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RD-INJECTIVITY OF TENSOR PRODUCTS OF MODULES

BY
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Abstract. A classical question due to Yoneda is, “When is the tensor product of any
two injective modules injective?” Enochs and Jenda gave a complete and explicit answer
to this question in 1991. Since RD-injective modules are a generalization of injective
modules, it is natural to ask whether the tensor product of any two RD-injective modules
is RD-injective. In this paper we deal with this question.

1. Introduction. The notion of purity has a substantial role in module
theory and also in model theory. There are several variants of this notion (see
[2], [3], [5], [8], [20], [22] and [23]). For example, the concept of RD-purity
(or relative divisible-purity), with the related notions of RD-injective, RD-
projective and RD-flat module, was introduced by Warfield [22] in 1969.
They have been an object of deep study in the past forty years. Apart from
the pioneering work of Warfield [22, 23], let us recall here the studies of
Facchini [8], Puninski [20, 21], and, in the commutative case, Couchot [5].

Yoneda raised the question of when the tensor product of any two in-
jective modules is injective. Ishikawa [15] proved that for a commutative
Noetherian ring R, if the injective envelope E(R) is flat, then the tensor
product of any two injective R-modules is injective. Finally, a complete
answer to the question of Yoneda was given by Enochs and Jenda [7, The-
orem 2.4]. They proved that, over a commutative Noetherian ring R, the
injective envelope E(R) is flat if and only if the tensor product of any two
injective R-modules is injective. Also, they showed that R is Gorenstein if
and only if the torsion product of any two injective R-modules is injective.
Pournaki et al. [18] have studied the analogous question for pure-injective
modules. Since RD-injective modules are a generalization of injective mod-
ules, it is natural to ask when the tensor product of two RD-injective modules
is RD-injective. In this paper we deal with this question.
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There are examples in the literature showing that the tensor product of
two RD-injective modules need not be RD-injective in general. In this paper,
we obtain some conditions which guarantee that it is. In this direction,
first we show that if R is a Σ-RD-injective module such that the tensor
product of any two RD-injective R-modules is RD-injective, then R is a
quasi-Frobenius ring and each direct sum of RD-injective R-modules is RD-
injective (Theorem 2.1). As a consequence, R is then a finite product of pure-
semisimple rings (i.e., every R-module is a direct sum of finitely generated
modules) or finite rings (Corollary 2.2).

In Theorem 2.3, it is shown that if R is a Σ-RD-injective module, then
conditions (1)–(4) below are equivalent and imply condition (5), and when R
is either a Bézout ring or a non-finite local ring, the following five conditions
are equivalent:

(1) R is a pure-semisimple ring;
(2) every R-module is RD-injective;
(3) every R-module is pure-injective;
(4) the tensor product of two pure-injective R-modules is pure-injective;

and
(5) the tensor product of two RD-injective R-modules is RD-injective.

We provide an example of an Artinian ring R for which the tensor prod-
uct of two Artinian R-modules may not be RD-injective (Example 2.6).
In this regard, it is shown that if every simple R-module is RD-injective,
then the tensor product of any two Artinian R-modules is RD-injective. The
converse is also true when R is an Artinian ring (Theorem 2.7). As a conse-
quence, if R is a von Neumann regular ring, then the tensor product of any
two Artinian R-modules is injective (Corollary 2.8).

We show that for a semihereditary ring R, the tensor product of a finitely
presented R-module and an RD-injective R-module is RD-injective (Propo-
sition 2.9). Moreover, for a semiprime Goldie ring R, the tensor product of a
finitely presented torsion-free p-injective R-module and an RD-injective R-
module is a torsion-free p-injective pure-injective R-module (Theorem 2.10).

