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Diameter 2 properties and convexity

by
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Stanimir Troyanski (Murcia and Sofia)

Abstract. We present an equivalent midpoint locally uniformly rotund (MLUR)
renorming of C[0, 1] with the diameter 2 property (D2P), i.e. every non-empty relatively
weakly open subset of the unit ball has diameter 2. An example of an MLUR space with
the D2P and with convex combinations of slices of arbitrarily small diameter is also given.

1. Introduction. Let X be a (real) Banach space. We say that X (or
its norm ‖ · ‖) is midpoint locally uniformly rotund (MLUR) (resp. weakly
midpoint locally uniformly rotund (weakly MLUR)) if every x in the unit
sphere SX of X is a strongly extreme point (resp. strongly extreme point in
the weak topology), i.e. for every sequence (xn) in X, we have xn → 0 in
norm (resp. xn → 0 weakly) whenever ‖x± xn‖ → 1.

Let x∗ ∈ SX∗ and ε > 0. By a slice of the unit ball BX of X we mean a
set of the form

S(x∗, ε) := {x ∈ BX : x∗(x) > 1− ε}.

Over the last 15 years quite much has been discovered concerning Banach
spaces with various kinds of diameter 2 properties (see e.g. [18], [1], [9], [10],
[3], [4] to mention but a few).

Definition 1.1. A Banach space X has

(a) the local diameter 2 property (LD2P) if every slice of BX has diam-
eter 2;

(b) the diameter 2 property (D2P) if every non-empty relatively weakly
open subset of BX has diameter 2;
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(c) the strong diameter 2 property (SD2P) if every finite convex combi-
nation of slices of BX has diameter 2.

By [7, Lemma II.1, p. 26] (c) implies (b), and of course (b) implies (a).
None of the reverse implications holds (see [3, Theorem 2.4] and [9, Theo-
rem 1] or [2, Theorem 3.2]). However, note Proposition 1.3 below which is an
immediate consequence of Choquet’s lemma (see [6, Lemma 3.69, p. 111]).

Lemma 1.2 (Choquet). Let C be a compact convex set in a locally convex
space X. Then for every x ∈ ext(C), the extreme points in C, the slices of
C containing x form a neighbourhood base of x in the relative topology of C.

Proposition 1.3. If X is weakly MLUR then the LD2P implies the
D2P.

Proof. Simply recall that the points in BX which are strongly extreme
in the weak topology are exactly the extreme points which continue to be
extreme in BX∗∗ (see [8]), and then use Lemma 1.2 on BX∗∗ given the weak∗

topology.

It is not evident that weakly MLUR spaces with the LD2P exist, but
indeed they do. The quotient C(T)/A, where C(T) is the space of continuous
functions on the complex unit circle T and where A is the disc algebra, is
such an example (see the next paragraph for references). Another example
can be constructed as follows: Let Φ be a function on c0, the space of real
valued sequences which converge to 0, defined by Φ(xn) =

∑∞
n=1 x

2n
n . Define

then a norm on c0 by |x| = inf{λ > 0 : Φ(x/λ) ≤ 1} for every x ∈ c0. Then
the space (c0, | · |) can be shown to be weakly MLUR and to have the LD2P
(see the Appendix for details).

The two examples mentioned motivate the following question which we
will address in this paper: How rotund can a Banach space be and still
have diameter 2 properties? In [11, Remarks 4), p. 286] it is pointed out
that C(T)/A is M-embedded and that its dual norm is smooth (see also
[17] and [12, p. 167]). Recall that X is M-embedded provided we can write
X∗∗∗ = X∗⊕1X

⊥ where X⊥ ⊂ X∗∗∗ is the annihilator of X (a good source
for the theory of M-embedded spaces is the book [12]). It is well known that
M-embedded spaces have the SD2P [1], and so C(T)/A actually furnishes
an example of a weakly MLUR space with the SD2P. One can also prove
that the space (c0, | · |) mentioned above has the same properties (see the
Appendix). For still more examples see [20].

The unit ball of an M-embedded space (even any proper M-ideal) cannot,
however, contain strongly extreme points [12, Sect. II.4], so no MLUR
M-embedded space exists. Still, one can ask if there exists an MLUR space
with the LD2P (= D2P in this case). Until now, no such example has been
known. But, in Section 2 of this paper we construct an equivalent MLUR
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renormingX of C[0, 1] such that for every slice S of BX and every x ∈ S∩SX
there exists y ∈ S at distance fromx as close to 2 as we want, i.e.X has the local
diameter 2 property + (LD2P+). In particular this renorming has the LD2P
and thus the D2P as it is MLUR. Using this renorming we also construct in
Section 2 an example of an MLUR space which has the D2P, the LD2P+, and
has convex combinations of slices with arbitrarily small diameter. Section 3
contains a list of open questions together with some comments.

