On a generalization of the Beiter Conjecture

by
BartŁomiej Bzdęga (Poznań)

1. Introduction. Let Φ_{n} be the nth cyclotomic polynomial, i.e. the unique monic polynomial irreducible over integers, whose roots are all primitive nth roots of unity. We assume that $n=p_{1} \ldots p_{w}$ and $2<p_{1}<p_{2}<$ $\cdots<p_{w}$ are primes, since $\Phi_{2 n}(x)=\Phi_{n}(-x)$ for odd n and $\Phi_{n p}(x)=\Phi_{n}\left(x^{p}\right)$ for a prime p dividing n. In this case we call the number $w=\omega(n)$ the order of Φ_{n}.

Let A_{n} denote the maximal absolute value of a coefficient of Φ_{n}. We say briefly that A_{n} is the height of Φ_{n}. For $w \in\{0,1,2\}$, determining A_{n} is easy and we have $A_{1}=A_{p_{1}}=A_{p_{1} p_{2}}=1$. For $w=3$ it is known that $A_{p_{1} p_{2} p_{3}} \leq \frac{3}{4} p_{1}$ (see [1]). The Corrected Beiter Conjecture states that $A_{p_{1} p_{2} p_{3}} \leq \frac{2}{3} p_{1}$ (see [4] and references given there for details). The constant $2 / 3$ is best possible if the conjecture is true.

For cyclotomic polynomials of any order we set

$$
M_{n}=\prod_{i=1}^{w-2} p_{i}^{2^{w-1-i}-1}
$$

where the empty product, which occurs if $w \leq 2$, equals 1 . P. T. Bateman, C. Pomerance and R. C. Vaughan [2] proved that $A_{n} \leq M_{n}$. In [3] the present author proved that $A_{n} \leq C_{w} M_{n}$, where $C_{w}^{2^{-w}}$ converges to approximately 0.95 with $w \rightarrow \infty$. However, so far no good general class of Φ_{n} for which A_{n} is close to $C_{w} M_{n}$ has been known.

It has not even been known whether M_{n} gives the optimal order for the upper bound on A_{n}. For example we have $A_{p_{1} \ldots p_{5}} \leq C_{5} p_{1}^{7} p_{2}^{3} p_{3}$, but it has not been clear whether maybe $A_{p_{1} \ldots p_{5}} \leq C_{5}^{\prime} p_{1}^{8} p_{2}^{2} p_{3}$ for some other constant C_{5}^{\prime}. All known constructions of Φ_{n} with large height required most prime factors of n to be of almost the same size.

[^0]One of the main purposes of this paper is to show that M_{n} is optimal, i.e. in the upper bound on A_{n} it cannot be replaced by any smaller product of the form $p_{1}^{\alpha_{1}} \ldots p_{w}^{\alpha_{w}}$ in the sense described below.

For a fixed w we define the following strict lexicographical order on \mathbb{R}^{w} : $\left(\alpha_{1}, \ldots, \alpha_{w}\right) \prec\left(\beta_{1}, \ldots, \beta_{w}\right)$
$\Leftrightarrow \alpha_{w}=\beta_{w}, \alpha_{w-1}=\beta_{w-1}, \ldots, \alpha_{k+1}=\beta_{k+1}$ and $\alpha_{k}<\beta_{k}$ for some $k \leq w$.
For $\alpha=\left(\alpha_{1}, \ldots, \alpha_{w}\right)$ and $n=p_{1} \ldots p_{w}$ we set $M_{n}^{(\alpha)}=p_{1}^{\alpha_{1}} \ldots p_{w}^{\alpha_{w}}$. Note that if $\alpha \prec \beta$ are fixed and p_{i} is large enough compared to $p_{1} \ldots p_{i-1}$ for all $i \leq w$, then $M_{n}^{(\alpha)}<M_{n}^{(\beta)}$.

We say that $M_{n}^{(\alpha)}$ is the optimal bound on A_{n} for a fixed w if there exists a constant b_{w} such that $A_{n} \leq b_{w} M_{n}^{(\alpha)}$ for all odd squarefree n with $\omega(n)=w$ and α is smallest possible in the sense of the order \prec.

