Strong Chang's Conjecture, Semi-Stationary Reflection, the Strong Tree Property and two-cardinal square principles

by

Víctor Torres-Pérez (Wien) and Liuzhen Wu (Beijing)

Abstract. We prove that a strong version of Chang's Conjecture implies both the Strong Tree Property for ω_2 and the negation of the square principle $\Box(\lambda, \omega)$ for every regular cardinal $\lambda \geq \omega_2$.

1. Introduction. In these notes we consider two equivalent principles: a strong version of Chang's Conjecture and the Semi-Stationary Reflection Principle. Given two sets x, y, we write $x \sqsubseteq y$ whenever $x \subseteq y$ and $x \cap \omega_1 = y \cap \omega_1$.

DEFINITION 1.1. The principle CC^* asserts that for every regular cardinal $\kappa \geq \omega_2$, there are arbitrary large θ such that the following statement $CC(\kappa, \theta)$ holds: For every countable $M \prec H_{\theta}$ and every $a \in [\kappa]^{\omega_1}$, there is a countable $M^* \prec H_{\theta}$ and $a^* \in M^* \cap [\kappa]^{\omega_1}$ such that $a^* \supseteq a$ and $M^* \supseteq M$.

A first generalization of Chang's Conjecture of this kind was given by Shelah (see [21, Theorem 1.3, p. 398]). Similar general versions were studied in [25] and [5]. The Semi-Stationary Reflection Principle (SSR) was introduced by Shelah [22, Chapter XIII, Definition 1.5]. Given an ordinal λ and a set $X \subseteq [\lambda]^{\omega}$, we say X is *semi-stationary in* $[\lambda]^{\omega}$ if its \sqsubseteq -upward closure is stationary, i.e. the set $\{y \in [\lambda]^{\omega} : \exists x \in X \ (x \sqsubseteq y)\}$ is stationary. It is clear that every stationary set is semi-stationary.

DEFINITION 1.2. The principle SSR asserts that the following statement $SSR(\lambda)$ holds for every ordinal $\lambda \geq \omega_2$: for every semi-stationary subset $X \subseteq [\lambda]^{\omega}$, there is $W \in [\lambda]^{\omega_1}$ with $W \supseteq \omega_1$ such that $X \cap [W]^{\omega}$ is semi-stationary in $[W]^{\omega}$.

Received 1 October 2015; revised 9 May 2016.

Published online 2 December 2016.

²⁰¹⁰ Mathematics Subject Classification: 03E05, 03E30, 03E55.

Key words and phrases: Strong Tree Property, square principles, Semi-Stationary Reflection Principle, Chang's Conjecture, Rado's Conjecture.

Döbler and Schindler proved that CC^* and SSR are equivalent (see [5, Theorem 5.7]). Shelah showed that SSR is equivalent to the following statement:

(†) Every poset preserving stationary subsets of ω_1 is semiproper

(see [22, Chapter XIII, 1.7]). Although these principles are consequences of the Weak Reflection Principle (see for example [17]) or Rado's Conjecture [4], they have many important consequences of their own: In [9], it was already shown that (†) implies that the ideal NS_{ω_1} is precipitous. It was shown that under a weaker version of CC^* , the existence of a special \aleph_2 -Aronszajn tree is equivalent to CH (see [26]), and that SSR implies the Singular Cardinal Hypothesis [19] and the negation of $\Box(\lambda)$ for all regular cardinals $\lambda \geq \omega_2$. The present authors [28] showed recently that under a weak version of CC^{*}, the negation of CH entails the Tree Property for ω_2 .

In Section 3, we discuss the relationship between CC^{*} and the Strong Tree Property. Looking for sufficient conditions for a tree to have a cofinal branch has led to many interesting combinatorial results. We recall that an infinite regular cardinal κ has the *Tree Property* (TP(κ)) if for every tree of height κ with levels of size $< \kappa$, there is a cofinal branch. König's Lemma states that TP(ω) holds [14], while Aronszajn showed that there is a tree of height ω_1 with each level at most countable and with no cofinal branches (see [15, Theorem 6, p. 96]). Baumgartner [1] proved that the Proper Forcing Axiom PFA implies TP(ω_2). However, TP(ω_2) turned out to be equiconsistent with the existence of a weakly compact cardinal ([16, Theorem 5.9] and [6]).

Jech introduced a strengthening of the Tree Property, now called the Strong Tree Property (see Section 3 for the definition). He noticed that an inaccessible cardinal κ has the Strong Tree Property if and only if κ is strongly compact (see [12, p. 174]). Weiß [31] showed that PFA implies \aleph_2 has the Strong Tree Property. Sakai and Veličković [19] proved that SSR, together with MA_{ω_1} (Cohen), implies the Strong Tree Property at ω_2 .

In this note, we show that it is enough to assume SSR and \neg CH for ω_2 to have the Strong Tree Property. We remark that SSR is consistent with both CH and \neg CH, and that CH implies \neg TP(ω_2). Therefore, our result is in certain sense optimal.

In Section 4, we study the relationship between SSR and the square principle $\Box(\lambda, \omega)$ for every regular cardinal $\lambda \geq \omega_2$. The original square principle \Box_{λ} was introduced by Jensen [13]. He showed that \Box_{λ} holds in L for every uncountable cardinal λ . Schimmerling [20] generalized this square principle to weaker versions of the form $\Box_{\kappa,\lambda}$. These two-cardinal versions have been extensively studied so far. For example, after the works of Cummings–Magidor and Baumgartner, we have a complete picture of the relationship between MM and square principles of the form $\Box_{\kappa,\lambda}$ ([2], [3]). Some partial results were also given on relations between Rado's Conjecture (RC) and $\Box_{\kappa,\lambda}$ ([26], [27]). Sakai established in unpublished notes [18] a rather complete picture of relations between SSR and the square principles $\Box_{\kappa,\lambda}$.

The square principle $\Box(\lambda)$ (see Definition 4.1) has also been studied in several instances. Jensen showed that in L, if $\lambda > \omega$ is regular and $\Box(\lambda)$ holds, then λ is not weakly compact (see [13, Theorem 6.1]). It has been proven that the negation of $\Box(\lambda)$ for all regular cardinal $\lambda \ge \omega_2$ is implied by the Proper Forcing Axiom (Todorčević [24]), the Weak Reflection Principle (Veličković [29]), Rado's Conjecture (Todorčević [25]) and more recently by SSR (Sakai–Veličković [19]). Regarding a two-cardinal version $\Box(\kappa, \lambda)$ (see Definition 4.1) and its relation to other combinatorial principles, some results have been already established, for example in [23] and [27]. In this paper, we prove that SSR is enough to have the negation of $\Box(\lambda, \omega)$ for every regular cardinal $\lambda \ge \omega_2$.

2. Preliminaries. In these notes we will consider several types of stationary sets.

Given a limit ordinal γ , a subset $A \subseteq \gamma$ is unbounded in γ if $\sup(A) = \gamma$, and closed in γ if for every limit ordinal $\beta < \gamma$, if $A \cap \beta$ is unbounded in β , then $\beta \in A$. A set $A \subseteq \gamma$ is often called a club set in γ if it is closed and unbounded in γ . A set $S \subseteq \gamma$ is stationary if $S \cap A \neq \emptyset$ for every A club in γ .

The following result involving stationary sets is known as *Fodor's Lemma* or the *Pressing Down Lemma for ordinals*.

LEMMA 2.1 (Fodor [7]). Let κ be a regular uncountable cardinal. Then for every stationary $S \subseteq \kappa$, and for every $f: S \to \kappa$ such that $f(\alpha) < \alpha$ for every $\alpha \in S$, there is $\xi < \kappa$ such that $f^{-1}(\{\xi\})$ is stationary.

A general version of a stationary set was given originally by Jech. We will also use an equivalent version due to Kueker (see for example [10, Theorem 8.28]). Given an infinite set A and a regular cardinal μ , we denote by $[A]^{<\mu}$ the collection of subsets of A of size $< \mu$. Similarly, let $[A]^{\mu}$ denote the collection of all subsets of A of size μ . We say that a set $S \subseteq [A]^{\omega}$ is stationary in $[A]^{\omega}$ if for every function $F : [A]^{<\omega} \to A$, there is $X \in S$ such that $F(e) \in X$ for every $e \in [X]^{<\omega}$.