The notation and conventions we use are standard and follow [14]. When
considered necessary, notation and concepts are explained as the text pro-
ceeds.

2. MLUR renormings of C[0, 1] with the D2P. Let D = (Dn)∞n=1

be a base of neighbourhoods in [0, 1] (by this we will always mean a base for
the usual topology on [0, 1]). For each x ∈ C[0, 1] set ‖x‖n = supd∈Dn

|x(d)|
and note that each ‖ · ‖n defines a seminorm on C[0, 1]. Now define a norm
on C[0, 1] by

‖x‖D :=
( ∞∑
n=1

2−n‖x‖2n
)1/2

.

By compactness there exists b > 0 such that b‖x‖∞ ≤ ‖x‖D ≤ ‖x‖∞, so
the norm ‖ · ‖D is equivalent to the max-norm ‖ · ‖∞ on C[0, 1]. The idea to
introduce this norm goes back to [16].

Let

XD = (C[0, 1], ‖ · ‖D).

Proposition 2.1. For any base D = (Dn)∞n=1 of neighbourhoods in [0, 1]
the space XD is MLUR.

Proof. Let x and (yk)∞k=1 in C[0, 1] be such that limk→∞ ‖x ± yk‖D =
‖x‖D. We will show that ‖yk‖D → 0 to establish that ‖ · ‖D is MLUR. By a
convexity argument (see e.g. [5, Fact II.2.3]) we have

(2.1) lim
k→∞

‖x± yk‖n = ‖x‖n, n = 1, 2, . . . .

Let ε > 0. We will first make three simple observations:

• By uniform continuity of x, we can find δ = δ(ε) > 0 such that the
oscillation over an interval A, supt,s∈A(x(t)−x(s)), is less than ε when-
ever A ⊂ [0, 1] is of length less than δ.
• With the δ above, since (Dn)∞n=1 is a base for the topology on the com-

pact space [0, 1], there is a finite subset M ⊂ N such that
⋃

m∈M Dm

covers [0, 1] and the length of any Dm, m ∈M , is less than δ.
• With M and δ as above, having in mind (2.1) which is of course true

for each m ∈M , we can find K ∈ N such that ‖x± yk‖m ≤ ‖x‖m + ε
whenever k ≥ K and m ∈M .
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We are now ready to finish the proof. Let t0 ∈ [0, 1]. We will show that
|yk(t0)| ≤ 2ε for k ≥ K. Choose σk ∈ {−1, 1} such that

|x(t0) + σkyk(t0)| = |x(t0)|+ |yk(t0)|.
Since

⋃
m∈M Dm covers [0, 1], there is m′ ∈ M such that t0 ∈ Dm′ . Now

recall that the lengths of all the Dm’s are < δ, so that the oscillation of x
over Dm′ is less than ε. We get

|yk(t0)| = |x(t0) + σkyk(t0)| − |x(t0)|
≤ sup

t∈Dm′
|x(t) + σkyk(t)| − |x(t0)|

≤ ‖x+ σkyk‖m′ − (‖x‖m′ − ε)
≤ ‖x‖m′ + ε− ‖x‖m′ + ε = 2ε,

provided k ≥ K.

We will now show that XD has a rather strong form of the LD2P, to be
called LD2P+:

Definition 2.2. A Banach space X has the local diameter 2 property +
(LD2P+) if for every ε > 0, every slice S of BX , and every x ∈ S∩SX there
exists y ∈ S such that ‖x− y‖ > 2− ε.

Proposition 2.3. For any base D = (Dn)∞n=1 of neighbourhoods in [0, 1]
the space XD has the LD2P+.

Proof. We know that the dual of XD is isomorphic to rca[0, 1], the space
of regular and countably additive Borel measures on [0, 1]. Let λ ∈ rca[0, 1]
be the Lebesgue measure. By Lebesgue’s decomposition theorem, any mea-
sure m ∈ rca[0, 1] can be decomposed as m = µ + ν, where µ is absolutely
continuous with respect to λ, and ν and λ are mutually singular.

