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Summary. We prove that there is no effective smooth one-fixed-point action of SL(2, 5),
the special linear group of 2×2 matrices over Z5, on the 8-dimensional sphere. The method
of proof involves the intersection form.

1. Introduction. It is well known that there is no linear action of any
finite group on the n-dimensional sphere Sn with exactly one fixed point. In
the middle forties Montgomery and Samelson [MS] asked if there is a smooth
one-fixed-point action on Sn. A first example of such an action was given by
E. Stein [S] in 1977. He showed that there exists a smooth SL(2, 5)-action
with one fixed point on S7, moreover he constructed such actions as well for
groups G = SL(2, 5) × Zr where (120, r) = 1. If the n-dimensional sphere
Sn has an effective topological one-fixed-point G-action then by taking the
reduced suspension, Sn+1 also has such an exotic topologicalG-action. Hence
there are effective topological one-fixed-point SL(2, 5)-actions on Sn when-
ever n ≥ 7. Next, T. Petrie [P] proved in 1982 that a finite, odd order abelian
group having at least three noncyclic Sylow subgroups, e.g. Zpqr×Zpqr, where
p, q and r are distinct odd primes, has a smooth one-fixed-point action on
some sphere. Petrie also established existence of smooth one-fixed-point ac-
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tions for nonsolvable groups SL(2, q) and PSL(2, q), where q ≥ 5 is an odd
prime power. In 1995, M. Morimoto, E. Laitinen and K. Pawałowski [LMP]
described smooth one-fixed-point G-actions on spheres in case when G is any
nonsolvable group. Later, M. Morimoto and E. Laitinen [LM] constructed
smooth G-actions on spheres with exactly one fixed point for any Oliver
group G, proving that a finite group G acts smoothly on a sphere with
exactly one fixed point if and only if G is an Oliver group. On the other
hand M. Furuta [F], Buchdahl–Kwasik–Schultz [BKS] and DeMichelis [DM]
showed that Sn does not have a smooth one-fixed-point action of any finite
group when 0 ≤ n ≤ 5. For n ≥ 6 it has been known for about a decade that
the standard n-dimensional sphere Sn has a smooth one-fixed-point action
of some finite group if n 6= 8. Lately, A. Bak and M. Morimoto [BM] showed
that there are smooth one-fixed-point actions of the alternating group of de-
gree 5, A5, on the 8-dimensional sphere, thus completing research stretching
over several decades to determine which spheres admit this kind of action.
For the survey on actions of A5 on spheres see for example [M].

The method used for constructing actions on spheres was equivariant
surgery theory. To prove that there is no smooth action with exactly one
fixed point various ad hoc methods were used. In this paper, the intersection
form is a tool for obtaining the following theorems:

Theorem 1.1. There is no effective smooth SL(2, 5)-action on any
8-dimensional Z-homology sphere with exactly one fixed point.

The next theorem gives us some information on submodules of the tan-
gent module if the action of SL(2, 5) has at least three fixed points.

Theorem 1.2. Let G = SL(2, 5), let X be a Z-homology sphere of di-
mension n with a smooth G-action, and let x ∈ XG.

(i) If 3 ≤ |XG| < ∞ then Tx(X) contains a G-submodule isomorphic
to U4 or U5.

(ii) If |XG| is an odd integer ≥ 3 then Tx(X) contains a G-submodule
isomorphic to U3,1 or U3,2.

The modules Ui and Ui,j are described in Section 3.
In Section 2 we will recall some helpful information on SL(2, 5) and its

properties, the character table and subgroups. In Section 3 we give the tables
of fixed point dimensions overC andR; these results base on information from
Section 2. In Section 4 we recall the Slice Theorem and some helpful lemmas.
Section 5 states basic facts about the intersection number. In Section 6 we
prove Theorems 1.1 and 1.2.

One can expect that the intersection form and its modification may be
helpful for answering further questions of determining dimensions of the
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spheres on which a given finite group can not act in an effective and smooth
way with exactly one fixed point.

