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1. Introduction. For any positive integer k ≥ 4, let Mk be the space
of modular forms of weight k for the group SL2(Z). For even k ≥ 2, the
Eisenstein series of weight k is given by

Ek(z) = 1− 2k

Bk

∞∑
n=1

σk−1(n)qn,

where Bk is the kth Bernoulli number, σk−1(n) =
∑

d|n d
k−1, q = e2πiz, and

z is in the upper half-plane H. For k ≥ 4 and even, the Eisenstein series Ek
defines a modular form of weight k for SL2(Z), and for k = 2, the Eisenstein
series E2 is not a modular form. However, E2 is a quasimodular form of
weight 2 for SL2(Z).

Identities among modular forms have attracted the attention of many
mathematicians since they imply nice identities between the Fourier coeffi-
cients of modular forms. One such is the identity

(1) σ7(n) = σ3(n) + 120

n−1∑
m=1

σ3(m)σ3(n−m)

for n ≥ 1. The above formula follows from the identity E2
4 = E8, in which the

product of two eigenforms is an eigenform. Then to get identities like (1), we
need to find all such relations among modular forms in which the product of
two eigenforms is again an eigenform. This investigation was done by Duke
[3] and Ghate [5] independently for modular forms on the full modular group
SL2(Z). In fact, they explicitly provided all of the cases in which the above
phenomenon occurs.
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Another formula, which does not follow from such an identity in modular
forms, is

(2) nτ(n) = τ(n)− 24
n−1∑
m=1

τ(m)σ1(n−m)

for n ≥ 1, where τ(n) is Ramanujan’s tau function. The above identity
follows from the relation D∆ = E2∆ between quasimodular forms for the
group SL2(Z), where D = 1

2πi
d
dz is the differential operator and

∆(z) = q
∏
n≥1

(1− qn)24 =
∑
n≥1

τ(n)qn

is the Ramanujan delta function. Similarly to the case of modular forms,
the relation D∆ = E2∆ is an identity between quasimodular forms in which
the product of two quasimodular eigenforms results in an eigenform.

Therefore to get all identities like (2), we need to find all quasimodular
eigenforms which can be written as products of two quasimodular eigen-
forms. This has been done for the full modular group SL2(Z) in [2] and [6].
In [1], the problem was considered for a class of nearly holomorphic modular
forms for the group SL2(Z). More precisely, [1] solved the problem for those
nearly holomorphic modular forms which can be written as a Maass–Shimura
operator applied to modular forms.

There is a possibility that products of more than two eigenforms re-
sult in an eigenform. Emmons and Lanphier [4] have provided all cases
in which arbitrary products of eigenforms for the group SL2(Z) result in
eigenforms.

In this article, we first characterize all nearly holomorphic eigenforms for

the full modular group SL2(Z). Let δ
(p)
k be the Maass–Shimura operator and

E∗2 be the nearly holomorphic modular form of weight 2 for SL2(Z) defined
in Section 2. Then we prove the following result.

Theorem 1.1. Let f be a nearly holomorphic eigenform of weight k

and depth p for the full modular group SL2(Z). If p < k/2 then f = δ
(p)
k−2pfp,

where fp is a modular form of weight k − 2p which is an eigenform, and if

p = k/2 then f ∈ Cδ(k/2−1)2 E∗2 .

Using the above theorem, we then extend the result given in [1] to all
nearly holomorphic modular forms for the group SL2(Z). From now on,
∆k will denote the unique normalized cusp form of weight k for SL2(Z) for
k ∈ {12, 16, 18, 20, 22, 26}.

Theorem 1.2. The product of two nearly holomorphic eigenforms for
SL2(Z) is never an eigenform except for:
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(1) the 16 holomorphic cases presented in [3] and [5], namely

E2
4 = E8, E4E6 = E10, E6E8 = E4E10 = E14,

E4∆12 = ∆16, E6∆12 = ∆18, E4∆16 = E8∆12 = ∆20,

E4∆18 = E6∆16 = E10∆12 = ∆22,

E4∆22 = E6∆20 = E8∆18 = E10∆16 = E14∆12 = ∆26;

(2) the cases
(δ4E4)E4 = 1

2δ8E8, E∗2∆12 = δ12∆12.

