
COLLOQU IUM MATHEMAT ICUM
VOL. 145 2016 NO. 2

CELLS AND n-FOLD HYPERSPACES

BY

JAVIER CAMARGO (Bucaramanga), DANIEL HERRERA (Bucaramanga)
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Abstract. We prove that X is a hereditarily indecomposable metric continuum if
and only if the n-fold hyperspace Cn(X) does not contain (n + 1)-cells, for any positive
integer n. Also we characterize the class of continua whose n-fold hyperspaces and n-fold
hyperspace suspensions are cells.

1. Introduction. In [16], it is shown that the hyperspace of all non-
empty compact subsets of a nondegenerate metric continuum X, denoted
by 2X , always contains Hilbert cubes; and we know that 2X is a Hilbert
cube if and only if X is a locally connected continuum [2, Theorem 3.2]. It
is also known that the hyperspace C(X) of all subcontinua of X contains
n-cells if and only if X contains n-ods (see [5] and [19]). In studying the
structure of hyperspaces, it is useful to know if they contain cells or Hilbert
cubes.

Let X be a continuum and let n be a positive integer. Then the n-
fold hyperspace of X, denoted by Cn(X), is the family of all nonempty
closed subsets of X with at most n components. By [10, Theorem 7.1] and
[13, Theorem 3.4], the hyperspace Cn(X) is a Hilbert cube if and only if
X is locally connected without free arcs. Also, it is known that if X con-
tains a decomposable subcontinuum, then Cn(X) contains (n+ 1)-cells [12,
Theorem 6.1.10]. Therefore, we correct [12, Question 7.4.1] and ask:

1.1. Question. Let X be a continuum. If Cn(X) contains (n+1)-cells,
then does X contain a decomposable subcontinuum?

We give a positive answer to Question 1.1 in Theorem 3.4. First, in
Theorem 3.2, we prove that if the n-fold symmetric product Fn(X) con-
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tains an (n + 1)-cell, then X contains a simple closed curve. Let us recall
[12, Question 7.4.2]:

1.2. Question. Is C3([0, 1]) homeomorphic to [0, 1]6?

We provide a negative answer to Question 1.2 in Theorem 4.2. In fact, in
this theorem, we characterize the n-fold hyperspaces that are cells. We also
characterize the n-fold hyperspace suspensions that are cells (Theorem 4.5).

2. Definitions. A simple closed curve is any space homeomorphic to
S1 = {z ∈ R2 | ‖z‖ = 1}. A map is a continuous function.

A continuum is a nonempty, compact, connected and metric space. A sub-
continuum of a space X is a continuum contained in X. A dendrite is a
locally connected continuum that does not contain a simple closed curve.
A continuum X is decomposable if there exist two proper subcontinua A and
B of X such that X = A ∪ B. If X is not decomposable, X is indecompos-
able. A continuum is hereditarily indecomposable if each of its subcontinua
is indecomposable. An n-cell is any space homeomorphic to [0, 1]n, n ∈ N.
An arc is a 1-cell.

Let X be a continuum of dimension n. Then X is a Cantor manifold
provided that for each subset A of X such that dim(A) ≤ n − 2 the set
X \A is connected.

Given a continuumX, we define several of its hyperspaces as the following
sets:

2X = {A ⊂ X | A is closed and nonempty},
Cn(X) = {A ∈ 2X | A has at most n components}, n ∈ N,
Fn(X) = {A ∈ 2X | A has at most n points}, n ∈ N.

If n = 1, we write C(X) instead of C1(X). The hyperspace 2X is topologized
by the Vietoris topology, defined as the topology generated by

β = {〈U1, . . . , Uk〉 | U1, . . . , Uk are open subsets of X, k ∈ N},

where 〈U1, . . . , Uk〉 = {A ∈ 2X | A ⊂
⋃k
i=1 Ui and A ∩ Ui 6= ∅ for each i ∈

{1, . . . , k}}. By definition, Cn(X) and Fn(X) are subspaces of 2X . We call
Cn(X) the n-fold hyperspace of X, and Fn(X) the n-fold symmetric product
of X. To simplify notation, 〈U1, . . . , Um〉n stands for the intersection of the
open set 〈U1, . . . , Um〉 with Cn(X).

We also consider the quotient space

HSn(X) = Cn(X)/Fn(X)

with the quotient topology. It is called the n-fold hyperspace suspension of X
and was originally defined in [11]. Let qnX : Cn(X)→ HSn(X) be the quotient
map and denote by FnX the point corresponding to qnX(Fn(X)).
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2.1. Remark. Note that the space HSn(X) \ {FnX} is homeomorphic to
Cn(X) \ Fn(X) via the appropriate restriction of qnX .

