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MIXING ACTIONS OF ZERO ENTROPY FOR
COUNTABLE AMENABLE GROUPS
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ALEXANDRE I. DANILENKO (Kharkiv)

Abstract. It is shown that each discrete countable infinite amenable group admits
a 0-entropy mixing free action on a standard probability space.

0. Introduction. Let G be an amenable discrete infinite countable
group. We recall that a measure preserving action T = (Tg)g∈G of G on
a standard probability space (X,B, µ) is called mixing if µ(TgA ∩ B) →
µ(A)µ(B) as g →∞ for all measurable subsets A,B ⊂ X. The Kolmogorov–
Sinai entropy for measure preserving transformations (i.e. Z-actions) was ex-
tended to the actions of locally compact amenable groups in [OrWe]. Since
0-entropy actions are considered as “deterministic” while mixing actions are
considered as “chaotic”, it is natural to ask: are there actions which en-
joy the two properties simultaneously? Such examples for Z-actions were
found first in the class of Gaussian transformations (see [New]), and later in
the class of rank-one transformations (see [Or], [Ad], [CrSi] and references
therein). The rank-one analogues of the latter family were constructed for
G = Rd1 ×Zd2 in [DaSi], for G being a countable direct sum of finite groups
in [Da2] and, more generally, for G being a locally normal countable group
in [Da3]. Dan Rudolph asked (1) whether each amenable countable group G
has a mixing action of zero entropy. The purpose of this work is to answer
this question affirmatively.

Theorem 1. There is a 0-entropy mixing free (2) probability preserving
action of G.
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(1) At an AMS meeting in the early 90’s.

(2) We stick to the free actions to avoid degeneracy and triviality like the following:

if (Tg)g∈G is a 0-entropy mixing action of G, F is a finite group and T̃g,f := Tg for

(g, f) ∈ G× F , then (T̃g,f )(g,f)∈G×F is a 0-entropy mixing action of G× F . We consider
this nonfree action to be degenerate and uninteresting.
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Since the proof of the theorem is based on the Poisson suspensions of
infinite measure preserving actions, we introduce the necessary definitions
in the next section (see [Ne], [Roy], [Ja–Ru] for more details). We note that
the mixing property follows essentially from the construction elaborated in
[Da4]. Thus we have only to show here how to modify that construction to
achieve the freeness (3) and 0-entropy of the action in question.

1. Poisson suspensions. Let X be a locally compact noncompact Can-
tor space (i.e. 0-dimensional, without isolated points). Denote by C00(X) the
vector space of real-valued functions on X with compact support. This space
is endowed with the usual locally convex topology, i.e. the topology of uni-
form convergence on the compact subsets of X. The dual C00(X)′ is called
the space of (real) Radon measures on X. We are interested in the cone
X∗ ⊂ C00(X)′ of nonnegative Radon measures on X. Furnish X∗ with the
Borel σ-algebra B∗ generated by the ∗-weak topology related to the duality
〈C00(X), C00(X)′〉. We note that B∗ is also the Borel σ-algebra generated
by the strong topology related to this duality. Since the strong topology is
Polish and X∗ is closed in C00(X)′, it follows that (X∗,B∗) is a standard
Borel space.

Denote by K the set of all compact open subsets of X. Of course, K is
infinite but countable. We also note that B∗ is the smallest σ-algebra on
X∗ such that for each K ∈ K, the mapping NK : X∗ 3 x∗ 7→ x∗(K) ∈ R+ is
measurable. Let µ∗ be the only measure on (X∗,B∗) such that

• µ∗ ◦N−1K is the Poisson distribution with parameter µ(K), and
• the random variables NK1 , . . . , NKn on (X∗, µ∗) are independent for

each countable collection of mutually disjoint subsets K1, . . . ,Km ∈ K.

