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Commutators with fractional integral operators

by

Irina Holmes (Atlanta, GA),
Robert Rahm (St. Louis, MO) and

Scott Spencer (Atlanta, GA)

Abstract. We investigate weighted norm inequalities for the commutator of a frac-
tional integral operator and multiplication by a function. In particular, we show that, for
µ, λ ∈ Ap,q and α/n+1/q = 1/p, the norm ‖[b, Iα] : Lp(µp) → Lq(λq)‖ is equivalent to the
norm of b in the weighted BMO space BMO(ν), where ν = µλ−1. This work extends some
of the results on this topic existing in the literature, and continues a line of investigation
which was initiated by Bloom in 1985 and was recently developed further by the first
author, Lacey, and Wick.

1. Introduction and statement of main results. Recall the classical
fractional integral operator, or Riesz potential, on Rn: let 0 < α < n be
fixed and, for a Schwartz function f define the fractional integral operator
(or Riesz potential) Iα by

Iαf(x) :=
�

Rn

f(y)

|x− y|n−α
dy.

These operators have been studied since 1949, when they were introduced by
Marcel Riesz, and have since found many applications in analysis—such as
Sobolev embedding theorems and PDEs. Also recall the Calderón–Zygmund
operators:

Tf(x) :=
�

Rn
K(x, y)f(y) dy, x /∈ supp f,

2010 Mathematics Subject Classification: Primary 42A05, 42A50, 42B20; Secondary
42A61, 42B25.
Key words and phrases: fractional integral operator, commutator, weighted inequalities,
Bloom BMO.
Received 19 October 2015.
Published online 24 May 2016.

DOI: 10.4064/sm8419-4-2016 [279] c© Instytut Matematyczny PAN, 2016



280 I. Holmes et al.

where the kernel satisfies the standard size and smoothness estimates:

|K(x, y)| ≤ C

|x− y|n
,

|K(x+ h, y)−K(x, y)|+ |K(x, y + h)−K(x, y)| ≤ C |h|δ

|x− y|n+δ
,

for all |x− y| > 2 |h| > 0 and a fixed δ ∈ (0, 1].
To contrast the two, note for example that fractional integral operators

are positive, which in many cases makes them easier to work with (as one
example of this, it is almost trivial to dominate the fractional integral oper-
ators by sparse operators, though this is not important to us in the present
setting). On the other hand, the fractional integral operators do not com-
mute with dilations and therefore can never boundedly map Lp(dx) to itself.
Additionally, the kernel of the fractional integral operator does not satisfy
the standard estimates above. Therefore, the theory of fractional integral op-
erators is not just a subset of the theory of Calderón–Zygmund operators.
Because of this, results which are known for Calderón–Zygmund operators
also need to be proved for the fractional integral operators.

In this paper we will characterize the triples (b, µ, λ), where b is a func-
tion and µ and λ are Ap,q weights (to be defined shortly), such that the
commutator [b, Iα] is bounded from Lp(µp) to Lq(λq). Commutators with
Riesz potentials were first studied in [Chan].

Our characterization will be in terms of the norm of b in a certain
weighted BMO space, built from the weights µ and λ. This is an adap-
tation to the fractional integral setting of a viewpoint introduced by Bloom
[B] in 1985, and recently investigated by the first author, Lacey and Wick
[HLW1, HLW2]. Specifically, Bloom characterized ‖[b,H] : Lp(µ)→ Lp(λ)‖,
where H is the Hilbert transform and µ, λ are Ap weights, in terms of
‖b‖BMO(ν), where BMO(ν) is the weighted BMO space associated with

the weight ν := µ1/pλ−1/p. Recall that the Hilbert transform is the one-
dimensional prototype for Calderón–Zygmund operators, a role played by
the Riesz transforms in Rn.

A modern dyadic proof of Bloom’s result was recently given in [HLW1],
and the techniques developed were then used to extend the result to all
Calderón–Zygmund operators in [HLW2]. In particular, it was proved that

(1.1) ‖[b, T ] : Lp(µ)→ Lp(λ)‖ ≤ c‖b‖BMO(ν),

for all Ap weights µ, λ, and all Calderón–Zygmund operators T on Rn, for
some constant c depending on n, T , µ, λ and p. Specializing to the Riesz
transforms, a lower bound was also proved. The center of the proof of (1.1)
was the Hytönen Representation Theorem, which allows one to recover T
from averaging over some dyadic operators, called dyadic shifts. Then the
upper bound reduced to these dyadic operators.
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We take a similar approach in this paper, where the role of the dyadic
shifts will be played by the dyadic version of the fractional integral operator
Iα, given by

IDα f :=
∑
Q∈D
|Q|α/n〈f〉Q1Q.(1.2)

Our main result is:

Theorem 1.1. Suppose that α/n + 1/q = 1/p and µ, λ ∈ Ap,q. Let
ν := µλ−1. Then

‖[b, Iα] : Lp(µp)→ Lq(λq)‖ ' ‖b‖BMO(ν).