Hattori [13] proved that the tensor product of any two injective
R-modules is injective when R is a domain. As an analogue, we show that
if R is either a domain or a semiheriditary semiprime Goldie ring, then
the tensor product of a finitely presented torsion-free p-injective R-module
and an RD-injective R-module is injective (Proposition 2.11). Moreover,
a semiprime Goldie ring R is semisimple if and only if the tensor product
of an RD-injective R-module and a finitely generated projective R-module
is p-injective (Proposition 2.12). Also, over an integral domain R, the ten-
sor product of an FP-injective R-module and an injective flat R-module is
FP-injective (Proposition 2.13). Consequently, over an integral domain R,
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the tensor product of a finitely presented FP-injective R-module and an
injective flat R-module is injective (Corollary 2.14). Finally, if every cyclic
R-module is RD-injective, then the tensor product of any two finitely gen-
erated RD-projective R-modules is RD-injective (Proposition 2.15).

Throughout the paper, R will denote a commutative ring with identity
and all modules will be assumed to be unitary. Recall that a ring R is called
von Neumann regular if every finitely generated ideal of R is generated by
an idempotent. A ring R is local in case R has a unique maximal ideal. A
semiprime ideal in a ring R is any ideal of R which is an intersection of
prime ideals. A semiprime ring is any ring in which 0 is a semiprime ideal.
A ring R is said to be Goldie if R has finite uniform dimension and satisfies
the ascending chain condition on its annihilators. For an R-module M , we
denote by E(M) the injective envelope of M .

2. Results. Recall that an exact sequence of left R-modules 0→ A→
B → C → 0 is pure exact if it remains exact when tensoring it with any
right R-module. In this case we say that A is a pure submodule of B. When
rB ∩ A = rA for every r ∈ R, we say that A is an RD-submodule of B
(relatively divisible) and that the sequence is RD-exact.

An R-module M is said to be pure-injective (resp. RD-injective) if M has
the injective property with respect to each pure exact sequence (resp. RD-
exact sequence). An R-module M is pure-projective (resp. RD-projective) if
M has the projective property with respect to each pure exact sequence
(resp. RD-exact sequence). Also, a left R-module M is Σ-pure-injective
(resp. Σ-RD-injective) if M (I) is pure-injective (resp. RD-injective) for each
index set I. Pure-essential extension, RD-essential extension, pure-injective
envelope, and RD-injective envelope are defined as in Warfield [22]. For every
R-module M , we denote its pure-injective envelope (resp. RD-injective en-
velope) by PE(M) (resp. RDE(M)).

A left R-module A is said to be RD-coflat if every RD-exact sequence
0 → A → B → C → 0 of left R-modules is pure exact, a notion defined by
Couchot [5]. Thus every RD-injective left R-module is RD-coflat.

Recall that a ring R is called quasi-Frobenius if R is Artinian and self-
injective. Also, a ring R is perfect in case R satisfies the descending chain
condition on principal ideals.

Theorem 2.1. If R is a Σ-RD-injective module such that the tensor
product of any two RD-injective R-modules is RD-injective, then R is a
quasi-Frobenius ring and each direct sum of RD-injective R-modules is RD-
injective.

Proof. Assume R is a Σ-RD-injective module and M an RD-injective
R-module. Thus R(I) is an RD-injective R-module for each index set I.
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Also, since the tensor product of any two RD-injective R-modules is RD-
injective, R(I)⊗RM is RD-injective. ThusM (I) is an RD-injective R-module,
since R(I)⊗RM ∼= M (I). Therefore, every RD-injective R-module is Σ-RD-
injective. This implies that every RD-injective R-module is Σ-pure-injective,
since every RD-injective is pure injective.

Now, let N be an RD-coflat R-module. Thus RDE(N) is Σ-pure-injec-
tive. Also,N is a pure submodule of theΣ-pure-injectiveR-module RDE (N).
Thus, by [14, Corollary 8], N is a direct summand of RDE(N), and so N is
RD-injective. Hence every RD-coflat R-module is RD-injective, and so the
RD-injective R-modules and the RD-coflat R-modules coincide. Therefore,
each direct sum of RD-injective R-modules is RD-injective by [5, Proposi-
tion I.3].

