Theorem 3.3] of the spectrum of an invertible
weighted composition operator on the Dirichlet space when ϕ is a hyperbolic
automorphism of D.

2. Preliminaries. We begin by recalling some Banach spaces of analytic
functions on the unit disc D. The Bloch space B is the set of functions f ∈
H(D) such that supz∈D(1− |z|2)|f ′(z)| <∞, and is equipped with the norm

‖f‖B = |f(0)|+ sup
z∈D

(1− |z|2)|f ′(z)|, f ∈ B.

The Dirichlet space D consists of functions f ∈ H(D) such that f ′ ∈ A2,
where the Bergman space A2 is the set of analytic functions on D such that

‖f‖2A2 =
�

D

|f(z)|2 dA(z) <∞,

with normalized Lebesgue measure dA(·) on D. The Dirichlet norm is defined
as

‖f‖2D = |f(0)|2 +
�

D

|f ′(z)|2 dA(z), f ∈ D.

Other spaces of analytic functions on the unit disc D used in this paper are
the disc algebra A(D), consisting of functions that are moreover continuous
on the closed unit disc, the weighted Banach spaces of analytic functions

H∞vs =
{
f ∈ H(D) : ‖f‖H∞vs = sup

z∈D
vs(z)|f(z)| <∞

}
,

where 0 < s < ∞ and vs(z) = (1 − |z|2)s is the standard weight, and the
space H∞ of bounded analytic functions on D with supremum norm ‖ · ‖∞.
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The spectrum and spectral radius of an operator T : X → X on a space X
are denoted respectively by σX (T ) and rX (T ). A good reference for operator
theory in function spaces is the monograph [Z] by Zhu.

When dealing with composition operators it is customary to denote the
nth iterate of a selfmap ϕ of D by ϕn, that is,

ϕn := ϕ ◦ · · · ◦ ϕ︸ ︷︷ ︸
n times

with ϕ0 representing the identity map, and it is easy to check that

(uCϕ)nf(z) = u(z)u(ϕ(z)) · · ·u(ϕn−1(z))f(ϕn(z)), f ∈ H(D), z ∈ D.
This can also be stated as (uCϕ)n = u(n)Cϕn , where u(0) := 1 and

u(n) :=

n−1∏
j=0

u ◦ ϕj ∈ H(D), n ∈ N.

It turns out that the spectral analysis of invertible weighted composition
operators uCϕ strongly depends on the type of the (necessarily) automorphic
symbol ϕ. Recall that a nontrivial automorphism ϕ of D is called elliptic if
it has a unique fixed point in D, parabolic if ϕ has a Denjoy–Wolff fixed
point a in ∂D with ϕ′(a) = 1, and hyperbolic if ϕ has a Denjoy–Wolff fixed
point a ∈ ∂D with 0 < ϕ′(a) < 1 (called an attractive fixed point) and a
repulsive fixed point b ∈ ∂D with ϕ′(b) = 1/ϕ′(a) (see [CM, Section 2.3]).
When computing the spectrum, we will make use of the formula

(2.1) lim
n→∞

(1− |ϕn(0)|)1/n = ϕ′(a),

which is valid for parabolic and hyperbolic automorphisms ϕ of D with
Denjoy–Wolff point a (see [CM, pp. 251–252]).

3. Multiplier spaces. In this section we consider the multiplier spaces

M(X ) := {u ∈ H(D) : Mu : X → X is bounded} ⊂ X ,
M(X , ϕ) := {u ∈ H(D) : uCϕ : X → X is bounded} ⊂ X ,

where X is either the Bloch space B or the Dirichlet space D, and the multi-
plication operator is defined in the obvious way:Muf = uf . The main results
of this section are Theorem 3.2, where we characterize those ϕ for which
M(B, ϕ) = B, and Theorem 3.3, where we show that M(B, ϕ) = M(B)
whenever ϕ is a finite Blaschke product. The Dirichlet space versions of
those results are given in [CGP, Theorems 2.2–2.3].

The multiplier spaceM(D) was characterized by Stegenga [St] as the set
of functions u ∈ H∞ such that the multiplication operator Mu′ : D → A2 is
bounded (|u′(z)|2dA(z) being a Carleson measure for D). For the Bloch space
it is known from [OZ] that a weighted composition operator uCϕ : B → B is
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bounded if and only if the following two conditions hold:

sup
z∈D

(1− |z|2)|u′(z)| log
e

1− |ϕ(z)|2
<∞,(3.1)

sup
z∈D

1− |z|2

1− |ϕ(z)|2
|u(z)ϕ′(z)| <∞.(3.2)

From this it follows that u ∈M(B) if and only if

sup
z∈D

(1− |z|2)|u′(z)| log
e

1− |z|2
<∞,(3.3)

u ∈ H∞.(3.4)

Condition (3.3) can also be related to a multiplication operator in a similar
fashion to the Dirichlet case:

Lemma 3.1. If the function u : D→ C is analytic, then the multiplication
operator Mu′ : B → H∞v1 is bounded if and only if condition (3.3) holds.