It is important to observe that we require that each weight belong to
a certain Ap,q class and this will imply that µλ−1 is an A2 weight and,
in particular, an A∞ weight. Standard properties of these weight classes
will be used throughout the paper, without tracking dependencies on the
particular weight characteristics. The liberal use of these properties indicates
the subtleties involved in the general two-weight setting. For an excellent
account of this and other topics related to fractional integral operators,
see [Cr].

The paper is organized as follows. In Section 2, we will give the requi-
site background material and definitions. Note, however, that most of the
material not relating strictly to fractional integral operators (such as the
Haar system, Ap weights, and weighted BMO) is standard and was also
needed in [HLW2] where it is discussed in more detail. In Section 3 we will
briefly discuss how the fractional integral operator can be recovered as an
average of dyadic operators. In Section 4 we will prove ‖[b, Iα] : Lp(µp) →
Lq(λq)‖ . ‖b‖BMO(ν), and in Section 5 we will prove the reverse inequality:
‖b‖BMO(ν) . ‖[b, Iα] : Lp(µp)→ Lq(λq)‖.

2. Background and notation

2.1. The Haar system. Let D be a dyadic grid on Rn and let Q ∈ D.
For every ε ∈ {0, 1}n, let hεQ be the usual Haar function defined on Q. For

convenience, we write ε = 1 if ε = (1, . . . , 1). Note that, in this case,
	
h1Q = 1.

Otherwise, if ε 6= 1, then
	
hεQ = 0. Moreover, recall that {hεQ}Q∈D, ε 6=1 forms

an orthonormal basis for L2(Rn). For a function f , a cube Q ∈ D and ε 6= 1,
we denote

f̂(Q, ε) := 〈f, hεQ〉,

where 〈·, ·〉 is the usual inner product in L2(Rn).

2.2. Ap classes and weighted BMO. Let w be a weight on Rn, that
is, a locally integrable, almost everywhere positive function. For a subset
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Q ⊂ Rn we denote

w(Q) :=
�

Q

w dx and 〈w〉Q :=
w(Q)

|Q|
.

Given 1 < p <∞, a weight w is said to belong to the Muckenhoupt Ap class
provided that

[w]Ap := sup
Q
〈w〉Q〈w1−p′〉p−1Q <∞,

where p′ denotes the Hölder conjugate of p, and the supremum is over all
cubes Q ⊂ Rn. Moreover, w ∈ Ap if and only if w1−p′ ∈ Ap′ and, in this

case, [w1−p′ ]Ap′ = [w]p
′−1
Ap

. Furthermore, if 1 < p < q < ∞, then Ap ⊂ Aq,

with [w]Aq ≤ [w]Ap for all w ∈ Ap.
For a dyadic lattice D, recall the dyadic square function:

(SDf)2 =
∑

P∈D,ε 6=1

|f̂(Q, ε)|2
1Q

|Q|
.

Another property of Ap weights which will be useful for us is the following
well-known weighted Littlewood–Paley Theorem:

Theorem 2.1. Let w ∈ Ap. Then
‖SD : Lp(w)→ Lp(w)‖ ' c(n, p, [w]Ap).

For a weight w on Rn, the weighted BMO space BMO(w) is defined to
be the space of all locally integrable functions b that satisfy

(2.1) ‖b‖BMO(w) := sup
Q

1

w(Q)

�

Q

|b− 〈b〉Q| dx <∞,

where the supremum is over all cubes Q in Rn. For a general weight, the
definition of the BMO norm is highly dependent on its L1 average. But,
if the weight is A∞, one is free to replace the L1-norm by larger averages.
Namely, for w ∈ Ap, define

(2.2) ‖b‖
BMOp

′
(w)

:= sup
Q

(
1

w(Q)

�

Q

|b− 〈b〉Q|p
′
dw′
)1/p′

,

where w′ denotes the conjugate weight w1−p′ . Then

(2.3) ‖b‖BMO(w) ≤ ‖b‖BMOp
′
(w)
≤ C(n, p, [w]A∞)‖b‖BMO(w).

