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1. Introduction. Let E be the set of isomorphism classes of elliptic
curves over Q. There are a number of invariants of elliptic curves we have yet
to understand well (in particular, the rank of the rational points of an elliptic
curve, or the size of its n-Selmer group). To discuss what value these take “on
average”, we need to define a measure on E . This is often done by defining
a height, a function H : E → R such that if EH<X = {E ∈ E | H(E) < X},
then #EH<X is finite. We can then make sense of what an average value is
on a finite set, and hope a limit exists as X → ∞. To use this to measure
the invariants, we first need to understand just how quickly #EH<X grows.

Commonly used is the naive height HN : Every elliptic curve over Q can
be written uniquely as y2 = x3 + Ax + B where A,B ∈ Z are such that
there is no prime p with p4 |A and p6 |B. If we call this curve EA,B, then
its naive height is

HN (E) = max(B2, |A3|).
Using sieve methods or Möbius inversion (see [2]), one can show that

#EHN<X = 4ζ(10)−1X5/6 +O(X1/2)

(for related calculations over number fields, see [1]). This formula comes
from showing that the number of lattice points of a region is roughly its
area with an error coming from its perimeter. The region where the naive
height is less than X is the rectangle of length 2X1/3 and height 2X1/2,
which has exactly area 4X5/6 and perimeter O(X1/2) (the ζ(10) comes from
excluding lattice points corresponding to nonminimal models).

Counting elliptic curves using other heights is more difficult. For ex-
ample, counting elliptic curves of bounded discriminant is difficult because
the region of points with bounded discriminant has cusps, by which is meant
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there are points with large A,B and small discriminant. Controlling these
cusps is difficult, even if the ABC conjecture is assumed.

Brumer and McGuinness [3] have given a heuristic for the number of
elliptic curves with positive (respectively negative) discriminant up to a
bound, and Watkins [13] has used this to give heuristics for the average
rank counted this way, as well as heuristics for elliptic curves of bounded
conductor. It is generally believed that the average rank should be the same
for each of these heights. However, no proof has been given of these conjec-
tures.

In this paper, we show that if hF is the Faltings height, then

#EhF<Y = 12σζ(10)−1e10Y +O(e6Y Y 3)

where σ is an absolute constant that we express as a specific integral given
in Section 2. Note that if we rewrite this in terms of HF = e12hF , this looks
similar to the equation for the naive height:

#EHF<X = 12σζ(10)−1X5/6 +O(X1/2(logX)3).

As in the naive height case, this comes from approximating lattice points
in a region by the area with an error from the perimeter: σX5/6 is the
area, while 12ζ(10)−1 adjusts it to consider only curves up to isomorphism
(which is controlled by only considering certain residue classes of integral
points). This is more difficult than the naive height case because, like the
discriminant, the relevant region has a cusp with unbounded points, but
these cusps can be controlled more easily than in the discriminant case.

2. Faltings height. In his proof of the Mordell Conjecture, Faltings
introduces a height on the set of abelian varieties over a number field K,
referred to as the Faltings height (see [4] for a longer overview, or the original
paper [6]). Silverman [10] has given a formulation for elliptic curves, which
gives the Faltings height as logarithmic. For the sake of simplicity we will
use this as a definition.

If hF (E) denotes the original Faltings height for an elliptic curve E
defined over a number field K, let HF (E) = e12hF (E). If v is an infinite
place of K, define

• εv = 1, 2 if v is real, resp. complex,
• ∆min

E the minimal discriminant,
• τv ∈ H (the complex upper half-plane) such that

E(Kv) ∼= C/(Z + τvZ),

• ∆(τ) = (2π)12qτ
∏∞
n=1(1− qnτ )24 where qτ = e2πiτ .
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Using Silverman’s reformulation, we define

HF (E) =
|NK/Q∆

min
E |∏

v|∞ |∆(τv)|εv(Im τv)6εv
,

which simplifies to
|∆min

E |
|∆(τ)|(Im τ)6

in the case where K = Q. Since ∆(τ) is a modular form of weight 12, it is
easy to check that this is independent of the choice of τ . (Silverman [10],
Faltings [6], and Deligne [5] all use different normalizations of the Faltings
height; this normalization agrees with that of Faltings.) See also [9] for a
good background and summary.