Proof. If condition (3.3) holds then

‖Mu′‖B→H∞v1 = sup
‖f‖B=1

‖Mu′f‖H∞v1 = sup
‖f‖B=1

sup
z∈D

(1− |z|2)|u′(z)f(z)|

≤ sup
‖f‖B=1

sup
z∈D

(1− |z|2)
∣∣u′(z)∣∣α‖f‖B log

e

1− |z|2

= α sup
z∈D

(1− |z|2)|u′(z)| log
e

1− |z|2
<∞,

where we have used the fact that every Bloch function f satisfies

(3.5) sup
z∈D

|f(z)|
log e

1−|z|2
≤ α‖f‖B

for some positive constant α independent of f .
Conversely, if the operator Mu′ : B → H∞v1 is bounded then there is a

constant c > 0 such that for every f ∈ B,
‖Mu′(f)‖H∞v1 ≤ c‖f‖B.

Applying this to the Bloch functions fa(z) := log e
1−āz for a ∈ D, we obtain

(1− |z|2)|u′(z)|
∣∣∣ log

e

1− āz

∣∣∣ ≤ ‖Mu′(fa)‖H∞v1 ≤ c‖fa‖B ≤ 2c

for all z, a ∈ D, since ‖fa‖B ≤ 2 for every a ∈ D. Now choose a = z and take
the supremum over z ∈ D to get (3.3).

Theorem 3.2. Let ϕ be an analytic selfmap of D. ThenM(B, ϕ) = B if
and only if

(1) ‖ϕ‖∞ < 1 and
(2) ϕ ∈M(B).
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Proof. Assume first that (1) and (2) hold and choose u ∈ B. Then

sup
z∈D

(1− |z|2)|u′(z)| log
e

1− |ϕ(z)|2
≤ ‖u‖B log

e

1− ‖ϕ‖2∞
<∞,

so (3.1) holds. We also have

sup
z∈D

1− |z|2

1− |ϕ(z)|2
|u(z)ϕ′(z)|

≤ 1

1− ‖ϕ‖2∞

(
sup
z∈D

(1− |z|2)|ϕ′(z)| log
e

1− |z|2

)
·
(

sup
z∈D

|u(z)|
log e

1−|z|2

)
,

which is finite because u is a Bloch function (see (3.5)) and ϕ ∈ M(B)
(replace u with ϕ in (3.3)). Thus (3.2) also holds, and so u ∈ M(B, ϕ),
which shows thatM(B, ϕ) = B (the inclusionM(B, ϕ) ⊂ B being trivial).

Conversely, assume thatM(B, ϕ) = B, so that uCϕ : B → B is bounded
for every u ∈ B. This ensures that if f ∈ B then (f ◦ ϕ) · u ∈ B for every
u ∈ B, which means that the multiplication operator Mf◦ϕ : B → B is well
defined and hence bounded by the Closed Graph Theorem. Thus Cϕf =
f ◦ ϕ ∈ M(B) ⊂ H∞, so that the composition operator Cϕ : B → H∞ is
well defined and bounded.

To reach a contradiction assume that ‖ϕ‖∞ = 1. Choose f ∈ B\H∞ such
that ‖f‖B = 1. Since f is unbounded there is a sequence {ωn}∞n=1 ⊂ D with
|ωn| → 1− such that |f(ωn)| > n for every n ∈ N. Since ‖ϕ‖∞ = 1, there
is a sequence {zn}∞n=1 ⊂ D such that |ϕ(zn)| = |ωn| for n large enough, say
n ≥ n0. Now choose a sequence {θn}∞n=n0

so that ωn = eiθnϕ(zn) and define
fn(z) := f(eiθnz). Then ‖fn‖B = ‖f‖B = 1 for every n, but |Cϕfn(zn)| =
|fn(ϕ(zn))| = |f(ωn)| > n so that ‖Cϕfn‖∞ > n. This contradicts the
boundedness of Cϕ : B → H∞, so we must have ‖ϕ‖∞ < 1.

It remains to show that ϕ ∈ M(B). The boundedness of uCϕ : B → B
for every u ∈ B and (3.2) imply that

sup
z∈D

(1− |z|2)|u(z)ϕ′(z)| <∞

for every u ∈ B. The operator Mϕ′ : B → H∞v1 is hence well defined and
bounded. According to Lemma 3.1 this is equivalent to

sup
z∈D

(1− |z|2)|ϕ′(z)| log
e

1− |z|2
<∞,

so ϕ ∈M(B) and the proof is complete.

Theorem 3.3. Assume that ϕ is a finite Blaschke product. ThenM(B, ϕ)
=M(B).