As a consequence of the above theorem, we get the main result of [1]. We
also get an extra identity in this case, apart from the identities given in [1].

We then consider the case of products of an arbitrary number of nearly
holomorphic eigenforms and characterize all nearly holomorphic eigenforms,
which can be written as products of finitely many nearly holomorphic eigen-
forms.

Theorem 1.3. The product of finitely many nearly holomorphic eigen-
forms for SL2(Z) is never an eigenform except for:

(1) the 16 holomorphic cases presented in Theorem 1.2(1);
(2) other holomorphic cases which can be obtained from some of the

identities presented in Theorem 1.2(1), namely

E2
4E6 = E14, E2

4∆12 = ∆20, E4E6∆12 = ∆22,

E2
4∆18 = E4E6∆16 = E2

4E6∆12 = E6E8∆12 = E4E10∆12 = ∆26;

(3) the cases
(δ4E4)E4 = 1

2δ8E8, E∗2∆12 = δ12∆12.

To prove the above, we use the following result on quasimodular forms
that characterizes all quasimodular eigenforms which can be written as prod-
ucts of finitely many quasimodular eigenforms.

Theorem 1.4. The product of finitely many quasimodular eigenforms
for SL2(Z) is never an eigenform except for:

(i) the holomorphic cases presented in Theorem 1.3(1)–(2);
(ii) the cases

(DE4)E4 = 1
2DE8, E2∆12 = D∆12.

2. Nearly holomorphic modular forms

Definition 2.1. A nearly holomorphic modular form f of weight k and
depth ≤ p for SL2(Z) is a polynomial in 1/=(z) of degree ≤ p whose coeffi-
cients are holomorphic functions on H with moderate growth such that

f

(
az + b

cz + d

)
= (cz + d)kf(z)

for any
(
a b
c d

)
∈ SL2(Z) and z ∈ H, where =(z) is the imaginary part of z.
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Let M̂≤pk denote the space of all nearly holomorphic modular forms of

weight k and depth ≤ p for SL2(Z). We denote by M̂k =
⋃
p M̂

≤p
k the space

of all nearly holomorphic modular forms of weight k, and by M̂∗ =
⊕

k M̂k

the graded ring of all nearly holomorphic modular forms for SL2(Z).

Definition 2.2. The Maass–Shimura operator δk on f ∈ M̂k is defined
by

δk(f) =

(
1

2πi

(
k

2i=(z)
+

∂

∂z

)
f

)
(z).

The operator δk takes M̂k to M̂k+2. We write δ
(m)
k := δk+2m−2 ◦ · · · ◦

δk+2 ◦ δk with δ
(0)
k = id and δ

(1)
k = δk. We state the following decomposition

of the space of nearly holomorphic modular forms [9, Theorem 5.2].

Theorem 2.3. Let k ≥ 2 be even. If f ∈ M̂≤pk and p < k/2 then

M̂≤pk =

p⊕
r=0

δ
(r)
k−2rMk−2r,

and if p ≥ k/2 then

M̂≤pk =

k/2−1⊕
r=0

δ
(r)
k−2rMk−2r ⊕ Cδ(k/2−1)2 E∗2 ,

where E∗2(z) = E2(z)− 3
π=(z) is a nearly holomorphic modular form of weight

2 for the group SL2(Z).

For f ∈ M̂k, the action of the nth Hecke operator on f is defined by

(3) (Tnf)(z) = nk−1
∑
d|n

d−k
d−1∑
b=0

f

(
nz + bd

d2

)
.