Silverman uses the above to show that for all ε > 0 there exist C1, C2(ε)
such that for all elliptic curves E over Q,

C1HF (E) ≤ HN (E) ≤ C2(ε)HF (E)(1+ε).

This inequality tells us that the Faltings height is very similar to the naive
height, but not that it is within a bounded factor of the naive height. So
counting elliptic curves by naive height does not give good bounds for count-
ing curves by Faltings height.

We will study the number of isomorphism classes of elliptic curves E with
HF (E) < X for large X. Say that (A,B) is weakly minimal with respect to
a prime p provided that either p4 - A or p6 - B; if this holds true for all
primes, simply say (A,B) is weakly minimal. Let EA,B indicate the elliptic
curve corresponding to y2 = x3 +Ax+B, and

SX = {weakly minimal (A,B) ∈ Z2 | 4A3 + 27B2 6= 0, HF (EA,B) < X}.
The elliptic curves EA,B such that (A,B) ∈ SX are representatives of the
isomorphism classes of elliptic curves with Faltings height less than X.

For τ in the upper complex half-plane H, let j(τ) denote its j-invariant,
and ∆(τ) the modular discriminant as defined above. By the traditional
fundamental domain (with respect to the j-invariant) we mean |τ | ≥ 1 and
−1/2 < Re τ ≤ 1/2. In this paper we prove the following:

Theorem 2.1. For t ∈ R, let τt ∈ H be such that j(τt) = 6912t/(4t+27)
and τt is in the traditional fundamental domain. Let

σ =
2

5

∞�

−∞
t−2/3

∣∣∣∣∆(τt)(Im τt)
6

16(4t+ 27)

∣∣∣∣5/6 dt.
Then

#SX = 12σζ(10)−1X5/6 +O(X1/2(logX)3).

Roughly, the intuition for where these numbers come from is as follows:
σX5/6 is the area of the two-dimensional region in R2 consisting of (A,B)
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such that the corresponding elliptic curve EA,B has Faltings height less
than X, 12ζ(10)−1 corrects for the fact that we only want to take weakly
minimal (A,B), and the error comes from the fact that estimating lattice
point counts by area will have an error related to the boundary (in particular,
the boundary of a bounded version of this region). When the integral defining
σ is evaluated, we get approximately σ ≈ 29089, which means the constant
of the leading term is approximately 348716.

This result is more challenging to prove than one might expect since HF

is not simply bounded below by a constant times HN , so we cannot simply
apply results known about the naive height. Additionally, the calculation
involves counting lattice points in an unbounded region whose boundary
is given by a transcendental equation, which rules out many standard ap-
proaches.

3. Defining the region of interest. Assume that we have A,B such
that 4A3 + 27B2 6= 0. For A,B ∈ Q, let ∆min

EA,B
denote the minimal discrim-

inant (note that over Q there is a global minimal model, and we could take
∆min
EA,B

to just be the polynomial discriminant of this minimal model). Let

τA,B ∈ H be such that

|τA,B| ≥ 1, −1/2 < Re τA,B ≤ 1/2, EA,B(C) ∼= C/(Z + τA,BZ),

and let

∆A,B = −16(4A3 + 27B2), jA,B = −1728
(4A)3

∆A,B
, λA,B =

|∆min
EA,B
|

|∆A,B|
.

Note that the first three of these make sense for A,B ∈ R, while the last
requires A,B ∈ Q. Furthermore, λA,B will be one of four values depending
on whether the model given for EA,B is minimal at 2 and 3 (we will discuss
this in Section 7). To clarify things later, note we have three values in this
paper which have a delta in their notation, meaning slightly different things:
∆min
E (the minimal discriminant), ∆A,B (the polynomial discriminant), and

∆(τ) (the modular discriminant).

