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Strong Chang’s Conjecture, Semi-Stationary Reflection,
the Strong Tree Property and two-cardinal square principles

by

Vı́ctor Torres-Pérez (Wien) and Liuzhen Wu (Beijing)

Abstract. We prove that a strong version of Chang’s Conjecture implies both the
Strong Tree Property for ω2 and the negation of the square principle �(λ, ω) for every
regular cardinal λ ≥ ω2.

1. Introduction. In these notes we consider two equivalent principles:
a strong version of Chang’s Conjecture and the Semi-Stationary Reflection
Principle. Given two sets x, y, we write x v y whenever x ⊆ y and x∩ω1 =
y ∩ ω1.

Definition 1.1. The principle CC∗ asserts that for every regular car-
dinal κ ≥ ω2, there are arbitrary large θ such that the following statement
CC(κ, θ) holds: For every countable M ≺ Hθ and every a ∈ [κ]ω1 , there is a
countable M∗ ≺ Hθ and a∗ ∈M∗ ∩ [κ]ω1 such that a∗ ⊇ a and M∗ wM .

A first generalization of Chang’s Conjecture of this kind was given by
Shelah (see [21, Theorem 1.3, p. 398]). Similar general versions were studied
in [25] and [5]. The Semi-Stationary Reflection Principle (SSR) was intro-
duced by Shelah [22, Chapter XIII, Definition 1.5]. Given an ordinal λ and
a set X ⊆ [λ]ω, we say X is semi-stationary in [λ]ω if its v-upward closure
is stationary, i.e. the set {y ∈ [λ]ω : ∃x ∈ X (x v y)} is stationary. It is clear
that every stationary set is semi-stationary.

Definition 1.2. The principle SSR asserts that the following statement
SSR(λ) holds for every ordinal λ ≥ ω2: for every semi-stationary subset
X ⊆ [λ]ω, there is W ∈ [λ]ω1 with W ⊇ ω1 such that X ∩ [W ]ω is semi-
stationary in [W ]ω.
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Döbler and Schindler proved that CC∗ and SSR are equivalent (see [5,
Theorem 5.7]). Shelah showed that SSR is equivalent to the following state-
ment:

(†) Every poset preserving stationary subsets of ω1 is semiproper

(see [22, Chapter XIII, 1.7]). Although these principles are consequences
of the Weak Reflection Principle (see for example [17]) or Rado’s Conjec-
ture [4], they have many important consequences of their own: In [9], it
was already shown that (†) implies that the ideal NSω1 is precipitous. It
was shown that under a weaker version of CC∗, the existence of a special
ℵ2-Aronszajn tree is equivalent to CH (see [26]), and that SSR implies the
Singular Cardinal Hypothesis [19] and the negation of �(λ) for all regular
cardinals λ ≥ ω2. The present authors [28] showed recently that under a
weak version of CC∗, the negation of CH entails the Tree Property for ω2.

In Section 3, we discuss the relationship between CC∗ and the Strong
Tree Property. Looking for sufficient conditions for a tree to have a cofinal
branch has led to many interesting combinatorial results. We recall that
an infinite regular cardinal κ has the Tree Property (TP(κ)) if for every
tree of height κ with levels of size < κ, there is a cofinal branch. König’s
Lemma states that TP(ω) holds [14], while Aronszajn showed that there is
a tree of height ω1 with each level at most countable and with no cofinal
branches (see [15, Theorem 6, p. 96]). Baumgartner [1] proved that the
Proper Forcing Axiom PFA implies TP(ω2). However, TP(ω2) turned out
to be equiconsistent with the existence of a weakly compact cardinal ([16,
Theorem 5.9] and [6]).

Jech introduced a strengthening of the Tree Property, now called the
Strong Tree Property (see Section 3 for the definition). He noticed that
an inaccessible cardinal κ has the Strong Tree Property if and only if κ is
strongly compact (see [12, p. 174]). Weiß [31] showed that PFA implies ℵ2
has the Strong Tree Property. Sakai and Veličković [19] proved that SSR,
together with MAω1(Cohen), implies the Strong Tree Property at ω2.

In this note, we show that it is enough to assume SSR and ¬CH for ω2

to have the Strong Tree Property. We remark that SSR is consistent with
both CH and ¬CH, and that CH implies ¬TP(ω2). Therefore, our result is
in certain sense optimal.

In Section 4, we study the relationship between SSR and the square prin-
ciple �(λ, ω) for every regular cardinal λ ≥ ω2. The original square principle
�λ was introduced by Jensen [13]. He showed that �λ holds in L for every un-
countable cardinal λ. Schimmerling [20] generalized this square principle to
weaker versions of the form �κ,λ. These two-cardinal versions have been ex-
tensively studied so far. For example, after the works of Cummings–Magidor
and Baumgartner, we have a complete picture of the relationship between
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MM and square principles of the form �κ,λ ([2], [3]). Some partial results
were also given on relations between Rado’s Conjecture (RC) and �κ,λ ([26],
[27]). Sakai established in unpublished notes [18] a rather complete picture
of relations between SSR and the square principles �κ,λ.

The square principle �(λ) (see Definition 4.1) has also been studied in
several instances. Jensen showed that in L, if λ > ω is regular and �(λ)
holds, then λ is not weakly compact (see [13, Theorem 6.1]). It has been
proven that the negation of �(λ) for all regular cardinal λ ≥ ω2 is implied by
the Proper Forcing Axiom (Todorčević [24]), the Weak Reflection Principle
(Veličković [29]), Rado’s Conjecture (Todorčević [25]) and more recently
by SSR (Sakai–Veličković [19]). Regarding a two-cardinal version �(κ, λ)
(see Definition 4.1) and its relation to other combinatorial principles, some
results have been already established, for example in [23] and [27]. In this
paper, we prove that SSR is enough to have the negation of �(λ, ω) for every
regular cardinal λ ≥ ω2.

