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Existence of a positive ground state solution for a
Kirchhoff type problem involving a critical exponent

Lan Zeng and Chun Lei Tang (Chongqing)

Abstract. We consider the following Kirchhoff type problem involving a critical non-
linearity: −

[
a+ b

( �
Ω

|∇u|2 dx
)m]

∆u = f(x, u) + |u|2
∗−2u in Ω,

u = 0 on ∂Ω,

where Ω ⊂ RN (N ≥ 3) is a smooth bounded domain with smooth boundary ∂Ω, a > 0,
b ≥ 0, and 0 < m < 2/(N − 2). Under appropriate assumptions on f , we show the
existence of a positive ground state solution via the variational method.

1. Introduction and main results. The purpose of this article is to
investigate the existence of a ground state solution of the Kirchhoff type
problem

(1.1)

{
−(a+ b‖u‖2m)∆u = f(x, u) + |u|2∗−2u in Ω,

u = 0 on ∂Ω,

where Ω ⊂ RN (N ≥ 3) is a smooth bounded domain with smooth boundary
∂Ω and 0 < m < 2/(N − 2). Here 2∗ = 2N/(N − 2) is the critical Sobolev
exponent for the embedding of H1

0 (Ω) into Lp(Ω) for every p ∈ [1, 2∗], where
H1

0 (Ω) denotes the usual Sobolev space endowed with the norm ‖u‖2 =	
Ω |∇u|

2 dx and Lp(Ω) denotes the usual Lebesgue space with the norm

|u|p = (
	
Ω |u|

p dx)1/p; and f : Ω × R+ → R is a continuous function.

The Kirchhoff equation which included the nonlocal term M(‖u‖2) was
proposed by Kirchhoff [9] in the following problem:
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utt −M(‖u‖2)∆u = f(x, u) in Ω,

u = 0 on ∂Ω × (0, T )

u(x, 0) = u0(x), ut(x, 0) = u1(x);

the above equation as an extension of the classical d’Alembert wave equa-
tion for free vibrations of elastic strings. Those kinds of problems were also
considered in nonlinear vibration theory [14, 15]. In mathematics, the Kirch-
hoff equation has also been extensively discussed, for example, in [2, 1, 12,
13, 6, 7, 10, 18, 19, 16].

In recent years, the Kirchhoff problem involving critical growth has at-
tracted much attention:

(1.2)

{
−M(‖u‖2)∆u = λf(x, u) + |u|2∗−2u in Ω,

u = 0 on ∂Ω,

where λ > 0 is a parameter. Up to now, several existence results have been
successfully obtained via the variational and topological methods. By letting
the parameter λ be large enough, Alves et al. [1] have verified the existence
of a positive solution for problem (1.2) with N = 3, and Hamydy et al. [8]
have extended their result to the p-Kirchhoff problem. On the basis of [1],
Figueiredo et al. [6, 7] have obtained some interesting results by using an
appropriate truncation of M .

In the case N = 3 and M(s) = a+ bs, (1.2) has the following form:

(1.3)

{
−(a+ b‖u‖2)∆u = λf(x, u) + u5 in Ω,

u = 0 on ∂Ω.
By using the Brézis–Lieb Lemma [4], Xie et al. [19] have obtained a positive
solution for problem (1.3) with λ = 1. D. Naimen has used the Second
Concentration-Compactness Lemma of Lions [11] to obtain the following
result:

Theorem A (see [12]) Let a > 0 and b ≥ 0. Suppose that f satisfies the
following assumptions:

(f1) f is continuous in Ω × R, f(x, t) ≥ 0 for t ≥ 0 and f(x, t) = 0 for
t ≤ 0, for all x ∈ Ω.

(f ′2) limt→0+ f(x, t)/t = 0 and limt→∞ f(x, t)/t5 = 0, uniformly for
x ∈ Ω.

(f ′3) There exists a constant θ > 0 such that 4 < θ < 6 and f(x, t)t −
θF (x, t) ≥ 0 for all x ∈ Ω and t ≥ 0, where F (x, t) =

	t
0 f(x, s)s ds.

(f4) There exists a nonempty open set ω ⊂ Ω such that limt→∞ f(x, t)/t3

=∞ uniformly for x ∈ ω.

Then problem (1.3) has a positive solution for all λ > 0.

In [13], D. Naimen attacks the Brézis–Nirenberg problem for a 4-dimen-
sional Kirchhoff type problem with critical growth.
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Motivated by the work mentioned above, in this paper we verify the
existence of a ground state solution for problem (1.1). On the one hand,
by giving a weaker assumption on f , we extend Theorem A. On the other
hand, we encounter big problems in proving the local (PS)c condition and
estimating the mountain pass value, and we use a new calculation method
to overcome these problems.