The following lemma is a generalized version of the Pressing Down Lemma (see [10, Theorem 8.24]).

LEMMA 2.2 (Jech). For every stationary set $S \subseteq [A]^{\omega}$ and every $f: S \to A$ such that $f(X) \in X$ for every $X \in S$, there is $a \in A$ such that $f^{-1}(\{a\})$ is stationary. In general, we say that a set $S \subseteq [A]^{\mu}$ is weakly stationary if for every $F: [A]^{<\omega} \to A$, there is $X \in S$ such that $F(e) \in X$ for every $e \in [X]^{<\omega}$. Note that by Kueker's Theorem mentioned above, weakly stationary is the same as stationary when $\mu = \omega$. However, it is not so for $\mu > \omega$: see, for example, the discussion [11, end of Section 4.1]. This generalization of stationary set is due probably to Foreman, Magidor and Shelah [9], and used prominently by Woodin.

The Pressing Down Lemma for this kind of stationary sets is folklore, but we include a reference for completeness.

LEMMA 2.3 (Folklore). Given a set X and a regular cardinal μ , for every weakly stationary set $S \subseteq [X]^{\mu}$ and any regressive function $f: S \to X$, there is a weakly stationary set $S' \subseteq S$ such that $f \upharpoonright_{S'}$ is constant.

Proof. See for example [8, p. 912, Lemma 3.3]. ■

All along these notes we only use the notion of weakly stationary. Since for $\mu = \omega$ weakly stationary and stationary coincide, we make an abuse of language and call both just stationary, even when $\mu \geq \omega_1$.

3. Semi-Stationary Reflection Principle and the Strong Tree Property for ω_2 . We give the definitions regarding the Strong Tree Property.

DEFINITION 3.1. Let $\lambda > \omega_1$ be a regular cardinal and let $\kappa \geq \lambda$. A (κ, λ) -tree is a system $\{\mathscr{F}_a \in P(2^a) : a \in [\kappa]^{<\lambda}\}$ such that

(1) for every $a, 1 \leq |\mathscr{F}_a| < \lambda$,

(2) for $a, b \in [\kappa]^{<\lambda}$, $a \subseteq b \to \forall f \in \mathscr{F}_b \exists g \in \mathscr{F}_a \ (f \restriction_a = g)$.

Given a (κ, λ) -tree \mathscr{F} , we order its elements in the following way: for $f, g \in \mathscr{F}, f \leq_{\mathscr{F}} g$ if and only if $g|_{\operatorname{dom}(f)} = f$. Observe that if $f \leq_{\mathscr{F}} g$, then in particular dom $(f) \subseteq \operatorname{dom}(g)$. Note that $\leq_{\mathscr{F}}$ is transitive, but it is not necessarily a tree order. We say that $f, g \in \mathscr{F}$ are *compatible* if there is $h \in \mathscr{F}$ such that $h \geq_{\mathscr{F}} f, g$ (note that in a tree order, compatible is equivalent to comparable). For $A, B \subseteq \mathscr{F}$ we write $A \perp B$ if for every $f \in A$ and every $g \in B, f$ and g are incompatible. Similarly, for $f, g \in \mathscr{F}$ and $A \subseteq \mathscr{F}$, we write $f \perp g$ and $f \perp A$ whenever $\{f\} \perp \{g\}$ and $\{f\} \perp A$ respectively. A *cofinal branch through* \mathscr{F} is a function $B : \kappa \to 2$ such that $B|_a \in \mathscr{F}$ for every $a \in [\kappa]^{<\lambda}$.

DEFINITION 3.2. We say that λ has the *Strong Tree Property* if every (κ, λ) -tree has a cofinal branch for every $\kappa \geq \lambda$.

In this section, we prove that CC^* together with the negation of CH implies ω_2 has the Strong Tree Property. The proofs are based on the techniques of [26] and [28]: compare, for example, our Proposition 3.1, Lemma 3.1 and Lemma 3.2 with Proposition 2.3, Lemma 2.4 and Lemma 2.5 in [26] and Proposition 3.1, Lemma 3.1 and Lemma 3.2 in [28] respectively.

Let $\kappa \geq \omega_2$ and fix a (κ, ω_2) -tree \mathscr{F} . Fix a level enumeration surjective function $e : [\kappa]^{\omega_1} \times \omega_1 \to \mathscr{F}$ such that $e(d, \xi) \in \mathscr{F}_d$.

We have the following:

PROPOSITION 3.1. Given a (κ, ω_2) -tree \mathscr{F} , let $\langle A_d : d \in [\kappa]^{\omega_1} \rangle$ be a sequence of collections of nodes such that $A_d \in [\mathscr{F}_d]^{\omega}$ for every $d \in [\kappa]^{\omega_1}$. Then there are $b \in [\kappa]^{\omega_1}$ and E stationary in $[\kappa]^{\omega_1}$ such that for every $g \in \mathscr{F}_b$ and every $d \in E$, if g has an extension in \mathscr{F}_d , this extension is unique.

Proof. Let θ be large enough such that $\{\mathscr{F}, e, \kappa, \ldots\}$ and all relevant parameters belong to H_{θ} .

We remark the following:

REMARK 3.1. There are stationary many $M \prec H_{\theta}$ with $|M| = \aleph_1$ such that for every $A \in [M]^{\omega}$, there is $B \in M \cap [M]^{\omega}$ such that $B \supseteq A$.

Proof. For any $g: H_{\theta}^{<\omega} \to H_{\theta}$, build a \subseteq -continuous chain $\langle M_{\xi}: \xi < \omega_1 \rangle$ of countable elementary submodels of H_{θ} such that for any $\xi \in \omega_1$, M_{ξ} is closed under g and $M_{\xi} \in M_{\xi+1}$. Let $M = \bigcup_{\xi < \omega_1} M_{\xi}$. It is easy to check that M is closed under g and $|M| = \omega_1$. Then if $A \in [M]^{\omega}$, there is $\xi \in \omega_1$ such that $A \subseteq M_{\xi}$, and so $M_{\xi} \in M_{\xi+1} \subseteq M$.

Let $S \subseteq [H_{\theta}]^{\omega_1}$ be the stationary set of M's of Remark 3.1. For any $M \in S$, let $d_M = M \cap \kappa$. For $g, h \in \mathscr{F}_{d_M}$ with $g \neq h$, choose $\alpha_{g,h} \in d_M$ such that $g(\alpha_{g,h}) \neq h(\alpha_{g,h})$. Since A_{d_M} is countable, we can apply Remark 3.1 to the set $\{\alpha_{g,h} : g, h \in A_{d_M}\} \in [M]^{\omega}$ to find $B_M \supseteq \{\alpha_{g,h} : g, h \in A_{d_M}\}$ with $B_M \in M \cap [M]^{\omega}$. Using the Pressing Down Lemma, find $B \in H_{\theta}$ and $S' \subseteq S$ stationary such that $B_M = B$ for all $M \in S'$. By Menas' Lemma, the set $E = \{d_M : M \in S'\}$ is stationary in $[\kappa]^{\omega_1}$. Let $b = B \cap \kappa$. Then for every $f \in \mathscr{F}_b$, if f has an extension in \mathscr{F}_d for $d \in E$, this extension is unique.

PROPOSITION 3.2. Let \mathscr{F} be a (κ, ω_2) -tree with no cofinal branches. Let $\langle A_d : d \in [\kappa]^{\omega_1} \rangle$ be a sequence of collections of nodes such that $A_d \in [\mathscr{F}_d]^{\omega}$ for every $d \in [\kappa]^{\omega_1}$. Let θ be large enough such that $\{\mathscr{F}, e, \kappa, \ldots\}$ and all relevant parameters belong to H_{θ} , and let $N \prec H_{\theta}$ be such that $|N| = \aleph_1$ and $N \supseteq \omega_1$. Then for every $f \in \mathscr{F}$ with dom $(f) \supseteq N \cap \kappa$, there is $d \in N \cap [\kappa]^{\omega_1}$ such that $f \upharpoonright_d \notin A_d$.