2. Basic properties of SL(2, 5). In this section we assume throughout
that G = SL(2, 5). Denote in G,

1 =

[
1 0

0 1

]
, z =

[
−1 0

0 −1

]
, c =

[
1 0

1 1

]
,

d =

[
1 0

3 1

]
, a =

[
3 0

0 2

]
, b =

[
3 −1

2 3

]
.

Then G has nine conjugacy classes (1), (z), (c), (d), (zc), (zd), (a), (b) and
(b2), as listed in Table 1; Table 2 is the complex character table of G.

Table 1. The sizes of the conjugacy classes of SL(2, 5) and orders of elements in SL(2, 5)

x 1 z c d zc zd a b b2

|(x )| 1 1 12 12 12 12 30 20 20
|x | 1 2 5 5 10 10 4 6 3

Table 2. The irreducible characters of SL(2, 5)

χV V 1 z c d zc zd a b b2

1G C 1 1 1 1 1 1 1 1 1
η1 V2,1 2 −2 − 1−

√
5

2
− 1+

√
5

2
1−
√
5

2
1+
√
5

2
0 1 −1

η2 V2,2 2 −2 − 1+
√
5

2
− 1−

√
5

2
1+
√
5

2
1−
√
5

2
0 1 −1

ξ1 V3,1 3 3 1+
√
5

2
1−
√
5

2
1+
√
5

2
1−
√
5

2
−1 0 0

ξ2 V3,2 3 3 1−
√
5

2
1+
√
5

2
1−
√
5

2
1+
√
5

2
−1 0 0

θ1 V4,1 4 −4 −1 −1 1 1 0 −1 1
θ2 V4,2 4 4 −1 −1 −1 −1 0 1 1
ψ V5 5 5 0 0 0 0 1 −1 −1
χ V6 6 −6 1 1 −1 −1 0 0 0

A more general case is considered in [D].
The centre of G consists of 1 and −1. The special projective group

PSL(2, 5) is isomorphic to A5. The normal subgroups of G are {1}, {1, z}
and G. Hence G is not a simple group but it is a perfect group. Next we will
recall the conjugacy classes of subgroups of G.

Let Q4m = {〈x, y〉 | ym = x2, y2m = 1, x−1yx = y−1} be the generalized
quaternion group of order 4m, and Cn the cyclic group of order n. We denote,
in G,

a′ =

[
0 4

1 0

]
, x =

[
1 2

1 3

]
.
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Following [H] one can directly check that SL(2, 5) has the following twelve
subgroups up to conjugacy:

SL(2, 3) ∼= 〈a,a′,x |a2 = a′2, a4 = 1, a′−1aa′ = a−1,

xax−1 = a′, xa′x−1 = aa′〉,
Q20 = 〈a, zc〉, Q12 = 〈a,b〉, Q8 = 〈a,a′〉, C10 = 〈zc〉, C6 = 〈b〉, C5 = 〈c〉,
C4 = 〈a〉, C3 = 〈b2〉, C2 = 〈z〉, {e} = {1}.

In the above presentations we list only generators, skipping the obvious rela-
tions. The subgroups are shown in the Hasse diagram below, with A denoting
SL(2, 3).

SL(2, 5)

A

Q12 Q8 Q20

C6 C4 C10

C3 C2 C5

{e}

Fig. 1. The subgroups of SL(2, 5) up to isomorphism

Let p be a prime. A finite group K is called a p-group if |K| = ps for
some integer s ≥ 0. The set of all p-subgroups of a group G is denoted
by P(G). A finite group K is called a mod-p-cyclic group if K contains a
normal subgroup P such that P is a p-group and K/P is cyclic. The set of
all mod-p-cyclic subgroups of a group G is denoted by PC(G).

For G = SL(2, 5), p-subgroups and mod-p-cyclic subgroups up to conju-
gacy classes are as follows:

P(G) =
{
{e}, 〈z〉, 〈a〉, 〈b2〉, 〈c〉, 〈a,a′〉

}
=
{
{e}, C2, C4, C3, C5, Q8

}
,

PC(G) = P (G) ∪ {〈b〉, 〈zc〉, 〈a,b〉, 〈a, zc〉, 〈a,a′,x〉}
= P (G) ∪ {C6, C10, Q12, Q20, A}.
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3. Fixed point sets over C and R. The following theorems and defi-
nitions are well known facts [D], [CR].

