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TOPOLOGICAL CONJUGATION CLASSES OF
TIGHTLY TRANSITIVE SUBGROUPS OF Homeo+(R)

BY

ENHUI SHI and LIZHEN ZHOU (Suzhou)

Abstract. Let R be the real line and let Homeo+(R) be the orientation preserving
homeomorphism group of R. Then a subgroup G of Homeo+(R) is called tightly transitive
if there is some point x ∈ X such that the orbit Gx is dense in X and no subgroups H of G
with |G : H| = ∞ have this property. In this paper, for each integer n > 1, we determine
all the topological conjugation classes of tightly transitive subgroups G of Homeo+(R)
which are isomorphic to Zn and have countably many nontransitive points.

1. Introduction and preliminaries. Let X be a topological space
and let Homeo(X) be the homeomorphism group of X. Suppose that G is a
subgroup of Homeo(X). The pair (X,G) is called a dynamical system. Recall
that the orbit of x ∈ X under G is the set Gx = {gx : g ∈ G}. For a subset
A ⊆ X, define GA =

⋃
x∈AGx. A subset A ⊆ X is said to be G-invariant

if GA = A. If A is G-invariant, by the symbol G|A we mean the restriction
to A of the action of G. If A = {x} is G-invariant for some x ∈ X, then
x is said to be a fixed point of G, that is, gx = x for all g ∈ G. Let f be
a homeomorphism on X. A point x is said to be a fixed point of f if x is
a fixed point of the cyclic group 〈f〉 generated by f . We use the symbols
Fix(G) and Fix(f) to denote the fixed point sets of G and f respectively.

For a dynamical system (X,G), G is said to be topologically transitive
if for any two nonempty open subsets U and V of X, there is some g in
G such that g(U) ∩ V 6= ∅. If there is some point x ∈ X such that the
orbit Gx is dense in X then G is said to be point transitive and such x
is called a transitive point. If x is not a transitive point then it is said to
be a nontransitive point. It is well known that if G is countable and X
is a Polish space without isolated points, then the notions of topological
transitivity and point transitivity are the same. If for every x ∈ X, Gx is
dense in X, then G is called minimal. A homeomorphism f on X is said to be
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topologically transitive (resp. minimal) if the cyclic group 〈f〉 is topologically
transitive (resp. minimal). Topological transitivity is one of the most basic
notions in dynamical systems. One may consult [2] for the discussions about
topological transitivity for group actions.

Let R be the real line. Denote by Homeo+(R) the group of all orien-
tation preserving homeomorphisms on R. Let G and H be two subgroups
of Homeo+(R). If there is a homeomorphism φ ∈ Homeo+(R) such that
φGφ−1 = H, then G and H are said to be topologically conjugate (or conju-
gate for simplicity) by φ. If G is topologically transitive and no subgroup F
of G with coset index |G : F | =∞ is topologically transitive, then G is said
to be tightly transitive. In [7], some topologically transitive solvable sub-
groups H of Homeo+(R) are constructed and some relationships between
the algebraic structures and the dynamical properties of H are obtained.
In this paper, we are interested in the classification problem of topolog-
ically transitive subgroups of Homeo+(R) up to topological conjugations.
One may consult [1, 4, 5] for some surveys on the dynamics of subgroups of
Homeo+(R).

In Section 2, we give some auxiliary results. In Section 3, for every
irrational number α ∈ (0, 1) and every natural number n ≥ 2, we con-
struct a tightly transitive subgroup Gα,n of Homeo+(R) which is isomor-
phic to Zn, and we show that Gα,n and Gβ,n are topologically conjugate
if and only if there are integers m1, n1,m2, n2 with |m1n2 − n1m2| = 1
such that (m1 + n1α)/(m2 + n2α) = β. In Section 4, we show that every
tightly transitive subgroup G of Homeo+(R) which is isomorphic to Zn and
has countably many nontransitive points is topologically conjugate to some
Gα,n constructed in Section 3. Thus we completely determine the topological
conjugation classes of tightly transitive subgroups G of Homeo+(R) which
are isomorphic to Zn and have countably many nontransitive points.

2. Auxiliary results

Lemma 2.1. Suppose that H is a topologically transitive subgroup of
Homeo+(R). If for some x ∈ R the set S = Hx is not dense in R, then
the closure K = S is nowhere dense and inf K = −∞, supK =∞.