Proof. If u ∈ M(B) then Mu : B → B is bounded and hence uCϕ =
MuCϕ : B → B is bounded, so that u ∈M(B, ϕ) andM(B) ⊂M(B, ϕ).
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Conversely, assume that u ∈ M(B, ϕ), so that uCϕ : B → B is bounded
and u ∈ B. Since ϕ is a finite Blaschke product, from [M, Lemma 1] we
deduce that

1− |ϕ(z)|2

1− |z|2
≤

N∑
j=1

1 + |ωj |
1− |ωj |

=: K

for every z ∈ D, where N is the degree of the Blaschke product and {ωj}Nj=1

are the zeros of ϕ. Hence

sup
z∈D

(1− |z|2)|u′(z)| log
e

1− |z|2

≤ sup
z∈D

(1− |z|2)|u′(z)| log
e

1− |ϕ(z)|2
+ logK · ‖u‖B <∞,

which is (3.3). It remains to show that u ∈ H∞, so let S be the finite
supremum in (3.2). For every z ∈ D for which ϕ′(z) 6= 0 we have

|u(z)| ≤ S 1− |ϕ(z)|2

1− |z|2
1

|ϕ′(z)|
≤ SK 1

|ϕ′(z)|
.

Since ϕ is a finite Blaschke product, ϕ′ is analytic in an open neighborhood
of the closed unit disc, is nonzero on |z| = 1 and has only a finite number
of zeros elsewhere. This implies that we can choose δ > 0 so that mδ :=
minδ≤|z|≤1 |ϕ′(z)| > 0, which shows that u is bounded by SK/mδ on δ ≤
|z| < 1 and hence bounded on D. Thus u ∈M(B), so thatM(B, ϕ) ⊂M(B),
and henceM(B, ϕ) =M(B).

In the next sections we will study the spectrum of invertible weighted
composition operators on the Bloch and Dirichlet spaces. The invertibility
of weighted composition operators has been characterized on various spaces
of functions by many authors: see for example [B, G, HLNS]. The following
result is a consequence of [B, Corollary 2.3].

Theorem 3.4. Assume that X is either the Bloch space B or the Dirich-
let space D, and let uCϕ : X → X be a bounded weighted composition operator
on X . Then uCϕ is invertible on X if and only if u ∈ M(X ), u is bounded
away from zero on D and ϕ is an automorphism of D. In that case the inverse
operator of uCϕ : X → X is also a weighted composition operator, given by

(uCϕ)−1 =
1

u ◦ ϕ−1
Cϕ−1 .

4. Spectra on the Bloch space. In this section we study the spectra
of invertible weighted composition operators on the Bloch space. The inves-
tigation is divided into three cases, to cover parabolic, hyperbolic and elliptic
automorphisms. Our approach is based on the papers [CGP] and [HLNS],
but some new ideas are needed. The following lemma will be useful.
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Lemma 4.1. If ϕ is an automorphism of D, then rB(Cϕ) = 1.

Proof. By [X, Corollary 2] and [MV, Lemma 6] we have the following
estimate of the norm of the iterated composition operator for any automor-
phism ϕ of D and n ∈ N:

(4.1) 1 ≤ ‖Cϕn‖B→B ≤ 1 +
1

2
log

1 + |ϕn(0)|
1− |ϕn(0)|

≤ 1 + %(ϕ(0), 0)n,

where

%(z, w) :=
1

2
log

1 +
∣∣∣ z − w
1− z̄w

∣∣∣
1−

∣∣∣ z − w
1− z̄w

∣∣∣
is the hyperbolic distance on D. If ϕ(0) = 0 then obviously rB(Cϕ) = 1. If on
the other hand %(ϕ(0), 0) 6= 0, then we obtain the following estimate from
(4.1) for every n ∈ N:

1 ≤ ‖Cϕn‖
1/n
B→B ≤

[
(1 + %(ϕ(0), 0)n)

1
%(ϕ(0),0)n

]%(ϕ(0),0)
,

and since limx→∞(1 + x)1/x = 1 we conclude that rB(Cϕ) = 1.

4.1. The parabolic case. We begin by describing the spectrum of in-
vertible weighted composition operators uCϕ on the Bloch space induced by
parabolic automorphisms ϕ. For the proof we need the following result.

Lemma 4.2. Suppose that ϕ is a parabolic automorphism of D with the
unique fixed point a ∈ ∂D, and assume that u ∈ A(D) is bounded away from
zero on D. Then

lim
n→∞

‖u(n)‖1/n∞ = |u(a)|.

Proof. See the proof of [HLNS, Lemma 4.2].

Theorem 4.3. Suppose the weighted composition operator uCϕ : B → B
is invertible on the Bloch space and assume that the automorphism ϕ is
parabolic, with the unique fixed point a ∈ ∂D. If u ∈ A(D), then

σB(uCϕ) =
{
λ ∈ C : |λ| = |u(a)|

}
.