For each integer n ≥ 1, Tn maps M̂k to itself. A nearly holomorphic modular
form is called an eigenform if it is an eigenvector for each Hecke opera-
tor Tn. We recall the following commuting relation between Maass–Shimura
operators and Hecke operators [1, Propositions 2.4, 2.5].

Proposition 2.4. Let f ∈ M̂k. Then

(δ
(m)
k (Tnf))(z) =

1

nm
(
Tn(δ

(m)
k (f))

)
(z)

for m ≥ 0. Moreover, δ
(m)
k (f) is an eigenform for Tn if and only if f is. In

this case, if λn is the eigenvalue of Tn corresponding to f then the eigenvalue

of Tn corresponding to δ
(m)
k (f) is nmλn.
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3. Quasimodular forms

Definition 3.1. A holomorphic function f on H is called a quasimod-
ular form of weight k and depth p for SL2(Z) if there exist holomorphic
functions f0, f1, . . . , fp on H such that

(cz + d)−kf

(
az + b

cz + d

)
=

p∑
j=0

fj(z)

(
c

cz + d

)j
for all

(
a b
c d

)
∈ SL2(Z), fp is not identically vanishing and f has no terms

with negative exponents in its Fourier expansion.

Any quasimodular form f for SL2(Z) of weight k and depth p can be
written as

(4) f(z) = g0(z) + g1(z)E2(z) + · · ·+ gp(z)E
p
2(z),

where z ∈ H, gi ∈ Mk−2i for 0 ≤ i ≤ p and gp 6= 0. The action of the
Hecke operator Tn on a quasimodular form is the same as the action on a
nearly holomorphic modular form as given in (3). For each integer n ≥ 1,

Tn maps M̃k to itself. A quasimodular form is called an eigenform if it is an
eigenvector for each Hecke operator Tn.

4. Preparatory results. We first recall a well known result from linear
algebra.

Lemma 4.1. Let T be a linear operator defined on a finite-dimensional
vector space over C. Let f =

∑r
i=1 cifi be such that f and fi are eigenvectors

under T with eigenvalues a and ai respectively. If all the fi are linearly
independent, then a = ai for all i.

We have the following result for nearly holomorphic modular forms [1,
Lemma 2.7].

Lemma 4.2. Let k > l and f ∈ Mk, g ∈ Ml be eigenforms. Then for

m ≥ 0, δ
((k−l)/2+m)
l (g) and δ

(m)
k (f) do not have the same set of eigenvalues

with respect to the Hecke operators.

Similarly to the case of modular forms, we have the following two results
for quasimodular eigenforms. The proofs go along the same lines as in the
case of modular forms.

Lemma 4.3. If f =
∑∞

n=0 a(n)qn ∈ M̃k is a non-zero eigenform, then
a(1) 6= 0.

Lemma 4.4. A quasimodular form f ∈ M̃k with non-zero constant Four-
ier coefficient is an eigenform if and only if f ∈ CEk.

Next, we recall the following result from [2, Lemma 3.5].
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Lemma 4.5. For r ≥ 1 and h ∈Mk let Drh = h0 + h1E2 + h2E
2
2 + · · ·+

hrE
r
2 with hi ∈Mk+2r−2i. Then hr = r!

12r

(
k+r−1
r

)
h.

We also prove the following result for derivatives of the Eisenstein se-
ries E2.

Lemma 4.6. For r ≥ 1 let DrE2 = h0 + h1E2 + · · · + hr+1E
r+1
2 with

hi ∈M2r+2−2i. Then hr+1 = r!/12r.

Proof. We apply induction on r. For r = 1, it is due to Ramanujan that

(5) DE2 =
−E4

12
+
E2

2

12
.

Now assume that the lemma is true for r. Let

Dr+1E2 = D(DrE2) = f0 + f1E2 + · · ·+ fr+2E
r+2.

Then by using the induction hypothesis and (5), we see that

fr+2 =
r!

12r
(r + 1)

1

12
=

(r + 1)!

12r+1
.