We have to explain what it means that p_{i} is large enough compared to $p_{1} \ldots p_{i-1}$ for all $i \leq w$. Let $h: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$be any function, preferably growing fast. We say that a sequence of primes p_{1}, \ldots, p_{w} is h-growing if $p_{i} \geq h\left(p_{1} \ldots p_{i-1}\right)$ for $i=1, \ldots, w$ (an empty product equals 1). With a small abuse of notation we will also write that the number $n=p_{1} \ldots p_{w}$ is h-growing.

The following theorem is the main result of this paper.
Theorem 1. For every $w \geq 3, \varepsilon>0$ and $h: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$there exists an h-growing $n=p_{1} \ldots p_{w}$ such that $A_{n}>(1-\varepsilon) c_{w} M_{n}$, where

$$
M_{n}=\prod_{i=1}^{w-2} p_{i}^{2^{w-1-i}-1} \quad \text { and } \quad c_{w}=\frac{1}{w} \cdot\left(\frac{2}{\pi}\right)^{3 \cdot 2^{w-3}} \cdot\left(\prod_{k=3}^{w-1} k^{2^{w-1-k}}\right)^{-1}
$$

By this theorem and the already mentioned result from [3], M_{n} is the optimal bound on A_{n}. Furthermore,

$$
\lim _{w \rightarrow \infty} c_{w}^{2-w}=\left(\frac{2}{\pi}\right)^{3 / 8} \cdot \prod_{k=3}^{\infty} k^{-2^{-k-1}} \approx 0.71 .
$$

Let us define the w th Beiter constant in the following natural way:

$$
B_{w}=\limsup _{\omega(n)=w}\left(A_{n} / M_{n}\right) .
$$

For example, we know that $B_{0}=B_{1}=B_{2}=1$ and $2 / 3 \leq B_{3} \leq 3 / 4$. If the Corrected Beiter Conjecture is true, then $B_{3}=2 / 3$.

For all w we have

$$
c+o(1)<B_{w}^{2^{-w}}<C+o(1), \quad w \rightarrow \infty
$$

with $c \approx 0.71$ and $C \approx 0.95$. It would be interesting to know the asymptotics of B_{w}. For example, we expect that the following natural conjecture is true.

Conjecture 2. The limit $\lim _{w \rightarrow \infty} B_{w}^{2-w}$ exists.
2. Preliminaries and the binary case. For $n>1$ we define the value

$$
L_{n}=\max _{|z|=1}\left|\Phi_{n}(z)\right|
$$

It was already considered by several authors [2, 5, 6] while estimating A_{n}. If S_{n} denotes the sum of the absolute values of the coefficients of Φ_{n}, then for $n>1$ we have

$$
A_{n} \geq \frac{S_{n}}{\operatorname{deg} \Phi_{n}+1} \geq \frac{L_{n}}{n}
$$

We express $\left|\Phi_{n}(z)\right|$ as a real function of $x=\arg (z)$ for $|z|=1$. For all $n \geq 1$ let

$$
F_{n}(x)=\prod_{d \mid n}\left(\sin \frac{d}{2} x\right)^{\mu(n / d)}
$$

where μ is the Möbius function. It is readily seen (see proof of Lemma 3 below) that this expression serves to define a continuous function of the real variable x. Moreover, $\left|F_{n}(x)\right|=\left|F_{n}(x+2 \pi)\right|$ and $F_{n p}(x)=F_{n}(p x) / F_{n}(x)$ for any prime p not dividing n.

Lemma 3. For $n>1$ we have $\left|\Phi_{n}\left(e^{i x}\right)\right|=\left|F_{n}(x)\right|$.
Proof. By elementary computations $|1-z|=2\left|\sin \frac{1}{2} x\right|$. Then we use the well known formula $\Phi_{n}(z)=\prod_{d \mid n}\left(1-z^{d}\right)^{\mu(n / d)}$. Note that $\Phi_{n}\left(e^{i x}\right)$ is a bounded continuous function of x, so if the product $F_{n}\left(x_{0}\right)$ is not defined for some x_{0} (which happens only for finitely many values of $0 \leq x_{0}<2 \pi$), then we can replace it by its limit as $x \rightarrow x_{0}$.