Now, let m ∈ SX∗D , ε > 0, and denote by S the slice{
x ∈ BXD

:
�

[0,1]

x dm > 1− ε
}
.

Let x ∈ S and δ > 0 with 1− ‖x‖D < δ < ε and find N ∈ N such that( N∑
n=1

2−n‖x‖2n
)1/2

> 1− δ > 1− ε.

By continuity there exist open intervals En = (rn, tn) ⊂ Dn, 1 ≤ n ≤ N ,
such that

• Ei ∩ Ej = ∅ for every i 6= j,

• (
∑N

n=1 2−n|x(en)|2)1/2 > 1− δ whenever en ∈ En.

Moreover, as λ and ν are mutually singular, there exist sn ∈ En with
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• ν({sn}) = 0 for every n = 1, . . . , N , and thus m({sn}) = 0 for every
n = 1, . . . , N .

For η ∈ (0, ε), by regularity of m, we can shrink each interval En around sn
if necessary so that

• b−1
∑N

n=1 |m(En)| < η and for E =
⋃N

n=1En,
	
[0,1]\E x dm− η > 1− ε

(see the beginning of Section 2 for the definition of b).

Now, define a continuous function y on [0, 1] by letting, for n = 1, . . . , N ,
y(rn) = x(rn), y(sn) = −x(sn), y(tn) = x(tn), linear on (rn, sn) and (sn, tn),
and otherwise equal to x. Then y ∈ XD with supd∈En

|y(d)| ≤ supd∈En
|x(d)|

and y(d) = x(d) for every d ∈ [0, 1] \ E. Therefore ‖y‖D ≤ ‖x‖D ≤ 1.
Moreover,�

[0,1]

y dm =
�

[0,1]\E

y dm+
�

E

y dm

≥
�

[0,1]\E

x dm−
N∑

n=1

b−1|m(En)| >
�

[0,1]\E

x dm− η > 1− ε,

and

‖x− y‖ ≥
( N∑
n=1

2−n‖x− y‖2n
)1/2

≥
( N∑
n=1

2−n|x(sn)− y(sn)|2
)1/2

= 2
( N∑
n=1

2−n|x(sn)|2
)1/2

> 2− 2δ.

From Propositions 2.1, 2.3, and 1.3 we obtain the following result.

Theorem 2.4. For any base D = (Dn)∞n=1 of neighbourhoods in [0, 1]
the space XD is MLUR and has the D2P and the LD2P+.

In [10] dual characterizations of the diameter 2 properties in Definition
1.1 were obtained. To formulate these, we need to introduce some concepts.

Definition 2.5. For a Banach space X we say that (the norm on) X is

• locally octahedral if for every ε > 0 and every x ∈ SX there exists
y ∈ SX such that ‖x± y‖ > 2− ε;
• octahedral if for every ε > 0 and every finite set (xi)

n
i=1 ⊂ SX there

exists y ∈ SX such that ‖xi + y‖ > 2− ε for every 1 ≤ i ≤ n.

For a Banach space X, x ∈ SX , and ε > 0, by a weak∗-slice of BX∗ we
mean a set of the form

S(x, ε) := {x∗ ∈ BX∗ : x∗(x) > 1− ε}.
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Definition 2.6. A dual Banach space X∗ has

• the weak∗-local diameter 2 property (weak∗-LD2P) if every weak∗-slice
of BX∗ has diameter 2;
• the weak∗-strong diameter 2 property (weak∗-SD2P) if every finite con-

vex combination of weak∗-slices of BX∗ has diameter 2;
• the weak∗-local diameter 2 property + (weak∗-LD2P+) if for every
ε > 0, every weak∗-slice S of BX∗ , and every x∗ ∈ S∩SX∗ there exists
y∗ ∈ S such that ‖x∗ − y∗‖ > 2− ε.

Theorem 2.7 ([10, Theorems 3.1, 3.3, and 3.5]). For a Banach space X
we have

(a) X is locally octahedral ⇔ X∗ has the weak∗-LD2P.
(b) X is octahedral ⇔ X∗ has the weak∗-SD2P.

From [13, Theorem 1.5], a Banach space X has the LD2P+ if and only if
every rank one, norm one projection P on X satisfies ‖I − P‖ = 2 (I is the
identity operator on X). Using this formulation of the LD2P+ and a similar
argument to the proof of [15, Lemma 2.1] one can also prove that a Banach
space has the LD2P+ if and only if its dual has the weak∗-LD2P+. From
this and Theorems 2.4 and 2.7 we then see that for any base D = (Dn)∞n=1

of neighbourhoods in [0, 1] the space XD is locally octahedral. However, XD

is never octahedral. To see this, we will use the following lemma.