Proof. Assume to the contrary that K contains an open interval (a, b).
Then for any open interval (a′, b′) ⊂ R, by the topological transitivity of H,
there is some h ∈ H such that h((a′, b′))∩ (a, b) 6= ∅. Thus there is some k in
H such that k(x) ∈ h((a′, b′)), that is, h−1k(x) ∈ (a′, b′). By the arbitrariness
of (a′, b′), we see that Hx is dense in R. This is a contradiction. So K is
nowhere dense in R.

Let α = inf K and β = supK. If β < ∞, then β is a fixed point
of H. Since each element of H is an orientation preserving homeomorphism,
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(β,∞) is H-invariant, which contradicts the topological transitivity of H.
So β =∞. Similarly, α = −∞.

Lemma 2.2. Let H be a topologically transitive subgroup of Homeo+(R)
which is isomorphic to Z2. Then H is minimal.

Proof. Assume to the contrary that there is some x ∈ R whose orbit
Hx is not dense in R. Let K = Hx. By Lemma 2.1, R \ K is a disjoint
union of countably infinitely many open intervals {(ai, bi) : i ∈ Z}. Let
F = {h ∈ H : h((a0, b0)) = (a0, b0)}. Since H permutes these intervals
(ai, bi), the restriction F |(a0,b0) must be topologically transitive. So F ∼= Z2

(note that no homeomorphism on (a0, b0) is topologically transitive). Thus
m ≡ |H : F | < ∞. Let H = h1F ∪ · · · ∪ hmF be the coset decomposition.
Then the open set U =

⋃m
i=1 hi((a0, b0)) is H-invariant, which contradicts

the topological transitivity of H.

Lemma 2.3. Let G be a commutative subgroup of Homeo+(R) and let
f ∈ Homeo+(R) commute with each element of G. If Fix(G),Fix(f) 6= ∅,
then Fix(G) ∩ Fix(f) 6= ∅.

Proof. If Fix(G) ⊆ Fix(f), then the conclusion holds. So we may suppose
that there is some x ∈ Fix(G) \Fix(f). This means that there is a maximal
interval (a, b) ⊂ R \ Fix(f) such that x ∈ (a, b) (a may be −∞ and b may
be ∞). Since Fix(f) 6= ∅, either a ∈ Fix(f) or b ∈ Fix(f). Without loss
of generality, we may suppose that a is a fixed point of f . Thus either
limn→∞ f

n(x) = a or limn→∞ f
−n(x) = a. Since x is a fixed point of G

and f commutes with each element of G, we see that fn(x) is a fixed point
of G for every n ∈ Z. It follows that a is a fixed point of G. Therefore
Fix(G) ∩ Fix(f) 6= ∅.

Proposition 2.4. Let H be a subgroup of Homeo+(R) which is isomor-
phic to Zn for some n ≥ 1, and let {ei : i = 1, . . . , n} be a basis of H as a
Z-module. If Fix(ei) 6= ∅ for each i = 1, . . . , n, then Fix(H) 6= ∅.

Proof. This can be deduced from Lemma 2.3 by induction.

Let a, b ∈ R. Denote by La the translation of R by a, that is, La(x) = x+a
for every x ∈ R; denote by 〈La, Lb〉 the subgroup of Homeo+(R) which is
generated by La and Lb. The lemma below follows from Plante’s Theorem
(see [6, Theorem 1.3]). For the convenience of the reader, we give a direct
proof.

Lemma 2.5. Let H be a subgroup of Homeo+(R) which is isomorphic
to Zn. Then there is an H-invariant Borel measure µ on R which is finite
on compact sets.

Proof. If every h ∈ H has a fixed point in R, then Fix(H) 6= ∅ by
Proposition 2.4. Fix an x ∈ Fix(H). Then the Dirac measure δx is an H-
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invariant Borel measure on R which is finite on compact sets. So we may
as well suppose that there is an h ∈ H that has no fixed point. Passing
to a conjugation if necessary, we may further suppose that h is the unit
translation L1 on R. Let π : R → S1, x 7→ e2πix, be the covering map.
Since each element in H commutes with h (= L1), H naturally induces
an orientation preserving action on S1. By the amenability of H and the
compactness of S1, there is an H-invariant finite Borel measure ν on S1.
Define a Borel measure µ on R by

µ(A) =
∞∑

i=−∞
ν
(
π(A ∩ [i, i+ 1))

)
for any Borel subset A of R. Then ν is the required H-invariant measure
on R.