So, if {Ei}i∈I is a family of injective R-modules, then
⊕

i∈I Ei is RD-
injective. Also, clearly

⊕
i∈I Ei is RD-coflat. It follows that

⊕
i∈I Ei is in-

jective, since it is a pure submodule of
∏
i∈I Ei. Therefore, R is Noetherian

by Bass’s Theorem. Moreover, we know that any Σ-pure-injective ring is
semiprimary (i.e., R/J(R) is semisimple and J(R) is nilpotent). Thus R is
also perfect, and so it is an Artinian ring. Therefore, [5, Proposition I.2]
allows us to conclude.

Recall that a ring R is called pure-semisimple if every R-module is a
direct sum of finitely generated modules, or equivalently, if every R-module
is pure-injective.

From Theorem 2.1, [5, Theorem II.1], and [12, Theorem 4.3], we have:

Corollary 2.2. If R is a Σ-RD-injective module such that the tensor
product of any two RD-injective R-modules is RD-injective, then R is a
finite product of pure-semisimple rings or finite rings.

Recall that a ring R is Bézout if each of its finitely generated ideals is
principal.

Theorem 2.3. Let R be Σ-RD-injective as a module over itself. Con-
sider the following conditions:

(1) R is a pure-semisimple ring;
(2) every R-module is RD-injective;
(3) every R-module is pure-injective;
(4) the tensor product of two pure-injective R-modules is pure-injective;
(5) the tensor product of two RD-injective R-modules is RD-injective.

Then:

(a) Conditions (1)–(4) are equivalent and imply condition (5).
(b) When R is either a Bézout ring or a non-finite local ring, the five

conditions are equivalent.
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Proof. (1)⇒(2). Assume that R is a pure-semisimple ring. Thus by [1,
Theorem 3.1] and [12, Theorem 4.3], R is an Artinian principal ideal ring. So
by [1, Corollary 3.3], every R-module is a direct sum of cyclic R-modules,
and so by [22, Corollary 1] every R-module is RD-projective, since R is
a principal ideal ring. This implies that every RD-exact sequence splits.
Therefore, every R-module is RD-injective.

(2)⇒(3) is clear, since every RD-injective R-module is pure-injective.
(3)⇒(4) and (2)⇒(5) are clear.
(4)⇒(1). Assume that the tensor product of two pure-injective R-mod-

ules is pure-injective. Then R is also a Σ-pure-injective module, since R is
Σ-RD-injective. Therefore, [18, Theorem 2.5] allows us to conclude.

(5)⇒(1). First assume that R is a Bézout ring and the tensor product
of any two RD-injective R-modules is RD-injective. Then by Theorem 2.1,
R is an Artinian ring. Thus R is a principal ideal ring, since R is Bézout.
Therefore, by [1, Corollary 3.3], R is a pure-semisimple ring.

Now, assume that R is a non-finite local ring and the tensor product of
any two RD-injective R-modules is RD-injective. Then Corollary 2.2 allows
us to conclude.

Recall that a ring R is a valuation ring if it is uniserial as an R-module.
Also, an RD-ring is a ring over which purity and RD-purity coincide. In
[22, Corollary 5] and [23, Theorem 3] Warfield proved that the class of
commutative RD-rings is exactly the class of Prüfer rings (i.e., localizations
at maximal ideals are valuation rings). See [21] for more details on RD-rings.

Example 2.4. (1) By Huisgen-Zimmermann [14, Observation 3(4) and
Theorem 6], we know that every Artinian module over a commutative ring
is Σ-pure-injective. Thus every commutative Artinian RD-ring is Σ-RD-
injective. This implies that every commutative Artinian principal ideal ring
is Σ-RD-injective (see [21, Proposition 6.5]).

(2) By [19, Example 4.4.14], every local RD-ring with J(R)2 = 0 is
Σ-RD-injective. In particular, every uniserial ring with J(R)2 = 0 is Σ-RD-
injective (see [21, Remark 2.7]).