Proof. We begin by showing that the spectrum is contained in the given
circle of radius |u(a)|. According to Theorem 3.4, u belongs toM(B) and is
bounded away from zero on D, which implies that u(a) 6= 0. Since rB(Cϕ) = 1
by Lemma 4.1 and (uCϕ)n = u(n)Cϕn = Mu(n)

Cϕn by Theorem 3.3, we only
need to focus on the operator norm of Mu(n)

: B → B:
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‖Mu(n)
‖B→B = sup

‖f‖B≤1
‖u(n) · f‖B

≤ sup
‖f‖B≤1

sup
z∈D

(1− |z|2)|u′(n)(z)f(z)|+ sup
‖f‖B≤1

sup
z∈D

(1− |z|2)|u(n)(z)f
′(z)|

+ sup
‖f‖B≤1

|u(n)(0)f(0)|

= sup
‖f‖B≤1

sup
z∈D

(1− |z|2)

∣∣∣∣ n−1∑
j=0

u(n)(z)

u ◦ ϕj(z)
· (u ◦ ϕj)′(z)

∣∣∣∣ |f(z)|

+ sup
‖f‖B≤1

sup
z∈D

(1− |z|2)|u(n)(z)f
′(z)|+ sup

‖f‖B≤1
|u(n)(0)f(0)|

≤
n−1∑
j=0

∥∥∥∥ u(n)

u ◦ ϕj

∥∥∥∥
∞

sup
‖f‖B≤1

sup
z∈D

(1− |z|2)|u′(ϕj(z))| |ϕ′j(z)| |f(z)|+ 2‖u(n)‖∞

=

n−1∑
j=0

∥∥∥∥ u(n)

u ◦ ϕj

∥∥∥∥
∞

sup
‖f‖B≤1

sup
z∈D

(1− |ϕj(z)|2)|u′(ϕj(z))f(z)|+ 2‖u(n)‖∞

=
n−1∑
j=0

∥∥∥∥ u(n)

u ◦ ϕj

∥∥∥∥
∞

sup
‖f‖B≤1

sup
z∈D

(1− |z|2)|u′(z)f(ψj(z))|+ 2‖u(n)‖∞,

where we have used the fact that

|ϕ′(z)| = 1− |ϕ(z)|2

1− |z|2

if ϕ is an automorphism of D, and introduced the function ψ := ϕ−1 to
simplify notation. Note that ψ is also a parabolic automorphism with fixed
point a, and ψj = (ϕ−1)j = ϕ−1

j . Furthermore,

sup
z∈D

(1− |z|2)|u′(z)f(ψj(z))| = ‖Mu′(f ◦ ψj)‖H∞v1

≤ ‖Mu′‖B→H∞v1‖Cψj
‖B→B‖f‖B,

where the norm ‖Mu′‖B→H∞v1 is finite since u ∈ M(B), as discussed in
Lemma 3.1. Now using inequality (4.1) and the fact that u is bounded away
from zero on D, we obtain

‖Mu(n)
‖B→B ≤

n−1∑
j=0

∥∥∥∥ u(n)

u ◦ ϕj

∥∥∥∥
∞
‖Mu′‖B→H∞v1‖Cψj

‖B→B + 2‖u(n)‖∞

≤ ‖Mu′‖B→H∞v1

n−1∑
j=0

∥∥∥∥ u(n)

u ◦ ϕj

∥∥∥∥
∞

(
1 + %(ψ(0), 0)j

)
+ 2‖u(n)‖∞

≤
[
‖Mu′‖B→H∞v1

∥∥∥∥1

u

∥∥∥∥
∞

+ 2

]
n
(
1 + %(ψ(0), 0)n

)
‖u(n)‖∞.
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Applying this to the spectral radius and using Lemmas 4.1 and 4.2 gives

rB(uCϕ) = lim
n→∞

‖(uCϕ)n‖1/nB→B ≤ lim sup
n→∞

‖Mu(n)
‖1/nB→BrB(Cϕ)

≤ lim
n→∞

[
‖Mu′‖B→H∞v1

∥∥∥∥1

u

∥∥∥∥
∞

+ 2

]1/n

n1/n
(
1 + %(ψ(0), 0)n

)1/n‖u(n)‖1/n∞

= |u(a)|.
Since

(uCϕ)−1 =
1

u ◦ ϕ−1
Cϕ−1 ,

by Theorem 3.4, where ϕ−1 is a parabolic automorphism with unique fixed
point a, the above result also shows that

rB((uCϕ)−1) ≤
∣∣∣∣ 1

u(ϕ−1(a))

∣∣∣∣ = |u(a)|−1.

Now if λ ∈ σB(uCϕ), then we also have λ−1 ∈ σB((uCϕ)−1). It follows that
|λ| ≤ rB(uCϕ) ≤ |u(a)| and |λ|−1 ≤ rB((uCϕ)−1) ≤ |u(a)|−1, so |λ| = |u(a)|.
Thus

(4.2) σB(uCϕ) ⊆
{
λ ∈ C : |λ| = |u(a)|

}
,

and obviously rB(uCϕ) = |u(a)|.
In order to prove the reverse inclusion in (4.2), let λ be a complex number

of modulus |λ| = |u(a)| = rB(uCϕ). As in the proof of [HLNS, Theorem 4.3]
it is then enough, by the Spectral Mapping Theorem, to show that

rB(λ− uCϕ) ≥ 2rB(uCϕ),

which is done as follows. The sequence {zn}∞n=0 defined by zn = ϕn(0) is
interpolating for H∞ since ϕ is a parabolic automorphism (see the comment
preceding [HLNS, Theorem 4.3]), so by the Open Mapping Theorem there
is a constant c > 0 and a sequence {fn}∞n=0 ⊂ H∞ such that for all n ∈ N
we have ‖fn‖∞ ≤ c and

(4.3) fn(ϕk(zn)) =

{
1 if k = n,
0 if k 6= n.