To state our main results, we make the following assumptions on f .

(f1) f is continuous in Ω × R, f(x, t) ≥ 0 for t ≥ 0 and f(x, t) = 0 for
t ≤ 0, for all x ∈ Ω.

(f2) limt→0+ f(x, t)/t = 0 and limt→∞ f(x, t)/t2
∗−1 = 0, uniformly for

x ∈ Ω.
(f3)

1
2m+2f(x, t)t− F (x, t) ≥ 0 for all x ∈ Ω and t ≥ 0.

(f4) There exists a nonempty open set ω ⊂ Ω such that limt→∞ f(x, t)/t3

=∞ uniformly for x ∈ ω.
(f5) There exist constants η, µ > 0 such that f(x, t) ≥ ηt for all x ∈ ω

and t ∈ [µ,∞), where ω is some nonempty open subset of Ω.
(f6) There exists a constant η > 0 such that f(x, t) ≥ η for all x ∈ ω

and t ∈ A, where A ⊂ (0,∞) is a nonempty open interval and ω is
a nonempty open subset of Ω.

The main results of this paper are the following theorems.

Theorem 1.1. Suppose N = 3, a > 0, b ≥ 0 and 0 < m < 2. If (f1), (f ′2),
(f3) and (f4) hold, then problem (1.1) has a positive ground state solution.

Corollary 1.1. Let a > 0 and b ≥ 0. Assume that assumptions (f1),
(f ′2), (f4) are satisfied and

(f ′′3 ) 1
4f(x, t)t− F (x, t) ≥ 0 for all x ∈ Ω and t ≥ 0.

Then problem (1.3) has a positive ground state solution.

Remark 1.1. Corollary 1.1 essentialy extends Theorem A. To see this,
it suffices to compare condition (f ′3) with (f ′′3 ): obviously, the latter is weaker.
Moreover, there are functions covered by our Corollary 1.1, but not by The-
orem A, for example,

f(x, t) = 4t3 ln(1 + t2) +
2t5

1 + t2
for x ∈ Ω and t ≥ 0.

Theorem 1.2. Suppose N = 4, a > 0, b ≥ 0 and 0 < m < 1. If (f1)–(f3)
and (f5) hold, then problem (1.1) has a positive ground state solution.

Theorem 1.3. Suppose N ≥ 5, a > 0, b ≥ 0 and 0 < m < 2/(N − 2).
If (f1)–(f3) and (f6) hold, then problem (1.1) has a positive ground state
solution.

Remark 1.2. In this paper, we have to overcome various difficulties.
The lack of compactness of the Sobolev embedding H1

0 (Ω) ↪→ L2∗(Ω) is
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the most difficult one. Moreover, we have to estimate the critical value. In
addition, because of the parameter m, we also encounter some calculational
problems which will be solved by a new method.

Remark 1.3. As far as we know, results similar to Theorems 1.3 and 1.4
for high-dimensional Kirchhoff problems are rare.

2. Proofs of theorems. We make use of the following notation.

• Let S be the best Sobolev constant, that is,

S := inf
u∈D1,2(RN )\{0}

	
RN |∇u|

2 dx( 	
RN |u|2

∗ dx
)2/2∗ ,

where D1,2(RN ) = {u ∈ L2∗(RN ) | ∂u/∂xi ∈ L2(RN ), i = 1, . . . , N}.
• {un} is called a (PS)c sequence for a functional I if I(un) → c and
I ′(un) → 0 in H−1(Ω) as n → ∞; and I satisfies the (PS)c condition
if any (PS)c sequence has a convergent subsequence.
• C denotes various positive constants.
• B(x, r) ⊂ RN denotes an open ball with center at x and radius r.

We know that finding a solution of problem (1.1) is equivalent to finding
a critical point of the C1 functional

I(u) =
a

2
‖u‖2 +

b

2m+ 2
‖u‖2m+2 −

�

Ω

F (x, u) dx− 1

2∗

�

Ω

|u|2∗ dx,

which implies that

〈I ′(u), v〉 = (a+ b‖u‖2m)
�

Ω

(∇u,∇v) dx−
�

Ω

f(x, u)v dx−
�

Ω

|u|2∗−1v dx

for all u, v ∈ H1
0 (Ω).

The following lemma plays an important role in proving Lemmas 2.2
and 2.4.