Theorem 3.1. If Ui is an irreducible CG-module, κi an irreducible char-
acter associated with Ui, and Hj a representative of the conjugacy class of a
subgroup of G. Then

dimU
Hj

i =
1

|Hj |
∑
g∈Hj

κi(g)

where UHj

i is the Hj-fixed point set of Ui.

Applying the complex character table of SL(2, 5) to the formula in The-
orem 3.1, one can calculate the fixed point dimension. The results of this
straightforward computation are gathered in Table 3.

Table 3. The fixed point dimension over C for SL(2, 5)

H {e} C2 C3 C4 C5 C6 C10 Q8 Q12 Q20 A G

dimC 1 1 1 1 1 1 1 1 1 1 1 1
dimV2,1 2 0 0 0 0 0 0 0 0 0 0 0
dimV2,2 2 0 0 0 0 0 0 0 0 0 0 0
dimV3,1 3 3 1 1 1 1 1 0 0 0 0 0
dimV3,2 3 3 1 1 1 1 1 0 0 0 0 0
dimV4,1 4 0 2 0 0 0 0 0 0 0 0 0
dimV4,2 4 4 2 2 0 2 0 1 1 0 1 0
dimV5 5 5 1 3 1 1 1 2 1 1 0 0
dimV6 6 0 2 0 2 0 0 0 0 0 0 0

To get the fixed point dimension over R the Frobenius–Schur theorem is
needed.

Theorem 3.2 (Frobenius–Schur theorem). Let G be a finite group and
V an irreducible CG-module. There exists an irreducible RG-module U such
that V ∼= C⊗R U if and only if

BV :=
1

|G|
∑
g∈G

χV (g2) = 1.

If BV = 1 then the CG-module V is called of real type, if BV = 0 of
complex type, and if BV = −1 of quaternionic type. Therefore the irreducible
CG-modules with character 1G, ψ, θ2, ξ1 or ξ2 are of real type, and those
with character χ, θ1, η1 or η2 are of quaternionic type.

Let V be an RG-module. Then C⊗R V is a CG-module. We call c(V ) :=
C⊗R V the complexification of V .
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Let V be a CG-module. The vector space V over C can be considered as
a vector space over R, and it is denoted by VR. If {v1, . . . , vm} is a basis of
V over C, then {v1, iv1, . . . , vm, ivm} is a basis of VR over R and dimR VR =
2 dimC V . We call r(V ) := VR the realification of V .

Hence, dimC V = dimR U when V is of real type and V = c(U), while
dimC V = 1

2 dimR U when V is of complex or quaternionic type and U = VR.
Table 4 shows dimR Ū

H for irreducible RG-modules Ū ; the R in the table
stands for the trivial module.

Table 4. The fixed point dimension over R for SL(2, 5)

H {e} C2 C3 C4 C5 C6 C10 Q8 Q12 Q20 A G

dimR 1 1 1 1 1 1 1 1 1 1 1 1
dimU3,1 3 3 1 1 1 1 1 0 0 0 0 0
dimU3,2 3 3 1 1 1 1 1 0 0 0 0 0
dimU4 4 4 2 2 0 2 0 1 1 0 1 0
dimU5 5 5 1 3 1 1 1 2 1 1 0 0
dimW4,1 4 0 0 0 0 0 0 0 0 0 0 0
dimW4,2 4 0 0 0 0 0 0 0 0 0 0 0
dimW8 8 0 4 0 0 0 0 0 0 0 0 0
dimW12 12 0 4 0 4 0 0 0 0 0 0 0

4. Euler–Poincaré characteristic restrictions. In order to apply the
intersection form to prove Theorem 1.1 we need the following results:

Definition 4.1. Let G be a finite group. For a G-fixed point x of
a smooth G-manifold X, let Tx(X) denote the tangent space of X at x.
Then Tx(X) inherits a linear G-action from the G-action on X. This linear
G-action will be referred to as the tangential G-representation of X at x or
the tangent G-module.