Remark 2.5. Warfield proved in [23, Theorem 1] that every finitely
presented module over a valuation ring is a finite direct sum of cyclically
presented modules. Thus purity and RD-purity over a valuation ring coin-
cide. Couchot showed in [6, Theorem 12] that if R is a valuation ring, then
RDE(R) ⊗R M is RD-injective for every finitely generated R-module M .
Also, Warfield showed in [22, Theorem 6] that if S is a maximal immediate
extension of a valuation ring R and M is a finitely generated R-module, then
M⊗RS is RD-injective. Therefore, the tensor product of two not necessarily
RD-injective modules can be RD-injective. Also, by [18, Proposition 2.1], we
know that for a ring R the tensor product of a finitely presented R-module
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and a pure-injective R-module is a pure-injective R-module. Thus, if R is
an RD-ring, then the tensor product of a finitely presented R-module and
an RD-injective R-module is an RD-injective R-module.

By [18, Theorem 2.6], we know that the tensor product of two Artinian
R-modules is always pure-injective. But mind the following example:

Example 2.6. Assume that K is a field and R := K[x, y]/〈x2, y2, xy〉.
Hence R is an Artinian ring. By [20, Corollary 4], RR is not RD-injective.
Thus the R-module R ⊗R R is not RD-injective. Consequently, the tensor
product of two Artinian R-modules is not RD-injective, in general.

Next, we obtain a condition for the RD-injectivity of the tensor product
of any two Artinian R-modules.

Theorem 2.7. If every simple R-module is RD-injective, then the tensor
product of any two Artinian R-modules is RD-injective. The converse is also
true when R is an Artinian ring.

Proof. Assume that every simple R-module is RD-injective. If M and
N are two Artinian R-modules, then by [9, Proposition 6.1], M ⊗R N is an
R-module of finite length. Also, by [5, Theorem IV.1], every finite length
R-module is RD-injective, and so M ⊗R N is RD-injective. The converse is
straightforward.

Corollary 2.8. If R is a von Neumann regular ring, then the tensor
product of any two Artinian R-modules is injective.

Proof. Assume that R is a von Neumann regular ring. Hence by [16,
Corollary 3.73], all simple R-modules are injective. Thus by Theorem 2.7,
the tensor product of any two Artinian R-modules is RD-injective. Also,
since R is von Neumann regular, every RD-injective R-module is injective.
Therefore, the tensor product of any two Artinian R-modules is injective.

Recall that a ring R is said to be semihereditary if every finitely generated
ideal of R is projective.

Proposition 2.9. If R is a semihereditary ring, then the tensor prod-
uct of a finitely presented R-module and an RD-injective R-module is RD-
injective.

Proof. Assume that R is a semihereditary ring andM is a maximal ideal
of R. Since R is semihereditary, so is the localization RM. Therefore, every
finitely generated ideal of RM is a projective RM-module, and so every
finitely generated ideal of RM is a free RM-module, since RM is local. It
follows that RM is a domain, and so RM is a Prüfer domain. Thus by [22,
Corollary 5] and [23, Theorem 3], R is an RD-ring. Therefore, Remark 2.5
allows us to conclude.
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Assume that R is a semiprime Goldie ring and M is an R-module. Then

T (M) := {m ∈M | rm = 0 for some regular r ∈ R}
is a submodule of M . An R-module M is torsion if T (M) = M , and torsion-
free if T (M) = 0.

Recall that an R-module M is said to be p-injective (or divisible) if every
R-homomorphism f : I →M extends to g : R→M for each principal ideal
I of R, or equivalently, if every system of equations rx = m ∈M (r ∈ R) is
solvable in M (see [16, Proposition 3.17]).

Theorem 2.10. Let R be a semiprime Goldie ring. Then the tensor
product of a finitely presented torsion-free p-injective R-module and an RD-
injective R-module is a torsion-free p-injective pure-injective R-module.

Proof. Assume that M is a finitely presented torsion-free p-injective
R-module and N an RD-injective R-module. Since N is RD-injective, by
[4, Theorem 3.7], there is a family {Kλ}λ∈Λ of R-algebras which are cycli-
cally presented as R-modules, such that N is isomorphic to a direct sum-
mand of

∏
λ∈Λ HomR(Kλ, E) where E is an injective cogenerator ofR (notice

that the notion of RD-injectivity coincides with the (1, 1)-pure injectivity of
[4]). Set K =

⊕
λ∈ΛKλ. Then∏

λ∈Λ
HomR(Kλ, E) ∼= HomR(K,E).