3. Cells in n-fold hyperspaces

3.1. Lemma. Let X be a continuum and let n ≥ 2. Let K be a sub-
continuum of Cn(X) \ Cn−1(X) and A ∈ K. If K is a component of

⋃
K

and A has exactly m components in K, then each D ∈ K has exactly m
components contained in K.

Proof. Note that
⋃
K ∈ Cn(X) [12, Lemma 6.1.1]. Let K be a component

of
⋃
K. Since

⋃
K has a finite number of components, K ′ =

⋃
K \ K is

a closed subset of X. We define, for each j ∈ {1, . . . , n},

Lj = {D ∈ K | D has exactly j components contained in K}.

Claim. Lj is an open subset of K for each j ∈ {1, . . . , n}.

Let j0 ∈ {1, . . . , n}. If Lj0 = ∅, then Lj0 is open. Suppose that Lj0 6= ∅.
Let A ∈ Lj0 . Since A ∈ Cn(X)\Cn−1(X), we may write A = A1∪ · · ·∪Aj0 ∪
Aj0+1 ∪ · · · ∪An, where A1, . . . , An are the components, A1 ∪ · · · ∪Aj0 ⊂ K
and Aj0+1 ∪ · · · ∪An ⊂ K ′. Let U1, . . . , Un be pairwise disjoint open subsets
of X such that:

• Aj ⊂ Uj for each j ∈ {1, . . . , n};
• U1 ∪ · · · ∪ Uj0 ⊂ X \K ′;
• Uj0+1 ∪ · · · ∪ Un ⊂ X \K.

Note that A ∈ 〈U1, . . . , Un〉n and 〈U1, . . . , Un〉n ∩K ⊂ Lj0 . Therefore, Lj0 is
an open subset of K.

Now we show that K =
⋃n
j=1 Lj . It is clear that

⋃n
j=1 Lj ⊂ K. Let B ∈ K.

Suppose that B /∈ Lj for any j ∈ {1, . . . , n}. Hence, B ∩K = ∅. Let U and
V be open subsets of X such that K ⊂ U , K ′ ⊂ V and U ∩ V = ∅. Let
U = 〈X,U〉n ∩ K and V = 〈V 〉n ∩ K be open subsets of K. It is clear that
U 6= ∅. Since B ⊂ K ′, B ∈ V and V 6= ∅. Moreover, observe that U ∩ V = ∅
and K = U ∪V. Since K is connected, we obtain a contradiction. Therefore,
K =

⋃n
j=1 Lj . Finally, since Lj ∩ Ll = ∅ for each j 6= l, we have K = Ll for

some l ∈ {1, . . . , n}.

The following theorem shows that if X does not contain a simple closed
curve, then the n-fold symmetric product Fn(X) cannot contain (n+1)-cells.

3.2. Theorem. Let X be a continuum and let n ∈ N. If Fn(X) contains
an (n+ 1)-cell, then X contains a simple closed curve.

Proof. Suppose that X does not contain a simple closed curve. Since
F1(X) is homeomorphic to X, F1(X) does not contain 2-cells. Suppose,
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inductively, that Fn−1(X) does not contain n-cells; we will prove that Fn(X)
does not contain (n + 1)-cells. Suppose that A is an (n + 1)-cell contained
in Fn(X). Since Fn−1(X) is closed subset of Fn(X) and Fn−1(X) does not
contain n-cells, we assume that A ⊂ Fn(X) \ Fn−1(X).

Note that
⋃
A ∈ Cn(X) [12, Lemma 6.1.1], and

⋃
A is a compact and

locally connected subset of X [1, Lemma 2.2]. Let A1, . . . , Ak be the com-
ponents of

⋃
A for some k ≤ n. Since X does not contain a simple closed

curve, each Aj is a dendrite, j ∈ {1, . . . , k}.
By Lemma 3.1, |B ∩ Aj | = |D ∩ Aj | = mj for any B,D ∈ A and

j ∈ {1, . . . , k}. Observe that 1 ≤ mj ≤ n for any j ∈ {1, . . . , k}, and∑k
j=1mj = n. Let ϕ : A →

∏k
j=1Fmj (Aj) be given by

ϕ(B) = (B ∩A1, . . . , B ∩Ak) for each B ∈ A.