Lemma 2.8. Let u and v be continuous functions on the unit interval.
Suppose ‖u‖n = ‖v‖n for every n ∈ N. Then

|u(t)| = |v(t)| for every t ∈ [0, 1].

Proof. Let ε > 0, and choose δ > 0 such that

(2.2) |u(s′)− u(s′′)| < ε and |v(s′)− v(s′′)| < ε

whenever |s′− s′′| < δ. Fix t ∈ [0, 1]. There exists n ∈ N such that t belongs
to Dn and diam(Dn) < δ. Now find t′, t′′ in Dn such that

∣∣‖u‖n−|u(t′)|
∣∣ < ε

and
∣∣‖v‖n − |v(t′′)|

∣∣ < ε. Then
∣∣|u(t′)| − |v(t′′)|

∣∣ < 2ε, and thus by (2.2) we

have
∣∣|u(t)| − |v(t)|

∣∣ < 4ε.

Proposition 2.9. For any base D = (Dn)∞n=1 of neighbourhoods in [0, 1]
the space XD fails to be octahedral.

Proof. Choose two different non-negative norm 1 functions u and v
in XD. Assume there exists a sequence (yk)∞k=1 ⊂ SX such that

(2.3) lim
k→∞

‖u+ yk‖D = 2 and lim
k→∞

‖v + yk‖D = 2.

Using (2.3) and [5, Fact II.2.3] we find that for every n ∈ N,

‖u‖n = lim
k
‖yk‖n = ‖v‖n.
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Now we get a contradiction from Lemma 2.8, as u and v are non-negative
and different.

The final part of this section will be devoted to showing that there exists
a Banach space which is MLUR, has the D2P, the LD2P+, but has convex
combinations of slices with arbitrarily small diameter. First we will show
that for any given δ > 0 there exists a base D = (Dn)∞n=1 of neighbourhoods
in [0, 1] for which BXD

contains convex combinations of slices with diameter
< δ. For this we will use the following lemma.

Let t ∈ [0, 1]. Set J(t) = {n ∈ N : t ∈ Dn} and w(t) =
∑

n∈J(t) 2−n.

Lemma 2.10. Let D = (Dn)∞n=1 be a base of neighbourhoods in [0, 1],
t ∈ [0, 1], and δt the point measure in X∗D. If Dn ∩ {t} = ∅ for every
n 6∈ J(t), then

‖δt‖∗D =
1√
w(t)

,

where ‖ · ‖∗D is the norm in X∗D.

Proof. Let x ∈ XD with norm 1. Then

1 =

∞∑
n=1

2−n‖x‖2n ≥
∑

n∈J(t)

2−n|x(t)|2 = w(t)|δt(x)|2.

Thus ‖δt‖∗D ≤ 1/
√
w(t). Moreover, by the assumptions it is always possible

to find for i 6∈ J(t) an open set which contains t and does not intersect Di.
Thus we can always find an xi ∈ SXD

which takes its maximum value at t
and is zero on Di. It follows that for any ε > 0 we can find x ∈ SXD

which
takes its maximum value at t and

∑
n 6∈J(t) 2−n‖x‖2n < ε. From the inequality

1 = ‖x‖D =
∑

n∈J(t)

2−nx(t)2 +
∑

n6∈J(t)

2−n‖x‖2n

<
∑

n∈J(t)

2−nx(t)2 + ε

we get δt(x)2 > (1− ε)/w(t). Thus we conclude that ‖δt‖∗D = 1/
√
w(t).

Let (εn)∞n=1 (with ε1 small!) be a strictly decreasing sequence of positive
real numbers converging fast to 0. For each i ∈ N let us define a base of
neighbourhoods (Di,n)∞n=1 in [0, 1]: Let i = 1 and

D1,1 = [0, 2−1 + ε1), D1,2 = (2−1 − ε2, 1].

We call this the first level. For the second level, set

D1,3 = [0, 2−2 + ε3), D1,4 = (2−2 − ε4, 2 · 2−2 + ε4),

D1,5 = (2 · 2−2 − ε5, 3 · 2−2 + ε5), D1,6 = (3 · 2−2 − ε6, 1].
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Continue in this fashion to obtain the base (D1,n)∞n=1 consisting of open
intervals in [0, 1]. Finally, let Di = (Di,n)∞n=1 be the base of [0, 1] consisting
of the intervals in (D1,n)∞n=1 starting from level i. For t ∈ [0, 1] and i ∈ N,
set Ji(t) = {n ∈ N : t ∈ Di,n}.