Silverman’s theorem tells us that

HF (EA,B) =
|∆min

EA,B
|

|∆(τ)|(Im τ)6
= λA,B

|∆A,B|
|∆(τA,B)|(Im τA,B)6

.

This motivates us to define the function

f(A,B) =

∣∣∣∣∆(τA,B)(Im τA,B)6

∆A,B

∣∣∣∣1/2,
which is well-defined for all A,B ∈ R where ∆A,B 6= 0 (we invert and take
a square root to make later calculations easier). Fixing a λ > 0, we would
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like to know how many weakly minimal integer points there are in

{(A,B) ∈ R2 | λf(A,B)−2 < X}.
To ease this, we define

RX,λ = {(A,B) ∈ R2 | λf(A,B)−2 < X} ∪ {(A,B) ∈ R2 | ∆A,B = 0}.
Note that since RX,λ = RX/λ,1, we may as well just study RX = RX,1.
Furthermore, f is a weighted homogeneous function: replacing (A,B) with
(X1/3A,X1/2B) will scale f(A,B) by X−1/2. So RX is R1 scaled by X1/3

in the A-direction and X1/2 in the B-direction.
The next section calculates the area of R1 (the value denoted σ), while

the rest of the paper is focused on setting up the proof of the main result.
We will show that for large but finite A,B, there are no more relevant
lattice points in RX . Scaling down to R1, we can show that RX has a finite
boundary if contained in a finite box, but we want to measure the actual
length of this boundary. We do this by showing that in a small enough box
the boundary length does not exceed the box length, which follows from
showing (asymptotic) uniformity in the cusps.

4. Area of R1. To better calculate the area, we do a change of variables
to the parameter t = A3/B2. Then jA,B = 6912t/(4t+ 27), and we can also
define a function

f(t) =

∣∣∣∣∆(τt)(Im τt)
6

16(4t+ 27)

∣∣∣∣1/2
where τt is in the fundamental domain such that j(τt) = 6912t/(4t + 27).
Then R1 is by definition the area where

B2

f(t)2
< 1,

or alternatively, where −f(t) < B < f(t). So with a change of variables we
get

Area(R1) =
� �

R1

dAdB

=

∞�

−∞

f(t)�

−f(t)

(
1

3
t−2/3B2/3

)
dB dt

=
1

3

∞�

−∞
t−2/3

(
3

5
B5/3

)∣∣∣∣f(t)
−f(t)

dt

=
2

5

∞�

−∞
t−2/3f(t)5/3 dt.
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Using a computer to evaluate, we conclude Area(R1) ≈ 29089. We will
write σ = Area(R1), and note that Area(RX) = σX5/6. This is the same
σ that appears in Theorem 2.1. Note that in the cusp, near ∆A,B = 0, we
have t ≈ −27/4, and both τt and f grow large.

(If we wish to have a somewhat cleaner integral, we can also rewrite as
follows: Use j(z) = 6912t/(4t+ 27) to do a change of variables to a complex
number z over an appropriate curve. Rearranging and taking into account
that

∆(z) = (2π)6
j′(z)6

j(z)4(j(z)− 1728)3
,

we see the integral is
�

γ

|∆(z)|(Im z)5
j′(z)

|j′(z)|
dz

over a curve γ in the upper complex half-plane of all z with real j(z).)

5. The rough shape of RX

Lemma 5.1. The function |∆(τ)(Im τ)6| is bounded on the complex upper
half-plane H.

Proof. Since ∆(τ)(Im τ)6 is invariant under SL2(Z), assume that τ is in
the standard fundamental domain, so that |τ | ≥ 1 and |Re τ | ≤ 1/2. If we
can show that ∆(τ)(Im τ)6 is finite as Im τ →∞, then for any τ with Im τ
above some fixed constant, it is bounded. The section of the fundamental
domain that has Im τ not exceeding that constant is a compact domain, and
thus the function must also be bounded on that domain.

It remains to show that the function is finite as Im τ →∞. By definition

∆(τ) =
1

(2π)12
q

∞∏
n=1

(1− qn)24

where q = e2πiτ . So as Im τ → ∞, we have q → 0, and |∆(τ)| = O(q) =
O(e−2π Im τ ). Thus, as Im τ grows large, |∆(τ)|(Im τ)6 tends to zero.