Then (X∗,B∗, µ∗) is a standard probability space. To define µ∗ rigorously
we denote by F the set of all finite collections of mutually disjoint nonempty
compact open subsets ofX. For F1,F2 ∈ F, we write F2 � F1 if each element
of F1 is a union of some elements from F2. Then (F,�) is a directed partially
ordered set. Given K ∈ K, we define a probability measure νK on R+ by
setting

νK(A) :=
∑

i∈A∩Z+

e−µ(K)µ(K)i

i!

for each Borel subset A ⊂ R+. We see, in particular, that νK is supported
on Z+. Since R+ is an additive semigroup, the convolution of probability
measures on R∗ is well defined. It is easy to verify that if K1,K2 ∈ K and
K1 ∩K2 = ∅ then νK1 ∗ νK2 = νK1tK2 .

(3) The freeness of the H3(R)-actions considered in [Da4] follows from some properties
of group actions that are specific to actions of connected nilpotent Lie groups.
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Given F ∈ F, we denote by RF+ the set of all mappings x : F 3 K 7→
x(K) ∈ R+. We define a measure νF on RF+ as the direct product νF :=⊗

K∈F νK . If F1,F2 ∈ F and F2 � F1, we define a mapping πF2
F1

: RF2
+ → RF1

+

by setting

(πF2
F1

(x))(K) =
( ∑
{R∈F2|R⊂K}

x(R)
)

for each K ∈ F1 and x ∈ RF2
+ .

The aforementioned convolution property of νK implies that νF2 ◦ (πF2
F1

)−1

= νF1 . Thus {(RF1 , νF2 , πF2
F1

)F2�F1 | F1,F2 ∈ F} is a projective system of

probability spaces. Hence the projective limit (Y, κ) := proj lim(F,�)(RF+, νF )
is well defined as a standard probability space.

We now define a Borel map Φ : X∗ → Y by setting

Φ(x∗) := (Φ(x∗)F )F∈F, where Φ(x∗)F := (NK(x∗))K∈F .

Then Φ is one-to-one and onto. Indeed, if two nonnegative Radon measures
take the same values on every element of K then these measures are equal.
This proves that Φ is one-to-one. On the other hand, each element y of Y
can be interpreted as a finitely additive nonnegative measure on K, i.e. as
a map y : K → R+ such that y(K1 t · · · t Ks) = y(K1) + · · · + y(Ks) for
every collection {K1, . . . ,Ks} ∈ F. Then y extends uniquely to a σ-finite
(non-negative) measure on X. Of course, the extension is a Radon measure.
Hence Φ is onto. Thus Φ is a Borel isomorphism of X∗ onto Y . It remains
to export κ to X∗ via Φ−1 and denote this measure by µ∗. It follows, in
particular, that for each K ∈ K and j ∈ Z+,

(1) µ∗({x∗ ∈ X∗ | x∗(K) = j}) =
µ(K)je−µ(K)

j!
.

IfX is partitioned into a union of mutually disjoint open noncompact subsets
X1, . . . , Xm then the mapping

x∗ 7→ (x∗�X1, . . . , x
∗�Xm)

is a measure preserving Borel isomorphism of (X∗, µ∗) onto the direct prod-
uct space (X∗1 × · · · ×X∗m, (µ�X1)

∗ × · · · × (µ�Xm)∗).
Given a Borel σ-algebra F ⊂ B generated by a topology which is weaker

than the original topology on X, we denote by F∗ the smallest sub-σ-algebra
of B∗ such that the mapping NK is measurable for each K ∈ F ∩ K. For
an increasing sequence of topologies τ1 ≺ τ2 ≺ · · · on X which are weaker
than the original topology on X, we denote by F1 ⊂ F2 ⊂ · · · the increasing
sequence of Borel sub-σ-algebras generated by these topologies. Since every
compact open subset from

∨∞
n=1 Fn is contained in Fm for some m > 0, it

follows that

(2)
( ∞∨
n=1

Fn

)∗
=
∞∨
n=1

F∗n.
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Given an action T = (Tg)g∈G of G on X by µ-preserving homeomor-
phisms Tg, we associate a Borel action T ∗ := (T ∗g )g∈G on X∗ by setting

T ∗g x
∗ := x∗ ◦ T−1g , g ∈ G. It follows from (1) that T ∗ preserves µ∗.