We will prove that for i ≥ 2 the space XDi fails to have the SD2P. In
fact, we will prove the following:

Proposition 2.11. For each i ≥ 2 let XDi be the space C[0, 1] with the
norm ‖ · ‖Di. Then for every ε > 0 there exist finite convex combinations of
slices of BXDi

with diameter at most 2
√
i+ ε/i.

Proof. First suppose i = 2, choose t1 = 0, t2 = 1, and note that J2(t1)∩
J2(t2) = ∅, {t1} ∩ D2,n = ∅ for every n 6∈ J2(t1), and {t2} ∩ D2,n = ∅ for
every n 6∈ J2(t2). Set M = sup{‖x‖∞ : x ∈ BXD2

} <∞. Since for any α > 0
we can find β > 0 such that∑

n6∈J2(t1)

2−n‖x‖22,n < α and
∑

n6∈J2(t2)

2−n‖y‖22,n < α

whenever x ∈ S(δt1/‖δt1‖∗D2
, β) and y ∈ S(δt2/‖δt2‖∗D2

, β), we can find η > 0
such that ∑

n6∈J2(t1)

2−n2M‖x‖2,n <
ε

7
,

∑
n6∈J2(t2)

2−n2M‖y‖2,n <
ε

7
,

∑
n6∈J2(t1)

2−n‖x‖22,n <
ε

7
,

∑
n6∈J2(t2)

2−n‖y‖22,n <
ε

7

whenever x ∈ S(δt1/‖δt1‖∗D2
, η) and y ∈ S(δt2/‖δt2‖∗D2

, η). Now, if we write

h = 1
2x+ 1

2y and use the fact that J2(t1) ∩ J2(t2) = ∅, we get

22‖h‖2D2
=

∞∑
n=1

2−n‖x+ y‖22,n

≤
∑

n∈J2(t1)

2−n(‖x‖22,n + 2‖x‖2,n‖y‖2,n + ‖y‖22,n)

+
∑

n∈J2(t2)

2−n(‖x‖22,n + 2‖x‖2,n‖y‖2,n + ‖y‖22,n)

+
∑

n 6∈J2(t1)∪J2(t2)

2−n(‖x‖22,n + 2‖x‖2,n‖y‖2,n + ‖y‖22,n)

≤ 2(1 + 2ε/7) + 3ε/7 ≤ 2 + ε.

Thus the set S = 1
2S(δt1/‖δt1‖∗D2

, η) + 1
2S(δt2/‖δt2‖∗D2

, η) has diameter at

most 2
√

2 + ε/2.
For an arbitrary i ≥ 2 we can choose i points (tk)ik=1 in [0, 1] such that

Ji(tj) ∩ Ji(tk) = ∅ for any j 6= k and {tk} ∩Di,n = ∅ for every n 6∈ Ji(tk).
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Using a similar argument to that for i = 2 we deduce that for any ε > 0
and k = 1, . . . , i there exists a slice S(δtk/‖δtk‖∗Di

, η) of BXDi
such that the

convex combination
i∑

k=1

1

i
S(δtk/‖δtk‖

∗
Di
, η)

has diameter at most 2
√
i+ ε/i.

Theorem 2.12. The space `2-
⊕∞

i=1XDi is MLUR, has the D2P, the
LD2P+, and has convex combinations of slices of arbitrarily small diameter.

Proof. The properties of being MLUR, having the D2P, and having the
LD2P+ are all stable by taking `2-sums (see [1, Theorem 3.2] and [13, Theo-
rem 3.2] for the last two). Thus `2-

⊕∞
k=1XDk

has all these properties, since
each XDk

does.
It remains to prove that the unit ball of `2-

⊕∞
k=1XDk

has finite convex
combinations of slices with arbitrarily small diameter. To this end let Z =
XDi ⊕2 Yi where Yi = `2-

⊕
k 6=iXDk

. Let x∗i ∈ SX∗Di
, let Si(x

∗
i , δ) be a slice

of BXDi
, and let 0 < δ < η. Now, if (xi, yi) is in the slice S((x∗i , 0), δ) of BZ ,

then x∗i (xi) > 1 − δ, and so ‖xi‖ > 1 − δ. Thus ‖yi‖2 ≤ 2δ − δ2. But this
means that

S((x∗i , 0), δ) ⊂ Si(x∗i , δ)× (2δ − δ2)1/2BYi .