A consequence of Lemma 3 is that $F_{n}\left(x_{0}\right)=0$ if and only if $x_{0}=2 \pi t_{0} / n$ for some t_{0} coprime to n. Also, we have

$$
L_{n}=\max _{|z|=1}\left|\Phi_{n}(z)\right|=\max _{0 \leq x<2 \pi}\left|F_{n}(x)\right|
$$

as long as $n>1$. Additionally, we set $L_{1}=\max _{0 \leq x<2 \pi}\left|F_{1}(x)\right|=1$.
It is easy to determine $L_{p_{1}}=p_{1}$. Let us consider the case $w=2$.
TheOrem 4. Let $p_{1}<p_{2}$ be primes and let a be the unique integer such that $p_{1} \mid p_{2}+2 a$ and $|a|<p_{1} / 2$. Then

$$
L_{p_{1} p_{2}} \geq \frac{4\left(p_{1}-2\right) p_{2}}{\pi^{2}|2 a+1|}
$$

Proof. Set

$$
x=\left(1+\frac{1}{p_{1}}+\frac{2 a+1}{p_{1} p_{2}}\right) \pi
$$

Then

$$
\begin{aligned}
\left|\sin \frac{p_{1} p_{2} x}{2}\right| & =\left|\sin \frac{p_{1} p_{2}+p_{2}+2 a+1}{2} \pi\right|=1 \\
\left|\sin \frac{x}{2}\right| & =\left|\cos \left(\frac{1}{2 p_{1}}+\frac{2 a+1}{2 p_{1} p_{2}}\right) \pi\right| \geq 1-\frac{1}{p_{1}}-\frac{|2 a+1|}{p_{1} p_{2}} \geq 1-\frac{2}{p_{1}}
\end{aligned}
$$

where we have used the inequality $\cos t \geq 1-\frac{2}{\pi} \cdot|t|$ for $|t| \leq \pi / 2$. Furthermore,

$$
\begin{aligned}
& \left|\sin \frac{p_{1} x}{2}\right|=\left|\sin \left(\frac{p_{1}+1}{2}+\frac{2 a+1}{2 p_{2}}\right) \pi\right|=\left|\sin \frac{2 a+1}{2 p_{2}} \pi\right| \leq \frac{|2 a+1| \pi}{2 p_{2}} \\
& \left|\sin \frac{p_{2} x}{2}\right|=\left|\sin \left(\frac{p_{2}}{2}+\frac{p_{2}+2 a}{2 p_{1}}+\frac{1}{2 p_{1}}\right) \pi\right|=\left|\sin \frac{\pi}{2 p_{1}}\right| \leq \frac{\pi}{2 p_{1}}
\end{aligned}
$$

where we have used the inequality $|\sin t| \leq|t|$ for $t \in \mathbb{R}$. By the above inequalities we obtain

$$
L_{p_{1} p_{2}} \geq\left|F_{p_{1} p_{2}}(x)\right|=\left|\frac{\sin (x / 2) \sin \left(p_{1} p_{2} x / 2\right)}{\sin \left(p_{1} x / 2\right) \sin \left(p_{2} x / 2\right)}\right| \geq \frac{4\left(p_{1}-2\right) p_{2}}{\pi^{2}|2 a+1|}
$$