Proof. Suppose otherwise. Fix $f \in \mathscr{F}$ with dom $(f) \supseteq N \cap \kappa$ such that $f \upharpoonright_d \in A_d$ for every $d \in N \cap [\kappa]^{\omega_1}$. Apply Proposition 3.1 to find $b \in [\kappa]^{\omega_1}$ and a stationary set $E \subseteq [\kappa]^{\omega_1}$ such that one can define for every $g \in \mathscr{F}_b$ a function $F_g : E \to \mathscr{F}$, where $F_g(d)$ is the unique extension in \mathscr{F}_d of g if the extension exists, or the empty set otherwise. Observe that by elementarity, we can take $E, b \in N$ such that F_g is defined in N for every $g \in \mathscr{F}_b \cap N$.

Furthermore, since N is closed under the level enumeration function, and $\omega_1 \cup \{b\} \subseteq N$, we get $\mathscr{F}_b \subseteq N$. In particular $f \upharpoonright_b \in N$, and therefore $F_{f \upharpoonright_b}$ is defined in N. To simplify notation, let $F = F_{f \upharpoonright_b}$, and let $B = \bigcup_{d \in E} F(d)$ (which is also defined in N).

Observe that for any $d \in E$, we get $F(d) \neq \emptyset$, since $F(d) = f \upharpoonright_d$. Also for $d, d' \in E$, F(d) and F(d') are $\leq_{\mathscr{F}}$ -comparable since $F(d) = f \upharpoonright_d$ and $F(d') = f \upharpoonright_{d'}$, By our initial supposition of the proof, for every $d \in [\kappa]^{\omega_1} \cap N$, $B \upharpoonright_d (= f \upharpoonright_d) \in \mathscr{F}$. Therefore, by elementarity, B defines in N a cofinal branch in \mathscr{F} , a contradiction.

LEMMA 3.1. (CC^{*}) Let \mathscr{F} be a (κ, ω_2) -tree with no cofinal branches. Then there are arbitrarily large θ such that for every countable $M \prec H_{\theta}$ there are $M_0, M_1 \prec H_{\theta}$ countable and $a_0 \in M_0 \cap [\kappa]^{\omega_1}, a_1 \in M_1 \cap [\kappa]^{\omega_1}$ with

- (1) $M \cap \omega_1 = M_0 \cap \omega_1 = M_1 \cap \omega_1$,
- (2) $\mathscr{F}_{a_0} \cap M_0 \perp \mathscr{F}_{a_1} \cap M_1.$

Proof. Apply CC^{*} to find θ sufficiently large such that all relevant parameters belong to H_{θ} and such that $CC(\kappa, \theta)$ holds. Take $M \prec H_{\theta}$ countable. Our goal is to find a_0, a_1, M_0, M_1 such that (1) and (2) of the present lemma hold.

Let $\theta' > \theta$ be sufficiently large such that $M, \mathscr{F}, e, H_{\theta}$ and all relevant parameters are members of $H_{\theta'}$ and such that $CC(\kappa, \theta)$ holds in $H_{\theta'}$. Take $N \prec H_{\theta'}$ of size \aleph_1 with $\omega_1 \subseteq N$ and containing all relevant parameters such as M and \mathscr{F} . Let $a = N \cap \kappa$. To build a_1 and M_1 , simply apply CC^* (outside N) to find $M_1 \prec H_{\theta}$ and $a_1 \in M_1 \cap [\kappa]^{\omega_1}$ such that $a_1 \supseteq a$ and $M_1 \supseteq M$. We will show later that M_1, a_1 are the ones that we are looking for. To find a_0 and M_0 we need a little more. First we prove the following:

CLAIM 3.1. Let K be a countable elementary submodel of H_{θ} with $K \in N$ and let $b \in [\kappa]^{\omega_1}$ with $b \supseteq a$. Then for every $f \in \mathscr{F}_b$, there is $K^* \supseteq K$ with $K^* \in N$ and $c \in K^* \cap [\kappa]^{\omega_1}$ such that $f \perp K^* \cap \mathscr{F}_c$.

Proof. Assume otherwise. Take $f \in \mathscr{F}_b$ such that for any $K^* \in N$ with $K^* \supseteq K$ and for all $c \in K^* \cap [\kappa]^{\omega_1}$, there is $g_c \in K^* \cap \mathscr{F}_c$ compatible with f.

REMARK 3.2. For every $c \in K^* \cap [\kappa]^{\omega_1}$, f and g_c are not only compatible, but indeed $f \geq g_c$.

Proof. This follows directly by showing that $c \subseteq a \ (\subseteq b)$ for every $c \in K^* \cap [\kappa]^{\omega_1}$. Since $K^* \in N$ and K^* is countable, we have $K^* \subseteq N$. So if $c \in K^* \cap [\kappa]^{\omega_1}$, in particular $c \in N$. Since $\omega_1 \subseteq N$, we also have $c \subseteq N$, and therefore $c \subseteq N \cap \kappa = a$.

Working in N and using the fact that CC^* holds in N, build a sequence $\langle (K_d, d') : d \in [\kappa]^{\omega_1} \rangle$ such that K_d is a countable submodel of $H_{\theta}, K_d \supseteq K$,

$$d' \supseteq d$$
 and $d' \in K_d \cap [\kappa]^{\omega_1}$ for every $d \in [\kappa]^{\omega_1}$. For $d \in [\kappa]^{\omega_1}$, define
 $A_d = \{h \in \mathscr{F}_d : \exists g \in K_d \cap \mathscr{F}_{d'} \ (g \ge_{\mathscr{F}} h)\}.$

Observe that whenever $d \subseteq d'$, if $h_0, h_1 \in \mathscr{F}_d$ and $g \in \mathscr{F}_{d'}$ with $h_0, h_1 \leq \mathscr{F}_g$, then $h_0 = h_1$ (since $h_0 = g \upharpoonright_{\mathrm{dom}(h_0)} = g \upharpoonright_d = g \upharpoonright_{\mathrm{dom}(h_1)} = h_1$). Therefore the cardinality of A_d is at most the cardinality of K_d , which is countable. We can now apply Proposition 3.2 to N, f and $\langle A_d : d \in [\kappa]^{\omega_1} \rangle$ to find $d \in N \cap [\kappa]^{\omega_1}$ such that

(1)
$$f \restriction_d \notin A_d.$$

By our assumption at the beginning of the proof of this claim, and by Remark 3.2, there is $g \in K_d \cap \mathscr{F}_{d'}$ with $g \leq_{\mathscr{F}} f$. By definition of A_d , we have $g \upharpoonright_d \in A_d$. But $g \upharpoonright_d = (f \upharpoonright_{d'}) \upharpoonright_d = f \upharpoonright_d$, contradicting (1).

We now continue with the proof of Lemma 3.1. Let $\{f_n : n \in \omega\}$ be an enumeration of $M_1 \cap \mathscr{F}_{a_1}$. Then, applying Claim 3.1, build a \sqsubseteq -increasing sequence $\langle M(n) : n \in \omega \rangle$ and a sequence $\langle c(n) : n \in \omega \rangle$ such that for every $n \in \omega$, we have $M(n) \supseteq M$, $c(n) \in M(n) \cap [\kappa]^{\omega_1}$ and

(2)
$$f_n \perp M(n) \cap \mathscr{F}_{c(n)}.$$

Using CC^{*}, find $M_0 \supseteq \bigcup_{n \in \omega} M(n)$ with $M_0 \prec H_{\theta}$ and $a_0 \in M_0 \cap [\kappa]^{\omega_1}$ such that $a_0 \supseteq \bigcup_{n \in \omega} c_n$. We claim that (2) of Lemma 3.1 holds for a_0, a_1, M_0 and M_1 , i.e. $\mathscr{F}_{a_0} \cap M_0 \perp \mathscr{F}_{a_1} \cap M_1$. To see that, take $n \in \omega$ and $g \in M_0 \cap \mathscr{F}_{a_0}$; we will show that $f_n \perp g$. Observe that

(3)
$$M(n) \cap \mathscr{F}_{c(n)} = M_0 \cap \mathscr{F}_{c(n)},$$

since $c(n) \in M(n) \subseteq M_0, M_0 \cap \omega_1 = M(n) \cap \omega_1$ and the enumeration function e is in both M_0 and M(n). Since $g \in M_0 \cap \mathscr{F}_{a_0}$ and $c(n) \in M(n) \subseteq M_0$, we have $g|_{c(n)} \in M_0 \cap \mathscr{F}_{c(n)}$. Therefore, by (3), we get $g|_{c(n)} \in M(n) \cap \mathscr{F}_{c(n)}$. Using (2), we obtain $f_n \perp g|_{c(n)}$, and therefore $f_n \perp g$.