The dynamical system (X∗,B∗, µ∗, T ∗) is called the Poisson suspension of
(X,B, µ, T ).

2. Proof of Theorem 1. We will proceed in several steps.

Step 1. First we construct a free strictly ergodic infinite measure pre-
serving G-action on a locally compact noncompact Cantor space. For that
we will utilize the (C,F )-construction (see [Da1], [Da5]). Let (Fn, Cn+1)

∞
n=0

be a sequence of finite subsets in G such that (Fn)∞n=0 is a Følner sequence
in G, F0 = {1}, and for each n ≥ 1 the following three basic conditions are
satisfied:

• 1 ∈ Fn and #Cn > 1,
• F−1n FnFnCn+1 ( Fn+1,
• Fnc ∩ Fnc′ = ∅ for all c 6= c′ ∈ Cn+1.

We let Xn := Fn × Cn+1 × Cn+2 × · · · . Then Xn endowed with the infinite
product of the discrete topologies on Fn and Cj , j > n, is a compact Cantor
set. Moreover, the mapping

Xn 3 (fn, cn+1, cn+2, . . . ) 7→ (fncn+1, cn+2, . . . ) ∈ Xn+1

is a topological embedding of Xn into Xn+1.

We now consider the unionX =
⋃
n≥1Xn and endow it with the topology

of inductive limit. Then X is a locally compact noncompact Cantor set and
Xn is a compact open subset of X for each n. Given g ∈ G and n > 0, we

define a homeomorphism T
(n)
g from a clopen subset (g−1Fn ∩ Fn)×Cn+1 ×

Cn+2 × · · · of Xn to a clopen subset (Fn ∩ gFn)×Cn+1 ×Cn+2 × · · · of Xn

by setting

T (n)
g (fn, cn+1, cn+2, . . . ) 7→ (gfn, cn+1, cn+2, . . . ).

It is easy to verify that the sequence (T
(n)
g )n≥1 uniquely determines a home-

omorphism Tg of X such that Tg�Xn = T
(n)
g for each n.

It is straightforward to check that T := (Tg)g∈G is a free topological
action of G on X. This action is minimal and uniquely ergodic, i.e. there is
a unique T -invariant σ-finite Radon measure µ on X such that µ(X0) = 1.
To define µ explicitly we consider, for each n ≥ 0 and f ∈ Fn, the subset
[f ]n := {(f, cn+1, cn+2, . . . ) ∈ Xn | ci ∈ Ci for all i > n}. Then [f ]n is
compact and open. We call it a cylinder. The family of all cylinders is a
base for the topology on X. Every compact open subset of X is a union of
finitely many mutually disjoint cylinders. Hence every Radon measure on X



MIXING ACTIONS OF ZERO ENTROPY 183

is determined uniquely by its values on the cylinders. It remains to note that
µ([f ]n) = 1/(#C1 · · ·#Cn) for each n ≥ 0 and f ∈ Fn.

In addition to the above three basic conditions on (Fn, Cn+1)n≥0, we will
assume that

lim
n→∞

#Fn
#C1 · · ·#Cn

=∞.

This is equivalent to the fact that µ(X) =∞.

Step 2. In this step we obtain a free probability preserving G-action.
For that we need two more conditions on (Fn, Cn+1)

∞
n=0:

(4) for each element g of infinite order in G, there are infinitely many n
such that glnFnCn+1 ⊂ Fn+1 \ (FnCn+1) for some ln > 0, and

(�) for each element g of finite order in G, there are infinitely many n
such that gFn = Fn.

It is easy to see that if (4) is satisfied then

TglnXn = Tgln
⊔
f∈Fn

[f ]n = Tgln
⊔
f∈Fn

⊔
c∈Cn+1

[fc]n+1 =
⊔
f∈Fn

⊔
c∈Cn+1

[glnfc]n+1.

We used the fact that Xn =
⊔
f∈Fn

[f ]n and Ts[f ]n = [sf ]n whenever f, sf ∈
Fn and s ∈ G. Hence TglnXn ⊂ Xn+1 and TglnXn ∩Xn = ∅.