Lemma 2.6. Let H be a minimal subgroup of Homeo+(R). If there is an
H-invariant Borel measure µ on R which is finite on compact sets, then H
is topologically conjugate to a subgroup G of Homeo+(R) which consists of
translations.

Proof. Since H is minimal, the support of µ is the whole real line R and
µ has no atoms. Let φ : R→ R be the map defined by

φ(x) =

{
µ([0, x]) if x ≥ 0,

−µ([x, 0]) if x < 0,

and let G = φHφ−1. Then φ is an orientation preserving homeomorphism
and the group G consists of translations on R.

Lemma 2.7. Let H be a tightly transitive subgroup of Homeo+(R) which
is isomorphic to Zn for some n ≥ 3. Then H cannot be minimal.

Proof. Let {e1, . . . , en} be a basis of H as a Z-module. Assume to the
contrary that H is minimal. By Lemmas 2.5 and 2.6, there is an orientation
preserving homeomorphism φ : R→ R such that φHφ−1 consists of transla-
tions on R. Thus we may let φeiφ

−1 = Lαi for some real numbers αi. Since
φHφ−1 is tightly transitive, α1 6= 0 and αk/α1 is an irrational number for
some k ∈ {2, . . . , n}. Thus the group 〈Lα1 , Lαk

〉 generated by Lα1 and Lαk

is minimal. This contradicts the fact that φHφ−1 is tightly transitive (note
that n ≥ 3). So H cannot be minimal.

It is well known that if X is a compact metric space and G is a subgroup
of Homeo(X), then there must be a G-invariant closed subset K of X such
that G|K is minimal. In general, this conclusion does not hold when the
phase space is not compact.

Proposition 2.8. Let H be a subgroup of Homeo+(R) which is iso-
morphic to Zn for some n ≥ 1. Suppose A is an H-invariant closed subset
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of R such that inf A = −∞ and supA = ∞. If H|A is topologically tran-
sitive, then A contains a minimal H-invariant closed subset M of R with
inf M = −∞ and supM =∞.

Proof. First we have the following claim:

Claim A. There is an f ∈ H that has no fixed point in R.

In fact, if Fix(g) 6= ∅ for every g ∈ H, then Fix(H) 6= ∅ by Proposi-
tion 2.4. Fix c ∈ Fix(H). Then (−∞, c) and (c,∞) are both H-invariant.
Since inf A = −∞ and supA = ∞, both A ∩ (−∞, c) and A ∩ (c,∞) are
H-invariant nonempty open subset of A in the relative topology. But this
contradicts the topological transitivity of H|A. This completes the proof of
the claim.

Now use Claim A to fix an f ∈ H that has no fixed point in R. Then f or
f−1 is conjugate to the unit translation L1 on R by an orientation preserving
homeomorphism on R. Without loss of generality, we may suppose that
f = L1. This implies the following claim:

Claim B. For any H-invariant nonempty closed subset B of R, we have
B ∩ [0, 2] 6= ∅.

Let F be the family of all H-invariant nonempty closed subsets of A.
Then F 6= ∅ for A ∈ F . Let � be a partial order in F defined by B � C
if and only if B ⊆ C for B,C ∈ F . If {Aλ : λ ∈ Λ} is a chain in F ,
then from Claim B and the compactness of [0, 2] we obtain

⋂
λ∈ΛAλ ⊃⋂

λ∈Λ(Aλ ∩ [0, 2]) 6= ∅. This means that
⋂
λ∈ΛAλ is an upper bound of

{Aλ : λ ∈ Λ}. By Zorn’s Lemma there is a maximal element M in F . Thus
M is a minimal H-invariant closed subset of A. Since L1 belongs to H, we
have inf M = −∞ and supM =∞.

3. Construction and properties of Gα,n. For every irrational α in
(0, 1) and every positive integer n ≥ 2, we will construct by induction a
tightly transitive subgroup Gα,n of Homeo+(R) which is isomorphic to Zn.

When k = 2, take Gα,2 = 〈L1, Lα〉. Then Gα,2 is tightly transitive and
is isomorphic to Z2.