We have the following:

LEMMA 3.2. (CC^{*}) Let \mathscr{F} be a (κ, ω_2) -tree with no cofinal branches. For λ sufficiently large, if the set

$$S_{\mathscr{F}} = \{ M \in [H_{\lambda}]^{\omega} : \exists b \in [\kappa]^{\omega_1} \ \forall f \in \mathscr{F}_b \ \exists a \in M \cap [b]^{\omega_1} \ (f \restriction_a \notin M) \}$$

is nonstationary, then CH holds.

Proof. Suppose $S_{\mathscr{F}}$ is nonstationary, and let $F : [H_{\lambda}]^{<\omega} \to H_{\lambda}$ be a function such that if $M \in [H_{\lambda}]^{\omega}$ is closed under F, then $M \notin S_{\mathscr{F}}$. As before, let $e : [\kappa]^{\omega_1} \times \omega_1 \to \mathscr{F}$ be a surjective function such that $e(a,\xi) \in \mathscr{F}_a$ for every $\xi \in \omega_1$. Let θ be sufficiently large such that $\mathscr{F}, S_{\mathscr{F}}, F, e$ and all relevant parameters are in H_{θ} and the conclusion of Lemma 3.1 holds.

Using Lemma 3.1, build a binary tree $\langle M_{\sigma} \rangle_{\sigma \in 2^{<\omega}}$ of countable elementary submodels of H_{θ} with the property that for every $\sigma \in 2^{<\omega}$,

- (1) $M_{\sigma} \cap \omega_1 = M_{\sigma \frown 0} \cap \omega_1 = M_{\sigma \frown 1} \cap \omega_1$, and
- (2) there exist $a_0 \in M_{\sigma \frown 0} \cap [\kappa]^{\omega_1}$ and $a_1 \in M_{\sigma \frown 1} \cap [\kappa]^{\omega_1}$ such that $\mathscr{F}_{a_0} \cap M_{\sigma \frown 0} \perp \mathscr{F}_{a_1} \cap M_{\sigma \frown 1}$.

For every $r \in 2^{\omega}$, let $M_r = \bigcup_{n \in \omega} M_{r \upharpoonright n}$. Let $b \in [\kappa]^{\omega_1}$ be such that $b \supseteq a$ for every $a \in M_{\sigma} \cap [\kappa]^{\omega_1}$ and every $\sigma \in 2^{<\omega}$. Since $M_r \prec H_{\theta}$ and $F \in M_r$, M_r is closed under F, we have $M_r \cap \kappa \notin S_{\mathscr{F}}$. So we can choose $f_r \in \mathscr{F}_b$ such that $f_r \upharpoonright_a \in M_r$ for every $a \in M_r \cap [b]^{\omega_1}$.

CLAIM 3.2. The map $r \mapsto f_r$ is an injection from 2^{ω} to \mathscr{F}_b (and therefore CH holds).

Proof. Let $r_0, r_1 \in 2^{\omega}$ with $r_0 \neq r_1$ and denote by f_i the node f_{r_i} for $i \in \{0, 1\}$. We will find two predecessors of f_0 and f_1 that are incompatible. Let $n \in \omega$ be such that $r_0 \upharpoonright_n = r_1 \upharpoonright_n = \sigma$, and $r_0 \upharpoonright_{n+1} \neq r_1 \upharpoonright_{n+1}$. Without loss of generality, suppose $r_i(n) = i$ for $i \in \{0, 1\}$. By the construction of our binary tree, we can take $a_0 \in M_{r_0} \upharpoonright_{n+1}$ and $a_1 \in M_{r_1} \upharpoonright_{n+1}$ such that $\mathscr{F}_{a_0} \cap M_{r_0} \upharpoonright_{n+1} \perp \mathscr{F}_{a_1} \cap M_{r_1} \upharpoonright_{n+1}$. However, observe that for $i \in \{0, 1\}$, $a_i \in M_{r_i} \upharpoonright_{n+1} \subseteq M_{r_i}$, and so $f_i \upharpoonright_{a_i} \in M_{r_i} \upharpoonright_{n+1}$. Therefore, $f_0 \upharpoonright_{a_0}$ and $f_1 \upharpoonright_{a_1}$ are incompatible, and so are f_0 and f_1 .

This finishes the proof of Lemma 3.2. \blacksquare

We are ready to prove the main theorem of this section.

THEOREM 3.1. (CC^{*}) If CH does not hold, then ω_2 has the Strong Tree Property.

Proof. Assume CH does not hold, but there is a (κ, ω_2) -tree \mathscr{F} with no cofinal branches. From Lemma 3.2, for λ sufficiently large, the set $S_{\mathscr{F}}$ is stationary in $[H_{\lambda}]^{\omega}$, and in particular it is semi-stationary. Without loss of generality, we can assume that every set in $S_{\mathscr{F}}$ is closed under *e*. Since CC^* and SSR are equivalent [5, Theorem 5.7], we can apply SSR to obtain $X \in [H_{\lambda}]$ with $X \supseteq \omega_1$ such that $[X]^{\omega} \cap S_{\mathscr{F}}$ is semi-stationary. Let

$$S = \{ x \in [X]^{\omega} : \exists M_x \in S_{\mathscr{F}} \cap [X]^{\omega} \ (x \sqsupseteq M_x) \},\$$

which is stationary by definition of semi-stationary set. Take a stationary set $S' \subseteq S$ of size ω_1 (¹). For $x \in S'$, using the definition of $S_{\mathscr{F}}$, choose $b_x \in [\kappa]^{\omega_1}$ such that for every $f \in \mathscr{F}_{b_x}$, there is $a \in M_x \cap [b_x]^{\omega_1}$ with $f \upharpoonright_a \notin M_x$. Let $b = \bigcup_{x \in S'} b_x$ (and so $|b| = \omega_1$). Fix $f \in \mathscr{F}_b$. Then for $x \in S'$, we can choose $a_x \in M_x \cap [b_x]^{\omega_1}$ such that

(4)
$$(f \restriction_{b_x}) \restriction_{a_x} = f \restriction_{a_x} \notin M_x.$$

Apply the Pressing Down Lemma to find $a \in [\kappa]^{\omega_1}$ and a stationary set $S'' \subseteq S'$ such that $a_x = a$ for every $x \in S''$. Observe that since S'' is

^{(&}lt;sup>1</sup>) For example, let $h: X \to \omega_1$ be a bijection. So the set $\{h^{-1}[\alpha] : \alpha \in \omega_1 \setminus \omega\}$ is a club of size ω_1 , and take its intersection with S.

stationary in $[X]^{\omega}$, it is in particular cofinal in $[X]^{\omega}$, and since $X \supseteq \omega_1$, we have $\bigcup_{x \in S''} (x \cap \omega_1) = \omega_1$. Therefore we can fix $x \in S''$ and $\xi \in x$ such that $e(a,\xi) = f \upharpoonright_a$. However, M_x is closed under e, and $M_x \cap \omega_1 = x \cap \omega_1$ (since $x \supseteq M_x$), and so $e(\xi, a) \in M_x$, contradicting (4).

4. Square sequences. Given a set A of ordinals, we denote by Lim(A) the collection of limit points of A, i.e. $\alpha \in \text{Lim}(A)$ if $\alpha > 0$ and $\sup(A \cap \alpha) = \alpha$ (so in particular, α is a limit ordinal). Observe also that if $A \subseteq B$, we have $\text{Lim}(A) \subseteq \text{Lim}(B)$.

We recall a two-cardinal version $\Box(\lambda, \mu)$ of the square principle.

DEFINITION 4.1. Given a regular cardinal λ and a cardinal $\mu \leq \lambda$, $\langle \mathscr{C}_{\alpha} : \alpha \in \text{Lim}(\lambda) \rangle$ is a (λ, μ) -square sequence or a $\Box(\lambda, \mu)$ -sequence if

- (1) $1 \leq |\mathscr{C}_{\alpha}| \leq \mu$,
- (2) for every $C \in \mathscr{C}_{\alpha}$, C is a closed and unbounded subset of α ,
- (3) for every $C \in \mathscr{C}_{\beta}$, if $\alpha \in \text{Lim}(C)$, then $C \cap \alpha \in \mathscr{C}_{\beta}$.