From this we see that if z ∈
∑i

j=1
1
iSj(BZ , (x

∗
i,j , 0), δ), then we can write

z = x+ y where x ∈
i∑

j=1

1

i
Si,j(BXDi

, x∗i,j , δ), y ∈ (2δ − δ2)1/2BYi .

Now, if the convex combination
∑i

j=1
1
iSi,j(BXDi

, x∗i,j , δ) is chosen so that

its diameter is at most 2
√
i+ η/i , which is possible by Proposition 2.11, we

get ‖x‖ ≤
√
i+ η/i and y ∈ (2δ − δ2)1/2BYi . As ‖z‖ ≤ ‖x‖+ ‖y‖ and i can

be chosen as large as desired and η > 0 as small as desired, we are done.

3. Questions and remarks. Let us end the paper with some questions
suggested by the current work, together with some remarks we think are
relevant:

Question 1. Does there exist an equivalent MLUR norm on c0 with the
LD2P?

A Banach space X is said to be weakly uniformly rotund (wUR) if when-
ever (xn) and (yn) are two sequences in SX with ‖xn + yn‖ → 2, we have
xn − yn → 0 weakly.

Question 2. Does there exist a Banach space with the LD2P and which
is weakly locally uniformly rotund?
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Regarding this question we note that there does exist a Banach space X
which is wUR, but not locally uniformly rotund, and which has the property
that for every ε > 0 and every weak∗-null sequence (fn) ⊂ SX∗ the diameter
of the slices S(fn, ε) tends to 2. Such a Banach space can be constructed as
follows: Let 1 < p1 < p2 < · · · be a sequence such that

(3.1)
∏
i∈N
‖I : `∞(2)→ `pi(2)‖ < 2

(operator norms of the formal identity mappings between 2-dimensional `p
spaces). Then one can form a Banach sequence space as follows:

X = R⊕p1 (R⊕p2 (R⊕p3 (. . .)))

where R is considered a 1-dimensional Banach space and the space is normed
by first defining seminorms in finite-dimensional initial parts according to
the above schema and then taking a limit of the seminorms, much as in the
construction of the variable exponent spaces introduced in [19]. We will now
show that this space X has the above mentioned properties.

Set Y = span(en : n ∈ N) ⊂ X and Yk := span(en : n ∈ N, n ≥ k) ⊂ X.
It can be seen from arguments in [19] that X and Y are isomorphic to `∞
and c0, respectively. Also the tail spaces Yk become asymptotically isometric
to c0, i.e., for each ε > 0 there is k ∈ N such that the tail spaces Yj , j ≥ k,
are 1+ε-isomorphic to c0 via a linear mapping which identifies the canonical
unit vector bases of Yj and of c0.

The wUR part : Let (xn), (yn) ∈ BY be such that ‖xn+yn‖Y → 2. Denote
by Pn the basis projection to the first n coordinates and let Qn = I − Pn.
Then, according to the definition of the space,

(3.2) (|P1(xn + yn)|p1 + ‖Q1(xn + yn)‖p1)1/p1 → 2,

so by the triangle inequality(
(|P1(xn)|+ |P1(yn)|)p1 + (‖Q1(xn)‖+ ‖Q1(yn)‖)p1

)1/p1 → 2,

and by the uniform convexity of `p1(2) we get

(3.3) |P1(xn)| − |P1(yn)| → 0, ‖Q1(xn)‖ − ‖Q1(yn)‖ → 0.

By inspecting (3.2) we obtain |P1(xn− yn)| → 0. By continuing inductively,
using the right-hand side of (3.3), we see that Pk(xn − yn) → 0 for each k.
Recall that Y is isomorphic to c0, thus Y ∗ is isomorphically `1. Therefore
xn − yn → 0 weakly.

The large slices part : First note that if (fn) ⊂ Y ∗ is a normalized se-
quence then ‖fn‖`1 ≥ 1 because ‖ · ‖c0 ≤ ‖ · ‖Y . Fix ε > 0. Let k ∈ N be
such that

∞∑
i=1

aiek+i 7→
∞∑
i=1

aiei
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defines a (1 + ε/4)-isomorphism Yk → c0. Note that then

1

1 + ε/4
‖f ◦Qk‖`1 ≤ ‖f ◦Qk‖Y ≤ (1 + ε/4)‖f ◦Qk‖`1 , f ∈ `1.