Corollary 5.2. Let C be a positive constant such that |∆(τ)|(Im τ)6 <
C for all τ ∈ H. If (A,B) ∈ RX then |∆A,B| < CX.

The above follows immediately from Lemma 5.1. The next lemma will
show that points in RX are either small compared to X, or close to the
curve given by ∆A,B = 0.

Lemma 5.3. Let (A,B) ∈ RX . If |B|2 < CX/27, then |A|3 < CX/2.
Otherwise, A = −cB2/3 + εXB−4/3 for some |ε| < C and c = (27/4)1/3.
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Fig. 1. The region R1 (blue), with the cubic 4A3 + 27B2 inside (red) (for colors see the
online version)

Proof. Suppose |B|2 < CX/27 and |A|3 ≥ CX/2. Then

|∆A,B| = 16|4A3 + 27B2| ≥ 16(4|A3| − 27|B|2)
≥ 16(2CX − CX) = 16CX ≥ CX

and thus (A,B) 6∈ RX .

Let B 6= 0 and A = −cB2/3 + εXB−4/3 with |ε| ≥ C. Then

|∆A,B| = 64|ε|X(3c2 − 3cεXB−2 + ε2X2B−4).

Since x2 − 3cx+ 3c2 ≥ 1 for all x ∈ R and by assumptions |ε| > C, we have
|∆A,B| > 64CX > CX. This implies (A,B) 6∈ RX .

Note that this tells us only in a very rough sense that points in RX are
close to the cubic given by ∆A,B = 0. In the next section, we will give a
stronger version of this statement (which holds less generally), and use it to
count the lattice points in the region RX . It is this calculation that differs
from considering only elliptic curves of bounded discriminant.

6. Bounding the size of lattice points. In this section we will show
that all large enough integral (A,B) ∈ RX have ∆A,B = 0. This is done
in two steps: first, we quantify how close a point has to be to the curve
∆A,B = 0 to have the property |∆A,B| < 1. Then we show that, for large
enough A, a point farther from the curve cannot be in RX .

Lemma 6.1. Assume that B 6= 0. Let ε0 be the positive real root of
64x(3c2 + x2)− 3/4, recalling that c = (27/4)1/3 (this root is approximately
0.0011). For all |ε| < ε0, if A = −cB2/3 + εB−4/3 then |∆A,B| < 1.



246 R. Hortsch

Proof. Under the assumptions, we find that

|∆A,B| = 64|ε| |3c2 − 3cεB−2 + ε2B−4| ≤ 64|ε|(3c2 + 3c|ε|B−2 + ε2B−4)

< 64ε0(3c
2 + ε20) + 192ε20c = 3/4 + 192ε20c < 1

since 192ε20c is much smaller than 1/4.

The following lemma is a strong version of Lemma 5.3 that only holds
for large enough X and A.

Lemma 6.2. There are positive constants M and N such that for all
X ≥M , if |A| > NX1/3(logX)2 and A = −cB2/3 + εB−4/3 where |ε| ≥ ε0,
then (A,B) 6∈ RX .

Proof. Assume that we have taken τA,B in the usual fundamental do-
main, so that |Re τA,B| ≤ 1/2 and |τA,B| ≥ 1. We note that

f(A,B)−2 =
|∆A,B|

|∆(τA,B)|(Im τA,B)6
=

1728|4A|3

|∆(τA,B)| |j(τA,B)|(Im τA,B)6
.

However, since |∆(τA,B)| |j(τA,B)| → 1 as τ → i∞, there is some positive
constant bounding |∆(τA,B)| |j| from above, so

f(A,B)−2 ≥ c1
|A|3

(Im τA,B)6

for some constant c1 > 0.

If Im τ ≤ 1, this means f(A,B)−2 ≥ c1|A|3 > c1N
3X(logX)6. So as

long as M is large enough to have c1N
3(logM)6 > 1, this tells us that

f(A,B)−2 ≥ X and thus (A,B) 6∈ RX . (We will need to be careful to make
sure this is compatible with how we choose N .)