Given a set $C \subseteq \lambda$, we say that C trivializes a (λ, μ) -square sequence $\langle \mathscr{C}_{\alpha} : \alpha \in \operatorname{Lim}(\lambda) \rangle$ if $C \cap \alpha \in \mathscr{C}_{\alpha}$ for every $\alpha \in \operatorname{Lim}(C)$.

We say that the *principle* $\Box(\lambda, \mu)$ holds if there is a (λ, μ) -square sequence $\langle \mathscr{C}_{\alpha} : \alpha \in \operatorname{Lim}(\lambda) \rangle$ that is trivialized by no club.

We first give some lemmas which describe some properties of square sequences of the form $\Box(\lambda, \mu)$.

LEMMA 4.1. For a (λ, μ) -square sequence $\langle \mathscr{C}_{\alpha} : \alpha \in \text{Lim}(\lambda) \rangle$ the following are equivalent:

- (1) There is a club $D \subseteq \lambda$ trivializing the sequence.
- (2) There is $C \subseteq \lambda$ such that $\operatorname{Lim}(C)$ is unbounded in λ and a sequence $\langle C_{\gamma} : \gamma \in \operatorname{Lim}(C) \rangle$ such that for every $\gamma \in \operatorname{Lim}(C)$, $C_{\gamma} \in \mathscr{C}_{\gamma}$, and for $\alpha, \beta \in \operatorname{Lim}(C)$, if $\alpha < \beta$ then $C_{\alpha} = C_{\beta} \cap \alpha$.

Proof. (1) \Rightarrow (2). Just set C = D and $C_{\gamma} = D \cap \gamma$ for every $\gamma \in \text{Lim}(D)$. (2) \Rightarrow (1). Take C as in the assumption, and set $D = \bigcup_{\alpha \in \text{Lim}(C)} C_{\alpha}$. We will show that $D \cap \alpha \in \mathscr{C}_{\alpha}$ for every $\alpha \in \text{Lim}(D)$.

Take $\alpha \in \text{Lim}(D)$ and $\beta \in \text{Lim}(C)$ such that $\alpha \in C_{\beta}$. Using the properties of the sequence $\langle C_{\gamma} : \gamma \in \text{Lim}(C) \rangle$, it is not difficult to show that α is also a limit point of C_{β} , and so $C_{\beta} \cap \alpha \in \mathscr{C}_{\beta}$. Therefore, it is enough to show that $D \cap \alpha = C_{\beta} \cap \alpha$. Note that already $C_{\beta} \subseteq D$. So $C_{\beta} \cap \alpha \subseteq D \cap \alpha$. Therefore, it remains to show that $D \cap \alpha \subseteq C_{\beta} \cap \alpha$. Observe that by the properties of $\langle C_{\gamma} : \gamma \in \text{Lim}(C) \rangle$, we can easily verify $C_{\gamma} \cap \alpha \subseteq C_{\beta} \cap \alpha$ for every $\gamma \in \text{Lim}(C)$, and therefore $D \cap \alpha = C_{\beta} \cap \alpha$.

We show that if $\operatorname{Lim}(C)$ is unbounded, then D is a club: To show that D is unbounded, take $\beta < \lambda$. Since $\operatorname{Lim}(C)$ is unbounded in λ , there is $\alpha > \beta$

with $\alpha \in \operatorname{Lim}(C)(\subseteq \operatorname{Lim}(\lambda))$ and C_{α} unbounded in α . To show that D is closed, take an increasing sequence $\langle \beta_{\xi} : \xi < \gamma \rangle$ of elements of D with $\gamma < \lambda$. Let $\beta = \sup\{\beta_{\xi} : \xi < \gamma\}$. We wish to show that $\beta \in D$. For every $\xi < \gamma$, there is $\alpha_{\xi} \in \operatorname{Lim}(C)$ such that $\beta_{\xi} \in C_{\alpha_{\xi}}$. Let $\alpha = \sup\{\alpha_{\xi} : \xi < \gamma\} < \lambda$. Since $\operatorname{Lim}(C)$ is unbounded in λ , let $\eta \in \operatorname{Lim}(C)$ with $\eta > \alpha$. By the properties of C, we have $C_{\eta} \cap \alpha_{\xi} = C_{\alpha_{\xi}}$ for every $\xi < \gamma$, and so $\{\beta_{\xi} : \xi < \gamma\} \subseteq C_{\eta}$. Since C_{η} is closed, $\sup\{\beta_{\xi} : \xi \in \gamma\} \in C_{\eta} \subseteq D$.

REMARK 4.1. Let λ be a regular uncountable cardinal, and let $\langle \mathscr{C}_{\beta} : \beta \in \operatorname{Lim}(\lambda) \rangle$ be a $\Box(\lambda, \mu)$ -sequence with $\lambda > \operatorname{cof}(\mu)^+$. For $\beta < \mu$, let $\mathscr{C}_{\beta} = \{C_{\beta}^{\xi} : \xi < \mu\}$. Then for every $\beta \in \lambda \cap \operatorname{Cof}(>\mu)$, there is $\alpha_{\beta} < \beta$ such that for every $C_{\xi}, C_{\eta} \in \mathscr{C}_{\beta}$, if $C_{\xi} \neq C_{\eta}$, then $C_{\xi} \cap \alpha_{\beta} \neq C_{\eta} \cap \alpha_{\beta}$.

Proof. For $C_{\xi}, C_{\eta} \in \mathscr{C}_{\beta}$ with $C_{\xi} \neq C_{\eta}$, choose $\alpha_{\{\xi,\eta\}} < \beta$ such that $C_{\xi} \cap \alpha_{\{\xi,\eta\}} \neq C_{\eta} \cap \alpha_{\{\xi,\eta\}}$. If $C_{\xi} = C_{\eta}$, let $\alpha_{\{\xi,\eta\}}$ be just any α below β . Let $\alpha_{\beta} = \sup\{\alpha_{\{\xi,\eta\}} : \{\xi,\eta\} \in [\mu]^2\}$. Since $\operatorname{cof}(\beta) > \mu$, we have $\alpha_{\beta} < \beta$, and therefore $C_{\xi} \cap \alpha_{\beta} \neq C_{\eta} \cap \alpha_{\beta}$ for every $\{\xi,\eta\} \in [\mu]^2$ with $C_{\xi} \neq C_{\eta}$.

LEMMA 4.2. Let λ be a regular uncountable cardinal, and let $\langle \mathscr{C}_{\beta} : \beta \in \operatorname{Lim}(\lambda) \rangle$ be a $\Box(\lambda, \mu)$ -sequence with $\lambda > \operatorname{cof}(\mu)^+$ such that no club trivializes this sequence. For $\beta < \mu$, let $\mathscr{C}_{\beta} = \{C_{\beta}^{\xi} : \xi < \mu\}$. For any set $X \subseteq \lambda$ such that $X \cap \operatorname{Cof}(>\mu)$ is stationary, and for every $M \prec H_{\theta}$ with θ sufficiently large and $\{X, \langle \mathscr{C}_{\beta} : \beta \in \operatorname{Lim}(\lambda) \rangle\} \cup \mu \subseteq M$, if $\delta = \sup(M \cap \lambda)$, then for every $\xi \in \mu$, the set

$$\{\alpha \in X \cap M : \alpha \notin \operatorname{Lim}(C^{\xi}_{\delta})\}$$

is unbounded in δ .

Proof. Suppose it is not the case. Then there are $\xi^* \in \mu$ and $\gamma \in M \cap \lambda$ such that $X \cap M \setminus \gamma \subseteq \operatorname{Lim}(C_{\delta}^{\xi^*})$. Let $X_0 = X \setminus \gamma$, so in particular $X_0 \in M$, and similarly $\operatorname{Lim}(X_0) \in M$. Observe also that $X_0 \cap \operatorname{Cof}(>\mu)$ is stationary. Applying Fodor's Lemma and Remark 4.1, there is $\alpha \in \lambda$ and a stationary subset $X_1 \subseteq X_0 \cap \operatorname{Cof}(>\mu)$ such that $\alpha_{\beta} = \alpha$ for every $\beta \in X_1$. Since $X_0 \in M$, by elementarity we can take $\alpha, X_1 \in M$.

REMARK 4.2. $C_{\delta}^{\xi^*} \cap \alpha \in M$.