2. Preliminaries. In these notes we will consider several types of sta-
tionary sets.

Given a limit ordinal γ, a subset A ⊆ γ is unbounded in γ if sup(A) = γ,
and closed in γ if for every limit ordinal β < γ, if A ∩ β is unbounded in β,
then β ∈ A. A set A ⊆ γ is often called a club set in γ if it is closed and
unbounded in γ. A set S ⊆ γ is stationary if S ∩ A 6= ∅ for every A club
in γ.

The following result involving stationary sets is known as Fodor’s Lemma
or the Pressing Down Lemma for ordinals.

Lemma 2.1 (Fodor [7]). Let κ be a regular uncountable cardinal. Then
for every stationary S ⊆ κ, and for every f : S → κ such that f(α) < α for
every α ∈ S, there is ξ < κ such that f−1({ξ}) is stationary.

A general version of a stationary set was given originally by Jech. We will
also use an equivalent version due to Kueker (see for example [10, Theorem
8.28]). Given an infinite set A and a regular cardinal µ, we denote by [A]<µ

the collection of subsets of A of size < µ. Similarly, let [A]µ denote the
collection of all subsets of A of size µ. We say that a set S ⊆ [A]ω is
stationary in [A]ω if for every function F : [A]<ω → A, there is X ∈ S such
that F (e) ∈ X for every e ∈ [X]<ω.

The following lemma is a generalized version of the Pressing Down
Lemma (see [10, Theorem 8.24]).

Lemma 2.2 (Jech). For every stationary set S ⊆ [A]ω and every f : S→A
such that f(X) ∈ X for every X ∈ S, there is a ∈ A such that f−1({a}) is
stationary.
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In general, we say that a set S ⊆ [A]µ is weakly stationary if for every
F : [A]<ω → A, there is X ∈ S such that F (e) ∈ X for every e ∈ [X]<ω. Note
that by Kueker’s Theorem mentioned above, weakly stationary is the same
as stationary when µ = ω. However, it is not so for µ > ω: see, for example,
the discussion [11, end of Section 4.1]. This generalization of stationary set
is due probably to Foreman, Magidor and Shelah [9], and used prominently
by Woodin.

The Pressing Down Lemma for this kind of stationary sets is folklore,
but we include a reference for completeness.

Lemma 2.3 (Folklore). Given a set X and a regular cardinal µ, for every
weakly stationary set S ⊆ [X]µ and any regressive function f : S → X, there
is a weakly stationary set S′ ⊆ S such that f�S′ is constant.

Proof. See for example [8, p. 912, Lemma 3.3].

All along these notes we only use the notion of weakly stationary. Since
for µ = ω weakly stationary and stationary coincide, we make an abuse of
language and call both just stationary, even when µ ≥ ω1.

3. Semi-Stationary Reflection Principle and the Strong Tree
Property for ω2. We give the definitions regarding the Strong Tree Prop-
erty.

Definition 3.1. Let λ > ω1 be a regular cardinal and let κ ≥ λ.
A (κ, λ)-tree is a system {Fa ∈ P (2a) : a ∈ [κ]<λ} such that

(1) for every a, 1 ≤ |Fa| < λ,
(2) for a, b ∈ [κ]<λ, a ⊆ b→ ∀f ∈ Fb ∃g ∈ Fa (f�a = g).

Given a (κ, λ)-tree F , we order its elements in the following way: for
f, g ∈ F , f ≤F g if and only if g�dom(f) = f . Observe that if f ≤F g,
then in particular dom(f) ⊆ dom(g). Note that ≤F is transitive, but it is
not necessarily a tree order. We say that f, g ∈ F are compatible if there
is h ∈ F such that h ≥F f, g (note that in a tree order, compatible is
equivalent to comparable). For A,B ⊆ F we write A ⊥ B if for every f ∈ A
and every g ∈ B, f and g are incompatible. Similarly, for f, g ∈ F and
A ⊆ F , we write f ⊥ g and f ⊥ A whenever {f} ⊥ {g} and {f} ⊥ A
respectively. A cofinal branch through F is a function B : κ → 2 such that
B�a ∈ F for every a ∈ [κ]<λ.

Definition 3.2. We say that λ has the Strong Tree Property if every
(κ, λ)-tree has a cofinal branch for every κ ≥ λ.

In this section, we prove that CC∗ together with the negation of CH im-
plies ω2 has the Strong Tree Property. The proofs are based on the techniques
of [26] and [28]: compare, for example, our Proposition 3.1, Lemma 3.1 and
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Lemma 3.2 with Proposition 2.3, Lemma 2.4 and Lemma 2.5 in [26] and
Proposition 3.1, Lemma 3.1 and Lemma 3.2 in [28] respectively.

Let κ ≥ ω2 and fix a (κ, ω2)-tree F . Fix a level enumeration surjective
function e : [κ]ω1 × ω1 → F such that e(d, ξ) ∈ Fd.

We have the following:

Proposition 3.1. Given a (κ, ω2)-tree F , let 〈Ad : d ∈ [κ]ω1〉 be a
sequence of collections of nodes such that Ad ∈ [Fd]

ω for every d ∈ [κ]ω1.
Then there are b ∈ [κ]ω1 and E stationary in [κ]ω1 such that for every g ∈ Fb

and every d ∈ E, if g has an extension in Fd, this extension is unique.

Proof. Let θ be large enough such that {F , e, κ, . . .} and all relevant
parameters belong to Hθ.

We remark the following:

Remark 3.1. There are stationary many M ≺ Hθ with |M | = ℵ1 such
that for every A ∈ [M ]ω, there is B ∈M ∩ [M ]ω such that B ⊇ A.