Assume Im τ > 1. Note that

|∆A,B| = 64|ε| |3c2 − 3cεB−2 + ε2B−4|.

The polynomial x2−3cx+3c2 is positive for all real numbers, with a minimal
value of f(3c/2) ≥ 2, which implies that |∆A,B| ≥ 128ε0 > 0.1. Since j =
1728(4A)3∆−1A,B, this means that |j| ≤ c2|A|3 for some positive constant c2.

But since |qτ | = e−2π Im τ , and for Im τ > 1,
∣∣log |j|−log |q−1τ |

∣∣ is bounded,
it follows that

Im τ < c3 log |A|+ c4

for some positive constants c3, c4. So

f(A,B)−2 ≥ c1
|A|3

(Im τA,B)6
≥ c1

|A|3

(c3 log |A|+ c4)6
.

If we take N such that 3c1N
3 > 2c3, then there is some constant c5 such
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that whenever X > c5 and |A| > NX1/3(logX)2,

c1
|A|3

(c3 log(|A|) + c4)6
> X.

This implies that (A,B) 6∈ RX .
So we can take any N such that 3c1N

3 > 2c3, and M with c1N
3(logM)6

> 1 and M > c5, and the lemma holds for these.

Together Lemmas 6.1 and 6.2 tell us that for X ≥ M , if we have |A| >
NX1/3(logX)2, then either |∆A,B| < 1 or (A,B) 6∈ RX . Thus, the only

integer points in RX where |A| > NX1/3(logX)2 are those where ∆A,B = 0.

7. Weakly minimal curves not minimal at 2 or 3. Ultimately,
what we want to count is

#{(A,B) ∈ Z2 | (A,B) is weakly minimal, HF (EA,B) < X}.
We defined f so that HF (EA,B) < X is equivalent to (A,B) ∈ RX,λA,B =
RX/λA,B , so to use our study of RX , we need to examine λA,B more carefully.

Recall that we defined λA,B = λEA,B so that |∆min
EA,B
| = λA,B|∆A,B|. Since

we are requiring that (A,B) be weakly minimal, it follows that the model
EA,B is minimal everywhere except possibly at 2 or 3. Thus it will be the
case that λA,B is 1, 2−12, 3−12, or 6−12, depending respectively on whether
the model EA,B is minimal everywhere, fails to be minimal only at 2, fails
only at 3, or fails at both 2 and 3. Let Clλ be the set of residue classes
modulo 66 such that if (A,B) ∈ Z2 reduces to a class in Clλ, then (A,B)
is weakly minimal at 2 and 3, and λA,B = λ. The table below summarizes
the values of # Clλ, which were calculated using Tate’s algorithm (found
in [11]), supplemented by some calculations with sage [12].

Model Factor λ Size of Clλ

minimal everywhere 1 (212 − 12 − 22)(312 − 18 − 32)

minimal except at 2 2−12 12 × (312 − 18 − 32)

minimal except at 3 3−12 (212 − 12 − 22) × 18

minimal except at 2 and 3 6−12 12 × 18

Fix two residue classes A0 mod 66 and B0 mod 66 so that this choice
corresponds to a particular value λ = λA0,B0 = 1, 2−12, 3−12 or 6−12. Then
for weakly minimal (A,B) corresponding to these classes, H(EA,B) < X is
equivalent to (A,B) ∈ RX/λ. We want to calculate

#{(A,B) ∈ Z2 | (A,B) ≡ (A0, B0) mod 66,

(A,B) weakly minimal, (A,B) ∈ RX/λ}
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since summing these over all residue classes will give the number of elliptic
curves of Faltings height less than X up to isomorphism. We do this in the
next section.