Proof. Pick any $\beta \in \text{Lim}(X_1) \cap M \setminus \alpha$. As $\text{Lim}(X_1) \cap M \subseteq X_0 \cap M \subseteq Lim(C_{\delta}^{\xi^*})$, there is $\xi_{\beta} \in \mu (\subseteq M)$ such that $C_{\delta}^{\xi^*} \cap \beta = C_{\beta}^{\xi_{\beta}}$. But then $C_{\delta}^{\xi^*} \cap \alpha = C_{\delta}^{\xi^*} \cap (\beta \cap \alpha) = (C_{\delta}^{\xi^*} \cap \beta) \cap \alpha = C_{\beta}^{\xi_{\beta}} \cap \alpha$. Since $\alpha, \beta, \xi_{\beta} \in M$, the set $C_{\beta}^{\xi_{\beta}}$ is defined in M, and so $C_{\delta}^{\xi^*} \cap \alpha \in M$.

To simplify notation, write $C^* = C_{\delta}^{\xi^*} \cap \alpha$, so by Remark 4.2, $C^* \in M$.

CLAIM 4.1. For every $\beta \in \text{Lim}(X_1)$, there is a unique ξ_β such that $C_\beta^{\xi_\beta} \cap \alpha = C^*$.

Proof. By the elementarity of M, it suffices to prove that Claim 4.1 holds in M. To show existence, using $\operatorname{Lim}(X_1) \cap M \subseteq \operatorname{Lim}(C_{\delta}^{\xi^*})$, pick ξ_{β} such that $C_{\delta}^{\xi^*} \cap \beta = C_{\beta}^{\xi_{\beta}}$. Then $C_{\beta}^{\xi_{\beta}} \cap \alpha = (C_{\delta}^{\xi^*} \cap \beta) \cap \alpha = C_{\delta}^{\xi^*} \cap (\beta \cap \alpha) = C_{\delta}^{\xi^*} \cap \alpha = C^*$. To show uniqueness, take $\xi_{\beta}, \eta_{\beta} \in \mu$ such that $C_{\beta}^{\xi_{\beta}} \neq C_{\beta}^{\eta_{\beta}}$. Since $\beta \in X_1$, we have $C_{\beta}^{\xi_{\beta}} \cap \alpha \neq C_{\beta}^{\eta_{\beta}} \cap \alpha$, so both cannot be equal to C^* .

Define now $C_{\beta} = C_{\beta}^{\xi_{\beta}}$ for $\beta \in X_1$. Then the sequence $\langle C_{\beta} : \beta \in \text{Lim}(X_1) \rangle$ is in M. Observe that for every $\gamma, \beta \in M \cap \text{Lim}(X_1)$, if $\gamma < \beta$ we have $C_{\beta} \cap \gamma = (C_{\delta}^{\xi^*} \cap \beta) \cap \gamma = C_{\delta}^{\xi^*} \cap \gamma = C_{\gamma}$, contradicting Lemma 4.1. \blacksquare

In this section, we prove that assuming SSR, we can have the negation of $\Box(\lambda, \omega)$ for every regular cardinal $\lambda \geq \omega_2$.

For a set A of ordinals, define $\sup^+(A) = \sup\{\alpha + 1 : \alpha \in A\}$. We will use the following useful implications of SSR given by Sakai–Veličković. Fix a regular cardinal $\lambda \ge \omega_2$. For countable sets of ordinals x and y, we write $x \sqsubseteq^* y$ if

- $x \sqsubseteq y$,
- $\sup^+(x) = \sup^+(y),$
- $\sup^+(x \cap \gamma) = \sup^+(y \cap \gamma)$ for all $\gamma \in E_{\omega_1}^{\lambda} \cap x$.

Given $X \subset [\lambda]^{\omega}$ for some $\lambda \geq \omega_1$, we say that X is *weakly full* if X is upward closed under \sqsubseteq^* .

LEMMA 4.3 ([19, Lemma 2.2]). Let $\lambda \geq \omega_2$. Suppose there is a weakly full stationary $X \subseteq [\lambda]^{\omega}$ such that for every $I \in [\lambda]^{\omega_1}$ with $\omega_1 \subseteq I$, there is $J \subseteq \lambda$ such that $I \subseteq J$, $\sup^+(J) = \sup^+(I)$ and $X \cap [J]^{\omega}$ is nonstationary. Then $SSR(\lambda)$ fails.

Sakai and Veličković also present a game which will be used to construct a weakly full stationary set. Let λ be a regular cardinal $\geq \omega_2$. For a function $F: [\lambda]^{<\omega} \to \lambda$ let $G_1(\lambda, F)$ be the following game of length ω :

I and II in turn choose ordinals $\langle \lambda$. In the *n*th stage, first I chooses α_n , then II chooses β_n , and then I again chooses $\gamma_n > \beta_n$, with γ_n of cofinality ω_1 . I wins if

$$cl_F(\{\gamma_n : n \in \omega\}) \cap [\alpha_m, \gamma_m) = \emptyset$$

for every $m \in \omega$, where $cl_F(A)$ denotes the closure of the set A under F. Otherwise, II wins.

LEMMA 4.4 ([19, Lemma 2.3]). Let λ be a regular cardinal $\geq \omega_2$ and let $F : [\lambda]^{<\omega} \to \lambda$. Then I has a winning strategy in the game $G_1(\lambda, F)$.

Now we state our theorem.

THEOREM 4.1. For every regular cardinal $\lambda \geq \omega_2$, SSR(λ) implies the negation of $\Box(\lambda, \omega)$.

Proof. Assuming that $\Box(\lambda, \omega)$ holds, we will show that $SSR(\lambda)$ fails.

Let $\langle \mathscr{C}_{\alpha} : \alpha \in \operatorname{Lim}(\lambda) \rangle$ be a (λ, ω) -square sequence that is trivialized by no club subset of λ . Without loss of generality, we can assume $|\mathscr{C}_{\alpha}| = \omega$ for every $\alpha \in \operatorname{Lim}(\lambda)$. Let $\langle C_{\alpha}^n : n < \omega \rangle$ enumerate \mathscr{C}_{α} .

Let X be the set of all $x \in [\lambda]^{\omega}$ which have limit order type and there is a sequence $\langle \xi_n^x : n < \omega \rangle$ of ordinals below $\sup(x)$ such that for all $n \in \omega$,

(1) $\sup(x \cap C^n_{\sup^+(x)}) \le \xi^x_n$,

(2) $\operatorname{cof}(\min(x \setminus \beta)) = \omega_1$ for all $\beta \in C^n_{\sup^+(x)} \setminus \xi^x_n$.

It is not hard to check that X is weakly full. We have the following.

LEMMA 4.5. X is stationary in $[\lambda]^{\omega}$.

Proof. Let $F : [\lambda]^{<\omega} \to \lambda$. We will find $x \in X$ closed under F. By Lemma 4.4, fix a winning strategy τ of I for $G_1(\lambda, F)$. Moreover let C be the set of all limit ordinals $< \lambda$ closed under τ and F. Note that C is club in λ .

Let θ be sufficiently large such that H_{θ} has all the relevant parameters. We are going to build inductively a sequence $\langle \mathfrak{M}_n : n \in \omega \rangle$ of structures of H_{θ} as follows: Fix a well-order $\langle \text{ of } H_{\theta}, \text{ let } \mathfrak{M}_0 = \langle H_{\theta}; \in, \langle, \langle \mathscr{C}_{\alpha} : \alpha \in \text{Lim}(\lambda) \rangle, F, C, \ldots \rangle$, let $\langle M_{\xi}^0 : \xi < \lambda \rangle$ be a strictly continuous \subseteq -increasing sequence of elementary submodels of \mathfrak{M}_0 of size $\langle \lambda$, and define $D_0 = \{\sup(M_{\xi}^0 \cap \lambda) : \xi < \lambda\}$. Observe that D_0 is a club in λ and $D_0 \in H_{\theta}$. Suppose we have defined a structure \mathfrak{M}_n of H_{θ} and a strictly continuous \subseteq -increasing sequence $\langle M_{\xi}^n : \xi < \lambda \rangle$ of elementary submodels of \mathfrak{M}_n of size $\langle \lambda$. Define $D_n = \{\sup(M_{\xi}^n \cap \lambda) : \xi < \lambda\}$, so that D_n is a club in λ with $D_n \in H_{\theta}$. Let $\mathfrak{M}_{n+1} = \langle H_{\theta}; \in, \langle, \langle \mathscr{C}_{\alpha} : \alpha \in \text{Lim}(\lambda) \rangle, F, C, D_0, \ldots, D_n, \ldots \rangle$. Let

$$\mathfrak{M} = \langle H_{\theta}, \in, <, \langle \mathscr{C}_{\alpha} : \alpha \in \operatorname{Lim}(\lambda) \rangle, F, C, \{ D_n : n \in \omega \}, \ldots \rangle.$$