Proof. For any g : H<ω
θ → Hθ, build a ⊆-continuous chain 〈Mξ : ξ < ω1〉

of countable elementary submodels of Hθ such that for any ξ ∈ ω1, Mξ is
closed under g and Mξ ∈Mξ+1. Let M =

⋃
ξ<ω1

Mξ. It is easy to check that
M is closed under g and |M | = ω1. Then if A ∈ [M ]ω, there is ξ ∈ ω1 such
that A ⊆Mξ, and so Mξ ∈Mξ+1 ⊆M.

Let S ⊆ [Hθ]
ω1 be the stationary set of M ’s of Remark 3.1. For any

M ∈ S, let dM = M ∩κ. For g, h ∈ FdM with g 6= h, choose αg,h ∈ dM such
that g(αg,h) 6= h(αg,h). Since AdM is countable, we can apply Remark 3.1 to
the set {αg,h : g, h ∈ AdM } ∈ [M ]ω to find BM ⊇ {αg,h : g, h ∈ AdM } with
BM ∈M ∩ [M ]ω. Using the Pressing Down Lemma, find B ∈ Hθ and S′ ⊆ S
stationary such that BM = B for all M ∈ S′. By Menas’ Lemma, the set
E = {dM : M ∈ S′} is stationary in [κ]ω1 . Let b = B ∩ κ. Then for every
f ∈ Fb, if f has an extension in Fd for d ∈ E, this extension is unique.

Proposition 3.2. Let F be a (κ, ω2)-tree with no cofinal branches. Let
〈Ad : d ∈ [κ]ω1〉 be a sequence of collections of nodes such that Ad ∈ [Fd]

ω for
every d ∈ [κ]ω1. Let θ be large enough such that {F , e, κ, . . .} and all relevant
parameters belong to Hθ, and let N ≺ Hθ be such that |N | = ℵ1 and N ⊇ ω1.
Then for every f ∈ F with dom(f) ⊇ N ∩ κ, there is d ∈ N ∩ [κ]ω1 such
that f�d /∈ Ad.

Proof. Suppose otherwise. Fix f ∈ F with dom(f) ⊇ N ∩ κ such that
f�d ∈ Ad for every d ∈ N ∩ [κ]ω1 . Apply Proposition 3.1 to find b ∈ [κ]ω1

and a stationary set E ⊆ [κ]ω1 such that one can define for every g ∈ Fb a
function Fg : E → F , where Fg(d) is the unique extension in Fd of g if the
extension exists, or the empty set otherwise. Observe that by elementarity,
we can take E, b ∈ N such that Fg is defined in N for every g ∈ Fb ∩ N .
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Furthermore, since N is closed under the level enumeration function, and
ω1 ∪ {b} ⊆ N , we get Fb ⊆ N . In particular f�b ∈ N , and therefore Ff�b
is defined in N . To simplify notation, let F = Ff�b , and let B =

⋃
d∈E F (d)

(which is also defined in N).

Observe that for any d ∈ E, we get F (d) 6= ∅, since F (d) = f�d. Also
for d, d′ ∈ E, F (d) and F (d′) are ≤F -comparable since F (d) = f�d and
F (d′) = f�d′ , By our initial supposition of the proof, for every d ∈ [κ]ω1 ∩N ,
B�d(= f�d) ∈ F . Therefore, by elementarity, B defines in N a cofinal branch
in F , a contradiction.

Lemma 3.1. (CC∗) Let F be a (κ, ω2)-tree with no cofinal branches.
Then there are arbitrarily large θ such that for every countable M ≺ Hθ

there are M0,M1 ≺ Hθ countable and a0 ∈M0 ∩ [κ]ω1, a1 ∈M1 ∩ [κ]ω1 with

(1) M ∩ ω1 = M0 ∩ ω1 = M1 ∩ ω1,
(2) Fa0 ∩M0 ⊥ Fa1 ∩M1.

Proof. Apply CC∗ to find θ sufficiently large such that all relevant pa-
rameters belong to Hθ and such that CC(κ, θ) holds. Take M ≺ Hθ count-
able. Our goal is to find a0, a1,M0,M1 such that (1) and (2) of the present
lemma hold.

Let θ′ > θ be sufficiently large such that M,F , e,Hθ and all relevant
parameters are members of Hθ′ and such that CC(κ, θ) holds in Hθ′ . Take
N ≺ Hθ′ of size ℵ1 with ω1 ⊆ N and containing all relevant parameters
such as M and F . Let a = N ∩ κ. To build a1 and M1, simply apply CC∗

(outside N) to find M1 ≺ Hθ and a1 ∈ M1 ∩ [κ]ω1 such that a1 ⊇ a and
M1 w M . We will show later that M1, a1 are the ones that we are looking
for. To find a0 and M0 we need a little more. First we prove the following:

Claim 3.1. Let K be a countable elementary submodel of Hθ with K ∈ N
and let b ∈ [κ]ω1 with b ⊇ a. Then for every f ∈ Fb, there is K∗ w K with
K∗ ∈ N and c ∈ K∗ ∩ [κ]ω1 such that f ⊥ K∗ ∩Fc.

Proof. Assume otherwise. Take f ∈ Fb such that for any K∗ ∈ N with
K∗ w K and for all c ∈ K∗∩ [κ]ω1 , there is gc ∈ K∗∩Fc compatible with f.

Remark 3.2. For every c ∈ K∗∩[κ]ω1, f and gc are not only compatible,
but indeed f ≥ gc.

Proof. This follows directly by showing that c ⊆ a (⊆ b) for every c ∈
K∗ ∩ [κ]ω1 . Since K∗ ∈ N and K∗ is countable, we have K∗ ⊆ N . So if
c ∈ K∗ ∩ [κ]ω1 , in particular c ∈ N . Since ω1 ⊆ N , we also have c ⊆ N , and
therefore c ⊆ N ∩ κ = a.