Suppose that Gα,k has been constructed for 2 ≤ k ≤ n − 1. Then we
construct Gα,n as follows. Let ~ : R→ (0, 1) be the homeomorphism defined
by

~(x) =
1

π
(arctanx+ π/2) for x ∈ R.

For g ∈ Gα,n−1, define g̃ ∈ Homeo+(R) by

g̃(x) =

{
~g~−1(x− i) + i for x ∈ (i, i+ 1), i ∈ Z,

x for x ∈ Z.
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Clearly g̃ and L1 commute for each g ∈ Gα,n−1. Let Gα,n be the group
generated by {g̃ : g ∈ Gα,n−1} ∪ {L1}.

By the above construction, we immediately have

Lemma 3.1.

(i) Gα,n is tightly transitive and is isomorphic to Zn.
(ii) Let intrGα,n denote the set of nontransitive points of Gα,n. Then

intrGα,3 = Z and intrGα,n =
⋃
i∈Z ~(intrGα,n−1) + i for n ≥ 4.

(iii) Suppose (a, b) is a connected component of R \ intrGα,n and F =
{g ∈ Gα,n : g((a, b)) = (a, b)}. Then F |(a,b) is minimal and is hom-

eomorphic to Z2.

For a ∈ R, define Ma : R → R by Ma(x) = ax for all x ∈ R. If a > 0,
then Ma ∈ Homeo+(R).

Proposition 3.2. Let H be a topologically transitive subgroup of the
group Homeo+(R) and assume that H is isomorphic to Z2. Then H is con-
jugate to Gδ,2 for some irrational δ ∈ (0, 1).

Proof. From Lemmas 2.2 and 2.5, H is minimal and there is an H-
invariant Borel measure µ on R which is finite on compact sets. Lemma 2.6
yields an orientation preserving homeomorphism φ on R such that φHφ−1

consists of translations on R. Select two generators Lα, Lβ ∈ φHφ−1 such
that 0 < α < β. Then Mβ−1LβMβ = L1 and Mβ−1LαMβ = Lα/β. Thus H
is conjugate to the group Gα/β,2 = 〈L1, Lα/β〉 by the orientation preserving
homeomorphism Mβ−1φ. Notice that 0 < α/β < 1.

Lemma 3.3. Let 0 < α, β < 1 be irrational. Then the subgroups Gα,2
and Gβ,2 are conjugate by an orientation preserving homeomorphism if and
only if there are integers m1, n1,m2, n2 with |m1n2 − n1m2| = 1 such that
(m1 + n1β)/(m2 + n2β) = α.

Proof. Suppose that Gα,2 and Gβ,2 are conjugate by an h ∈ Homeo+(R),
so Gβ,2 = hGα,2h

−1. Let hL1h
−1 = Lu and hLαh

−1 = Lv for some u, v ∈ R.

We may assume that h(0) = 0, otherwise we need only replace h by
L−h(0) ◦ h. Since h preserves the orientation of R, we have

v = Lv(0) = hLαh
−1(0) = h(α) < h(1) = hL1h

−1(0) = Lu(0) = u

and

0 = h(0) < h(α) = v.

Thus 0 < v < u. Let f = M1/u ◦ h. Then f is an orientation preserving
homeomorphism on R, and

(3.1) f ◦ Lα = Lv/u ◦ f and f ◦ L1 = L1 ◦ f.
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Since Lα, Lv/u and f commute with L1, we get three naturally induced

orientation preserving homeomorphisms L̃α, L̃v/u, f̃ : S1 → S1 on the unit

circle S1. By the first equation in (3.1) we immediately get

f̃ ◦ L̃α = L̃v/u ◦ f̃ ,

that is, the rotations L̃α and L̃v/u are conjugate by the orientation preserving

homeomorphism f̃ . Since 0 < α, v/u < 1, we obtain α = v/u, i.e., v = αu.
Thus

〈L1, Lβ〉 = Gβ,2 = hGα,2h
−1 = 〈hL1h

−1, hLαh
−1〉 = 〈Lu, Lv〉 = 〈Lu, Lαu〉.

Since Gβ,2 ∼= Z2, there are integers m1, n1,m2, n2 with |m1n2 − n1m2| = 1
such that

Lm1
1 ◦ L

n1
β = Lαu, Lm2

1 ◦ L
n2
β = Lu.