To see that ϕ is continuous, let ϕj : A → Fmj (Aj) be defined by ϕj(B) =
B ∩ Aj for each j ∈ {1, . . . , k} and B ∈ A. Let B ∈ A and let W1, . . . ,Ws

be open subsets of X such that ϕj(B) = B ∩Aj ∈ 〈W1, . . . ,Ws〉 ∩Fmj (Aj).
Let U and V be open subsets of X such that Aj ⊂ U ,

⋃
l 6=j Al ⊂ V and

U ∩ V = ∅. Since |B ∩ Aj | = mj , there exist pairwise disjoint open subsets

U1, . . . , Umj of X with
⋃mj

l=1 Ul ⊂ U and ϕj(B) ∈ 〈U1, . . . , Umj 〉 ∩ Fmj (Aj)

⊂ 〈W1, . . . ,Ws〉 ∩ Fmj (Aj). Note that if U = 〈U1, . . . , Umj , V 〉 ∩ A, then
B∈ U and ϕj(U) ⊂ 〈U1, . . . , Umj 〉 ∩ Fmj (Aj) ⊂ 〈W1, . . . ,Ws〉 ∩ Fmj (Aj).
Thus, ϕj is continuous for each j ∈ {1, . . . , k}. Therefore, ϕ is continuous.

Observe that if B 6= D, then there exists j ∈ {1, . . . , k} with B ∩ Aj 6=
D ∩ Aj . Hence, ϕj(B) 6= ϕj(D) and ϕ(B) 6= ϕ(D). Thus, ϕ is one-to-one.
Therefore, ϕ is an embedding.

Note that dim(A) = dim(ϕ(A)). By [4, Theorem III.1, p. 26], we have

dim(A) ≤ dim(
∏k
j=1Fmj (Aj)). Moreover, by [4, Theorem III.4, p. 33],

dim
( k∏
j=1

Fmj (Aj)
)
≤

k∑
i=j

dim(Fmj (Aj)).

In the proof of [1, Lemma 3.1], it is shown that dim(Fmj (Aj)) ≤ mj dim(Aj)
for each j ∈ {1, . . . , k}. Since Aj is a dendrite, dim(Aj) = 1. Thus, dim(A) ≤∑k

j=1mj dim(Aj) =
∑k

j=1mj = n, a contradiction. Therefore, Fn(X) does
not contain (n+ 1)-cells.

The following result gives an interesting property of the n-fold hyper-
space of a hereditarily indecomposable continuum.

3.3. Proposition. Let X be a hereditarily indecomposable continuum
and let n ≥ 2. If Γ is a locally connected subcontinuum in Cn(X)\Cn−1(X),
then

⋃
Γ ∈ Cn(X) \ Cn−1(X).
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Proof. Let γ : [0, 1] → Γ ⊂ Cn(X) be an onto map [18, Theorem 8.14].
Let σ : [0, 1]→ Cn(X) be given by

σ(t) =
⋃
γ([0, t]) for each t ∈ [0, 1].

Note that σ is a map, by [12, Lemma 6.1.1] and [17, Lemma (1.48)]. Observe
that σ(0) ∈ Γ , and σ(t) ⊂ σ(s) whenever t ≤ s.

Claim. If s < t, then each component of σ(t) intersects σ(s).

Let s < t. Since γ is a map, γ([0, t]) is a subcontinuum of Cn(X). Sup-
pose D is a component of σ(t) such that D ∩ σ(s) = ∅. Since σ(t) =⋃
γ([0, t]), we have γ(r) ⊂ σ(t) for each r ∈ [0, t]. Observe that σ(t) \ D

is a closed subset of X. Let U and V be disjoint open subsets of X with
D ⊂ U and σ(t)\D ⊂ V . Let 〈X,U〉n and 〈V 〉n be open subsets of Cn(X).
If r < s, then γ(r) ⊂ σ(s). Hence, γ(r) ∩ D = ∅ and γ(r) ∈ 〈V 〉n. So,
〈V 〉n ∩ γ([0, t]) 6= ∅. Moreover, D is a component of σ(t). So, there ex-
ists l ∈ [0, t] such that γ(l) ∩D 6= ∅, and 〈X,U〉n ∩ γ([0, t]) 6= ∅. Since
U ∩V = ∅, we have 〈X,U〉n∩〈V 〉n = ∅. Finally, since σ(t) ⊂ U ∪V , we find
that γ([0, t]) ⊂ 〈X,U〉n ∪ 〈V 〉n, a contradiction. Therefore, each component
of σ(t) intersects σ(s) whenever s < t.