3. Derivative of F_{n}. It is not difficult to prove that F_{n} is a differentiable function. Let $f_{n}(x)$ be its derivative. Define

$$
D_{n}=\min _{x: F_{n}(x)=0}\left|f_{n}(x)\right|
$$

The aim of this section is to prove the following theorem.
TheOrem 5. For all positive integers w and all $\varepsilon>0$ there exists a function $h_{w, \varepsilon}: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$, depending only on w and ε, such that

$$
\frac{n}{2}\left(L_{p_{1}} L_{p_{1} p_{2}} \ldots L_{p_{1} \ldots p_{w-1}}\right)^{-1} \leq D_{n}<(1+\varepsilon) \frac{n}{2}\left(L_{p_{1}} L_{p_{1} p_{2}} \ldots L_{p_{1} \ldots p_{w-1}}\right)^{-1}
$$

for all $h_{w, \varepsilon}$-growing $n=p_{1} \ldots p_{w}$.
In order to prove this theorem we will need some lemmas.
Lemma 6. Let p be a prime not dividing n. If $F_{n p}\left(x_{1}\right)=0$, then

$$
f_{n p}\left(x_{1}\right)=\frac{p f_{n}\left(x_{1} p\right)}{F_{n}\left(x_{1}\right)}
$$

Proof. We have $x_{1}=2 \pi t_{1} /(n p)$ for some t_{1} coprime to $n p$, so $F_{n}\left(p x_{1}\right)=0$ and $F_{n}\left(x_{1}\right) \neq 0$. Using the equality $F_{n p}(x)=F_{n}(p x) / F_{n}(x)$ and the quotient rule we obtain

$$
f_{n p}\left(x_{1}\right)=\frac{p f_{n}\left(p x_{1}\right) F_{n}\left(x_{1}\right)-F_{n}\left(p x_{1}\right) f_{n}\left(x_{1}\right)}{\left(F_{n}\left(x_{1}\right)\right)^{2}}=\frac{p f_{n}\left(x_{1} p\right)}{F_{n}\left(x_{1}\right)}
$$

Lemma 7. We have

$$
D_{n p} \geq p D_{n} / L_{n}
$$

Moreover, for all $\varepsilon>0$ there exists a function $h_{\varepsilon}: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$, depending only on ε, such that

$$
D_{n p}<(1+\varepsilon) p \frac{D_{n}}{L_{n}} \quad \text { for all } p>h_{\varepsilon}(n)
$$

Proof. Let x_{0} and x_{1} be such that $F_{n}\left(x_{0}\right)=F_{n p}\left(x_{1}\right)=0,\left|f_{n}\left(x_{0}\right)\right|=D_{n}$ and $\left|f_{n p}\left(x_{1}\right)\right|=D_{n p}$. Since $x_{1}=2 t_{1} \pi /(n p)$ for some t_{1} coprime to $n p$, we have $p x_{1}=2 t_{1} \pi / n$. Therefore $F_{n}\left(p x_{1}\right)=0$ and hence $\left|f_{n}\left(p x_{1}\right)\right| \geq D_{n}$. By applying this inequality and Lemma 6 we obtain

$$
D_{n p}=\left|f_{n p}\left(x_{1}\right)\right|=\frac{p\left|f_{n}\left(p x_{1}\right)\right|}{\left|F_{n}\left(x_{1}\right)\right|} \geq p \frac{D_{n}}{L_{n}}
$$

To obtain the opposite inequality, let
$x_{0}=\frac{2 t_{0} \pi}{n} \quad$ and $\quad x_{1}^{\prime}=\frac{x_{0}+2 t \pi}{p}=\frac{2\left(t_{0}+t n\right) \pi}{n p} \quad$ with any $t \not \equiv-\frac{t_{0}}{n}(\bmod p)$. Then $F_{n p}\left(x_{1}^{\prime}\right)=0$ and $f_{n}\left(p x_{1}^{\prime}\right)=D_{n}$. Again by Lemma 6 ,

$$
D_{n p} \leq\left|f_{n p}\left(x_{1}^{\prime}\right)\right|=\frac{p\left|f_{n}\left(p x_{1}^{\prime}\right)\right|}{\left|F_{n}\left(x_{1}^{\prime}\right)\right|}=p \frac{D_{n}}{\left|F_{n}\left(\frac{x_{0}+2 t \pi}{p}\right)\right|}
$$

By choosing an appropriate t we can have $\left|F_{n}\left(\frac{x_{0}+2 t \pi}{p}\right)\right|$ as close to L_{n} as we wish when $p \rightarrow \infty$.