8. Counting weakly minimal lattice points of a fixed residue
class

Proposition 8.1. Fix two residue classes A0, B0 modulo 66 such that
(A0, B0) is weakly minimal with respect to 2 and 3. Then there is a con-
stant M such that the number of lattice points in RX reducing modulo 66

to (A0, B0) such that ∆A,B 6= 0 is σ6−12X5/6 + O(X
1/2
M (logXM )3) where

XM = max(X,M) and σ = Area(R1).

Proof. The general idea in this proof is the classical one of approximating
the number of lattice points by the area of a region. Since the error term
is dependent on the length of the boundary, we will need to use a region
that has finite boundary. (In the end, we will be doing this to the region
scaled by 6−6, since counting all integral points in that rescaled region will
be approximately the same as counting the points that satisfy the particular
congruence. For simplicity, we ignore the rescaling for now.)

Let XM = max(M,X). Then

R′X = {(A,B) ∈ RX | |A| ≤ NX1/3
M (logXM )2}

where N,M are from Lemma 6.2. If X ≥M , then Lemmas 6.1 and 6.2 tell
us that the lattice points (A,B) ∈ RX \ R′X satisfy ∆A,B = 0. If X < M ,
then RX ⊆ RM , so RX \R′X ⊆ RM \R′M , and hence also ∆A,B = 0.

Recall that C is the bound on |∆(τ)(Im τ)6| from Lemma 5.1, and
c = (27/4)1/3. Using Lemma 5.3, we find a β0 > 0 such that if |A| ≤
NX

1/3
M (logXM )2 and (A,B) ∈ RX , then |B| ≤ β0N

3/2X
1/2
M (logXM )3.

Thus, we can think of R′X as the intersection of RX with a rectangle. The
boundary of R′X is contained in the union of the boundary of that rectangle

(and thus no worse than O(X
1/2
M (logXM )3)) and the boundary of RX (that

is, the boundary of the closure of RX). So we need only show that the curve
given by the boundary of RX inside that rectangle has length less than

O(X
1/2
M (logXM )3). The lemmas that follow establish this.

Lemma 8.2. For any positive α, β ∈ R, the boundary of RX in the rect-
angle |A| ≤ αX1/3 and |B| ≤ βX1/2 is O(X1/2).

Proof. Since RX is R1 scaled by X1/3 in the A-axis and X1/2 in the B-
axis, it suffices to show that the boundary of R1 in any rectangle is bounded.
Since the scaling cannot make the boundary longer than the scaling itself,
it will follow that the boundary in RX is O(X1/2).
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The boundary of R1 is given by the zeros of

|∆A,B| − |∆(τA,B)|(Im τA,B)6.

This function is real analytic away from ∆A,B = 0, and thus in any compact
set, its zero set is rectifiable (see [7, 3.4.10]).

Note that [7, 3.4.10] also implies that the boundary of RX in any rect-
angle is finite, but since we want to know how big our error is, we want to
calculate it more carefully.

We must then consider the boundary in the region αX1/3 < |A| or
βX1/2 < |B| (note that we can fix α, β as we like). We will first consider
R1 and then generalize. For (A,B) such that ∆A,B 6= 0, if we choose τA,B
in the standard fundamental domain, then q is real-valued, and hence so is
∆(τA,B). In fact, it shares the same sign as ∆A,B. So

(8.1) F (A,B) = ∆A,B −∆(τA,B)(Im τA,B)6

is a real-valued function whose zero set is the boundary of R1. We will
show that there is a β such that for all B > β, each partial derivative of
F on the boundary of R1 has a constant sign, and the same hold for all
B < −β. First, this implies that since F is defined everywhere but where
∆A,B = 0, there can be at most two components of the boundary (one for
each connected region separated by the cubic). Second, it tells us that where
|B| > β, a connected curve given by the zero set of F (and thus also the
corresponding boundary of RX) is such that its length in any rectangle is
less than or equal to the length of the boundary of the rectangle. (This
follows from the triangle inequality. This limits by how much a curve can
change direction and thus bounds its length.)

Lemma 8.3. There is a β > 0 such that if (A,B) ∈ R2 satisfies F (A,B)
= 0 and |B| > β, then the gradient ∇F at (A,B) is in the third quadrant if
B > 0, and in the second if B < 0.