The following result [2, Proposition 3.1] characterizes all quasimodular
eigenforms for the full modular group SL2(Z).

Proposition 4.7. Let f be a quasimodular eigenform of weight k and
depth p for SL2(Z). If p < k/2 then f = Dpfp, where fp is an eigenform of
weight k − 2p, and if p = k/2 then f ∈ CDk/2−1E2.

Next we state the following result which has been proved in [6] and [2].
It gives all the cases in which the product of two quasimodular eigenforms
for the group SL2(Z) results in an eigenform.

Theorem 4.8. The product of two quasimodular eigenforms for SL2(Z)
is never an eigenform except for:

(1) the 16 holomorphic cases presented in [3] and [5], namely

E2
4 = E8, E4E6 = E10, E6E8 = E4E10 = E14,

E4∆12 = ∆16, E6∆12 = ∆18, E4∆16 = E8∆12 = ∆20,

E4∆18 = E6∆16 = E10∆12 = ∆22,

E4∆22 = E6∆20 = E8∆18 = E10∆16 = E14∆12 = ∆26;

(2) the cases

(DE4)E4 = 1
2DE8, E2∆12 = D∆12.

5. Proof of Theorem 1.1. Let f be a nearly holomorphic modular
form of weight k and depth p for the group SL2(Z). If p < k/2, then by
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Theorem 2.3 we have

(6) f =

p∑
r=0

δ
(r)
k−2rfr,

where fr ∈Mk−2r. Since the depth of f is p, δ
(p)
k−2pfp is not identically equal

to zero. Also, each fr can be written as

(7) fr =

dr∑
j=1

brjhrj + βrEk−2r,

where brj , βr ∈ C, dr is the dimension of Sk−2r and the set {hrj : 1 ≤ j ≤ dr}
is a Hecke basis of Sk−2r for each 0 ≤ r ≤ p. By the hypothesis of the
theorem, f is an eigenform. Therefore, by Lemmas 4.2 and 4.1,

f = δ
(p)
k−2pfp =

dp∑
j=1

bpjδ
(p)
k−2phpj + βpδ

(p)
k−2pEk−2p.

By Proposition 2.4 and Deligne’s bounds for the eigenvalues of modular

eigenforms, the nth Hecke eigenvalue of δ
(p)
k−2phpj is O(n(k−1)/2+ε) for any

ε > 0. Moreover, by Proposition 2.4, the nth Hecke eigenvalue of δ
(p)
k−2pEk−2p

is npσk−2p−1. Since

nk−p−1 ≤ npσk−2p−1 ≤ Cnk−p−1,
where C is some positive constant, there exist positive integers n such that

the eigenvalues with respect to the Hecke operator Tn for δ
(p)
k−2pEk−2p and

δ
(p)
k−2phpj are different for each j. Then by Lemma 4.1, we have either f =∑dp
j=1 bpjδ

(p)
k−2phpj or f = δ

(p)
k−2pEk−2p.

In the case f =
∑dp

j=1 bpjδ
(p)
k−2phpj , we again apply Lemma 4.1 and use

the fact that there are infinitely many n such that the eigenvalues of Tn with
respect to any two hpj are different.

Next, we consider p = k/2. In this case, one can write

f =

k/2−1∑
r=0

δ
(r)
k−2rfr + αδ

(k/2−1)
2 E∗2 ,

where fr ∈Mk−2r and α ∈ C is non-zero. The eigenvalue of Tn with respect

to δ
(k/2−1)
2 E∗2 is nk/2−1σ1(n). Also, for n > 1, we have

nk/2 < nk/2−1σ1(n) ≤ nk/2(log n+ 1).