Lemma 2.1. Let h(r) = a+ bSmN/2r2m − r2∗−2 (r > 0). Then:

(1) the equation h(r) = 0 has a unique positive solution r0, which satis-
fies

(2.1) a+ bSmN/2r2m0 = r2
∗−2

0 ;

(2) the set of solutions of h(r) ≤ 0 is {r | r ≥ r0}.

Proof. (1) Firstly, we show the monotonicity of h(r) on (0,∞). We have

h′(r) = 2mbSmN/2r2m−1 − (2∗ − 2)r2
∗−3.
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The equation h′(r) = 0 has a unique positive solution

r1 =

(
2mbSmN/2

2∗ − 2

) 1
2∗−2m−2

.

We easily see that h(r) is increasing in (0, r1] and decreasing in [r1,∞). For
h(0) = a > 0, one has h(r1) > 0. Since h(r)→ −∞ as r →∞, we conclude
that h(r) = 0 has a unique solution r0 in (0,∞).

(2) Follows from (1) and the monotonicity of h(r).

The infimum in the definition of the Sobolev constant S is achieved by
the function

U(x) =
C

(1 + |x|2)(N−2)/2
,

and U satisfies

−∆U = U2∗−1 in RN ,
which implies (see [17])

(2.2)
�

RN
|∇U |2 dx =

�

RN
|U |2∗ dx = SN/2.

Next, we consider the problem

(2.3)

−
[
a+ b

( �

RN
|∇u|2 dx

)m]
∆u = u2

∗−1 in RN ,

u(x)→ 0 as |x| → ∞,

where a, b > 0 and 0 < m < 2/(N − 2). Let u = rU , where r ∈ (0,∞), and
insert it into (2.3); this yields

−
[
a+ b

( �

RN
|∇U |2 dx

)m
r2m

]
r∆U = r2

∗−1U2∗−1.

According to (2.2), we have

(2.4) a+ bSmN/2r2m = r2
∗−2.

By Lemma 2.1(1), we conclude that r0U is a positive solution of (2.3), which
implies

(2.5) aSN/2r20 + bS(m+1)N/2r2m+2
0 = SN/2r2

∗
0 .

By taking full advantage of Lemma 2.1, we will verify that

I(u) =
a

2
‖u‖2 +

b

2m+ 2
‖u‖2m+2 −

�

Ω

F (x, u) dx− 1

2∗

�

Ω

|u|2∗ dx

satisfies the local (PS)c condition.
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Lemma 2.2. Let f satisfy (f2) and (f3). Suppose that c < Λ, where

Λ = a/2r20S
N/2 +

b

2m+ 2
r2m+2
0 SN(m+1)/2 − 1

2∗
r2

∗
0 S

N/2.

Then I satisfies the (PS)c condition.

Proof. Let {un} be a (PS)c sequence for I. We claim that {un} is bounded
in H1

0 (Ω). In fact, since I(un) → c and I ′(un) → 0 in H−1(Ω), by (f3) we
have

1 + c+ o(1)‖un‖ ≥ I(un)− 1

2m+ 2
〈I ′(un), un〉

=

(
1

2
− 1

2m+ 2

)
a‖un‖2 +

(
1

2m+ 2
− 1

2∗

) �

Ω

|un|2
∗
dx

+
�

Ω

(
1

2m+ 2
f(x, un)un − F (x, un)

)
dx

≥
(

1

2
− 1

2m+ 2

)
a‖un‖2.

Since a > 0, we conclude {un} is bounded in H1
0 (Ω). Hence there exist a

subsequence (still denoted by {un}) and u ∈ H1
0 (Ω) such that

un ⇀ u weakly in H1
0 (Ω),

un → u strongly in Lp(Ω) for all 1 ≤ p < 2∗,

un(x)→ u(x) a.e. in Ω.

Set wn = un − u. We claim that ‖wn‖ → 0. Otherwise, there exists a
subsequence (still denoted by {wn}) such that

lim
n→∞

‖wn‖ = l,

where l is a positive constant. Then

‖un‖2 = ‖wn‖2 + ‖u‖2 + o(1),(2.6)

‖un‖2m+2 = (‖wn‖2 + ‖u‖2)m+1 + o(1).(2.7)

Furthermore, from the Brézis–Lieb Lemma [4],

(2.8)
�

Ω

|un|2
∗
dx =

�

Ω

|wn|2
∗
dx+

�

Ω

|u|2∗ dx+ o(1).