The proof is similar to the proof in the unweighted case. In particular,
the first inequality is a straightforward application of Hölder’s inequality,
and the second inequality follows from a suitable John–Nirenberg property
(which requires a suitable Calderón–Zygmund decomposition). The details
are in [MW2].
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For a dyadic grid D on Rn, we define the dyadic versions of the norms
above by taking supremum over Q ∈ D instead of over all cubes Q in Rn,

and denote these spaces by BMOD(w) and BMOp′

D(w). Clearly BMO(w) ⊂
BMOD(w) for any choice of D, and the equivalence in (2.3) also holds for
the dyadic versions of these spaces.

A fact which will be crucial to our proof is the following:

Lemma 2.2. If w ∈ A2, then

(2.4) |〈b, Φ〉| . ‖b‖BMO2
D(w)
‖SDΦ‖L1(w).

This comes from a duality relationship between dyadic weighted BMO
spaces and dyadic weighted Hardy spaces. For a more detailed discussion
and a proof of this fact, see [HLW2, Section 2.6]. We remark here that
Lemma 2.2 was also fundamental for the proof of the upper bound (1.1)
in [HLW2], essentially for the following reason: if µ, λ are Ap weights, then
ν := µ1/pλ−1/p is an A2 weight. Thus the duality statement above applied
to ν eventually yields, through Hölder’s inequality, some bounds in terms
of Lp(µ) and Lp

′
(λ) norms. This is also the strategy we will adapt to the

fractional integral case, which makes use of Ap,q classes instead. We discuss
these next.

2.3. Ap,q classes. Throughout this section, α, n, p, q are fixed and
satisfy 1/p− 1/q = α/n. We recall first the fractional maximal operator,

Mαf := sup
Q
|Q|α/n〈|f |〉Q1Q,

with the supremum being over all cubes Q. This was first introduced in
[MW1], where it was used to prove weighted inequalities for Iα, a result
analogous to the classical result [CF] of Coifman and Fefferman, relating
the Hardy–Littlewood maximal operator and singular integrals. We will be
working with the dyadic version of this operator, MDα , defined for a dyadic
grid D just as above, but only taking supremum over Q ∈ D.

Also in [MW1] was introduced a generalization of Ap classes for the
fractional integral setting: we say that a weight w belongs to the Ap,q class
provided that

[w]Ap,q := sup
Q
〈wq〉Q〈w−p

′〉
q/p′
Q <∞.

See [R, RS, CM2, CM1, Cr] for other generalizations.
We will use the following important result concerning Ap,q weights due

to, for example, Sawyer and Muckenhoupt and Wheeden [S1, S2, MW1]:

Theorem 2.3. Let w be a weight. Then the following are equivalent:

(i) w ∈ Ap,q;
(ii) ‖MDα : Lp(wp)→ Lq(wq)‖ ' C(n, α, p, [w]Ap,q);

(iii) ‖IDα : Lp(wp)→ Lq(wq)‖ ' C(n, α, p, [w]Ap,q).
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We now make two observations about Ap,q weights which will be partic-
ularly useful to us. First, we note that:

(2.5) If w ∈ Ap,q, then wp ∈ Ap, w−p
′ ∈ Ap′ , wq ∈ Aq, and w−q

′ ∈ Aq′ ,

where all weights above have Muckenhoupt characteristics bounded by pow-
ers of [w]Ap,q . To see that wp ∈ Ap, first notice w ∈ Ap,q if and only if
wq ∈ Aq0 , with [wq]Aq0 = [w]Ap,q , where

q0 := 1 + q/p′ = q(1− α/n).

Since the Ap classes are increasing and q0 < q, we see that wq ∈ Aq. In turn,

this gives w−q
′

= (wq)1−q
′ ∈ Aq′ . The other two statements in (2.5) follow

in a similar fashion from the fact that w ∈ Ap,q if and only if w−1 ∈ Aq′,p′ .
Second, suppose that µ, λ ∈ Ap,q and let ν := µλ−1. Since µp, λp ∈ Ap,

Hölder’s inequality implies ν ∈ A2 (with [ν]pA2
≤ [µp]Ap [λ

p]Ap), a fact which
will be used in proving the upper bound. Moreover, we claim that for any
cube Q,

(2.6) µp(Q)1/pλ−q
′
(Q)1/q

′
. ν(Q)|Q|α/n,

a fact which will be useful in proving the lower bound. To see this, note first
that

〈µp〉1/pQ 〈µ
−p′〉1/p

′

Q . 1 and 〈λ−q′〉1/q
′

Q 〈λq〉1/qQ . 1,

which simply come from µp ∈ Ap and λq ∈ Aq. Since p′ > q′, Hölder implies(
1

|Q|

�

Q

µ−q
′
dx

)1/q′

≤
(

1

|Q|

( �

Q

µ−p
′
dx
)q′/p′( �

Q

dx
)1−q′/p′)1/q′

=

(
1

|Q|

�

Q

µ−p
′
dx

)1/p′

,

and hence 〈µ−q′〉1/q
′

Q ≤ 〈µ−p′〉1/p
′

Q . Combining these estimates gives

〈µp〉1/pQ 〈λ
−q′〉1/q

′

Q .
1

〈µ−p′〉1/p
′

Q

1

〈λq〉1/qQ

.
1

〈µ−q′〉1/q
′

Q 〈λq〉1/qQ

≤ 1

〈ν−1〉Q
≤ 〈ν〉Q.