Working in N and using the fact that CC∗ holds in N , build a sequence
〈(Kd, d

′) : d ∈ [κ]ω1〉 such that Kd is a countable submodel of Hθ, Kd w K,
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d′ ⊇ d and d′ ∈ Kd ∩ [κ]ω1 for every d ∈ [κ]ω1 . For d ∈ [κ]ω1 , define

Ad = {h ∈ Fd : ∃g ∈ Kd ∩Fd′ (g ≥F h)}.
Observe that whenever d⊆d′, if h0, h1∈Fd and g ∈Fd′ with h0, h1≤F g,

then h0 = h1 (since h0 = g�dom(h0) = g�d = g�dom(h1) = h1). Therefore the
cardinality of Ad is at most the cardinality of Kd, which is countable. We can
now apply Proposition 3.2 to N , f and 〈Ad : d ∈ [κ]ω1〉 to find d ∈ N ∩ [κ]ω1

such that

(1) f�d /∈ Ad.
By our assumption at the beginning of the proof of this claim, and by

Remark 3.2, there is g ∈ Kd ∩ Fd′ with g ≤F f. By definition of Ad, we
have g�d ∈ Ad. But g�d = (f�d′)�d = f�d, contradicting (1).

We now continue with the proof of Lemma 3.1. Let {fn : n ∈ ω} be an
enumeration of M1 ∩Fa1 . Then, applying Claim 3.1, build a v-increasing
sequence 〈M(n) : n ∈ ω〉 and a sequence 〈c(n) : n ∈ ω〉 such that for every
n ∈ ω, we have M(n) wM , c(n) ∈M(n) ∩ [κ]ω1 and

(2) fn ⊥M(n) ∩Fc(n).

Using CC∗, find M0 w
⋃
n∈ωM(n) with M0 ≺ Hθ and a0 ∈ M0 ∩ [κ]ω1

such that a0 ⊇
⋃
n∈ω cn. We claim that (2) of Lemma 3.1 holds for a0, a1,M0

and M1, i.e. Fa0∩M0 ⊥ Fa1∩M1. To see that, take n ∈ ω and g ∈M0∩Fa0 ;
we will show that fn ⊥ g. Observe that

(3) M(n) ∩Fc(n) = M0 ∩Fc(n),

since c(n) ∈M(n) ⊆M0, M0∩ω1 = M(n)∩ω1 and the enumeration function
e is in both M0 and M(n). Since g ∈M0 ∩Fa0 and c(n) ∈M(n) ⊆M0, we
have g�c(n) ∈ M0 ∩Fc(n). Therefore, by (3), we get g�c(n) ∈ M(n) ∩Fc(n).
Using (2), we obtain fn ⊥ g�c(n), and therefore fn ⊥ g.

We have the following:

Lemma 3.2. (CC∗) Let F be a (κ, ω2)-tree with no cofinal branches. For
λ sufficiently large, if the set

SF = {M ∈ [Hλ]ω : ∃b ∈ [κ]ω1 ∀f ∈ Fb ∃a ∈M ∩ [b]ω1 (f�a /∈M)}
is nonstationary, then CH holds.

Proof. Suppose SF is nonstationary, and let F : [Hλ]<ω → Hλ be a
function such that if M ∈ [Hλ]ω is closed under F , then M /∈ SF . As
before, let e : [κ]ω1×ω1 → F be a surjective function such that e(a, ξ) ∈ Fa

for every ξ ∈ ω1. Let θ be sufficiently large such that F , SF , F, e and all
relevant parameters are in Hθ and the conclusion of Lemma 3.1 holds.

Using Lemma 3.1, build a binary tree 〈Mσ〉σ∈2<ω of countable elementary
submodels of Hθ with the property that for every σ ∈ 2<ω,
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(1) Mσ ∩ ω1 = Mσ_0 ∩ ω1 = Mσ_1 ∩ ω1, and
(2) there exist a0 ∈ Mσ_0 ∩ [κ]ω1 and a1 ∈ Mσ_1 ∩ [κ]ω1 such that

Fa0 ∩Mσ_0 ⊥ Fa1 ∩Mσ_1.

For every r ∈ 2ω, let Mr =
⋃
n∈ωMr�n. Let b ∈ [κ]ω1 be such that b ⊇ a

for every a ∈ Mσ ∩ [κ]ω1 and every σ ∈ 2<ω. Since Mr ≺ Hθ and F ∈ Mr,
Mr is closed under F , we have Mr ∩κ /∈ SF . So we can choose fr ∈ Fb such
that fr�a ∈Mr for every a ∈Mr ∩ [b]ω1 .

Claim 3.2. The map r 7→ fr is an injection from 2ω to Fb (and therefore
CH holds).

Proof. Let r0, r1 ∈ 2ω with r0 6= r1 and denote by fi the node fri for i ∈
{0, 1}. We will find two predecessors of f0 and f1 that are incompatible. Let
n ∈ ω be such that r0�n = r1�n = σ, and r0�n+1 6= r1�n+1. Without loss of
generality, suppose ri(n) = i for i ∈ {0, 1}. By the construction of our binary
tree, we can take a0 ∈Mr0�n+1 and a1 ∈Mr1�n+1 such that Fa0 ∩Mr0�n+1 ⊥
Fa1 ∩Mr1�n+1 . However, observe that for i ∈ {0, 1}, ai ∈ Mri�n+1 ⊆ Mri ,
and so fi�ai ∈Mri�n+1 . Therefore, f0�a0 and f1�a1 are incompatible, and so
are f0 and f1.

This finishes the proof of Lemma 3.2.