So

Lm1
1 ◦ L

n1
β (0) = Lαu(0), Lm2

1 ◦ L
n2
β (0) = Lu(0),

that is,

m1 + n1β = αu, m2 + n2β = u.

Thus (m1 + n1β)/(m2 + n2β) = α.
On the other hand, if there are integers m1, n1,m2, n2 such that we have

|m1n2−n1m2| = 1 and (m1 + n1β)/(m2 + n2β) = α, then let u = m2+n2β.
We may suppose u > 0, otherwise we need only replace m1,m2, n1, n2 by
−m1,−m2,−n1,−n2 respectively. Thus

Lm1
1 ◦ L

n1
β = Lαu, Lm2

1 ◦ L
n2
β = Lu.

Since |m1n2 − n1m2| = 1, we obtain

(3.2) Z2 ∼= Gβ,2 = 〈L1, Lβ〉 = 〈Lu, Lαu〉.
Noting that

(3.3) MuL1M
−1
u = Lu and MuLαM

−1
u = Lαu,

we have MuGα,2M
−1
u = Gβ,2 from (3.2), that is, Gα,2 and Gβ,2 are topolog-

ically conjugate by the orientation preserving homeomorphism Mu.

Theorem 3.4. For any n ≥ 2 and any irrational numbers 0 < α, β < 1,
α 6= β, the subgroups Gα,n and Gβ,n are conjugate by an orientation pre-
serving homeomorphism if and only if there are integers m1, n1,m2, n2 with
|m1n2 − n1m2| = 1 such that (m1 + n1α)/(m2 + n2α) = β.

Proof. Necessity. For each Gα,n, by Lemma 3.1, there is an open interval
(a, b) in R such that the restriction to (a, b) of the group F ≡ {g ∈ Gα,n :
g((a, b)) = (a, b)} is minimal. We call such an open interval (a, b) a minimal
interval of Gα,n. (When n = 2, (a, b) = R, and when n > 2, (a, b) is a proper
subinterval of R.) By Lemma 2.7 and Proposition 3.2, F is isomorphic to Z2
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and the restriction F |(a,b) is conjugate to Gα,2 on R. So, if Gα,n and Gβ,n
are conjugate by an orientation preserving homeomorphism h : R→ R, then
h maps a minimal interval (a, b) of Gα,n to a minimal interval (h(a), h(b))
of Gβ,n. Thus h also induces an orientation preserving conjugation between
Gα,2 and Gβ,2 on R. So the conclusion holds by Lemma 3.3.

Sufficiency. We proceed by induction. Suppose that there are integers
m1, n1,m2, n2 with |m1n2 − n1m2| = 1 such that (m1 + n1α)/(m2 + n2α)
= β. By Lemma 3.3, Gα,2 and Gβ,2 are conjugate by an orientation pre-
serving homeomorphism, that is, the theorem holds for n = 2. Assume that
Gα,n−1 and Gβ,n−1 are conjugate by an orientation preserving homeomor-

phism h : R→ R. Now define h̃ : R→ R by

h̃(x) =

{
~h~−1(x− i) + i for x ∈ (i, i+ 1), i ∈ Z,

x for x ∈ Z,

where ~ is defined at the beginning of this section. Then it is a direct check
that h̃ is an orientation preserving conjugation between Gα,n and Gβ,n.

4. The main result

Theorem 4.1. Let H be a tightly transitive subgroup of Homeo+(R)
which is isomorphic to Zn for some n ≥ 2 and has countably many non-
transitive points. Then H is conjugate to Gα,n by an orientation preserving
homeomorphism for some irrational α ∈ (0, 1).

Proof. We use induction. From Proposition 3.2, the theorem holds for
n = 2. Assume that it holds for n = k where k ≥ 2. Let H be a tightly
transitive subgroup of Homeo+(R) which is isomorphic to Zk+1 and has
countably many nontransitive points. From Lemma 2.7, we know that H
is not minimal. So there is some x ∈ R such that S = Hx is not dense
in R. Let K = S. From Lemma 2.1, K is nowhere dense, inf K = −∞ and
supK =∞. By Proposition 2.8, there is a minimal H-invariant closed subset
M of K such that inf M = −∞ and supM = ∞. Since M is countable by
assumption (because every point in M is nontransitive), M must have an
isolated point. Since M is also minimal, every point of M is isolated. Thus
we may suppose that

M = {· · · < a−1 < a0 < a1 < · · · } with lim
i→∞

ai =∞, lim
i→−∞

ai = −∞.