From I ′(un)→ 0 in H−1(Ω) and (2.7), we get

lim
n→∞

〈I ′(un), u〉 = a‖u‖2 + b(l2 + ‖u‖2)m‖u‖2(2.9)

−
�

Ω

f(x, u)u dx−
�

Ω

|u|2∗ dx = 0.
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From (f3) and (2.9), we obtain

I(u) =
a

2
‖u‖2 +

b

2m+ 2
‖u‖2m+2 −

�

Ω

F (x, u) dx− 1

2∗

�

Ω

|u|2∗ dx(2.10)

=

(
1

2
− 1

2m+ 2

)
a‖u‖2 +

(
1

2m+ 2
− 1

2∗

) �

Ω

|u|2∗ dx

+
�

Ω

(
1

2m+ 2
f(x, u)u− F (x, u)

)
dx

− b

2m+ 2
((l2 + ‖u‖2)m − ‖u‖2m)‖u‖2

≥ − b

2m+ 2
((l2 + ‖u‖2)m − ‖u‖2m)‖u‖2 =: T.

On the other hand, since I ′(un)→ 0 in H−1(Ω), we get

〈I ′(un), un〉 = a‖un‖2 + b‖un‖2m+2(2.11)

−
�

Ω

f(x, un)un dx−
�

Ω

|un|2
∗
dx = o(1).

By (f2), for any ε > 0, there exist constants C, d(ε) > 0 such that

|f(x, t)t| ≤ ε

2C
t2

∗
+ d(ε).

Let ξ = ε/2d(ε) > 0, and suppose E ⊆ Ω with measE < ξ. Then∣∣∣∣ �
E

f(x, un)un dx

∣∣∣∣ ≤ �

E

|f(x, un)un| dx

≤
�

E

d(ε) dx+
ε

2C

�

E

|un|2
∗
dx

≤ 1

2
ε+

1

2
ε = ε,

where the last inequality follows from the Sobolev embedding and the bound-
edness of {un} in H1

0 (Ω). Therefore, {
	
Ω f(x, un)un dx : n ∈ N} is equi-

absolutely continuous. By Vitali’s convergence theorem,

(2.12)
�

Ω

f(x, un)un dx→
�

Ω

f(x, u)u dx as n→∞.

Applying the same method, we can also verify that

(2.13)
�

Ω

F (x, un) dx→
�

Ω

F (x, u) dx as n→∞.

Combining (2.11) with (2.6)–(2.8) and (2.12) yields
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(2.14) a‖wn‖2 + a‖u‖2 + b(‖wn‖2 + ‖u‖2)m+1

=
�

Ω

f(x, u)u dx+
�

Ω

|wn|2
∗
dx+

�

Ω

|u|2∗ dx+ o(1).

By (2.9) and (2.14), we obtain

(2.15) a‖wn‖2 + b[(‖wn‖2 + ‖u‖2)m+1 − (l2 + ‖u‖2)m‖u‖2]

=
�

Ω

|wn|2
∗
dx+ o(1).

From (2.15) and
	
Ω |wn|

2∗ dx ≤ ‖wn‖2
∗
/S2∗/2 we get

al2 + bl2m+2 ≤ al2 + b[(l2 + ‖u‖2)ml2] ≤ l2∗/S2∗/2,

which implies that

a+ bSmN/2(lS−N/4)2m ≤ (lS−N/4)2
∗−2.

By Lemma 2.1(2), we obtain lS−N/4 ≥ r0, which implies that

(2.16) l ≥ r0SN/4.

It follows from (2.6)–(2.8) and (2.13) that

I(un) =
a

2
‖wn‖2 +

a

2
‖u‖2 +

b

2m+ 2
(‖wn‖2 + ‖u‖2)m+1 −

�

Ω

F (x, un) dx

− 1

2∗

�

Ω

|wn|2
∗
dx− 1

2∗

�

Ω

|u|2∗ dx+ o(1)

= I(u) +
a

2
‖wn‖2 +

b

2m+ 2
[(‖wn‖2 + ‖u‖2)m+1 − ‖u‖2m+2]

+
1

2∗

�

Ω

|wn|2
∗
dx+ o(1).

Therefore, by (2.15),

I(u) = I(un)− a

2
‖wn‖2 −

b

2m+ 2
[(‖wn‖2 + ‖u‖2)m+1 − ‖u‖2m+2]

− 1

2∗

�

Ω

|wn|2
∗
dx+ o(1)

= I(un)−
(

1

2
− 1

2∗

)
a‖wn‖2 −

(
1

2m+ 2
− 1

2∗

)
b(‖wn‖2 + ‖u‖2)m+1

+
b

2m+ 2
‖u‖2m+2 − b

2∗
(l2 + ‖u‖2)m‖u‖2 + o(1).