Suppose
⋃
Γ ∈ Cn−1(X), that is, σ(1) ∈ Cn−1(X). Since Cn−1(X)

is a closed subset of Cn(X), there exists t0 = min{t ∈ [0, 1] | σ(t)∈ Cn−1(X)}.
Let L1, . . . , Lk be the components of σ(t0) for some k ≤ n− 1.

Let A ∈ Γ . Assume that A = A1 ∪ · · · ∪ An, where A1, . . . , An are
the components of A. Since k ≤ n − 1, there exists j ∈ {1, . . . , k} such
that A has at least two components in Lj . Without loss of generality, we
assume that j = 1 and A has exactly m (1 < m ≤ n) components, say
A1, . . . , Am, contained in L1. Since σ(0) ∈ Γ , by Lemma 3.1, σ(0) has exactly
m components contained in L1. Furthermore, σ(t) has exactlym components
in L1 for each t < t0, because σ(0), σ(t) ∈ Cn(X)\Cn−1(X) and by the Claim.
Let Rt =

⋃
γ([t, t0]) ∈ Cn(X) for each t ∈ [0, t0]. Note that Rt ⊂ σ(t0) and

σ(t)∪Rt = σ(t0). Hence, L1 = (
⋃m
j=1Aj,t)∪(

⋃l
j=1Rj,t), where A1,t, . . . , Am,t

are the m components of σ(t) in L1, and R1,t, . . . , Rl,t are components of Rt.
Since L1 is indecomposable and

⋃m
j=1Aj,t ( L1, we have Rs,t = L1 for

some s ∈ {1, . . . , l}. Thus, L1 is a component of Rt for all t ∈ [0, t0]; in
particular, L1 is a component of Rt0 = γ(t0) ∈ Γ , contrary to the fact that
Rt0 has exactly m components contained in L1 (Lemma 3.1). Therefore,⋃
Γ ∈ Cn(X) \ Cn−1(X).

The following result gives a positive answer to Question 1.1.

3.4. Theorem. Let X be a continuum and let n ∈ N. If X is heredi-
tarily indecomposable, then Cn(X) does not contain (n+ 1)-cells.
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Proof. By [5, Theorem 1.9], C(X) does not contain 2-cells. Suppose, in-
ductively, that Cn−1(X) does not contain n-cells; we will prove that Cn(X)
does not contain (n + 1)-cells. Suppose that there exists an (n + 1)-cell
A contained in Cn(X). Since Cn−1(X) is a closed subset of Cn(X) and
Cn−1(X) does not contain n-cells, we have A ⊂ Cn(X) \ Cn−1(X). Let
ϕ : Cn(X) \ Cn−1(X) → Fn(C(X)) be given by ϕ(A) = {A1, . . . , An} for
each A ∈ Cn(X) \ Cn−1(X), where A1, . . . , An are the components of A.
By [12, Theorem 6.1.21], ϕ is an embedding. Thus, ϕ(A) is an (n + 1)-cell
such that ϕ(A) ⊂ Fn(C(X)). Note that, by [17, Theorem (1.61)], C(X) is
uniquely arcwise connected. Hence, C(X) does not contain a simple closed
curve. Therefore, Fn(C(X)) does not contain (n+ 1)-cells, by Theorem 3.2,
a contradiction. Hence, Cn(X) does not contain (n+ 1)-cells.

The next theorem follows from [12, Theorem 6.1.10] and Theorem 3.4.

3.5. Theorem. Let X be a continuum and let n ∈ N. Then X is a
hereditarily indecomposable continuum if and only if Cn(X) does not contain
(n+ 1)-cells.

3.6. Theorem. Let X be a continuum and let n, k ∈ N, where k ≥ 2.
Then Cn(X) contains a k-cell if and only if HSn(X) contains a k-cell.

Proof. Since it is always the case that Cn(X) contains an n-cell [12, 6.1.9]
and HSn(X) also contains an n-cell [11, Theorem 3.7], we only need to
consider the case when k > n.

Suppose HSn(X) contains a k-cell K. Without loss of generality we as-
sume that K ⊂ HSn(X)\{FnX}. Hence, by Remark 2.1, (qnX)−1(K) is a k-cell
in Cn(X).