Take again a strictly \subseteq -increasing continuous sequence $\langle M_{\xi} : \xi < \lambda \rangle$ of elementary submodels of \mathfrak{M} such that $|M_{\xi}| < \lambda$ and $M_{\xi} \cap \lambda$ is transitive for every $\xi < \lambda$. Then the set $\{M_{\xi} \cap \lambda : \xi < \lambda\}$ is a club in λ , and since E_{ω}^{λ} is stationary in λ , we can fix $M \preceq \mathfrak{M}$, with $M \cap \lambda$ transitive and $M \cap \lambda \in E_{\omega}^{\lambda}$. Let $\delta = M \cap \lambda$. We have the following:

CLAIM 4.2. There is an increasing sequence $\langle \delta_n : n < \omega \rangle$ of ordinals such that

- (1) $\delta_n \in C \setminus \bigcup_{i < n} \operatorname{Lim}(C^i_{\delta}),$
- (2) $\sup\{\delta_n : n \in \omega\} = \delta.$

Proof. Fix a strictly increasing sequence $\langle \epsilon_n : n < \omega \rangle \subseteq M$ of limit δ . We proceed by induction. To find δ_0 , apply directly Lemma 4.2 to find $\delta_0 \in [\epsilon_0, \delta)$ with $\delta_0 \in C \setminus \text{Lim}(C^0_{\delta})$. Fix $n \in \omega$, and suppose we have already built δ_n above ϵ_n .

SUBCLAIM 4.1. There is a sequence of intervals $[\beta_0^n, \delta_0^n) \supseteq \cdots \supseteq [\beta_i^n, \delta_i^n)$ $\supseteq \cdots \supseteq [\beta_n^n, \delta_n^n)$ with $\beta_0^n \ge \max\{\delta_n, \epsilon_{n+1}\}$ and $\delta_0^n < \delta$, and there is a sequence $\langle M_i^n \preceq \mathfrak{M}_{n-i} : i \leq n \rangle$ of elementary submodels such that for every $i \leq n$

- $\delta_i^n = \sup(M_i^n \cap \lambda),$
- $\beta_i^n \in M_i^n$,
- $[\beta_i^n, \delta_i^n) \cap C^j_{\delta} = \emptyset$ for every $j \leq i$.

Proof. Since $D_n \in M$, apply Lemma 4.2 to D_n , M, $\operatorname{Lim}(C^0_{\delta})$ and $\max\{\delta_n, \epsilon_{n+1}\} \text{ to find } \delta_0^n > \max\{\delta_n, \epsilon_{n+1}\} \text{ with } \delta_0^n \in D_n \cap M \setminus \operatorname{Lim}(C^0_{\delta}).$

Let $M_0^n \leq \mathfrak{M}_n$ be such that $\delta_0^n = \sup(M_0^n \cap \lambda)$. Take $\beta_0^n \in M_0^n \cap \lambda$ with $\beta_0^n \ge \max{\{\delta_n, \epsilon_{n+1}\}}$ and such that $[\beta_0^n, \delta_0^n) \cap C_{\delta}^0 = \emptyset$.

Observe that for n = 0 we are already done, so we can assume $n \ge 1$.

For i < n, suppose that we have found a sequence of intervals $[\beta_0^n, \delta_0^n] \supseteq$ $\dots \supseteq [\beta_i^n, \delta_i^n)$ with $\beta_0^n \ge \max\{\delta_n, \epsilon_{n+1}\}$ and $\delta_0^n < \delta$ and a sequence $\langle M_i^n \preceq \delta_i^n \rangle$ $\mathfrak{M}_{n-i}: j \leq i$ of elementary submodels such that for every $j \leq i$,

- $\delta_j^n = \sup(M_j^n \cap \lambda),$ $\beta_j^n \in M_j^n,$
- $[\beta_i^n, \delta_i^n) \cap C_{\delta}^k = \emptyset$ for every $k \leq j$.

Since i < n, the set D_{n-i-1} is well-defined, and since $M_i^n \preceq \mathfrak{M}_{n-i}$, we have $D_{n-i-1} \in M_i^n$.

CASE 1: $\delta_i^n \notin \text{Lim}(C_{\delta}^{i+1})$. Choose $\beta_{i+1}^n \in M_i^n \cap \lambda$ with $\beta_{i+1}^n \ge \beta_i^n$ and such that $[\beta_{i+1}^n, \delta_i^n) \cap C_{\delta}^{i+1} = \emptyset$. Since D_{n-i-1} is unbounded in λ , by elementarity we can find $\delta_{i+1}^n \in D_{n-i-1} \cap M_i^n$ with $\delta_{i+1}^n > \beta_{i+1}^n$, and thus $[\beta_{i+1}^n, \delta_{i+1}^n) \cap C_{\delta}^{\mathcal{I}} = \emptyset$ for every $j \leq i+1$. Let $M_{i+1}^n \preceq M_{n-i-1}$ be such that $\delta_{i+1}^n = \sup(M_{i+1}^n \cap \lambda).$

CASE 2: $\delta_i^n \in \text{Lim}(C_{\delta}^{i+1})$. Take $k \in \omega$ such that $C_{\delta}^{i+1} \cap \delta_i^n = C_{\delta_i^n}^k$. Apply Lemma 4.2 to M_i^n , $\operatorname{Lim}(C_{\delta_i^n}^k)$, D_{n-i-1} and β_i^n to find $\delta_{i+1}^n \in M_i^n \cap \lambda$ with $\delta_{i+1}^n > \beta_i^n$ and $\delta_{i+1}^n \notin \operatorname{Lim}(C_{\delta_i^n}^k)$. Let $M_{i+1}^n \preceq \mathfrak{M}_{n-i-1}$ be such that $\delta_{i+1}^n =$ $\sup(M_{i+1}^n \cap \lambda)$. Take $\beta_{i+1}^n \in M_{i+1}^n$ such that $\beta_{i+1}^n \geq \beta_i^n$ and $[\beta_{i+1}^n, \delta_{i+1}^n) \cap C_{\delta_i^n}^k$ $= \emptyset$. Then $[\beta_{i+1}^n, \delta_{i+1}^n) \cap C_{\delta}^j = \emptyset$ for every $j \leq i+1$.

Observe that we have defined β_n^n , M_n^n and δ_n^n with $\delta_n^n = \sup(M_n^n \cap \lambda)$. To finish our construction, we again have two cases.

CASE 1: $\delta_n^n \notin \operatorname{Lim}(C_{\delta}^{n+1})$. Choose $\beta_{n+1}^n \in M_n^n \cap \lambda$ with $\beta_{n+1}^n \ge \beta_n^n$ and such that $[\beta_{n+1}^n, \delta_n^n) \cap C_{\delta}^{n+1} = \emptyset$. Since $C \in M_n^n$, by elementarity we can choose $\delta_{n+1} \in [\beta_{n+1}^n, \delta_n^n) \cap C$, and so δ_{n+1} is as needed.

CASE 2: $\delta_n^n \in \text{Lim}(C^{n+1}_{\delta})$. Take $k \in \omega$ such that $C^{n+1}_{\delta} \cap \delta_n^n = C^k_{\delta_n^n}$. Apply Lemma 4.2 to M_n^n , $\text{Lim}(C^k_{\delta_n^n})$, β_n^n and C to find $\delta_{n+1} \in M_n^n \cap C \setminus \beta_n^n$ with $\delta_{n+1} \notin \text{Lim}(C^k_{\delta_n^n})$.