For the latter inequality, we refer to [7, Exercise 1.3.4]. Again using Lemma 4.1
and comparing the eigenvalues as in the case when p < k/2, we conclude

that f = αδ
(k/2−1)
2 E∗2 . This proves the theorem.
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6. Proof of Theorem 1.2. The idea of the proof is to use the ring
isomorphism between M̂∗ and M̃∗ and Theorem 4.8. By [8, Theorem 1], the

space M̂≤p∗ of all nearly holomorphic modular forms of depth at most p is
isomorphic to the space M̃≤p∗ of all quasimodular forms of depth at most p,
where the map is defined by

f(z) =

p∑
j=0

fj(z)

=(z)j
7→ f0(z).

This map induces a ring isomorphism between M̂∗ and M̃∗. Also, if f is a

nearly holomorphic modular form with constant coefficient f0, then δ
(r)
k f

has the constant coefficient Drf0. Therefore, by Theorem 1.1 and Propo-

sition 4.7, we deduce that δ
(r)
k f is an eigenform if and only if Drf0 is an

eigenform. By the above ring isomorphism, we see that the product relations
among eigenforms in the space of quasimodular forms give rise to product re-
lations among eigenforms in the space of nearly holomorphic modular forms
and vice-versa. Theorem 4.8 gives all eigenforms in the space of quasimod-
ular forms which are expressible as products of two eigenforms. Thus we
get all the corresponding cases in the space of nearly holomorphic modular
forms which are listed in Theorem 1.2.

7. Proof of Theorem 1.3. We assume Theorem 1.4 and prove this
result. By Theorem 1.4, we have found all cases in the space of quasimodular
forms which are expressible as products of finite numbers of eigenforms. Thus
by the same argument as in Theorem 1.2, we get the corresponding result
in the space of nearly holomorphic modular forms.

8. Proof of Theorem 1.4. By Lemmas 4.3, 4.4 and Proposition 4.7,
we need to find out only in the following cases if the products result in
eigenforms:

(1) Ea2Ek1 . . . Ekm , where ki ≥ 4 for each i and a+m ≥ 2,
(2) Ea2Ek1 . . . Ekmf , where ki ≥ 4 for each i and a + m ≥ 1, and f is a

cusp form which is an eigenform,
(3) Ea2Ek1 . . . EkmD

rE2, where ki ≥ 4 for each i, r ≥ 1 and a+m ≥ 1,
(4) Ea2Ek1 . . . EkmD

rf , where ki ≥ 4 for each i, r ≥ 1 and a + m ≥ 1,
and f is a cusp form which is an eigenform,

(5) Ea2Ek1 . . . EkmD
rEk, where ki for each i, k ≥ 4, r ≥ 1 and a+m ≥ 1.

In the above cases, we assume that the product Ek1 . . . Ekm is 1 if m = 0.

In case (1), if a = 0, then the matter reduces to the case of a product
of Eisenstein series which are modular forms. Then by [4], we have all the
cases in which the product is again an eigenform, and these are listed in the
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statement of Theorem 1.4. If a 6= 0, then the constant term of the product is
non-zero and the product is a non-modular quasimodular form which is not
a constant multiple of E2. Therefore by Lemma 4.4, this product is never
an eigenform.

In case (2), if a = 0, then again the reasoning reduces to the modular
case, and then by [4] we have all the cases in which the product is again an
eigenform, which are listed in the statement of Theorem 1.4. If a 6= 0, let k be
the weight of f and, without loss of generality, assume that f is normalized,
i.e. the coefficient of q in the Fourier expansion of f is 1. Then the depth a of
Ea2Ek1 . . . Ekmf is strictly less than half of its weight 2a+ k1 + · · ·+ km + k.
Thus by Proposition 4.7 we have

(8) Ea2Ek1 . . . Ekmf = Dah,

where h is a normalized modular eigenform. Using Lemma 4.5 and compar-
ing the coefficients of Ea2 on both sides of (8), we obtain

Ek1 . . . Ekmf =
a!

12a

(
k1 + · · ·+ km + k + a− 1

a

)
h.

Comparing the Fourier coefficients of q on both sides of the above identity,
we get

a!