Now, suppose K is a k-cell contained in Cn(X). If K ∩ (Cn(X) \ Fn(X))
6= ∅, then there exists a k-cell K0 ⊂ K ∩ (Cn(X) \ Fn(X)). Thus, by Re-
mark 2.1, qnX(K0) is a k-cell in HSn(X). We assume now that K is contained
in Fn(X). Let K = {k1, . . . , km} be a point of K, and let U1, . . . , Um be pair-
wise disjoint open subsets of X such that K ∈ 〈U1, . . . , Um〉∩Fn(X). Since K
is a k-cell, without loss of generality we assume K ⊂ 〈U1, . . . , Um〉 ∩ Fn(X).
Thus,

⋃
K ⊂

⋃m
j=1 Uj 6= X.

If K ⊂ Fn−1(X), then, by [12, 6.1.1],
⋃
K ∈ Cn−1(X). Also, by the previ-

ous paragraph, we assume that
⋃
K 6= X. Let D be a nondegenerate subcon-

tinuum of X such that D∩
⋃
K = ∅ [18, 5.5]. Thus, K0 = {K ∪D | K ∈ K}

is homeomorphic to K, and K0 ⊂ Cn(X) \ Fn(X). Therefore, qnX(K0) is a
k-cell contained in HSn(X).

Suppose K ∩ (Fn(X) \ Fn−1(X)) 6= ∅. As before, K ⊂ 〈U1, . . . , Un〉
∩Fn(X), where U1, . . . , Un are pairwise disjoint and nonempty open subsets
of X. Thus,

⋃
K has exactly n components [3, Lemma 3.1]. Since K is lo-



CELLS AND n-FOLD HYPERSPACES 163

cally connected,
⋃
K is a locally connected subset of X [1, Lemma 2.2]. Let

K1, . . . ,Kn be the components of
⋃
K. Note that

∏n
j=1Kj is homeomorphic

to 〈K1, . . . ,Kn〉 ∩ Fn(X). Thus,
∏n
j=1Kj contains a k-cell. Since k > n,

there exists j0 ∈ {1, . . . , n} with dim(Kj0) ≥ 2 [4, Theorem III.4, p. 33].
Let p ∈ Kj0 with dimp(Kj0) ≥ 2, that is, there exists an open neighbor-
hood U of p such that for each open subset V of Kj0 with p ∈ V ⊂ U
the boundary Bd(V ) is of dimension at least one. Hence, |Bd(V )| = ∞.
Thus, ordp(X) ≥ m for each m ∈ N (see [8, p. 274] for the definition of
ordp(X)). In particular, ordp(X) ≥ k. Hence, there exist k arcs α1, . . . , αk
in Kj0 such that αj ∩ αl = {p} for j 6= l and j, l ∈ {1, . . . , k} [8, p. 277]. By
[17, (1.100)], C(Kj0) contains a k-cell K′ such that K′ ⊂ C(Kj0) \F1(Kj0) ⊂
Cn(X) \ Fn(X). Therefore, qnX(K′) is homeomorphic to K′, and HSn(X)
contains a k-cell.

3.7. Corollary. Let X be a continuum and let n ∈ N. The following
are equivalent:

(1) X is hereditarily indecomposable;
(2) Cn(X) does not contain (n+ 1)-cells;
(3) HSn(X) does not contain (n+ 1)-cells.

4. n-fold hyperspaces that are cells. We characterize the n-fold
hyperspaces that are cells (Theorem 4.2) and n-fold hyperspace suspensions
that are cells too (Theorem 4.5).

We begin with the characterization of graphs whose n-fold hyperspace
is a Cantor manifold.

4.1. Theorem. Let X be a graph and let n be a positive integer. Then
Cn(X) is a Cantor manifold if and only if X is either an arc or a simple
closed curve.

Proof. Suppose X is neither an arc nor a simple closed curve. Then
X has a ramification point p. Hence, if A is an element of Cn(X) with
exactly n components and such that p ∈ A, we find that dimA(Cn(X)) ≥
(2n − 1) + ordp(X) ≥ (2n − 1) + 3 = 2n + 1. Also, if x is an element of X
that is not a ramification point, then there exists a subarc L of X such that
x ∈ IntX(L) and L does not contain a ramification point of X. Thus, Cn(L)
is a closed 2n-dimensional neighborhood of {x} [12, 6.8.10] that is a Cantor
manifold [14, Theorem 4.6]. This implies that dim{x}(Cn(X)) = 2n. Since a
Cantor manifold has the same dimension at each of its points [4, A), pp. 93
and 94], we deduce that Cn(X) is not a Cantor manifold.