We are ready to prove the main theorem of this section.

Theorem 3.1. (CC∗) If CH does not hold, then ω2 has the Strong Tree
Property.

Proof. Assume CH does not hold, but there is a (κ, ω2)-tree F with
no cofinal branches. From Lemma 3.2, for λ sufficiently large, the set SF

is stationary in [Hλ]ω, and in particular it is semi-stationary. Without loss
of generality, we can assume that every set in SF is closed under e. Since
CC∗ and SSR are equivalent [5, Theorem 5.7], we can apply SSR to obtain
X ∈ [Hλ] with X ⊇ ω1 such that [X]ω ∩ SF is semi-stationary. Let

S = {x ∈ [X]ω : ∃Mx ∈ SF ∩ [X]ω (x wMx)},
which is stationary by definition of semi-stationary set. Take a stationary set
S′ ⊆ S of size ω1 (1). For x ∈ S′, using the definition of SF , choose bx ∈ [κ]ω1

such that for every f ∈ Fbx , there is a ∈ Mx ∩ [bx]ω1 with f�a /∈ Mx. Let
b =

⋃
x∈S′ bx (and so |b| = ω1). Fix f ∈ Fb. Then for x ∈ S′, we can choose

ax ∈Mx ∩ [bx]ω1 such that

(4) (f�bx)�ax = f�ax /∈Mx.

Apply the Pressing Down Lemma to find a ∈ [κ]ω1 and a stationary
set S′′ ⊆ S′ such that ax = a for every x ∈ S′′. Observe that since S′′ is

(1) For example, let h : X → ω1 be a bijection. So the set {h−1[α] : α ∈ ω1 \ ω} is a
club of size ω1, and take its intersection with S.
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stationary in [X]ω, it is in particular cofinal in [X]ω, and since X ⊇ ω1, we
have

⋃
x∈S′′(x ∩ ω1) = ω1. Therefore we can fix x ∈ S′′ and ξ ∈ x such that

e(a, ξ) = f�a. However, Mx is closed under e, and Mx ∩ ω1 = x ∩ ω1 (since
x wMx), and so e(ξ, a) ∈Mx, contradicting (4).

4. Square sequences. Given a set A of ordinals, we denote by Lim(A)
the collection of limit points of A, i.e. α ∈ Lim(A) if α > 0 and sup(A∩α) =
α (so in particular, α is a limit ordinal). Observe also that if A ⊆ B, we
have Lim(A) ⊆ Lim(B).

We recall a two-cardinal version �(λ, µ) of the square principle.

Definition 4.1. Given a regular cardinal λ and a cardinal µ ≤ λ, 〈Cα :
α ∈ Lim(λ)〉 is a (λ, µ)-square sequence or a �(λ, µ)-sequence if

(1) 1 ≤ |Cα| ≤ µ,
(2) for every C ∈ Cα, C is a closed and unbounded subset of α,
(3) for every C ∈ Cβ, if α ∈ Lim(C), then C ∩ α ∈ Cβ.

Given a set C ⊆ λ, we say that C trivializes a (λ, µ)-square sequence 〈Cα :
α ∈ Lim(λ)〉 if C ∩ α ∈ Cα for every α ∈ Lim(C).

We say that the principle �(λ, µ) holds if there is a (λ, µ)-square sequence
〈Cα : α ∈ Lim(λ)〉 that is trivialized by no club.

We first give some lemmas which describe some properties of square
sequences of the form �(λ, µ).

Lemma 4.1. For a (λ, µ)-square sequence 〈Cα : α ∈ Lim(λ)〉 the follow-
ing are equivalent:

(1) There is a club D ⊆ λ trivializing the sequence.
(2) There is C ⊆ λ such that Lim(C) is unbounded in λ and a sequence
〈Cγ : γ ∈ Lim(C)〉 such that for every γ ∈ Lim(C), Cγ ∈ Cγ, and
for α, β ∈ Lim(C), if α < β then Cα = Cβ ∩ α.

Proof. (1)⇒(2). Just set C = D and Cγ = D ∩ γ for every γ ∈ Lim(D).
(2)⇒(1). Take C as in the assumption, and set D =

⋃
α∈Lim(C)Cα. We

will show that D ∩ α ∈ Cα for every α ∈ Lim(D).
Take α ∈ Lim(D) and β ∈ Lim(C) such that α ∈ Cβ. Using the prop-

erties of the sequence 〈Cγ : γ ∈ Lim(C)〉, it is not difficult to show that α
is also a limit point of Cβ, and so Cβ ∩ α ∈ Cβ. Therefore, it is enough to
show that D ∩ α = Cβ ∩ α. Note that already Cβ ⊆ D. So Cβ ∩ α ⊆ D ∩ α.
Therefore, it remains to show that D ∩ α ⊆ Cβ ∩ α. Observe that by the
properties of 〈Cγ : γ ∈ Lim(C)〉, we can easily verify Cγ ∩ α ⊆ Cβ ∩ α for
every γ ∈ Lim(C), and therefore D ∩ α = Cβ ∩ α.

We show that if Lim (C) is unbounded, then D is a club: To show that
D is unbounded, take β < λ. Since Lim(C) is unbounded in λ, there is α > β
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with α ∈ Lim(C)(⊆ Lim(λ)) and Cα unbounded in α. To show that D is
closed, take an increasing sequence 〈βξ : ξ < γ〉 of elements of D with γ < λ.
Let β = sup{βξ : ξ < γ}. We wish to show that β ∈ D. For every ξ < γ, there
is αξ ∈ Lim(C) such that βξ ∈ Cαξ . Let α = sup{αξ : ξ < γ} < λ. Since
Lim(C) is unbounded in λ, let η ∈ Lim(C) with η > α. By the properties
of C, we have Cη ∩ αξ = Cαξ for every ξ < γ, and so {βξ : ξ < γ} ⊆ Cη.
Since Cη is closed, sup{βξ : ξ ∈ γ} ∈ Cη ⊆ D.