Let (X∗, µ∗, T ∗) be the Poisson suspension of (X,µ, T ). Then µ∗ is T ∗-
invariant and µ∗(X∗) = 1. We now verify that T ∗ is free. For that we will
check that for each g ∈ G \ {1}, the subset of fixed points of the transfor-
mation T ∗g is µ∗-null. Consider two cases.

If g is of infinite order and A is a Tg-invariant subset of positive finite
measure in X then in view of (4) there is n > 0 such that µ(A ∩ Xn) >
0.9µ(A) and TglnXn ∩Xn = ∅. Hence

µ(A ∩Xn) = µ(TglnA ∩ TglnXn) = µ(A ∩ TglnXn) ≤ µ(A \Xn) ≤ 0.1µ(A),

a contradiction. Thus the transformation Tg has no invariant subsets of
finite positive measure. Therefore the Poisson suspension T ∗g of Tg is weakly
mixing [Roy]. This yields µ∗({x∗ ∈ X∗ | T ∗g x∗ = x∗}) = 0.

Consider now the case where g is of finite order. Let H ⊂ G denote
the cyclic subgroup generated by g. It follows from (�) that there is an
open subset Y ⊂ X of infinite measure such that the sets ThY , h ∈ H,
form an open partition of X. Indeed, let gFni = Fni for an increasing
sequence n1 < n2 < · · · . Choose a subset S1 ⊂ Fn1 which meets each
H-coset in Fn1 exactly once. If i > 1, choose a subset Si ⊂ Fni which
meets each H-coset in Fni \ (Fni−1Cni−1+1 · · ·Cni) exactly once. It remains
to set Y :=

⊔∞
i=1

⊔
s∈Si

[s]ni . Of course, Y is open and noncompact and
X =

⊔
h∈H ThY . Since ∞ = µ(X) = µ(

⊔
h∈H ThY ) and T preserves µ, it

follows that µ(Y ) =∞. Then the dynamical system (X∗, µ∗, (T ∗h )h∈H) is iso-



184 A. I. DANILENKO

morphic to the finite direct product (Y ∗, (µ�Y )∗)H endowed with the natural
shiftwise action of H (see §1). Since the measure (µ�Y )∗ is nonatomic, this
action is free.

Step 3. We now verify that h(T ∗) = 0. Let Fn denote the σ-algebra
on X generated by a single set [1]n, and let Bn denote the σ-algebra on X
generated by the compact open sets [f ]n, f ∈ Fn. Then B1 ⊂ B2 ⊂ · · · and∨∞
n=1Bn is the entire Borel σ-algebra B on X. Moreover, Bn =

∨
g∈Fn

TgFn
and

B∗n =
∨
g∈Fn

T ∗g F
∗
n ⊂

∨
g∈G

T ∗g F
∗
n =: (F∗n)G

for each n. Therefore
∨∞
n=1(F

∗
n)G ⊃

∨∞
n=1B

∗
n = B∗. The latter equality

follows from (2). Moreover, it is easy to verify that (F∗1)
G ⊂ (F∗2)

G ⊂ · · · .
Hence

h(T ∗) = lim
n→∞

h(T ∗ | (F∗n)G) ≤ lim sup
n→∞

H(F∗n).

We recall that K denotes the collection of all compact open subsets
of X. Since Fn ∩K = {[1]n}, the σ-algebra F∗n is generated by the countable
partition of X∗ into the sets N−1[1]n

(r) = {x∗ ∈ X∗ | x∗([1]n) = r}, r =

0, 1, . . . . This yields

lim sup
n→∞

H(F∗n) = lim
n→∞

f(µ([1]n)),

where f(t) is the entropy of the Poisson distribution (e−t, e−tt, e−tt2/2, . . . ).
Since µ([1]n) = 1/(#C1 · · ·#Cn)→ 0, it follows that h(T ∗) = 0.