If X is either an arc or a simple closed curve, then by [14, Theorem 4.6],
Cn(X) is a 2n-dimensional Cantor manifold.
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4.2. Theorem. Let X be a continuum and let n and k be positive in-
tegers. Then Cn(X) is homeomorphic to [0, 1]k if and only if X is an arc or
a simple closed curve, n ∈ {1, 2} and k ∈ {2, 4}. Moreover, if n = 2, then
X is an arc and k = 4.

Proof. Suppose Cn(X) is homeomorphic to [0, 1]k. Then, by [12, 6.1.4],
X is a locally connected continuum. Since dim(Cn(X)) = k < ∞, by
[12, 6.8.3], X is a graph. Since [0, 1]k is a Cantor manifold [4, Example VI.11,
p. 93], by Theorem 4.1, X is an arc or a simple closed curve. Hence, by
[12, 6.8.10], k = 2n. Suppose n ≥ 3. Note that each point of [0, 1]k has
a local basis of closed neighborhoods homemorphic to [0, 1]k. Hence, by
[6, Lemma 3.4], Cn(X) cannot be homeomorphic to [0, 1]k. Thus, n ∈ {1, 2}
and k ∈ {2, 4}.

If n = 1, then C1(X) is homeomorphic to [0, 1]2 [17, (0.54) and (0.55)].
Now, if n = 2, then C2([0, 1]) is homeomorphic to [0, 1]4 [12, 6.8.11] and
C2(S1) is homemorphic to the cone over a solid torus [7].

4.3. Remark. Observe that Theorem 4.2 gives a negative answer to
[12, Question 7.4.2].

The next theorem characterizes the graphs whose n-fold hyperspace sus-
pensions are Cantor manifolds.

4.4. Theorem. Let X be a graph and let n be a positive integer. Then
HSn(X) is a Cantor manifold if and only if X is either an arc or a simple
closed curve.

Proof. Suppose X is neither an arc nor a simple closed curve. Then X
has a ramification point p. Hence, by the proof of Theorem 4.1, there exists
an element A of Cn(X) with exactly n components such that dimA(Cn(X))
≥ 2n+1. Since qnX |Cn(X)\Fn(X) is a homeomorphism (Remark 2.1), we obtain
dimqnX(A)(HSn(X)) ≥ 2n+ 1. Now, by [15, Lemma 4.1], there exists an ele-

ment χ in HSn(X) such that dimχ(HSn(X)) = 2n. Since a Cantor manifold
has the same dimension at each of its points [4, A), pp. 93 and 94], we see
that HSn(X) is not a Cantor manifold.

If X is either an arc or a simple closed curve, then by [9, Corollary 3.1],
HSn(X) is a 2n-dimensional Cantor manifold.

4.5. Theorem. Let X be a continuum and let n and k be positive in-
tegers. Then HSn(X) is homeomorphic to [0, 1]k if and only if X is an arc,
n ∈ {1, 2} and k ∈ {2, 4}.

Proof. Suppose HSn(X) is homeomorphic to [0, 1]k. Then, by [9, Theo-
rem 5.2], X is a locally connected continuum. Since dim(HSn(X)) = k <∞
and dim(HSn(X)) = dim(Cn(X)) [9, Theorem 3.6], by [12, 6.8.3], X is a



CELLS AND n-FOLD HYPERSPACES 165

graph. Since [0, 1]k is a Cantor manifold [4, Example VI.11, p. 93], by Theo-
rem 4.4, X is an arc or a simple closed curve. Hence, k is an even number [9,
Corollary 3.1]. Suppose n ≥ 3. Note that each point of [0, 1]k has a local basis
of closed neighborhoods homemorphic to [0, 1]k. Hence, since qnX |Cn(X)\Fn(X)

is a homeomorphism (Remark 2.1), by [6, Lemma 3.4], HSn(X) cannot be
homeomorphic to [0, 1]k. Thus, n ∈ {1, 2} and k ∈ {2, 4}.

If n = 1, then HS1([0, 1]) is homeomorphic to a 2-cell and HS1(S1)
is homeomorphic to a 2-sphere. Thus, if n = 1, then X is an arc and
k = 2.

If n = 2, then HS2([0, 1]) is homeomorphic to a 4-cell [15, Theorem 4.6]
and HS2(S1) cannot be homeomorphic to a 4-cell since T 2

S1 does not have a
4-cell neighborhood in HS2(S1) [15, Lemma 4.7]. Hence, if n = 2, then X is
an arc and k = 4.
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Instituto de Matemáticas
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