Note that B ⊂ H∞vs for every s > 0, since if f ∈ B then by (3.5),

‖f‖H∞vs ≤ α‖f‖B sup
z∈D

(1− |z|2)s log
e

1− |z|2
<∞.

Choose some s > 0 and let

cs := α sup
z∈D

(1− |z|2)s log
e

1− |z|2
,

so that ‖f‖H∞vs ≤ cs‖f‖B for every f ∈ B. The interpolating sequence
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{fn}∞n=0 satisfies ‖fn‖B ≤ ‖fn‖∞ ≤ c for all n ∈ N, which gives

‖(λ− uCϕ)2n‖B→B ≥ c−1‖(λ− uCϕ)2nfn‖B
≥ (ccs)

−1‖(λ− uCϕ)2nfn‖H∞vs
≥ (ccs)

−1(1− |zn|2)s|[(λ− uCϕ)2nfn](zn)|

for all n ∈ N. Furthermore,

[(λ− uCϕ)2nfn](zn) =
2n∑
k=0

(
2n

k

)
λ2n−k[(−uCϕ)kfn](zn)

=
2n∑
k=0

(
2n

k

)
λ2n−k(−1)ku(k)(zn)fn(ϕk(zn))

=

(
2n

n

)
(−1)nλnu(n)(zn)

by (4.3), so

‖(λ− uCϕ)2n‖B→B ≥ (ccs)
−1

(
2n

n

)
|λ|n|u(n)(zn)|(1− |zn|2)s

= (ccs)
−1

(
2n

n

)
|λ|n|u(n)(zn)|

(
1− |zn|2

1− |ϕn(zn)|2

)s
(1− |ϕn(zn)|2)s

= (ccs)
−1

(
2n

n

)
|λ|n

∣∣∣∣u(n)(zn)

ϕ′n(zn)s

∣∣∣∣(1− |ϕ2n(0)|2)s

≥ (ccs)
−1

(
2n

n

)
|λ|n|ω(n)(zn)|(1− |ϕ2n(0)|)s,

where the function

ω(z) :=
u(z)

ϕ′(z)s

introduced in the proof of [HLNS, Theorem 4.3] satisfies

ω(n)(z) =
u(n)(z)

ϕ′n(z)s
.

In the same proof it was also shown that

lim
n→∞

|ω(n)(zn)|1/(2n) =
|u(a)|1/2

ϕ′(a)s/2
= |u(a)|1/2,

and mentioned that limn→∞
(

2n
n

)1/(2n)
= 2. Using the parabolic version of

the limit (2.1), we see that
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rB(λ− uCϕ) = lim
n→∞

‖(λ− uCϕ)2n‖1/(2n)
B→B

≥ lim
n→∞

(ccs)
−1/(2n)

(
2n

n

)1/(2n)

|λ|1/2|ω(n)(zn)|1/(2n)(1− |ϕ2n(0)|)s/(2n)

= 2|λ|1/2|u(a)|1/2 = 2|u(a)| = 2rB(uCϕ).

Since rB(λ− uCϕ) ≥ 2rB(uCϕ), from the proof of [HLNS, Theorem 4.3] we
get −λ ∈ σB(uCϕ), which shows that

σB(uCϕ) ⊇ {−λ ∈ C : |λ| = |u(a)|} = {λ ∈ C : |λ| = |u(a)|},

and the proof is complete.

4.2. The hyperbolic case. In this subsection we investigate the spec-
trum of a weighted composition operator uCϕ : B → B generated by a hy-
perbolic symbol ϕ. The results in this case are not complete. We obtain
the spectral radius rB(uCϕ) and thereby an inclusion of the spectrum in an
annulus, which turns out to coincide with the spectrum under additional
assumptions on u. The main result is given in Theorem 4.5.

Lemma 4.4. Suppose that ϕ is a hyperbolic automorphism of D with fixed
points a, b ∈ ∂D, and assume that u ∈ A(D) is bounded away from zero on D.
Then

lim
n→∞

‖u(n)‖1/n∞ = max{|u(a)|, |u(b)|}.

Proof. See the proof of [HLNS, Lemma 4.4].

Theorem 4.5. Suppose the weighted composition operator uCϕ : B → B
is invertible on the Bloch space and assume that the automorphism ϕ is
hyperbolic, with attractive fixed point a ∈ ∂D and repulsive fixed point b ∈ ∂D.
If u ∈ A(D), then rB(uCϕ) = max{|u(a)|, |u(b)|} and

σB(uCϕ) ⊆
{
λ ∈ C : min{|u(a)|, |u(b)|} ≤ |λ| ≤ max{|u(a)|, |u(b)|}

}
.