Theorem 4.2 (Slice Theorem). Let G be a finite group, M a smooth
G-manifold, and x0 ∈ MG. Then there exists a G-invariant neighbour-
hood Ux0 of x0 in M and a G-diffeomorphism from the G-module Tx0(M)
onto Ux0.

According to the above theorem, the G-action on the manifoldM around
the point x0 is equivalent to the linear action defined by theG-module Tx0(M).

Lemma 4.3. If a finite mod-p-cyclic group H acts on a Zp-acyclic finite
complex X, then χ(XH) = 1.

Now we are ready to prove the following lemma:

Lemma 4.4. If a mod-p-cyclic group H acts smoothly on a Zp-homology
sphere X with x1 ∈ XH , then χ(XH) = 1 + (−1)dimTx1 (X)H .
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Proof. By the Slice Theorem we can take anH-linear-disc neighbourhood
N of x1 in X. Set

Y = X/(X \ Interior(N)) (= N/∂N).

Then Y ∼= S(R ⊕ Tx1(X)). Let f : X → Y denote the pinching map. Since
the induced map f∗ : Hn(X,Zp)→ Hn(Y,Zp) is an isomorphism, where n =
dimX, f is a Zp-homology equivalence. Thus the mapping cone

Cf := {(X × [0, 1]) ∪ Y/〈(x, 1) ∼ f(x)〉}/(X × {0})

is a Zp-acyclic finite complex with an H-action. Hence by Lemma 4.3 we get
χ((Cf )H) = 1. The equalities

χ((Cf )H) = χ(Y H)− χ(XH) + 1,

χ(Y H) = 1 + (−1)dimY H

yield χ(XH) = 1 + (−1)dimTx1 (X)H .

Corollary 4.5. Let X and H be as in the lemma above. Then for
arbitrary x1, x2 ∈ X,

dimTx1(X)H ≡ dimTx2(X)H mod 2.

5. Intersection number. Following Davis–Kirk [DK], we recall basic
information on the intersection number that is needed in this paper.

Recall that an orientation of a real finite-dimensional vector space V is
an equivalence class of bases of V where two bases are considered equivalent
if the determinant of the change of basis matrix is positive.

Suppose that V and W are oriented subspaces of an oriented vector
space Z, and that dim(V ) + dim(W ) = dim(Z). Suppose V and W are
transverse, that is, V ∩W = {0}. Let BV , BW and BZ denote bases in the
given equivalence classes. Then the intersection number of V and W is −1
or 1, depending on the sign of the determinant of the change of basis matrix
from the basis {BV ,BW } of Z to BZ .

Suppose that A and B are smooth, compact, connected, oriented sub-
manifolds of dimensions a and b of a compact oriented manifoldM of dimen-
sion m, where a+ b = m. Assume that A and B are transverse, i.e. at each
point p ∈ A ∩ B, the tangent subspaces TpA and TpB span TpM . More-
over assume that the boundary of A is embeded in the boundary of M , the
boundary of B is empty, and B is contained in the interior ofM . Since A and
B are transverse and compact, their intersection consists of a finite number
of points. We define the intersection number of A and B to be the integer

A ·B =
∑

p∈A∩B
ηp
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where ηp is the intersection number of the oriented subspaces TpA and TpB
in TpM .

Since A and B are oriented manifolds, they have fundamental classes
[A, ∂A] ∈ Ha(A, ∂A), [B] ∈ Hb(B). Let iB : A ⊂ M and iB : B ⊂ M denote
the inclusion maps. Then iA([A, ∂A]) ∈ Ha(M,∂M) and iB([B]) ∈ Hb(M).
We have the following theorem:

Theorem 5.1. Let α ∈ Hb(M) be the Poincaré dual to iA([A, ∂A]), and
β ∈ Ha([M,∂M ]) the Poincaré dual to iB([B]), i.e.

α ∩ [M,∂M ] = iA([A, ∂A]) and β ∩ [M,∂M ] = iB([B]).

Then
A ·B = 〈α ∪ β, [M,∂M ]〉

where 〈 , 〉 denotes the Kronecker pairing.