Now we are ready to prove the main theorem of this section.
Proof of Theorem 5. Fix $\varepsilon>0$ and let $\varepsilon^{\prime}=\sqrt[w]{1+\varepsilon}-1$. Let $h_{\varepsilon^{\prime}}$ be the function given by Lemma 7. If $n=p_{1} \ldots p_{w}$ is $h_{\varepsilon^{\prime}}$ growing, then

$$
p_{i} \frac{D_{p_{1} \ldots p_{i-1}}}{L_{p_{1} \ldots p_{i-1}}} \leq D_{p_{1} \ldots p_{i}}<\left(1+\varepsilon^{\prime}\right) p_{i} \frac{D_{p_{1} \ldots p_{i-1}}}{L_{p_{1} \ldots p_{i-1}}}
$$

for $i=1, \ldots, w$ (empty product equals 1). By these inequalities,

$$
\frac{n D_{1}}{L_{1} L_{p_{1}} L_{p_{1} p_{2} \ldots L_{p_{1} \ldots p_{w-1}}}} \leq D_{n}<\left(1+\varepsilon^{\prime}\right)^{w} \frac{n D_{1}}{L_{1} L_{p_{1}} L_{p_{1} p_{2} \ldots L_{p_{1} \ldots p_{w-1}}} .}
$$

Note that $\left(1+\varepsilon^{\prime}\right)^{w}=1+\varepsilon, L_{1}=1$ and $D_{1}=1 / 2$. So the conclusion of the theorem holds with $h_{w, \varepsilon}=h_{\varepsilon^{\prime}}=h_{\sqrt[w]{1+\varepsilon}-1}$, which clearly depends only on w and ε.
4. Proof of the main result. In the following lemma we give a lower bound on $L_{n p}$ which depends on the residue class of p modulo n.

Lemma 8. Let $\varepsilon>0$ and $n=p_{1} \ldots p_{w}$ be fixed. Choose $x_{M} \in[0,2 \pi)$ such that $F_{n}\left(x_{M}\right)=L_{n}$, and $x_{0}=2 t_{0} \pi / n$ for which $F_{n}\left(x_{0}\right)=0$ and $\left|f_{n}\left(x_{0}\right)\right|$ $=D_{n}$. Let

$$
b=\min _{k \in \mathbb{Z}}\left|\frac{n x_{M}}{2 \pi}-p t_{0}+n k\right| .
$$

Then

$$
L_{n p}>(1-\varepsilon) L_{n} \frac{n p}{2 b \pi D_{n}}
$$

for every p large enough. Furthermore, if $p_{1}>w$ and r is an integer coprime to n such that $\left|\frac{n x_{M}}{2 \pi}-r\right|$ is smallest possible, then

$$
L_{n p}>(1-\varepsilon) L_{n} \frac{1}{\pi(w+1)} \cdot \frac{n p}{D_{n}}
$$

for every sufficiently large $p \equiv r / t_{0}(\bmod n)$.
Proof. We have $F_{n p}(x)=F_{n}(p x) / F_{n}(x)$, so

$$
L_{n p}=\max _{0 \leq x<2 \pi}\left|\frac{F_{n}(p x)}{F_{n}(x)}\right| \geq \max _{k \in \mathbb{Z}} \frac{\left|F_{n}\left(x_{M}+2 k \pi\right)\right|}{\left|F_{n}\left(\frac{x_{M}+2 k \pi}{p}\right)\right|}=\frac{L_{n}}{\min _{k \in \mathbb{Z}}\left|F_{n}\left(\frac{x_{M}+2 k \pi}{p}\right)\right|}
$$

Let k_{0} be an integer for which $\left|\left(x_{M}+2 k_{0} \pi\right) / p-x_{0}\right|$ is smallest possible. Then

$$
\begin{aligned}
\min _{k \in \mathbb{Z}}\left|F_{n}\left(\frac{x_{M}+2 k \pi}{p}\right)\right| & \leq\left|F_{n}\left(\frac{x_{M}+2 k_{0} \pi}{p}\right)\right| \\
& \sim\left|f_{n}\left(x_{0}\right)\right| \cdot\left|\frac{x_{M}+2 k_{0} \pi}{p}-x_{0}\right| \quad(\text { as } p \rightarrow \infty) \\
& =D_{n} \frac{2 \pi}{n p}\left|\frac{n x_{M}}{2 \pi}-t_{0} p+k_{0} n\right| \\
& =D_{n} \frac{2 b \pi}{n p}
\end{aligned}
$$