Proof. As in the proof of Theorem 4.3, u belongs toM(B) and is bounded
away from zero on D, so that u(a), u(b) 6= 0. Since rB(Cϕ) = 1 by Lemma 4.1
and (uCϕ)n = Mu(n)

Cϕn , it is again enough to consider the operator norm
of Mu(n)

: B → B. Through identical calculations as in the proof of The-
orem 4.3, observing that ψ := ϕ−1 is also a hyperbolic automorphism, we
obtain

‖Mu(n)
‖B→B ≤

[
‖Mu′‖B→H∞v1

∥∥∥∥1

u

∥∥∥∥
∞

+ 2

]
n
(
1 + %(ψ(0), 0)n

)
‖u(n)‖∞,

and so by Lemmas 4.1 and 4.4,
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rB(uCϕ) = lim
n→∞

‖(uCϕ)n‖1/nB→B ≤ lim sup
n→∞

‖Mu(n)
‖1/nB→B rB(Cϕ)

≤ lim
n→∞

[
‖Mu′‖B→H∞v1

∥∥∥∥1

u

∥∥∥∥
∞

+ 2

]1/n

n1/n(1 + %(ψ(0), 0)n)1/n‖u(n)‖1/n∞

= max{|u(a)|, |u(b)|}.
On the other hand, ‖u(n)‖∞ ≤ ‖Mu(n)

‖B→B by [ADMV, Lemma 1], so

‖u(n)‖1/n∞ ≤ ‖Mu(n)
‖1/nB→B =

∥∥(uCϕ)n(Cϕn)−1
∥∥1/n

B→B

≤
∥∥(uCϕ)n

∥∥1/n

B→B
∥∥(Cϕ−1)n

∥∥1/n

B→B.

Letting n tend to infinity and observing that rB(Cϕ−1) = 1 (by Lemma 4.1
since ϕ−1 ∈ Aut(D)) we see that

max{|u(a)|, |u(b)|} ≤ rB(uCϕ),

and thus
rB(uCϕ) = max{|u(a)|, |u(b)|}.

Applying the above result to the inverse operator (uCϕ)−1 = 1
u◦ϕ−1Cϕ−1 ,

where ϕ−1 is a hyperbolic automorphism with attractive fixed point b and
repulsive fixed point a, we get

rB((uCϕ)−1) = max{|u(ϕ−1(a))
∣∣−1

, |u(ϕ−1(b))
∣∣−1}

=
1

min{|u(a)|, |u(b)|}
.

Now if λ ∈ σB(uCϕ), then we also have λ−1 ∈ σB((uCϕ)−1), so that

|λ| ≤ rB(uCϕ) = max
{
|u(a)|, |u(b)|

}
and

|λ|−1 ≤ rB((uCϕ)−1) =
1

min
{
|u(a)|, |u(b)|

} ,
which shows that the spectrum is contained in the indicated annulus.

In the case when |u(a)| = |u(b)| we are able to improve the previous
theorem and give a complete description of the spectrum. However, we have
not been able to compute the spectrum when |u(a)| 6= |u(b)|. It seems one
has to consider the cases |u(a)| < |u(b)| and |u(a)| > |u(b)| separately (see
for example [HLNS, Theorem 4.9]).

Theorem 4.6. Suppose the weighted composition operator uCϕ : B → B
is invertible on the Bloch space and assume that the automorphism ϕ is
hyperbolic, with attractive fixed point a ∈ ∂D and repulsive fixed point b ∈ ∂D.
If u ∈ A(D) and |u(a)| = |u(b)|, then

σB(uCϕ) =
{
λ ∈ C : |λ| = |u(a)|

}
.



Weighted composition operators 107

Proof. By Theorem 4.5 it suffices to prove that

σB(uCϕ) ⊇
{
λ ∈ C : |λ| = |u(a)|

}
,

so let λ be a complex number of modulus |λ| = |u(a)| = rB(uCϕ). As in the
proof of Theorem 4.3 it is then enough to show that rB(λ−uCϕ) ≥ 2rB(uCϕ).
This can be done exactly as in that proof since the sequence {zn}∞n=0 ⊂ D
defined by zn = ϕn(0) is interpolating for H∞ by [CM, Theorem 2.65]. Using
the same notation and performing the same calculations as in the proof of
Theorem 4.3, we obtain

‖(λ− uCϕ)2n‖B→B ≥ (ccs)
−1

(
2n

n

)
|λ|n|ω(n)(zn)|(1− |ϕ2n(0)|)s.

Now since

lim
n→∞

|ω(n)(zn)|1/(2n) =
|u(a)|1/2

ϕ′(a)s/2
,

as in [HLNS, Theorem 4.3], this gives

rB(λ− uCϕ)

≥ lim
n→∞

(ccs)
−1/(2n)

(
2n

n

)1/(2n)

|λ|1/2|ω(n)(zn)|1/(2n)(1− |ϕ2n(0)|)s/(2n)

= 2|λ|1/2 |u(a)|1/2

ϕ′(a)s/2
ϕ′(a)s = 2|u(a)|ϕ′(a)s/2 = 2rB(uCϕ)ϕ′(a)s/2,

where we have used the limit (2.1) with 0 < ϕ′(a) < 1. The inequality

rB(λ− uCϕ) ≥ 2rB(uCϕ)ϕ′(a)s/2

holds for every s > 0 (see the last part of the proof of Theorem 4.3) so we
may let s→ 0 to obtain rB(λ− uCϕ) ≥ 2rB(uCϕ).