Proof. We calculate the partial derivatives of F on the curve where F =0.
The choice of τA,B implies that qA,B = e2πiτA,B is real-valued, so we can write
F and ∆(τA,B) in terms of qA,B using 2π(Im τA,B) = log |qA,B| in (8.1).

Note that Corollary 5.2 bounds the second term in the definition of
F by C (since we are currently considering R1), so |∆A,B| is bounded on
F (A,B) = 0, and thus as |B| grows large we have 4A3 ≈ −27B2. So A3

grows large and hence so does jA,B, from which it follows that qA,B → 0.

Define

J(τA,B) =
1

jA,B
=

1

1728
+

B2

256A3
.
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By the chain rule,

∂F

∂A
=
∂∆A,B

∂A
− 1

(2π)6

(
d(∆(q)(log |q|)6)

dq

)(
dq

dJ

)(
∂J

∂A

)
.

Since q can be written as a convergent power series in j−1 = J with leading
term J , it follows that dq/dJ = 1 +O(J) = 1 +O(q). Similarly, since ∆(q)
is a convergent power series in q with leading term q, we have d∆(q)/dq =
1 +O(q). Using the fact that q is real, we get

d∆(q)(log |q|)6

dq
= (1 +O(q))(log |q|)6 + 6(1 +O(q))(log |q|)5

= (log |q|)6 +O((log |q|)5).
Lastly, ∂∆A,B/∂A and ∂J/∂A are obtained by straightforward calculations.
Putting all this together, we get

∂F

∂A
= −192A2 − 1

(2π)6
(log |qA,B|)6

(
− 3B2

256A4

)
(1 + o(1))

and similarly

∂F

∂B
= −864B − 1

(2π)6
(log |qA,B|)6

(
B

128A3

)
(1 + o(1)).

We want to know the value of these partial derivatives where F (A,B)=0,
which means that

(8.2) ∆A,B = ∆(qA,B)(log |qA,B|)6.
Additionally, for small q, we have ∆(q) = q(1 + o(1)) = 1/j(1 + o(1));
substituting this into (8.2) yields

(log |q|)6 = j∆A,B(1 + o(1)) = −1728(4A)3(1 + o(1)).

Now, it follows from Lemma 5.3 (for R1) that B2/A3 approaches −4/27. We
put these two estimates into (8.1) to conclude that

∂F

∂A
= −A2

(
192− 3

π6
(1 + o(1))

)
,

∂F

∂B
= −B

(
864− 27

2π6
(1 + o(1))

)
.

By Lemma 5.3, we can chooseα such that if (A,B) ∈ RX and |B| ≤ βX1/2

then |A| ≤ αX1/3. Thus, for points where |B| < βX1/2, Lemma 8.2 works,
and for those where |B| ≥ βX1/2, the above argument works, and applying
it with the two rectangles where βX1/2 < |B| < β0N

3/2X1/2(logX)3 and
|A| < NX1/3(logX)2, we see that the boundary of RX in that region is
O(X1/2(logX)3).

Having shown that the boundary of R′X is O(X
1/2
M (logXM )3), we turn

now to the lattice points of R′X . If we wanted all lattice points, it is a
standard result (for a proof see [8, Vol. 2, p. 186]) that if the boundary
of a region is rectifiable, the difference between its area and the number
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of lattice points it contains is bounded by 4(L + 1) where L is the length

of the boundary, thus O(X
1/2
M (logXM )3). The area of the region RX is

σX5/6, and this differs from the area of R′X by the region where |B| >
β0N

3/2X1/2(logX)3. Lemma 6.2 tells us that for a fixed B in that region,
the width of the region is O(B−4/3). So the area of the difference between
RX and R′X (including both negative and positive B) must be bounded by

2

∞�

β0N3/2X1/2(logX)3

O(B−4/3) dB = O(X−1/6(logX)−1),

so we can conclude that the total number of lattice points in RX is σX5/6 +

O(X
1/2
M (logXM )3).