Let F = {g ∈ H : g((a0, a1)) = (a0, a1)}. Since H permutes these intervals
(ai, ai+1) transitively, we have

(4.1) |H : F | =∞.
Clearly the restricted action F |(a0,a1) is topologically transitive. Let f ∈ H
be such that f(a0) = a1. Then f(ai) = ai+1 for all i ∈ Z, as f is orientation
preserving. Hence the group 〈F, f〉 generated by f and F is topologically
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transitive. By the tight transitivity of H, we see that 〈F, f〉 has finite index
in H, that is,

(4.2) |H : 〈F, f〉| <∞.

From (4.1) and (4.2) we obtain F ∼= Zk. For any g ∈ H \F , since g preserves
the orientation of R, we have gi((a0, a1))∩ (a0, a1) = ∅ for all i 6= 0, that is,
gi /∈ F for all i 6= 0. Thus H/F is torsion free, which means that H/F is an
infinite cyclic group. This implies that H = F ⊕ 〈f〉.

Since F |(a0,a1) is tightly transitive with countably many nontransitive

points and F ∼= Zk, by the inductive hypothesis there is an orientation
preserving homeomorphism h : (a0, a1)→ R such that hF |(a0,a1)h−1 = Gα,k
for some irrational α ∈ (0, 1). Now define a homeomorphism h̃ : R→ R by

h̃(x) =

{
~hf−i(x) + i for x ∈ (ai, ai+1), i ∈ Z,

i for x = ai, i ∈ Z,

(~ is defined at the beginning of Section 3). Then h̃f h̃−1(x) = x+ 1 for all
x ∈ R. Let

G̃α,k+1 = {g ∈ Gα,k+1 : g((0, 1)) = (0, 1)}.

Then

~hF |(a0,a1)h
−1~−1 = ~Gα,k~−1 = G̃α,k+1|(0,1),

which implies that h̃F h̃−1 = G̃α,k+1 by the definition of h̃. Since H =

F ⊕ 〈f〉, h̃ is an orientation preserving conjugacy between H and Gα,k+1.

We finish by constructing a tightly transitive subgroup of Homeo+(R)
which is isomorphic to Z4 and has uncountably many nontransitive points.
This example shows in particular that the class of tightly transitive sub-
groups of Homeo+(R) which are isomorphic to Zn and have countably many
nontransitive points is a proper subclass of all tightly transitive subgroups
of Homeo+(R) which are isomorphic to Zn.

Example 4.2. First we construct a Denjoy homeomorphism on the circle
(see e.g. [3, p. 107]). Let ρα : S1 → S1, e2πix 7→ e2πi(x+α), where α is
irrational. Take any θ0 ∈ S1. At the point ρnα(θ0), we cut the circle and glue
in a small interval In which satisfies

∑∞
n=−∞ l(In) <∞, where l(In) denotes

the length of In. The result of this operation is still a circle. Then extend the
rotation ρα to the union of the In’s by choosing any orientation preserving
homeomorphism hn taking In to In+1. We obtain a homeomorphism f on
the new circle, which is called a Denjoy homeomorphism.

Now fix two orientation preserving homeomorphisms g, h on I0 such that
fg = gf and 〈f, g〉 is topologically transitive. Define two homeomorphisms
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ḡ and h̄ on the new circle by

ḡ(x) =

{
fngf−n(x) for x ∈ In (= fn(I0)), n ∈ Z,

x otherwise,

h̄(x) =

{
fnhf−n(x) for x ∈ In (= fn(I0)), n ∈ Z,

x otherwise.

Then the group 〈f, ḡ, h̄〉 is tightly transitive and isomorphic to Z3. Passing
to a conjugation, we may suppose f , ḡ and h̄ are defined on the unit circle
S1 in the complex plane. Let f̃ , g̃ and h̃ be some fixed liftings to the line
of f , ḡ and h̄ respectively via the quotient map π : R → S1, x 7→ e2πix.
Thus the group 〈f̃ , g̃, h̃, L1〉 is tightly transitive, is isomorphic to Z4, and
has uncountably many nontransitive points.
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