4.3. The elliptic case. We now turn to the spectrum of invertible
weighted composition operators uCϕ on the Bloch space when ϕ is an elliptic
automorphism of D. The methods of proof here are standard, but some minor
modifications are necessary and we thus present them.

Lemma 4.7. If u ∈M(B) and 1/u ∈ H∞, then 1/u ∈M(B).

Proof. The function f(z) := 1/u(z) is bounded by assumption, so we
only need to show that it satisfies condition (3.3):

sup
z∈D

(1− |z|2)|f ′(z)| log
e

1− |z|2
= sup

z∈D
(1− |z|2)

∣∣∣∣ u′(z)u(z)2

∣∣∣∣ log
e

1− |z|2

≤
∥∥∥1

u

∥∥∥2

∞
sup
z∈D

(1− |z|2)|u′(z)| log
e

1− |z|2
,

which is finite since u ∈M(B).
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Theorem 4.8. Suppose that the weighted composition operator uCϕ :
B → B is bounded on the Bloch space and assume that u ∈ A(D) and ϕ is
an elliptic automorphism, with the unique fixed point a ∈ D.

(1) If there is a positive integer j such that ϕj(z) = z for all z ∈ D, then
letting m be the smallest such integer, we have

σB(uCϕ) =
{
λ ∈ C : λm = u(m)(z) for some z ∈ D

}
,

(2) If ϕn 6= Id for every n ∈ N, and if uCϕ : B → B is invertible, then

σB(uCϕ) =
{
λ ∈ C : |λ| = |u(a)|

}
.

Proof. The proof of (1) is identical to the proof of [HLNS, Theorem 4.11],
because as noted in [CGP, Section 3.1] we can use the result of Lemma 4.7
to prove that

σB(uCϕ) ⊆
{
λ ∈ C : λm = u(m)(z) for some z ∈ D

}
.

The proof of (2) goes as in [HLNS, Theorem 4.14] and it relies on [HLNS,
Lemma 4.13], which is also true for the Bloch space after a minor modifica-
tion in the proof. Namely, one assumes that ϕ(z) = µz, where µ = e2πθi and
θ is irrational, u ∈ A(D) and uCϕ is invertible, and proves that rA(uCϕ) =
|u(0)| by methods also valid for the Bloch space, except for the proof of

(4.4) rA(uCϕ) ≤ lim sup
n→∞

‖u(n)‖1/n∞ .

Here A stands for a space satisfying conditions (C1)–(C3) of [HLNS, Sec-
tion 2.2]. However, by the same calculations used to prove Theorem 4.3 we
get

‖Mu(n)
‖1/nB→B

≤
[
‖Mu′‖B→H∞v1

∥∥∥∥1

u

∥∥∥∥
∞

+ 2

]1/n

n1/n
(
1 + %(ψ(0), 0)n

)1/n‖u(n)‖1/n∞ ,

and hence

rB(uCϕ) ≤ rB(Cϕ) lim sup
n→∞

‖Mu(n)
‖1/nB→B ≤ lim sup

n→∞
‖u(n)‖1/n∞ ,

where we have used the fact that rB(Cϕ) = 1 by Lemma 4.1. Thus (4.4) also
holds for the Bloch space, and we can use the proof of [HLNS, Theorem 4.14]
to obtain (2).

5. Spectra on the Dirichlet space. The spectra of invertible weighted
composition operators induced by parabolic and elliptic automorphisms on
the Dirichlet space were completely described in [CGP]. In the hyperbolic
case and under essentially the same assumptions as in Theorem 5.2 below, it
was also shown in [CGP, Theorem 3.3] that rD(uCϕ) ≤ max{|u(a)|, |u(b)|}/µ
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and

σD(uCϕ) ⊆
{
λ ∈ C : min{|u(a)|, |u(b)|}µ ≤ |λ| ≤ max{|u(a)|, |u(b)|}/µ

}
,

where ϕ is conjugate to the automorphism

ψ(z) =
(1 + µ)z + (1− µ)

(1− µ)z + (1 + µ)

for 0 < µ < 1. In Theorem 5.2 we improve this result to obtain an exact
expression for the spectral radius.

Lemma 5.1 ([MV, Theorem 7]). If ϕ is a univalent selfmap of D, then
rD(Cϕ) = 1.

Theorem 5.2. Suppose the weighted composition operator uCϕ : D → D
is invertible on the Dirichlet space and assume that the automorphism ϕ is
hyperbolic, with attractive fixed point a ∈ ∂D and repulsive fixed point b ∈ ∂D.
If u ∈ A(D), then rD(uCϕ) = max{|u(a)|, |u(b)|} and

σD(uCϕ) ⊆
{
λ ∈ C : min{|u(a)|, |u(b)|} ≤ |λ| ≤ max{|u(a)|, |u(b)|}

}
.