12a

(
k1 + · · ·+ km + k + a− 1

a

)
= 1.

Simplifying the above identity yields

(k1 + · · ·+km+k)(k1 + · · ·+km+k+1) . . . (k1 + · · ·+km+k+a−1) = 12a.

Since k ≥ 12, the above equality is valid only when a = 1 and m = 0. Then
it implies that k = 12 and hence

E2∆12 = D∆12,

where ∆12 is the Ramanujan Delta function. The above identity is listed in
the statement of Theorem 1.4.

Now consider case (3). If m = 0 then using Proposition 4.7 and compar-
ing coefficients, we get

Ea2D
rE2 = Dr+aE2.

Comparing the coefficients of q2 on both sides, we get

2r − 8a = 2r+a.

This is not possible since r, a ≥ 1. If m ≥ 1 then by Proposition 4.7 we have

(9) Ea2Ek1 . . . EkmD
rE2 = Dr+a+1g,

where g is a modular eigenform of weight k = k1 + · · ·+ km. Using (4) and
Lemmas 4.6, 4.5, and then comparing the coefficients of Er+a+1

2 on both
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sides of the above equality, we obtain

(10)
r!

12r
Ek1 . . . Ekm = dg,

where

d =
(r + a+ 1)!

12r+a+1

(
k + r + a

r + a+ 1

)
.

Since g is an eigenform of weight k with non-zero constant Fourier coefficient,
by Lemma 4.4 we have g = cEk for some non-zero constant c. Substituting
this value of g in (10) and comparing the constant Fourier coefficients on
both sides of (10) we obtain

c =
r!

12rd
.

Therefore, by (9) we have

(11) Ea2Ek1 . . . EkmD
rE2 =

r!

12rd
Dr+a+1Ek.

Comparing the Fourier coefficients of q on both sides of the above equation
gives

(12) − 2k

Bk
= −24

12r

r!
d.

If m = 1 we have

Ea2EkD
rE2 =

r!

12rd
Dr+a+1Ek.

Comparing the coefficients of q2 in the above identity we get

−2k

Bk

r!

12rd
2r+a+1σk−1(2) = −24

(
3 · 2r − 24a− 2k

Bk

)
.

Using the fact that −2kBk

r!
12rd = −24 from (12) we arrive at

2r+a+1σk−1(2)− 3 · 2r = −
(

24a+ 24
12r

r!
d

)
.

The above identity is not possible since the left hand side is a positive
quantity, whereas the right hand side is negative.

If m > 1 then dg is, by (10) and up to a constant, a product of two
or more Eisenstein series. Thus by [4], the possible values of k are 8, 10, 14.
From (12) we see that −2k/Bk is negative. But for k = 8, −2k/Bk = 480 is
positive. Thus k = 8 is not possible. If k = 10 then −2k/Bk = −264. From
(12) we have

12a · 264 · 9! = 2(r + 1)(r + 2) . . . (r + a+ 10).
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From the above identity, we see that the right hand side is divisible by 25
but the left hand side is not. Thus the case k = 10 does not arise. Similarly,
we get a contradiction if k = 14.

For case (4), without loss of generality, we assume that f is normalized.
Suppose that the weight of f is k. By Proposition 4.7 we have

Ea2Ek1 . . . EkmD
rf = Dr+ag,

where g is a normalized modular eigenform of weight l = k+ k1 + · · ·+ km.
Since both f and g are nomalized, applying Lemma 4.5 and (4) to both sides
of the above equality and then comparing the coefficients of Er+a2 we obtain

r!

12r

(
k + r − 1

r

)
=

(r + a)!

12r+a

(
l + r + a− 1

r + a

)
.

This leads to

12ak(k + 1) . . . (k + r − 1) = l(l + 1) . . . (l + r + a− 1).

Since l ≥ k ≥ 12, the above equality holds only when a = 0 and l = k. This
implies that a+m = 0, which contradicts the assumption that a+m ≥ 1.