Remark 4.1. Let λ be a regular uncountable cardinal, and let 〈Cβ :
β ∈ Lim (λ)〉 be a �(λ, µ)-sequence with λ > cof(µ)+. For β < µ, let

Cβ = {Cξβ : ξ < µ}. Then for every β ∈ λ ∩ Cof(>µ), there is αβ < β such
that for every Cξ, Cη ∈ Cβ, if Cξ 6= Cη, then Cξ ∩ αβ 6= Cη ∩ αβ.

Proof. For Cξ, Cη ∈ Cβ with Cξ 6= Cη, choose α{ξ,η} < β such that
Cξ ∩ α{ξ,η} 6= Cη ∩ α{ξ,η}. If Cξ = Cη, let α{ξ,η} be just any α below β. Let

αβ = sup{α{ξ,η} : {ξ, η} ∈ [µ]2}. Since cof(β) > µ, we have αβ < β, and

therefore Cξ ∩ αβ 6= Cη ∩ αβ for every {ξ, η} ∈ [µ]2 with Cξ 6= Cη.

Lemma 4.2. Let λ be a regular uncountable cardinal, and let 〈Cβ :
β ∈ Lim (λ)〉 be a �(λ, µ)-sequence with λ > cof(µ)+ such that no club

trivializes this sequence. For β < µ, let Cβ = {Cξβ : ξ < µ}. For any set

X ⊆ λ such that X ∩ Cof(>µ) is stationary, and for every M ≺ Hθ with θ
sufficiently large and {X, 〈Cβ : β ∈ Lim(λ)〉} ∪ µ ⊆ M , if δ = sup(M ∩ λ),
then for every ξ ∈ µ, the set

{α ∈ X ∩M : α /∈ Lim(Cξδ )}
is unbounded in δ.

Proof. Suppose it is not the case. Then there are ξ∗ ∈ µ and γ ∈M ∩ λ
such that X ∩M \ γ ⊆ Lim(Cξ

∗

δ ). Let X0 = X \ γ, so in particular X0 ∈M ,
and similarly Lim(X0) ∈M . Observe also that X0 ∩ Cof(>µ) is stationary.
Applying Fodor’s Lemma and Remark 4.1, there is α ∈ λ and a stationary
subset X1 ⊆ X0 ∩ Cof(>µ) such that αβ = α for every β ∈ X1. Since
X0 ∈M , by elementarity we can take α,X1 ∈M.

Remark 4.2. Cξ
∗

δ ∩ α ∈M .

Proof. Pick any β ∈ Lim(X1) ∩M \ α. As Lim(X1) ∩M ⊆ X0 ∩M ⊆
Lim(Cξ

∗

δ ), there is ξβ ∈ µ (⊆M) such that Cξ
∗

δ ∩β = C
ξβ
β . But then Cξ

∗

δ ∩α =

Cξ
∗

δ ∩ (β ∩ α) = (Cξ
∗

δ ∩ β) ∩ α = C
ξβ
β ∩ α. Since α, β, ξβ ∈M , the set C

ξβ
β is

defined in M , and so Cξ
∗

δ ∩ α ∈M .

To simplify notation, write C∗ = Cξ
∗

δ ∩ α, so by Remark 4.2, C∗ ∈M .

Claim 4.1. For every β ∈ Lim(X1), there is a unique ξβ such that

C
ξβ
β ∩ α = C∗.
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Proof. By the elementarity of M , it suffices to prove that Claim 4.1 holds
in M . To show existence, using Lim(X1)∩M ⊆ Lim(Cξ

∗

δ ), pick ξβ such that

Cξ
∗

δ ∩β = C
ξβ
β . Then C

ξβ
β ∩α = (Cξ

∗

δ ∩β)∩α = Cξ
∗

δ ∩(β∩α) = Cξ
∗

δ ∩α = C∗.

To show uniqueness, take ξβ, ηβ ∈ µ such that C
ξβ
β 6= C

ηβ
β . Since β ∈ X1, we

have C
ξβ
β ∩ α 6= C

ηβ
β ∩ α, so both cannot be equal to C∗.

Define now Cβ = C
ξβ
β for β ∈ X1. Then the sequence 〈Cβ : β ∈ Lim(X1)〉

is in M . Observe that for every γ, β ∈ M ∩ Lim(X1), if γ < β we have

Cβ ∩ γ = (Cξ
∗

δ ∩ β) ∩ γ = Cξ
∗

δ ∩ γ = Cγ , contradicting Lemma 4.1.

In this section, we prove that assuming SSR, we can have the negation
of �(λ, ω) for every regular cardinal λ ≥ ω2.

For a set A of ordinals, define sup+(A) = sup{α + 1 : α ∈ A}. We will
use the following useful implications of SSR given by Sakai–Veličković. Fix
a regular cardinal λ ≥ ω2. For countable sets of ordinals x and y, we write
x v∗ y if

• x v y,
• sup+(x) = sup+(y),
• sup+(x ∩ γ) = sup+(y ∩ γ) for all γ ∈ Eλω1

∩ x.

Given X ⊂ [λ]ω for some λ ≥ ω1, we say that X is weakly full if X is
upward closed under v∗.

Lemma 4.3 ([19, Lemma 2.2]). Let λ ≥ ω2. Suppose there is a weakly
full stationary X ⊆ [λ]ω such that for every I ∈ [λ]ω1 with ω1 ⊆ I, there is
J ⊆ λ such that I ⊆ J , sup+(J) = sup+(I) and X ∩ [J ]ω is nonstationary.
Then SSR(λ) fails.