Therefore

$$
L_{n p}>(1+o(1)) \frac{L_{n}}{D_{n} \frac{2 b \pi}{n p}} \sim L_{n} \frac{n p}{2 b \pi D_{n}}
$$

as $p \rightarrow \infty$, which completes the proof of the first statement.
For $p \equiv r / t_{0}(\bmod n)$ we have

$$
b=\min _{k \in \mathbb{Z}}\left|\frac{n x_{M}}{2 \pi}-p t_{0}+n k\right|=\left|\frac{n x_{M}}{2 \pi}-r\right| \leq \frac{w+1}{2}
$$

since, in view of $p_{1}>w$, at most w consecutive integers are not coprime to n.

Simple calculations show that Theorem 4 gives a better lower bound for $L_{p_{1} p_{2}}$ than Lemma 8. Therefore we use Theorem 4 in the proof of the main result. As $A_{n} \geq L_{n} / n$ for $n>1$, Theorem 1 is an immediate consequence of the following theorem.

ThEOREM 9. For every $w \geq 3, \varepsilon>0$ and $h: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$there exists an h-growing $n=p_{1} \ldots p_{w}$ such that $L_{n}>(1-\varepsilon) c_{w} n M_{n}$, where c_{w} and M_{n} are defined in Theorem 1 .

Proof. We prove this by induction on $w=\omega(n)$. The induction starts with $w=2$.

Our inductive assumption is that for all $\varepsilon^{\prime}>0$ and a function $h: \mathbb{R}_{+} \rightarrow$ \mathbb{R}_{+}there exists an h-growing $n=p_{1} \ldots p_{w}$ such that $L_{p_{1} p_{2}}>\left(1-\varepsilon^{\prime}\right) \frac{4}{T^{2}} p_{1} p_{2}$ and $L_{p_{1} \ldots p_{i}}>\left(1-\varepsilon^{\prime}\right) c_{i} p_{1} \ldots p_{i} M_{p_{1} \ldots p_{i}}$ for $3 \leq i \leq w$. By Theorem 4 it is true for $w=2$ with $p_{1} \mid p_{2}-2$ (note that the second part of the inductive assumption is empty when $w=2$).

Now we show the inductive step. Let $w \geq 2$. Without loss of generality we may assume that h satisfies the requirements of Theorem 5 and $h(1) \geq w$. By Lemma 8 and Dirichlet's theorem on primes in arithmetic progressions, there exists $p_{w+1}>h\left(p_{1} \ldots p_{w}\right)$ for which

$$
L_{p_{1} \ldots p_{w+1}}>\left(1-\varepsilon^{\prime}\right) L_{n} \frac{n p_{w+1}}{\pi(w+1) D_{n}}
$$

By Theorem 5 ,

$$
D_{n}>\left(1-\varepsilon^{\prime}\right)^{-1} \frac{n}{2} \cdot \frac{1}{L_{p_{1}} L_{p_{1} p_{2}} \ldots L_{p_{1} \ldots p_{w-1}}} .
$$

For given $\varepsilon>0$ we choose $\varepsilon^{\prime}=1-\sqrt[w+1]{1-\varepsilon}$. By the above inequalities and the inductive assumption,

$$
\begin{aligned}
L_{p_{1} \ldots p_{w+1}} & >\left(1-\varepsilon^{\prime}\right)^{2} \frac{2 p_{w+1}}{\pi(w+1)} L_{p_{1}} L_{p_{1} p_{2} \ldots L_{p_{1} \ldots p_{w}}} \\
& >\left(1-\varepsilon^{\prime}\right)^{w+1} \frac{2 p_{w+1}}{\pi(w+1)} p_{1} \frac{4}{\pi^{2}} p_{1} \prod_{i=3}^{w}\left(c_{i} p_{1} \ldots p_{i} M_{p_{1} \ldots p_{i}}\right) \\
& =(1-\varepsilon)\left(\frac{8}{\pi^{3}(w+1)} \prod_{i=3}^{w} c_{i}\right)\left(p_{w+1} \prod_{i=1}^{w}\left(p_{1} \ldots p_{i} M_{p_{1} \ldots p_{i}}\right)\right) .
\end{aligned}
$$