Step 4. We show that some extra conditions on (Fn, Cn+1)n≥0 imply
mixing for the dynamical system (X∗, µ∗, T ∗). Thus from now on we will
assume that the following hold for each n (in addition to the conditions on
(Fn, Cn+1)n≥0 listed above):

(i) FnF
−1
n FnCn+1 ⊂ Fn+1,

(ii) the sets Fnc1c
−1
2 F−1n , c1 6= c2 ∈ Cn+1, and FnF

−1
n are all pairwise

disjoint, and
(iii) #Cn →∞ as n→∞.

Denote by UT = (UT (g))g∈G the associated Koopman unitary representa-
tion of G in L2(X,µ), i.e. UT (g)f := f ◦ T−1g for each f ∈ L2(X,µ). As

shown in [Da4, Theorem 5.1] (4), conditions (i)–(iii) imply that T is mixing
as an infinite measure preserving action, i.e. UT (g) → 0 weakly as g → ∞.
Let UT ∗ stand for the Koopman unitary representation of G in L2(X∗, µ∗)

(4) Though we considered in [Da4] mainly the actions of the Heisenberg group H3(Z),
the proof of Theorem 5.1 there does not use any specific property of H3(Z). The theorem
holds for each amenable group.
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associated with the Poisson suspension (X∗, µ∗, T ∗). It is well known that
UT ∗ is unitarily equivalent to the Fock unitary representation of G gener-
ated by UT in the Fock space generated by L2(X,µ) (see [Ne]). It follows
that UT ∗(g) converges weakly to the orthogonal projection onto the con-
stants in L2(X∗, µ∗) as g → ∞. This is equivalent to the fact that T ∗ is
mixing.

Summarizing, T ∗ is a mixing free action of G on (X∗, µ∗) and h(T ∗) = 0.
Thus Theorem 1 is proved.

Added in proof. After the paper had been accepted, the author learned about
the following recent result by R. D. Tucker-Drob [Proc. Amer. Math. Soc. 143 (2015),
5227–5232] which complements our footnote (2): if an action of a discrete countable group
G is mixing then there is a finite normal subgroup F ⊂ G such that the stabilizer of a.e.
point is F .
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[Ja–Ru] É. Janvresse, T. Meyerovitch, E. Roy and T. de la Rue, Poisson suspensions
and entropy for infinite transformations, Trans. Amer. Math. Soc. 362 (2010),
3069–3094.

[Ne] Yu. A. Neretin, Categories of Symmetries and Infinite-Dimensional Groups,
London Math. Soc. Monogr. (N.S.) 16, Clarendon Press, New York, 1996.

[New] D. Newton, On Gaussian processes with simple spectrum, Z. Wahrsch. Verw.
Gebiete 5 (1966), 207–209.

[Or] D. S. Ornstein, On the root problem in ergodic theory, in: Proc. Sixth Berkeley
Sympos. Math. Statist. Probab. (Berkeley, CA, 1970/1971), Vol. II, Univ. of
California Press, Berkeley, CA, 1972, 347–356.

[OrWe] D. S. Ornstein and B. Weiss, Entropy and isomorphism theorems for actions of
amenable groups, J. Anal. Math. 48 (1987), 1–141.

[Roy] E. Roy, Poisson suspensions and infinite ergodic theory, Ergodic Theory Dynam.
Systems 29 (2009), 667–683.

http://dx.doi.org/10.1090/S0002-9939-98-04082-9
http://dx.doi.org/10.1017/S0143385703000464
http://dx.doi.org/10.1007/BF02773838
http://dx.doi.org/10.1017/etds.2012.169
http://dx.doi.org/10.1016/j.anihpb.2006.05.002
http://dx.doi.org/10.1007/BF00533056
http://dx.doi.org/10.1007/BF02790325
http://dx.doi.org/10.1017/S0143385708080279


186 A. I. DANILENKO

Alexandre I. Danilenko
B. Verkin Institute for Low Temperature Physics and Engineering
National Academy of Sciences of Ukraine
Prospekt Nauky 47
Kharkiv, 61164, Ukraine
E-mail: alexandre.danilenko@gmail.com


	0 Introduction
	1 Poisson suspensions
	2 Proof of Theorem 1
	REFERENCES