Letting n→∞, by (2.5) and (2.16) we obtain
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I(u) = c−
(

1

2
− 1

2∗

)
al2 −

(
1

2m+ 2
− 1

2∗

)
b(l2 + ‖u‖2)m+1

+
b

2m+ 2
‖u‖2m+2 − b

2∗
(l2 + ‖u‖2)m‖u‖2

≤ c−
(

1

2
− 1

2∗

)
al2 −

(
1

2m+ 2
− 1

2∗

)
bl2m+2 + T

≤ c−
(

1

2
− 1

2∗

)
ar20S

N/2 −
(

1

2m+ 2
− 1

2∗

)
br2m+2

0 SN(m+1)/2 + T

= c− a

2
r20S

N/2 − b

2m+ 2
r2m+2
0 SN(m+1)/2 +

1

2∗
r2

∗
0 S

N/2 + T

= c− Λ+ T < T,

which contradicts (2.10). Therefore, un → u in H1
0 (Ω).

Lemma 2.3. Suppose that (f1) and (f2) hold. Then there exists ρ > 0
such that:

(1) there exists α > 0 such that I(u) ≥ α > 0 whenever ‖u‖ = ρ;
(2) there exists e0 ∈ H1

0 (Ω) such that ‖e0‖ > ρ and I(e0) < 0.

Proof. (1) By (f2), for every ε there exists C(ε) > 0 such that

(2.17) F (x, t) ≤ εt2 + C(ε)t2
∗

for all t ≥ 0 and x ∈ Ω.
According to the Sobolev inequality and (2.17), we have

I(u) =
a

2
‖u‖2 +

b

2m+ 2
‖u‖2m+2 −

�

Ω

F (x, u) dx− 1

2∗

�

Ω

|u|2∗ dx

≥ a

2
‖u‖2 +

b

2m+ 2
‖u‖2m+2 − ε|u|22 − C(ε)|u|2∗2∗ −

1

2∗

�

Ω

|u|2∗ dx

≥ a

2
‖u‖2 +

b

2m+ 2
‖u‖2m+2 − Cε‖u‖2 − CC(ε)‖u‖2∗ − C

2∗
‖u‖2∗ .

Hence there exist α > 0 and ρ > 0 sufficiently small such that I(u) ≥ α > 0
for all ‖u‖ = ρ whenever ε small enough.

(2) Fix v ∈ H1
0 (Ω) and v 6= 0. By (f1) and (f2), we have

I(tv) =
a

2
t2‖v‖2 +

b

2m+ 2
t2m+2‖v‖2m+2 −

�

Ω

F (x, tv) dx− t2
∗

2∗

�

Ω

|v|2∗ dx

≤ a

2
t2‖v‖2 +

b

2m+ 2
t2m+2‖v‖2m+2 − t2

∗

2∗

�

Ω

|v|2∗ dx.

From the above, we see that I(tv)→ −∞ as t→∞. Hence, we can choose
t0 > 0 large enough such that ‖t0v‖ > ρ and I(t0v) < 0. Setting e0 = t0v
completes the proof.
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The Mountain Pass Lemma of [3] yields a sequence {un} ⊂ H1
0 (Ω) sat-

isfying
I(un)→ c ≥ α > 0 and I ′(un)→ 0,

where

c = inf
γ∈Γ

max
t∈[0,1]

I0(γ(u)),

Γ = {γ ∈ (C[0, 1], H1
0 (Ω)) | γ(0) = 0, γ(1) = e0}.

We know that S is also attained by the functions

yε(x) =
Cε

(ε+ |x|2)(N−2)/2

for all ε > 0. Let
Uε(x) = yε(x)/Cε.

Without loss of generality, we may assume that 0 ∈ ω, where ω is some
nonempty open set in Ω. Moreover, we choose a cut-off function φ ∈ C∞0 (Ω)
such that 0 ≤ φ ≤ 1 for all x ∈ Ω and

φ(x) =

{
1, |x| ≤ R,

0, |x| ≥ 2R,

where B2R(0) ⊂ Ω. Set

uε(x) = φ(x)Uε(x),(2.18)

vε(x) =
uε(x)

(
	
Ω |uε|2

∗ dx)1/2∗
.(2.19)

Then �

Ω

|vε|2
∗
dx = 1,(2.20)

‖vε‖2m+2 = Sm+1 +O(εN−2/2),(2.21)

�

Ω

|vε|q dx =


O(εq(N−2)/4), 1 < q < N/(N − 2),

O(εq(N−2)/4|ln ε|), q = N/(N − 2),

O(ε2N−q(N−2)/4), N/(N − 2) < q < 2∗.