The exponent of p_{k} in $\prod_{i=1}^{w}\left(p_{1} \ldots p_{i} M_{p_{1} \ldots p_{i}}\right)$ for $k \leq w$ equals

$$
w-k+1+\sum_{i=k+2}^{w}\left(2^{i-k-1}-1\right)=2^{w-k},
$$

so

$$
p_{w+1} \prod_{i=1}^{w}\left(p_{1} \ldots p_{i} M_{p_{1} \ldots p_{i}}\right)=p_{1} \ldots p_{w+1} M_{p_{1} \ldots p_{w+1}} .
$$

It remains to evaluate the constant by using a similar method:

$$
\frac{8}{\pi^{3}(w+1)} \prod_{i=3}^{w} c_{i}=\frac{8}{\pi^{3}(w+1)} \prod_{i=3}^{w}\left(\frac{1}{i}\left(\frac{2}{\pi}\right)^{3 \cdot 2^{i-3}}\left(\prod_{k=3}^{i-1} k^{2^{i-1-k}}\right)^{-1}\right)
$$

$$
\begin{aligned}
& =\frac{1}{w+1}\left(\frac{2}{\pi}\right)^{3 \cdot 2^{w-2}} \frac{1}{3 \cdot 4 \cdot \ldots \cdot w}\left(\prod_{i=3}^{w} \prod_{k=3}^{i-1} k^{2^{i-1-k}}\right)^{-1} \\
& =\frac{1}{w+1}\left(\frac{2}{\pi}\right)^{3 \cdot 2^{w+1-3}}\left(\prod_{t=3}^{w+1-1} t^{2^{w+1-1-t}}\right)^{-1}=c_{w+1}
\end{aligned}
$$

for $w \geq 2$.
Acknowledgements. The author is partially supported by the NCN grant no. 2012/07/D/ST1/02111.

The author would like to thank Pieter Moree for the invitation to Max Planck Institute in Bonn and for the good time spent there.

References

[1] G. Bachman, On the coefficients of ternary cyclotomic polynomials, J. Number Theory 100 (2003), 104-116.
[2] P. T. Bateman, C. Pomerance and R. C. Vaughan, On the size of the coefficients of the cyclotomic polynomials, in: Topics in Classical Number Theory, Vol. I (Budapest, 1981), Colloq. Math. Soc. János Bolyai 34, North-Holland, Amsterdam, 1984, 171202.
[3] B. Bzdęga, On the height of cyclotomic polynomials, Acta Arith. 152 (2012), 349-359.
[4] Y. Gallot and P. Moree, Ternary cyclotomic polynomials having a large coefficient, J. Reine Angew. Math. 632 (2009), 105-125.
[5] S. Konyagin, H. Maier and E. Wirsing, Cyclotomic polynomials with many primes dividing their orders, Period. Math. Hungar. 49 (2004), 99-106.
[6] H. Maier, Anatomy of integers and cyclotomic polynomials, in: Anatomy of Integers, CRM Proc. Lecture Notes 46, Amer. Math. Soc., 2008, 89-95.

Bartłomiej Bzdęga

Faculty of Mathematics and Computer Science
Adam Mickiewicz University
61-614 Poznań, Poland
E-mail: exul@amu.edu.pl

[^0]: 2010 Mathematics Subject Classification: 11B83, 11C08.
 Key words and phrases: cyclotomic polynomial, coefficient, height of a polynomial. Received 24 March 2015; revised 15 January 2016.
 Published online 11 May 2016.