Because (fn) is weak∗-null, we may choosem0 ∈ N such that a sufficiently
large part of the mass is supported on the domain of Qk, more precisely,

1− ε
‖fm ◦Qk‖`1

<
1

1 + ε/3

for m ∈ N, m ≥ m0.
Set g = fm ◦Qk/‖fm ◦Qk‖`1 . Then{

x ∈ c0 : g(x) >
1

1 + ε/3

}
⊂ {x ∈ c0 : (fm ◦Qk)(x) > 1− ε}.

Note that 1
1+ε/4Bc0 ∩ Yk ⊂ BYk

. Therefore the above inclusion implies that

we may pick x, y ∈ {z ∈ BYk
: fm(z) > 1− ε} with

‖x− y‖Y ≥ ‖x− y‖∞ >
2

1 + ε/3
,

finishing the proof.
It is known from [3] that there exists a Banach space with the LD2P

which fails the D2P. In fact, it is proved in [3, Theorem 2.4] that any Banach
space containing a copy of c0 can be equivalently renormed to have the
LD2P, but with non-empty relatively weakly open subsets of the unit ball
with arbitrarily small diameter.

Question 3. Does there exist a Banach space with the LD2P+ which
fails the D2P?

The LD2P+ can be viewed as a weak version of the Daugavet property.
It is then natural to ask:

Question 4. Does every Banach space with the LD2P+ contain a copy
of `1?

Appendix. Denote by ‖ · ‖∞ the canonical sup-norm on `∞.

Proposition A.1. Let Φ : `∞ → [0,∞] be the Musielak–Orlicz function
given by

Φ(xn) =

∞∑
n=1

x2nn .

Give `∞ the Luxemburg norm

‖x‖ = inf{λ > 0 : Φ(x/λ) ≤ 1} for x ∈ `∞.
Let

A = {x ∈ `∞ : Φ(x) <∞}.
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Then:

(a) (`∞, ‖ · ‖) is the bidual of (c0, ‖ · ‖).
(b) The function Φ is convex on A. Moreover, if x ∈ A, y ∈ `∞, and

(A.1)
Φ(x+ y) + Φ(x− y)

2
= Φ(x) <∞,

then y = 0.
(c) The space (c0, ‖ · ‖) is M-embedded.
(d) The dual of (c0, ‖ · ‖) is smooth. In particular, (c0, ‖ · ‖) is weakly

MLUR.

We will need the following result of Å. Lima in the proof of the propo-
sition.

Theorem A.2 ([12, Theorem 2.2]). Let X be a closed subspace of a
Banach space Y . Then the following are equivalent.

(a) X is an M-ideal in Y .
(b) For all ε > 0, all (xi)

3
i=1 ⊂ BX , and all y ∈ BY , there exists x ∈ X

such that

‖y + xi − x‖ ≤ 1 + ε for every i = 1, 2, 3.

Proof of Proposition A.1. (a) It is straightforward to show that ‖ · ‖ is
indeed a norm equivalent to ‖ · ‖∞ on `∞.

Now, to prove that ‖ · ‖ is a bidual norm on `∞, it suffices to prove that
‖ · ‖ is lower semicontinuous on A with respect to the topology on A given
by `1 (from here on termed the weak∗ topology). To this end, start by noting
that Φ is continuous with respect to ‖ · ‖ at every x ∈ c0 and that for every
x ∈ `∞ we have

(A.2) Φ(x) = sup
n
Φ(Pnx),

where Pn is the projection of `∞ onto the first n coordinates. Now, let x ∈ A
and (xk)∞k=1 ⊂ (`∞, ‖ · ‖), such that xk → x weak∗. Then

‖Pnxk − Pnx‖∞ →k 0 ∀n ∈ N.

Hence

Φ(Pnxk)→k Φ(Pnx) ∀n ∈ N.

Taking (A.2) into account we get

lim inf
k

Φ(xk) ≥ Φ(x).

Thus Φ is lower semicontinuous at any x ∈ A with respect to the weak∗

topology. It follows that the same is true for ‖ · ‖.
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(b) Clearly Φ is convex on A since the functions fn(t) = t2n, n ∈ N, are
convex.

Now, let x = (xn)∞n=1 ∈ A and y = (yn)∞n=1 ∈ `∞ and assume that (A.1)
holds. Then

1

2
[Φ(x+ y) +Φ(x− y)]−Φ(x) =

∞∑
n=1

[
(xn + yn)2n + (xn − yn)2n

2
−x2nn

]
≥ 0.