(2.22)

Lemma 2.4. Let f satisfy (f1) and (f2). Assume that there is a function
m(u) such that f(x, u) ≥ m(u) ≥ 0 for a.e. x ∈ ω and all u ≥ 0, and the

primitive M(t) =
	t
0m(s) ds satisfies

(2.23) lim
ε→0

ε

ε−1/2�

0

M

[(
ε−1/2

1 + s2

)(N−2)/2]
sN−1 ds =∞.

Then there exists a constant ε0 > 0 such that

max
t≥0

I(tvε) < Λ for all ε ∈ (0, ε0).
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Proof. We define the functions

g(t) = I(tvε) =
a

2
t2‖vε‖2 +

b

2m+ 2
t2m+2‖vε‖2m+2 − t2

∗

2∗
−

�

Ω

F (x, tvε) dx,

g̃(t) =
a

2
t2‖vε‖2 +

b

2m+ 2
t2m+2‖vε‖2m+2 − t2

∗

2∗
.

Notice that limt→∞ g̃(t) = −∞, g̃(0) = 0, and g̃(t) > 0 for t > 0 small
enough. Hence there exists tε ∈ (0,∞) such that

0 = g̃′(tε) = tε(a‖vε‖2 + b‖vε‖2m+2t2mε − t2
∗−2
ε )

= tε[a(S +O(ε(N−2)/2)) + b(Sm+1 +O(ε(N−2)/2)t2mε − t2
∗−2
ε ]

= tε[aS + bSm+1t2mε − t2
∗−2
ε +O(ε(N−2)/2)(a+ bt2mε )]

= tε[aS + bSm+1t2mε − t2
∗−2
ε +O(ε(N−2)/2)],

which implies

(2.24) aS + bSm+1t2mε − t2
∗−2
ε +O(ε(N−2)/2) = 0.

Therefore,

a+ bSNm/2
(

tε

S(N−2)/2

)2m

=

(
tε

S(N−2)/2

)2∗−2
+O(ε(N−2)/2).

According to Lemma 2.1(1),

tε

S(N−2)/2 = r0 +O(ε(N−2)/2),

and so

(2.25) tε = r0S
(N−2)/2 +O(ε(N−2)/2).

The function g̃(t), actually, attains its maximum at tε and is increasing
in the interval [0, tε].

Since limt→∞ g(t) = −∞, g(0) = 0, and g(t) > 0 as t small enough, it
follows that supt≥0 g(t) is attained for some t0ε > 0, and

0 = g′(t0ε) = t0ε

(
a‖vε‖2 + b‖vε‖2m+2(t0ε)

2m− (t0ε)
2∗−2− 1

t0ε

�

Ω

f(x, t0εvε)vε dx

)
.

This yields

(2.26) a‖vε‖2 + b‖vε‖2m+2(t0ε)
2m = (t0ε)

2∗−2 +
1

t0ε

�

Ω

f(x, t0εvε)vε dx.

By (f2), for all δ, there exists C > 0 such that

|f(x, t)t| ≤ δt2∗ + Ct2
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for all t ≥ 0 and x ∈ Ω. Therefore,∣∣∣ �
Ω

f(x, t0εvε)vε
t0ε

dx
∣∣∣ ≤ δ(t0ε)2∗−2 �

Ω

v2
∗
ε dx+ C

�

Ω

v2ε dx = δ(t0ε)
2∗−2 + C

�

Ω

v2ε dx

for all δ. Connecting this with (2.22), we obtain∣∣∣∣ �
Ω

f(x, t0εvε)vε
t0ε

dx

∣∣∣∣→ 0 as ε→ 0.

Combining (2.24)–(2.26) with (2.21), we get

(2.27) t0ε → r0S
(N−2)/2.

By (2.21),

g(t0ε) ≤ g̃(tε)−
�

Ω

F (x, t0εvε) dx(2.28)

=
a

2
t2ε‖vε‖2 +

b

2m+ 2
t2m+2
ε ‖vε‖2m+2 − t2

∗
ε

2∗

+
�

Ω

F (x, t0εvε) dx

=
a

2
(r0S

(N−2)/2)2(S +O(ε(N−2)/2))− 1

2∗
(r0S

(N−2)/2)2
∗

+
b

2m+ 2
(r0S

(N−2)/2)2m+2(S +O(ε(N−2)/2))m+1

−
�

Ω

F (x, t0εvε) dx

=
a

2
r20S

N/2 +
b

2m+ 2
r2m+2
0 SN(m+1)/2 − 1

2∗
r2

∗
0 S

N/2

+O(ε(N−2)/2)−
�

Ω

F (x, t0εvε) dx

= Λ+O(ε(N−2)/2)−
�

Ω

F (x, t0εvε) dx.