Lastly, we want to apply the entirety of the above argument after rescal-
ing by 1/m in both directions. The number of lattice points of a particular
residue class modulo m in a region is the number of all lattice points in the
same region scaled by 1/m in both directions and translated appropriately.
So scaling the region will scale area by 6−12 and length by 6−6. Translating
will change the number of lattice points by at most the boundary, so the

final result must be σ6−12X5/6 +O(X
1/2
M (logXM )3).

This finishes the proof of Proposition 8.1.

9. Conclusion of the proof of Theorem 2.1. Recall that RX was
defined so that

SX = {weakly minimal (A,B) ∈ Z2 | ∆A,B 6= 0, (A,B) ∈ RX/λA,B}.
Let

SX,λ = {(A,B) ∈ SX | λA,B = λ}
= {weakly minimal (A,B) ∈ Z2 ∩RX/λ | ∆A,B 6= 0, λA,B = λ},

so that SX is a disjoint union of SX,1, SX,2−12 , SX,3−12 , and SX,6−12 .
We now go about calculating the size of these. Recall from Section 7

that Clλ is the set of residue classes modulo 66 such that if (A,B) reduces
to a class in Clλ, then λA,B = λ and (A,B) is weakly minimal at 2 and 3.
A Möbius inversion argument shows that∑

d4|A
d6|B

µ(d) =

{
1 if (A,B) is weakly minimal,

0 otherwise,

so

#SX,λ =
∑

(A,B)∈Z2∩RX/λ
(A,B) mod 66∈Clλ

∆A,B 6=0

∑
d4|A
d6|B

µ(d).
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Note that none of the points we are counting have |A| > NX1/3(logX)2

(proved in Lemmas 6.1 and 6.2), so d ≤ N1/4(X/λ)1/12(log(X/λ))1/2. Ad-
ditionally, since (A,B) mod 66 ∈ Clλ, it is also true that 2 - d and 3 - d.

Let d∗Clλ be the set of residue classes (ā, b̄) ∈ (Z/66Z)2 such that
(d4ā, d6b̄) ∈ Clλ; note that #d∗Clλ = #Clλ. If X > M , there is a bijec-
tion between

{(A,B, d) ∈ Z3 | (A,B) ∈ RX/λ, (A,B) mod 66 ∈ Clλ,

∆A,B 6= 0, d4 | A, d6 | B}

and

{(a, b, d) ∈ Z3 | d ≤ N1/4(X/λ)1/12(log(X/λ))1/2, 2 - d, 3 - d,
(a, b) ∈ RX/(λd12), (a, b) mod 66 ∈ d∗Clλ, ∆a,b 6= 0}

given by (A,B, d) 7→ (Ad−4, Bd−6, d). Then

#SX,λ =
∑

d<N1/4(X/λ)1/12(log(X/λ))1/2

2-d, 3-d

µ(d)
∑

(a,b)∈Z2∩RX/(λd12)
(a,b)mod 66∈d∗Clλ

∆a,b 6=0

1

=
∑

d<N1/4(X/λ)1/12(log(X/λ))1/2

2-d, 3-d

µ(d)

(
#Clλσ

612
(X/λd12)5/6

+O
(

max(M, (X/d12)1/2)(log(max(M,X/d12)))3
))

by Proposition 8.1. It is simple to show that

(9.1)
∑
d<Y
2-d, 3-d

µ(d)d−10 =
1

ζ(10)(1− 2−10)(1− 3−10)
+O(Y −9),

so

#SX,λ =
#Clλσ

λ5/6612(1− 2−10)(1− 3−10)
ζ(10)−1X5/6

with an error of∑
d<N1/4(X/λ)1/12(log(X/λ))1/2

2-d, 3-d

µ(d) max(M, (X/d−12)1/2)(log max(M,X/d12))3

(which dominates the error coming from applying (9.1)). Using basic algebra
and applying (9.1) again, we can show that this error is

O(X1/2(logX)3).
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Summing over the four possible values of λ using the calculations of #Clλ
from Section 7, this gives us

12σζ(10)−1X5/6 +O(X1/2(logX)3).
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