Sakai and Veličković also present a game which will be used to construct
a weakly full stationary set. Let λ be a regular cardinal ≥ ω2. For a function
F : [λ]<ω → λ let G1(λ, F ) be the following game of length ω:

I α0 γ0 α1 γ1 · · · αn γn · · ·
II β0 β1 · · · βn · · ·

I and II in turn choose ordinals < λ. In the nth stage, first I chooses αn, then
II chooses βn, and then I again chooses γn > βn, with γn of cofinality ω1.
I wins if

clF ({γn : n ∈ ω}) ∩ [αm, γm) = ∅
for every m ∈ ω, where clF (A) denotes the closure of the set A under F .
Otherwise, II wins.

Lemma 4.4 ([19, Lemma 2.3]). Let λ be a regular cardinal ≥ ω2 and let
F : [λ]<ω → λ. Then I has a winning strategy in the game G1(λ, F ).
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Now we state our theorem.

Theorem 4.1. For every regular cardinal λ ≥ ω2, SSR(λ) implies the
negation of �(λ, ω).

Proof. Assuming that �(λ, ω) holds, we will show that SSR(λ) fails.
Let 〈Cα : α ∈ Lim(λ)〉 be a (λ, ω)-square sequence that is trivialized by

no club subset of λ. Without loss of generality, we can assume |Cα| = ω for
every α ∈ Lim(λ). Let 〈Cnα : n < ω〉 enumerate Cα.

Let X be the set of all x ∈ [λ]ω which have limit order type and there is
a sequence 〈ξxn : n < ω〉 of ordinals below sup(x) such that for all n ∈ ω,

(1) sup(x ∩ Cnsup+(x)) ≤ ξ
x
n,

(2) cof(min(x \ β)) = ω1 for all β ∈ Cnsup+(x) \ ξ
x
n.

It is not hard to check that X is weakly full. We have the following.

Lemma 4.5. X is stationary in [λ]ω.

Proof. Let F : [λ]<ω → λ. We will find x ∈ X closed under F . By
Lemma 4.4, fix a winning strategy τ of I for G1(λ, F ). Moreover let C be
the set of all limit ordinals < λ closed under τ and F . Note that C is club
in λ.

Let θ be sufficiently large such that Hθ has all the relevant parameters.
We are going to build inductively a sequence 〈Mn : n ∈ ω〉 of structures
of Hθ as follows: Fix a well-order < of Hθ, let M0 = 〈Hθ;∈, <, 〈Cα : α ∈
Lim(λ)〉, F, C, . . .〉, let 〈M0

ξ : ξ < λ〉 be a strictly continuous ⊆-increasing
sequence of elementary submodels of M0 of size < λ, and define D0 =
{sup(M0

ξ ∩ λ) : ξ < λ}. Observe that D0 is a club in λ and D0 ∈ Hθ.
Suppose we have defined a structure Mn of Hθ and a strictly continuous
⊆-increasing sequence 〈Mn

ξ : ξ < λ〉 of elementary submodels of Mn of size
< λ. Define Dn = {sup(Mn

ξ ∩ λ) : ξ < λ}, so that Dn is a club in λ with
Dn ∈ Hθ. Let Mn+1 = 〈Hθ;∈, <, 〈Cα : α ∈ Lim(λ)〉, F, C,D0, . . . , Dn, . . .〉.

Let

M = 〈Hθ,∈, <, 〈Cα : α ∈ Lim(λ)〉, F, C, {Dn : n ∈ ω}, . . .〉.
Take again a strictly ⊆-increasing continuous sequence 〈Mξ : ξ < λ〉 of
elementary submodels of M such that |Mξ| < λ and Mξ ∩ λ is transitive for
every ξ < λ. Then the set {Mξ ∩ λ : ξ < λ} is a club in λ, and since Eλω is
stationary in λ, we can fix M �M, with M ∩ λ transitive and M ∩ λ ∈ Eλω.
Let δ = M ∩ λ. We have the following:

Claim 4.2. There is an increasing sequence 〈δn : n < ω〉 of ordinals
such that

(1) δn ∈ C \
⋃
i≤n Lim(Ciδ),

(2) sup{δn : n ∈ ω} = δ.
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Proof. Fix a strictly increasing sequence 〈εn : n < ω〉 ⊆ M of limit δ.
We proceed by induction. To find δ0, apply directly Lemma 4.2 to find
δ0 ∈ [ε0, δ) with δ0 ∈ C \ Lim(C0

δ ). Fix n ∈ ω, and suppose we have already
built δn above εn.

Subclaim 4.1. There is a sequence of intervals [βn0 , δ
n
0 ) ⊇ · · · ⊇ [βni , δ

n
i )

⊇ · · · ⊇ [βnn , δ
n
n) with βn0 ≥ max{δn, εn+1} and δn0 < δ, and there is a

sequence 〈Mn
i �Mn−i : i ≤ n〉 of elementary submodels such that for every

i ≤ n,

• δni = sup(Mn
i ∩ λ),

• βni ∈Mn
i ,

• [βni , δ
n
i ) ∩ Cjδ = ∅ for every j ≤ i.

Proof. Since Dn ∈ M , apply Lemma 4.2 to Dn, M, Lim(C0
δ ) and

max{δn, εn+1} to find δn0 > max{δn, εn+1} with δn0 ∈ Dn ∩M \ Lim(C0
δ ).

Let Mn
0 �Mn be such that δn0 = sup(Mn

0 ∩ λ). Take βn0 ∈Mn
0 ∩ λ with

βn0 ≥ max{δn, εn+1} and such that [βn0 , δ
n
0 ) ∩ C0

δ = ∅.
Observe that for n = 0 we are already done, so we can assume n ≥ 1.