According to (2.18), (2.19), (2.27) and the assumption on f , we have

�

Ω

F (x, tεvε) dx ≥
�

|x|<R

M

(
Cε(N−2)/4

(ε+ |x|2)(N−2)/4

)
dx

for ε > 0 small enough.

In the following, we will verify that

(2.29) lim
ε→0

1

ε(N−2)/2

�

|x|<R

M

(
Cε(N−2)/4

(ε+ |x|2)(N−2)/4

)
dx =∞.
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In fact,

1

ε(N−2)/2

�

|x|<R

M

(
Cε(N−2)/4

(ε+ |x|2)(N−2)/4

)
dx

=
C

ε(N−2)/2

R�

0

M

(
Cε(N−2)/4

(ε+ r2)(N−2)/4

)
rN−1dr

= Cε

Rε−1/2�

0

M

[
C

(
ε−1/2

1 + s2

)(N−2)/2]
sN−1 ds.

When R ≤ 1,

ε

ε−1/2�

Rε−1/2

M

[
C

(
ε−1/2

1 + s2

)(N−2)/2]
sN−1 ds ≤ CεM(Cε(N−2)/4)ε−N/2,

which is bounded as ε→ 0. Combining this with (2.23), we get (2.29).

On the other hand, when R ≥ 1, according to (2.23), we have (2.29)
obviously. This implies that maxt≥0 I(tvε) < Λ for ε small enough.

The following lemma is based on [5, proof of Corollary 2.3].

Lemma 2.5. Suppose N = 3, and f satisfies (f1) and (f4). Then the
assumption of Lemma 2.4 holds.

Proof. We define m(u) = infx∈ω f(x, u). According to (f4), for all Q > 0,
there exists a constant G > 0 such that M(u) ≥ Qu4 for all u ≥ G. It follows
that

ε

ε−1/2�

0

M

[(
ε−1/2

1 + s2

)1/2]
s2 ds ≥ Qε

Cε−1/4�

0

ε−1

(1 + s2)2
s2 ds.

Therefore,

lim inf
ε→0

ε

ε−1/2�

0

M

[(
ε−1/2

1 + s2

)1/2]
s2 ds ≥ Q

∞�

0

s2

(1 + s2)2
ds

for all Q > 0, which completes the proof.

Proof of Theorem 1.1. Applying Lemma 2.3, we find that I has a moun-
tain pass geometry. Then from the Mountain Pass Lemma, there is a se-
quence {un} ⊂ H1

0 (Ω) satisfying I(un) → c ≥ α > 0 and I ′(un) → 0.
Moreover, c < Λ by Lemmas 2.4 and 2.5. It follows from Lemma 2.2 that
{un} has a convergent subsequence (still denoted by {un}). Suppose that
un → u0 in H1

0 (Ω). By the continuity of I ′, u0 is a solution of problem (1.1).
Furthermore, u0 6= 0 for c > 0.
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For the existence of a ground state solution, we define

E = {I(u) | I ′(u) = 0, u 6= 0}.

Then E 6= ∅ since u0 6= 0 and I ′(u0) = 0. Now, we claim that E has an
infimum. In fact, for any u ∈ E,

(2.30) 〈I ′(u), u〉 = a‖u‖2 + b‖u‖2m+2 −
�

Ω

f(x, u)u dx−
�

Ω

|u|2∗ dx = 0.

According to (2.30) and (f3),

I(u) =
a

2
‖u‖2 +

b

2m+ 2
‖u‖2m+2 −

�

Ω

F (x, u) dx− 1

2∗

�

Ω

|u|2∗ dx

=

(
1

2
− 1

2m+ 2

)
a‖u‖2 +

(
1

2m+ 2
− 1

2∗

) �

Ω

|u|2∗ dx

+
�

Ω

(
1

2m+ 2
f(x, u)u− F (x, u)

)
dx

≥
(

1

2
− 1

2m+ 2

)
a‖u‖2 ≥ 0.

Therefore, we can define

E0 = inf{I(u) | I ′(u) = 0, u 6= 0}.