Now let $\beta_n < \delta_n$ such that $[\beta_n, \delta_n) \cap \bigcup_{i \leq n} C_{\delta}^i = \emptyset$. Then let $\langle \alpha_n, \gamma_n : n \in \omega \rangle$ be a sequence of I's moves according to τ against $\langle \beta_n : n \in \omega \rangle$. Moreover let $x = \operatorname{cl}_F(\{\gamma_n : n \in \omega\})$. It suffices to prove that $x \in X$. To see this, first note that $\sup^+(x) = \delta$ because δ is closed under F. We are going to check that setting $\xi_n^x = \delta_n$ will witness $x \in X$. Fix $n \in \omega$. Observe that for $m \geq n$, we have $C_{\delta}^n \cap \delta_m \subseteq \beta_m \subseteq \gamma_m$ by the choice of β_m . Also note that $\alpha_{m+1} < \delta_m$, because $\beta_m \in \delta_m$ and δ_m is closed under τ (since $\delta_m \in C$). Hence $C_{\delta}^n \cap [\delta_m, \delta_{m+1}) \subseteq [\alpha_{m+1}, \gamma_{m+1})$ for every $m \geq n$. Note that $x \cap [\alpha_{k+1}, \gamma_{k+1}) = \emptyset$ for each $k \in \omega$ because I wins with the play $\langle \alpha_k, \beta_k, \gamma_k : k \in \omega \rangle$. Thus $x \cap C_{\delta}^n \subseteq \delta_n$. Moreover for $m \geq n$, $\min(x \setminus \beta) = \gamma_{m+1}$ for all $\beta \in C_{\delta}^n \cap [\delta_m, \delta_{m+1})$, and $\operatorname{cof}(\gamma_{m+1}) = \omega_1$ by the rule of $G_1(\lambda, F)$. Therefore, $\delta_n = \xi_n^x$ witnesses $x \in X$.

This finishes the proof of Subclaim 4.1. \blacksquare

CLAIM 4.3. The hypothesis of Lemma 4.3 holds for X.

Proof. The proof is the same as in [19, proof of Claim 2], by fixing just one C^i_{δ} for some $i \in \omega$.

This completes the proof of Lemma 4.5.

5. Final remarks and open questions. Strong Chang's Conjecture is a consequence of the Weak Reflection Principle and Rado's Conjecture. Sakai and Veličković showed that WRP, together with MA_{ω_1} (Cohen), implies that \aleph_2 has the Super Tree Property. However, they also showed that SSR and MA_{ω_1} (Cohen) together do not imply ω_2 has the Super Tree Property (see [19, Theorem 3.5]). Some natural questions arise:

QUESTION 5.1. Is WRP + \neg CH enough to have the Super Tree Property for ω_2 ?

QUESTION 5.2. Does Rado's Conjecture, together with \neg CH, imply ω_2 has the Super Tree Property?

For example, it is known that if a strongly compact cardinal is Levy collapsed to ω_2 , then Rado's Conjecture holds. If starting from a model with a strongly compact cardinal κ , we can force Rado's Conjecture together with the negation of CH by a proper forcing which is an iteration of length κ

of small forcings, then this would answer this question negatively by [30, Corollary 6.10]. We thank the referee for pointing this out.

The following question is also still open:

QUESTION 5.3. Is WRP(ω_2) enough to prove that the game $G(\omega^2)$ has a winning strategy, so we can get WRP(ω_2) + \neg CH \rightarrow TP(ω_2)?

Acknowledgements. The first author was supported by Project P 26869-N25 of the Austrian Science Fund (FWF). The second author was supported by NSFC 11321101 and NSFC 11401567. He also wishes to thank Project P 26869-N25 of the Austrian Science Fund (FWF) for supporting a trip to Vienna.

References

- J. E. Baumgartner, Applications of the proper forcing axiom, in: Handbook of Set-Theoretic Topology, North-Holland, Amsterdam, 1984, 913–959.
- J. Cummings and M. Magidor, Martin's maximum and weak square, Proc. Amer. Math. Soc. 139 (2011), 3339–3348.
- [3] K. J. Devlin, The Yorkshireman's guide to proper forcing, in: Surveys in Set Theory, London Math. Soc. Lecture Note Ser. 87, Cambridge Univ. Press, Cambridge, 1983, 60–115.
- P. Doebler, Rado's conjecture implies that all stationary set preserving forcings are semiproper, J. Math. Logic 13 (2013), 1350001, 8 pp.
- [5] P. Doebler and R. Schindler, Π_2 consequences of BMM + NS_{ω_1} is precipitous and the semiproperness of stationary set preserving forcings, Math. Res. Lett. 16 (2009), 797–815.
- [6] P. Erdős and A. Tarski, On some problems involving inaccessible cardinals, in: Essays on the Foundations of Mathematics, Magnes Press, Hebrew Univ., Jerusalem, 1961, 50–82.
- G. Fodor, Eine Bemerkung zur Theorie der regressiven Funktionen, Acta Sci. Math. (Szeged) 17 (1956), 139–142.
- [8] M. Foreman, Ideals and generic elementary embeddings, in: Handbook of Set Theory. Vol. 2, Springer, Dordrecht, 2010, 885–1147.
- M. Foreman, M. Magidor, and S. Shelah, Martin's maximum, saturated ideals, and nonregular ultrafilters. I, Ann. of Math. (2) 127 (1988), 1–47.
- [10] T. Jech, Set Theory, Springer Monogr. Math., Springer, Berlin, 2003.
- T. Jech, Stationary sets, in: Handbook of Set Theory. Vol. 1, Springer, Dordrecht, 2010, 93–128.
- T. J. Jech, Some combinatorial problems concerning uncountable cardinals, Ann. Math. Logic 5 (1972/73), 165–198.
- [13] R. B. Jensen, The fine structure of the constructible hierarchy, Ann. Math. Logic 4 (1972), 229–308; Erratum, ibid. 4 (1972), 443.
- [14] D. Kőnig, Uber eine Schlussweise aus dem Endlichen ins Unendliche, Acta Sci. Math. (Szeged) 3 (1927), 121–130.
- [15] G. Kurepa, Ensembles ordonnés et ramifiés, Publ. Math. Univ. Belgrade 4 (1935), 1–138.

- [16] W. Mitchell, Aronszajn trees and the independence of the transfer property, Ann. Math. Logic 5 (1972/73), 21–46.
- [17] H. Sakai, Semistationary and stationary reflection, J. Symbolic Logic 73 (2008), 181–192.
- [18] H. Sakai, Semi-stationary reflection and weak square, http://www2.kobe-u.ac.jp /~hsakai/Research/notes/ssr_wsquare.pdf (2015).
- [19] H. Sakai and B. Veličković, Stationary reflection principles and two cardinal tree properties, J. Inst. Math. Jussieu 14 (2015), 69–85.
- [20] E. Schimmerling, Combinatorial principles in the core model for one Woodin cardinal, Ann. Pure Appl. Logic 74 (1995), 153–201.
- [21] S. Shelah, *Proper Forcing*, Lecture Notes in Math. 940, Springer, Berlin, 1982.
- [22] S. Shelah, Proper and Improper Forcing, 2nd ed., Perspect. Math. Logic, Springer, Berlin, 1998.
- [23] R. Strullu, MRP, tree properties and square principles, J. Symbolic Logic 76 (2011), 1441–1452.
- [24] S. Todorčević, A note on the proper forcing axiom, in: Axiomatic Set Theory (Boulder, CO, 1983), Contemp. Math. 31, Amer. Math. Soc., Providence, RI, 1984, 209–218.
- [25] S. Todorčević, Conjectures of Rado and Chang and cardinal arithmetic, in: Finite and Infinite Combinatorics in Sets and Logic (Banff, AB, 1991), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci. 411, Kluwer, Dordrecht, 1993, 385–398.
- [26] S. Todorčević and V. Torres-Pérez, Conjectures of Rado and Chang and special Aronszajn trees, Math. Logic Quart. 58 (2012), 342–347.
- [27] S. Todorčević and V. Torres-Pérez, Rado's conjecture and ascent paths of square sequences, Math. Logic Quart. 60 (2014), no. 1-2, 84–90.
- [28] V. Torres-Pérez and L. Wu, Strong Chang's conjecture and the tree property at ω₂, Topology Appl. 196 (2015), 999–1004.
- [29] B. Veličković, Forcing axioms and stationary sets, Adv. Math. 94 (1992), 256–284.
- [30] M. Viale and C. Weiß, On the consistency strength of the proper forcing axiom, Adv. Math. 228 (2011), 2672–2687.
- [31] C. Weiß, Subtle and ineffable tree properties, PhD thesis, 2010.

Liuzhen Wu
Institute of Mathematics
Chinese Academy of Sciences
East Zhong Guan Cun Road No. 55
Beijing 100190, China
E-mail: lzwu@math.ac.cn

262