For i < n, suppose that we have found a sequence of intervals [βn0 , δ
n
0 ) ⊇

· · · ⊇ [βni , δ
n
i ) with βn0 ≥ max{δn, εn+1} and δn0 < δ and a sequence 〈Mn

j �
Mn−j : j ≤ i〉 of elementary submodels such that for every j ≤ i,

• δnj = sup(Mn
j ∩ λ),

• βnj ∈Mn
j ,

• [βnj , δ
n
j ) ∩ Ckδ = ∅ for every k ≤ j.

Since i < n, the set Dn−i−1 is well-defined, and since Mn
i � Mn−i, we

have Dn−i−1 ∈Mn
i .

Case 1: δni /∈ Lim(Ci+1
δ ). Choose βni+1 ∈ Mn

i ∩ λ with βni+1 ≥ βni and

such that [βni+1, δ
n
i ) ∩ Ci+1

δ = ∅. Since Dn−i−1 is unbounded in λ, by el-
ementarity we can find δni+1 ∈ Dn−i−1 ∩Mn

i with δni+1 > βni+1, and thus

[βni+1, δ
n
i+1) ∩ C

j
δ= ∅ for every j ≤ i + 1. Let Mn

i+1 � Mn−i−1 be such that
δni+1 = sup(Mn

i+1 ∩ λ).

Case 2: δni ∈ Lim(Ci+1
δ ). Take k ∈ ω such that Ci+1

δ ∩ δni = Ckδni
. Apply

Lemma 4.2 to Mn
i , Lim(Ckδni

), Dn−i−1 and βni to find δni+1 ∈Mn
i ∩ λ with

δni+1 > βni and δni+1 /∈ Lim(Ckδni
). Let Mn

i+1 � Mn−i−1 be such that δni+1 =

sup(Mn
i+1∩λ). Take βni+1 ∈Mn

i+1 such that βni+1 ≥ βni and [βni+1, δ
n
i+1)∩Ckδni

= ∅. Then [βni+1, δ
n
i+1) ∩ C

j
δ = ∅ for every j ≤ i+ 1.

Observe that we have defined βnn , Mn
n and δnn with δnn = sup(Mn

n ∩ λ).
To finish our construction, we again have two cases.
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Case 1: δnn /∈ Lim(Cn+1
δ ). Choose βnn+1 ∈ Mn

n ∩ λ with βnn+1 ≥ βnn and

such that
[
βnn+1, δ

n
n

)
∩ Cn+1

δ = ∅. Since C ∈ Mn
n , by elementarity we can

choose δn+1 ∈ [βnn+1, δ
n
n) ∩ C, and so δn+1 is as needed.

Case 2: δnn ∈ Lim(Cn+1
δ ). Take k ∈ ω such that Cn+1

δ ∩δnn = Ckδnn . Apply

Lemma 4.2 to Mn
n , Lim(Ckδnn ), βnn and C to find δn+1 ∈ Mn

n ∩ C \ βnn with

δn+1 /∈ Lim(Ckδnn ).

Now let βn < δn such that [βn, δn) ∩
⋃
i≤nC

i
δ = ∅. Then let 〈αn, γn :

n ∈ ω〉 be a sequence of I’s moves according to τ against 〈βn : n ∈ ω〉.
Moreover let x = clF ({γn : n ∈ ω}). It suffices to prove that x ∈ X.
To see this, first note that sup+(x) = δ because δ is closed under F . We
are going to check that setting ξxn = δn will witness x ∈ X. Fix n ∈ ω.
Observe that for m ≥ n, we have Cnδ ∩ δm ⊆ βm ⊆ γm by the choice
of βm. Also note that αm+1 < δm, because βm ∈ δm and δm is closed
under τ (since δm ∈ C). Hence Cnδ ∩ [δm, δm+1) ⊆ [αm+1, γm+1) for every
m ≥ n. Note that x ∩ [αk+1, γk+1) = ∅ for each k ∈ ω because I wins with
the play 〈αk, βk, γk : k ∈ ω〉. Thus x ∩ Cnδ ⊆ δn. Moreover for m ≥ n,
min(x \ β) = γm+1 for all β ∈ Cnδ ∩ [δm, δm+1), and cof(γm+1) = ω1 by the
rule of G1(λ, F ). Therefore, δn = ξxn witnesses x ∈ X.

This finishes the proof of Subclaim 4.1.

Claim 4.3. The hypothesis of Lemma 4.3 holds for X.

Proof. The proof is the same as in [19, proof of Claim 2], by fixing just
one Ciδ for some i ∈ ω.

This completes the proof of Lemma 4.5.

5. Final remarks and open questions. Strong Chang’s Conjecture is
a consequence of the Weak Reflection Principle and Rado’s Conjecture. Sakai
and Veličković showed that WRP, together with MAω1(Cohen), implies that
ℵ2 has the Super Tree Property. However, they also showed that SSR and
MAω1(Cohen) together do not imply ω2 has the Super Tree Property (see
[19, Theorem 3.5]). Some natural questions arise:

Question 5.1. Is WRP +¬CH enough to have the Super Tree Property
for ω2?

Question 5.2. Does Rado’s Conjecture, together with ¬CH, imply ω2

has the Super Tree Property?

For example, it is known that if a strongly compact cardinal is Levy
collapsed to ω2, then Rado’s Conjecture holds. If starting from a model with
a strongly compact cardinal κ, we can force Rado’s Conjecture together with
the negation of CH by a proper forcing which is an iteration of length κ
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of small forcings, then this would answer this question negatively by [30,
Corollary 6.10]. We thank the referee for pointing this out.

The following question is also still open:

Question 5.3. Is WRP(ω2) enough to prove that the game G(ω2) has
a winning strategy, so we can get WRP(ω2) + ¬CH→ TP(ω2)?
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