Proof. The weight u belongs to M(D) and is bounded away from zero
on D by Theorem 3.4, which implies u(a), u(b) 6= 0. Since rD(Cϕ) = 1 by
Lemma 5.1, we begin by estimating the operator norm of Mu(n)

: D → D:

‖Mu(n)
‖D→D = sup

‖f‖D≤1
‖u(n) · f‖D

= sup
‖f‖D≤1

[
|u(n)(0)f(0)|2 +

�

D

|(u(n) · f)′(z)|2 dA(z)
]1/2

≤ sup
‖f‖D≤1

[
|u(n)(0)f(0)|+

( �

D

|u′(n)(z)f(z) + u(n)(z)f
′(z)|2dA(z)

)1/2]
≤ ‖u(n)‖∞ + sup

‖f‖D≤1

( �

D

|u′(n)(z)f(z)|2 dA(z)
)1/2

+ sup
‖f‖D≤1

( �

D

|u(n)(z)f
′(z)|2 dA(z)

)1/2

≤ sup
‖f‖D≤1

( �

D

|u′(n)(z)f(z)|2 dA(z)
)1/2

+ 2‖u(n)‖∞,

where we have used the subadditivity of the square root function and the
triangle inequality for the L2-norm. Now since

u′(n)(z) =
n−1∑
j=0

u(n)(z)

u ◦ ϕj(z)
· (u ◦ ϕj)′(z),
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we can continue the above estimation as follows:

‖Mu(n)
‖D→D ≤ sup

‖f‖D≤1

n−1∑
j=0

( �

D

∣∣∣∣ u(n)(z)

u ◦ ϕj(z)
(u ◦ ϕj)′(z)f(z)

∣∣∣∣2 dA(z)

)1/2

+ 2‖u(n)‖∞

≤
n−1∑
j=0

∥∥∥∥ u(n)

u ◦ ϕj

∥∥∥∥
∞

sup
‖f‖D≤1

( �

D

|u′(ϕj(z))|2|ϕ′j(z)|2|f(z)|2 dA(z)
)1/2

+ 2‖u(n)‖∞.
After substituting w = ϕj(z), the above integral takes the form( �

D

|u′(w)f(ψj(w))|2 dA(w)
)1/2

= ‖Mu′(f ◦ ψj)‖A2

≤ ‖Mu′‖D→A2‖Cψj
‖D→D‖f‖D,

where ψ := ϕ−1 and the norm ‖Mu′‖D→A2 is finite since u ∈ M(D) (see
the section on multiplier spaces). In [MV, Theorem 7], Martín and Vukotić
proved that

‖Cψj
‖D→D ≤

√
2
(
1 + %(ψ(0), 0)j

)1/2
for every j ∈ N, which combined with the results above gives

‖Mu(n)
‖D→D ≤

n−1∑
j=0

∥∥∥∥ u(n)

u ◦ ϕj

∥∥∥∥
∞
‖Mu′‖D→A2‖Cψj

‖D→D + 2‖u(n)‖∞

≤
[√

2‖Mu′‖D→A2

∥∥∥∥1

u

∥∥∥∥
∞

+ 2

]
n(1 + %(ψ(0), 0)n)1/2‖u(n)‖∞.

Applying this to the spectral radius and using Lemmas 4.4 and 5.1 gives

rD(uCϕ) = lim
n→∞

‖(uCϕ)n‖1/nD→D ≤ lim sup
n→∞

‖Mu(n)
‖1/nD→D rD(Cϕ)

≤ lim
n→∞

[√
2‖Mu′‖D→A2

∥∥∥∥1

u

∥∥∥∥
∞

+ 2

]1/n

n1/n(1 + %(ψ(0), 0)n)1/(2n)‖u(n)‖1/n∞

= max{|u(a)|, |u(b)|}.
On the other hand, by [ADMV, Lemma 1], we have

‖u(n)‖1/n∞ ≤ ‖Mu(n)
‖1/nD→D =

∥∥(uCϕ)n(Cϕn)−1
∥∥1/n

D→D

≤
∥∥(uCϕ)n

∥∥1/n

D→D
∥∥(Cϕ−1)n

∥∥1/n

D→D,

so letting n tend to infinity and observing that rD(Cϕ−1) = 1 (by Lemma
5.1 since ϕ−1 ∈ Aut(D)) we see that

max{|u(a)|, |u(b)|} ≤ rD(uCϕ),
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and thus
rD(uCϕ) = max{|u(a)|, |u(b)|}.

The statement regarding the spectrum σD(uCϕ) can now be justified exactly
as in Theorem 4.5.

Remark 5.3. As already noted, we have not been able to compute the
spectrum of invertible weighted composition operators with hyperbolic sym-
bols ϕ, either for the Bloch or the Dirichlet space, except when |u(a)| = |u(b)|
in the Bloch case. However, the following conjecture seems plausible and we
leave it as an open problem:

Suppose that the weighted composition operator uCϕ : X → X is invertible
on X , where X is either the Bloch space B or the Dirichlet space D, and
assume that the automorphism ϕ is hyperbolic, with attractive fixed point
a ∈ ∂D and repulsive fixed point b ∈ ∂D. If u ∈ A(D), then

σX (uCϕ) =
{
λ ∈ C : min{|u(a)|, |u(b)|} ≤ |λ| ≤ max{|u(a)|, |u(b)|}

}
.
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