Thus N is a direct summand of HomR(K,E) where K is the direct sum of
a family of cyclically presented R-modules and E is an injective R-module.
Therefore, M ⊗RN is a direct summand of M ⊗R HomR(K,E). Also, since
M is finitely presented,

M ⊗R HomR(K,E) ∼= HomR(HomR(M,K), E).

We claim that the R-module HomR(HomR(M,K), E) is torsion-free p-
injective. To prove the claim we show that over a semiprime Goldie ring R,
if A is a torsion-free p-injective R-module, then HomR(A,B) is a torsion-
free p-injective R-module for each R-module B. First, assume that A is a
p-injective R-module and rf = 0 for some f ∈ HomR(A,B) and regular
element r ∈ R. Thus rf(a) = 0 and so f(ra) = 0 for all a ∈ A. Also, there
exists a′ ∈ A such that ra′ = a, since A is p-injective. Therefore, f(a) =
f(ra′) = 0 and so f = 0. Hence, HomR(A,B) is a torsion-free R-module.

Now, assume that A is torsion-free p-injective. We show that HomR(A,B)
is a p-injective R-module. Suppose that a ∈ A, s ∈ R and r is a regular
element of R. Since A is p-injective we have sa = r(sa)′ where sa, (sa)′ ∈ A
and also sa = s(a′r) = (sa′)r where a, a′ ∈ A. This implies that (sa)′ = sa′,
since A is torsion-free. Also, for a1, a2 ∈ A, since A is p-injective we have
r(a1 + a2)

′ = (a1 + a2) where (a1 + a2)
′, (a1 + a2) ∈ A, and also (a1 + a2) =
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ra′1+ra′2 = r(a′1+a′2) where a′1, a
′
2 ∈ A. This implies that (a1+a2)

′ = a′1+a′2,
since A is torsion-free.

Now, assume that f ∈ HomR(A,B) and r is a regular element of R.
Define g : A → B by g(a) = f(a′) where ra′ = a and a′ ∈ A. Since A is
torsion-free, g is well-defined. Also, for each a1, a2 ∈ A,

g(a1 + a2) = f((a1 + a2)
′) = f(a′1 + a′2) = f(a′1) + f(a′2) = g(a1) + g(a2),

and for each r ∈ R and a ∈ A,

g(ra) = f((ra)′) = f(ra′) = rf(a′) = rg(a).

Thus g ∈ HomR(A,B) and so HomR(A,B) is a p-injective R-module.
Therefore, HomR(HomR(M,K), E) is torsion-free p-injective, since M is

torsion-free p-injective. This implies that M⊗RN is torsion-free p-injective.
Also, by [18, Proposition 2.1], M ⊗R N is pure-injective, since N is a pure-
injective R-module.

Hattori [13] proved that the tensor product of any two injective R-
modules is injective when R is a domain. The following proposition is an
analogue of this result.

Proposition 2.11. Let R be either a domain or a semihereditary semi-
prime Goldie ring. Then the tensor product of a finitely presented torsion-
free p-injective R-module and an RD-injective R-module is injective.

Proof. Assume that M is a finitely presented torsion-free p-injective R-
module and N an RD-injective R-module.

First assume that R is a domain. Thus by Theorem 2.10, M ⊗R N is a
torsion-free p-injective R-module, since every domain is semiprime Goldie.
Also, by [16, Proposition 3.25], over a domain R, a torsion-free R-module
is injective if and only if it is p-injective. Thus M ⊗R N is an injective
R-module.

Now if R is a semihereditary semiprime Goldie ring, then by Proposi-
tion 2.9 and Theorem 2.10, M⊗RN is a torsion-free p-injective RD-injective
R-module. We also have r(M ⊗R N) = rE(M ⊗R N) ∩ (M ⊗R N) for each
r ∈ R, since M ⊗R N is p-injective. Thus, by [22, Proposition 2], the exact
sequence

0→M ⊗R N ↪→ E(M ⊗R N)→ E(M ⊗R N)/(M ⊗R N)→ 0

is RD-exact, and so it splits, since M ⊗R N is RD-injective. Therefore,
M ⊗R N is an injective R-module.