We get {vn} such that I(vn) ∈ E and I(vn)→ E0. Since we know I ′(u0) = 0
and I(u0) = c, we have E0 ≤ c < Λ. By Lemma 2.2, {vn} has a strongly
convergent subsequence (still denoted by {vn}). Hence, there exists v0 ∈
H1

0 (Ω) such that vn → v0 in H1
0 (Ω). Then I(v0) = E0 and I ′(v0) = 0.

Finally, we prove v0 6= 0. By (f2), there exists a constant C > 0 such
that

f(x, t)t ≤ a

2
λ1t

2 + Ct2
∗

for all t ≥ 0 andx ∈ Ω, whereλ1 = infu∈H1
0 (Ω)\{0} ‖u‖2/|u|2. From 〈I ′(vn), vn〉

= 0 and the Sobolev inequality, it follows that

a‖vn‖2 ≤ a‖vn‖2 + b‖vn‖2m+2 =
�

Ω

f(x, vn)vn dx+
�

Ω

|vn|2
∗
dx

≤ a

2
λ1

�

Ω

|vn|2 dx+ (C + 1)
�

Ω

|vn|2
∗
dx ≤ a

2
‖vn‖2 + C‖vn‖2

∗
.

Therefore,
a

2
‖vn‖2 ≤ C‖vn‖2

∗
,

which implies 0 < C ≤ ‖vn‖ for alln. Hence, v0 6= 0. Furthermore, 〈I ′(v0), v−0 〉
= 0, where v−0 = max{−v0, 0}. Hence, v0 ≥ 0. According to the strong
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maximum principle, v0 is a positive solution of problem (1.1), completing
the proof of Theorem 1.1.

Proof of Corollary 1.1. Because (f3) is (f ′′3 ) in the case m = 1, Corollary
1.1 is a special case of Theorem 1.1.

The following lemma is based on [5, proof of Corollary 2.2].

Lemma 2.6. Suppose N = 4, and f satisfies (f1) and (f5). Then the
assumption of Lemma 2.4 holds.

Proof. By (f1) and (f5), we obtain

f(x, u) ≥ ηuχ[µ,∞)(u) = m(u)

for all x ∈ ω, and u ≥ 0, where χ[µ,∞) is the characteristic function of [µ,∞).
Thus,

M(u) =
1

2
η(u2 − µ2) for u ≥ µ.

Therefore,

ε

ε−1/2�

0

M

[(
ε−1/2

1 + s2

)]
s3 ds ≥ 1

4
ηε

Cε−1/4�

0

ε−1

(1 + s2)2
s3 ds = C|ln ε|.

Hence,

lim
ε→0

ε

ε−1/2�

0

M

[(
ε−1/2

1 + s2

)(N−2)/2]
sN−1 ds =∞.

Proof of Theorem 1.2. By using Lemmas 2.1–2.4 and 2.6, much as in the
proof of Theorem 1.1, we can easily show that problem (1.1) has a positive
ground state solution.

The following lemma is based on [5, proof of Corollary 2.1].

Lemma 2.7. Suppose N ≥ 5, and f satisfies (f1) and (f6). Then the
assumption of Lemma 2.4 holds.

Proof. By (f1) and (f6), we have

f(x, u) ≥ ηχA(u) = m(u)

for all x ∈ ω and u ≥ 0. Since A is nonempty, there exist constants d ∈ A
and ξ > 0 such that

M(u) ≥ ξ > 0 for all u ≥ a.

If ε−1/2

1+s2
≥ a2/(N−2), then

M

[(
ε−1/2

1 + s2

)(N−2)/2]
≥ ξ as s ≤ Cε−1/4.
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Therefore,

ε

ε−1/2�

0

M

[(
ε−1/2

1 + s2

)(N−2)/2]
sN−1 ds ≥ ξε

Cε−1/4�

0

sN−1 ds = Cε1−N/4.

Since N ≥ 5, we get 1−N/4 < 0. Hence Cε1−N/4 →∞ as ε→ 0.

Proof of Theorem 1.3. By using Lemmas 2.1–2.4 and 2.7, and reasoning
as in the proof of Theorem 1.1, we can easily prove that problem (1.1) has
a positive ground state solution.
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[2] C. O. Alves, F. J. S. A. Corrêa and T. F. Ma, Positive solution for a quasilinear
elliptic equation of Kirchhoff type, Comput. Math. Appl. 49 (2005), 85–93.

[3] A. Ambrosetti and P. Rabinowitz, Dual variational methods in critical point theory
and applications, J. Funct. Anal. 41 (1973), 349–381.
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