Finally consider case (5). By Proposition 4.7, we have

(13) Ea2Ek1 . . . EkmD
rEk = Dr+ah,

where h is a modular eigenform of weight l = k + k1 + · · · + km. Applying
Lemma 4.5 and (4) to both DrEk and Dr+ah, and then comparing the
coefficients of Er+a2 from both sides of the above equality, we have

(14) d1Ek1 . . . EkmEk = d2h,

where d1 = r!
12r

(
k+r−1
r

)
and d2 = (r+a)!

12r+a

(
l+r+a−1
r+a

)
. Since Ek1 . . . EkmEk has

non-zero constant Fourier coefficient, we deduce from (14) that the constant
Fourier coefficient of h is non-zero. Hence by Lemma 4.4, h = cEl for some
non-zero constant c. Substituting h = cEl in (13) we get the identity

(15) Ea2Ek1 . . . EkmD
rEk = cDr+aEl.

From (14) we also see that

(16) Ek1 . . . EkmEk = El

and

c =
d1
d2
.

If m = 0, then k = l and c = d1/d2 = 1. This implies that

12a = (k + r)(k + r + 1) . . . (k + r + a− 1).

The above identity will hold only if a = 1 and k + r = 12. So we are left
with the case

E2D
rEk = Dr+1Ek, where k + r = 12.
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By comparing the Fourier coefficients of q2 on both sides, we see that the
above identity cannot be true for k + r = 12. Thus m = 0 is not possible.
Now let m ≥ 1. Comparing the coefficients of q on both sides of (15) we see
that

(17) c =
d1
d2

=

(−2k
Bk

)(−2l
Bl

) =
2kBl
2lBk

.

By [4], the values of the tuple (k, l) for which (16) holds are

(4, 8), (4, 10), (6, 10), (4, 14), (6, 14), (8, 14), (10, 14).

We see that (4, 10), (4, 14) and (8, 14) are ruled out since for these values,
2kBl
2lBk

is negative but d1
d2

is always positive, which contradicts (17). So the

remaining values of (k, l) to be checked are

(4, 8), (6, 10), (6, 14), (10, 14).

Also from (17), we see that

2l

Bl

r!

12r

(
k + r − 1

r

)
=

2k

Bk

(r + a)!

12r+a

(
l + r + a− 1

r + a

)
.

Simplifying the above identity, we arrive at

(18) 12a
2l

Bl
k(k + 1) . . . (l − 1) =

2k

Bk
(k + r)(k + r + 1) . . . (l + r + a− 1).

For (k, l) = (4, 8) we have (−2k/Bk,−2l/Bl) = (240, 480). Substituting
the above values in (18) we obtain

(19) 12a × 5× 6× 7× 8 = (r + 4)(r + 5) . . . (r + a+ 7).

If r + a+ 7 ≥ 11, then we get a contradiction from (19) since the left hand
side of (19) is not divisible by 11 whereas the right hand side is. Also, since
r ≥ 1, we deduce that r + a+ 7 ≥ 8. Thus

1 ≤ r + a ≤ 3.

By taking values of r and a for which r + a = 2, 3, one sees that we get
contradictions from (19). Thus the only case remaining is r + a = 1. This
implies that r = 1 and a = 0. Therefore from (15), we obtain the identity

E4(DE4) = 1
2DE8.

If (k, l) = (6, 10), then (−2k/Bk,−2l/Bl) = (504, 264). Substituting these
values in (18) we obtain

(20) 12a × 11× 6× 7× 8× 9 = 21(r + 6)(r + 7) . . . (r + 9 + a).

As in the previous case we get

1 ≤ r + a ≤ 3.
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Inserting the above possible values of r and a in (20), we see that they
contradict (20). Thus the case (k, l) = (6, 10) is not possible. Similarly, we
get contradictions for the other possible values (k, l) = (6, 14) and (10, 14).
This proves the theorem.
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