Proposition 2.12. Let R be a semiprime Goldie ring. Then the follow-
ing statements are equivalent:

(1) R is a semisimple ring;
(2) R is a p-injective module;
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(3) the tensor product of an RD-injective R-module and a finitely gen-
erated projective R-module is p-injective.

Proof. (1)⇒(2) is clear.
(2)⇒(3). Assume that R is a p-injective module, and M is a finitely

generated projective R-module and N an RD-injective R-module. Thus M
is finitely presented, since M is finitely generated projective. Also, M is
torsion-free p-injective, since R is p-injective and M is a direct summand
of a free R-module. Therefore, by Theorem 2.10, M ⊗R N is a torsion-free
p-injective pure-injective R-module.

(3)⇒(1). Assume that N is an RD-injective R-module. Thus by hypoth-
esis, R⊗RN is a p-injective R-module, and so N is p-injective, since R⊗RN
∼= N . Thus every RD-injective R-module is p-injective, and so similarly to
the proof of Proposition 2.11, this implies that every RD-injective R-module
is injective. Now, by [5, Proposition I.1], for each r ∈ R, Hom(R/Rr,Q/Z)
is an RD-injective R-module, and so it is injective. This implies that R/Rr
is a flat R-module for each r ∈ R. Thus the exact sequence

0→ Rr ↪→ R→ R/Rr → 0

is pure exact for each r ∈ R [16, Theorem 4.85], and so it splits, since R/Rr
is a pure-projective R-module. So, every principal ideal of R is a direct
summand of R and hence R is a von Neumann regular ring. So, R is a
semisimple ring, since a von Neumann regular ring which is a Goldie ring is
semisimple (see [10, Theorem 1.17] and [11, Lemma 6.12]).

Recall that an R-module A is FP-injective (or absolutely pure) if it is
pure in every R-module that contains it, or equivalently, if Ext1R(M,A) = 0
for all finitely presented R-modules M .

Proposition 2.13. If R is an integral domain, then the tensor product
of an FP-injective R-module and an injective flat R-module is FP-injective.

Proof. Assume that R is an integral domain and A is an FP-injective
R-module and B is an injective flat R-module. Thus the exact sequence

0→ A ↪→ E(A)→ E(A)/A→ 0

is pure. So, the exact sequence

0→ A⊗R B → E(A)⊗R B → E(A)/A⊗R B → 0

is pure, since B is flat. Also, by Hattori’s result [13], E(A)⊗RB is an injective
R-module. This implies that A ⊗R B is a pure submodule of E(A ⊗R B).
We know that an R-module K is FP-injective if and only if K is pure in its
injective envelope. Therefore, A⊗R B is FP-injective.

Corollary 2.14. If R is an integral domain, then the tensor product
of a finitely presented FP-injective R-module and an injective flat R-module
is injective.
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Proof. This follows from Proposition 2.13, [18, Proposition 2.1], and the
fact that every FP-injective pure-injective module is injective.

Warfield [22, Corollary 1] proved that an R-module M is RD-projective
if and only if it is a direct summand of a direct sum of cyclically presented
R-modules. Facchini et al. [8, Theorem 4.6] proved that every right RD-
projective module over a one-sided perfect ring is a direct sum of finitely
presented cyclic modules.

We conclude this paper with the following result.

Proposition 2.15. If every cyclic R-module is RD-injective, then the
tensor product of two finitely generated RD-projective R-modules is RD-
injective.

Proof. Assume that every cyclic R-module is RD-injective and M and
N are two finitely generated RD-projective R-modules. Thus by [17, The-
orem 2.1], R is a perfect ring. Hence by [8, Theorem 4.6], M and N are
finite direct sums of finitely presented cyclic R-modules. So, the R-module
M ⊗R N is a finite direct sum of cyclic modules, and so by hypothesis it is
an RD-injective R-module.
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