We call the cup product

Hb(M)×Ha(M,∂M)
∪−→ Hm(M,∂M)

the intersection pairing. The intersection form is the cup product in the
middle dimensional cohomology.

6. Proofs of Theorems 1.1 and 1.2. Henceforth, G denotes SL(2, 5),
and A is the subgroup of G isomorphic to SL(2, 3).

Proof of Theorem 1.1. By the character table, any faithful real G-module
of dimension 8 is isomorphic toW4,i⊕W4,j ,W4,i⊕U4, orW8, where i, j = 1, 2.
Suppose Σ is an 8-dimensional Z-homology sphere with a smooth one-fixed-
point action of G. Let Tx0(Σ) denote the tangential G-module at the fixed
point x0 of Σ.

First consider the case where Tx0(Σ) ∼= W4,i⊕W4,j . Let P be any nontriv-
ial p-subgroup of G. According to Table 4, ΣP is of dimension 0. Then by the
Smith theorem, ΣP is a Zp-homology sphere and therefore consists of exactly
two points. Let H be an arbitrary proper subgroup of G, that is, H 6= {e}, G.
Note that H is mod-p-cyclic. For all {e} 6= P ⊂ H we have ΣG ⊆ ΣH ⊆ ΣP ,
therefore dimΣH = 0, and by Lemma 4.4, |ΣH | = χ(ΣH) = 0 or 2. Since
ΣG consists of one point, |ΣH | = 2. Thus ΣH = ΣP . Since 〈z〉 ⊂ A and
〈z〉 ⊂ Q20, we have

ΣA = Σz = ΣQ20 ,

and consequently ΣG = Σz. This is a contradiction.
Second, consider the case Tx0(Σ) ∼= W4,i⊕U4. Then Σz is a Z2-homology

sphere of dimension 4 and the intersection form on H2(Σz,Z2) is trivial.
There exist a, b ∈ A5 of order 3 such that A5 = 〈a, b〉. Since (Σz)A5 consists
of exactly one point, the intersection number in Z2 of (Σz)a and (Σz)b is
equal to 1. This is a contradiction.
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Third, consider the case Tx0(Σ) ∼= W8. Then the intersection form on
H4(Σ,Z2) is also trivial. There exist a, b ∈ SL(2, 5) of order 3 such that
SL(2, 5) is generated by these elements. Then the intersection number in Z2

of Σa and Σb is 1, a contradiction.

We fix an epimorphism π : SL(2, 5) → A5. We tabulate the fixed point
dimension of irreducible A5-representations [BM].

Table 5. Fixed point dimension over R for A5

H {e} C2 C3 C5 D4 D6 D10 A4 A5

dimU3,1 3 1 1 1 0 0 0 0 0
dimU3,2 3 1 1 1 0 0 0 0 0
dimU4 4 2 2 0 1 1 0 1 0
dimU5 5 3 1 1 2 1 1 0 0

One can regard the irreducible real A5-modules U3,1, U3,2, U4 and U5

as real SL(2, 5)-modules via π. There are four irreducible complex SL(2, 5)-
modules which are faithful and moreover of quaternionic type. These give
four faithful irreducible real SL(2, 5)-modules, namely W4,1,W4,2,W8,W12.
Values of the H-fixed-point dimension, where H is a subgroup of SL(2, 5),
are listed in Table 4.

Proof of Theorem 1.2. (i) By the Smith theorem, XQ8 is a Z2-homology
sphere. By assumption |XG| ≥ 3, dimXQ8 > 0 and hence XQ8 is connected.
Thus dimTx(X)Q8 > 0, which implies that Tx(X) ⊃ U4 or Tx(X) ⊃ U5.

(ii) Suppose that Tx(X) does not contain a G-submodule isomorphic to
U3,1 or U3,2. Note that

dimTx(X)C4 = dimTx(X)Q8 + dimTx(X)Q12 .

Since XC2 is a Z2-homology sphere, the mod-2 intersection number of XQ8

and XQ12 is 0. But this is not possible because XQ8 ∩XQ12 = XG consists
of an odd number of points.
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