Since the functions fn(t) = t2n, n ∈ N, are convex, all expressions in the
brackets [ ] are non-negative. If y 6= 0, then there is an n ∈ N such that
yn 6= 0. Since fn(t) = t2n is strictly convex, we have

(xn + yn)2n + (xn − yn)2n

2
− x2nn > 0,

so
1

2
[Φ(x+ y) + Φ(x− y)]− Φ(x) > 0,

and we are done.

(c) Set Z = (c0, ‖ · ‖). We will prove that Z is M-embedded. To this
end, it suffices to prove that statement (b) in Theorem A.2 holds for all
(zi)

3
i=1 in a norm dense subspace of Z. So, let ε > 0, (zi)

3
i=1 ⊂ BZ , each zi

with finite support, and let z∗∗ = (z∗∗n ) ∈ BZ∗∗ . Now find N ∈ N such that
N > max{k ∈ N : k ∈

⋃3
i=1 supp(zi)} and

∑
n>N (z∗∗n )2n < ε. Set z = PNz

∗∗

where PN : Z∗∗ → Z∗∗ is the projection onto span{en : n = 1, . . . , N} and
en is the nth standard unit vector in `∞. Then

Φ(z∗∗ + zi − z) =
∑

n∈supp{zi}3i=1

(z∗∗i,n)2n +
∑
n>N

(zi,n)2n < 1 + ε,

so ‖z∗∗ + zi − z‖ ≤ 1 + ε, and thus we are done.

(d) We will now prove that Z∗ is Gateaux smooth. First we show that

(A.3) Φ(z) = 1

whenever z = (zn)∞n=1 ∈ SZ∗∗ and z(y) = 1 for some y = (yn)∞n=1 ∈ SZ∗ .
Assume the contrary, i.e. Φ(z) < 1. Then |zn| < 1 for n ∈ N. Choose k such
that |zk| 6= 0 and find t > |zk| with

Φ(z) + t2k − z2kk ≤ 1.

Set u = (un)∞n=1 where un = zn for n 6= k and uk = t · sign(yk). Since

Φ(u) = Φ(z) + t2k − z2kk ≤ 1,

we get ‖u‖ ≤ 1. On the other hand

u(y)− z(y) = |yk|t− ykzk > 0.

So u(y) > z(y) = 1, which contradicts ‖u‖ ≤ 1 = ‖y‖.
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Now we are ready to prove that Z∗ is Gateaux smooth. We will show that
for every y with ‖y‖ = 1, there is only one supporting functional. Indeed,
let x, z ∈ SZ∗∗ be such that

x(y) = z(y) = 1.

By (A.3) we have Φ(x) = Φ(z) = 1. Since

1 ≥
∥∥∥∥x+ z

2

∥∥∥∥ ≥ x+ z

2
(y) = 1,

we get
∥∥x+z

2

∥∥ = 1. Using (A.3) again, we get Φ((x+ z)/2) = 1. So,

Φ(x) = Φ(z) = Φ((x+ z)/2),

and thus

Φ((x+ z)/2 + (x− z)/2) + Φ((x+ z)/2− (x− z)/2)

2

=
Φ(x) + Φ(z)

2
= Φ

(
x+ z

2

)
.

From (A.1) we now get x = z.
For the particular case, note first that if a dual space X∗ is smooth,

then every extreme point x in BX is strongly extreme in the weak topology.
Indeed, assume that x = (x∗∗1 + x∗∗2 )/2 where x∗∗1 , x

∗∗
2 ∈ BX∗∗ . There exists

x∗ ∈ SX∗ such that

1 = x∗(x) =
1

2

(
x∗∗1 (x∗) + x∗∗2 (x2)

)
.

Thus x∗∗1 (x∗) = x∗∗2 (x∗) = 1, and by the smoothness of X∗ we must have
x∗∗1 = x∗∗2 = x.

To finish the proof of the particular case, one can use the facts that a
Banach space is strictly convex provided its dual is smooth, and that a point
in the unit ball of a Banach space is a strongly extreme point in the weak
topology if and only if it continues to be an extreme point in the unit ball
of the bidual (see [8, p. 674]).

Acknowledgements. The second author was financially supported by
GACR 16-073785 and RVO: 67985840. The fourth author was financially
supported by Finnish Cultural Foundation, Väisälä Foundation, and Acad-
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