The last two inequalities are applications of Hölder’s inequality and the fact
that ν−1 = µ−1λ. This proves (2.6).

3. Averaging over dyadic fractional integral operators. In this
section, we show that Iα can be recovered from (1.2) by averaging over dyadic
lattices. The proof here is modified (and abridged) from the proof in [PTV],
but it is possible to modify any of the proofs in, for example, [P, H, L]. For
the sake of clarity, we only give the proof for the one-dimensional case.
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Given an interval [a, b) (it is not too important that the interval be closed
on the left and open on the right) of length r, we can create a dyadic lattice
Da,r in a standard way. In particular, Da,r is the dyadic lattice on R with
intervals of length r2−k, k ∈ Z, and the point a is not in the interior of any of
the intervals in Da,r. For example, D0,1 is the standard dyadic lattice on R.
For a given lattice Da,r, we let Dka,r denote the intervals in Da,r with length

r2−k. In this section we slightly abuse notation and let h1I = |I|−1/21I .
Define

P0
(a,r)f(x) :=

∑
I∈D0

a,r

|I|α〈f, h1I〉h1I(x).

With r and x fixed, we can parameterize the dyadic grids by the set (−r, 0]
and we can give this set the probability measure da/r. For a fixed x ∈ R,
we want to compute

E(P0
(a,r)f(x)) =

0�

−r
P0
(a,r)f(x)

da

r
.

Let τtf(x) := f(x + t) be the translation operator and note that Pa−tτt =
τtPa. From this it easily follows that EP0

(a,r)τt = τtP0
(a,r). That is, EP0

(a,r) is

given by convolution. Let

EP0
(a,r)f(x) = F0,r ∗ f(x).

We want to compute F0,r. First, note that P0
a,r is convolution with the

function (rα/r)1[−r/2,r/2]. Therefore,

F0,r ∗ f(x) = EP0
(a,r)f(x)

= EP0
(a/2,r)f(x)

x+r/2�

x−r/2

�

R

f(s)
rα

r
1−r/2,r/2(t− s) ds

dt

r
.

Using Fubini, we see that

F0,r(x) =

x+r/2�

x−r/2

rα

r
1[−r/2,r/2](t)

dt

r
=
rα

r
1[−r/2,r/2](x)

(
1−

∣∣∣∣xr
∣∣∣∣)

=
rα

r
F0,1(x/r).

Now, fix an r ∈ [1, 2) and define

Fr =
∑
n∈Z

F0,2nr.

The grids Dka,r, k ∈ Z, can be unioned to form a dyadic lattice (here a
is fixed). Call r the calibre of the dyadic lattice. Convolution with Fr is
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averaging over all the dyadic lattices Da,r with fixed calibre r, that is,

Fr ∗ f = EPDa,rf.

Finally, we need to average over r ∈ [1, 2). Set F (x) :=
	2
1 Fr(x)drr . Now, we

want to compute F (x). We have

F (x) =

2�

1

Fr(x)
dr

r
=

2�

1

∑
n∈Z

F0,2nr(x)
dr

r
=

∞�

0

F0,ρ(x)
dρ

ρ

=

∞�

0

F0,1

(
x

ρ

)
ρα

ρ2
dρ =

∞�

0

1−1/2,1/2

(
x

ρ

)(
1−

∣∣∣∣xρ
∣∣∣∣)ραρ2 dr.

Now, if x > 0, making the change of variable t = x/ρ, we see that

F (x) =
xα

x

∞�

0

F0,1(y)
dy

yα
= cα1/x1−α.

Doing a similar computation for when x < 0, we see that F (x) = cα/|x|1−α.

4. Upper bound. The decomposition in Section 3 means that the up-
per bound in Theorem 1.1 follows from the following, where the implied
constants are independent of the dyadic lattice:

Lemma 4.1. Suppose that α/n + 1/q = 1/p and µ, λ ∈ Ap,q. Let ν :=
µλ−1. Then

‖[b, IDα ] : Lp(µp)→ Lq(λq)‖ . ‖b‖BMO(ν).

Proof. We show that [b, IDα ] can be decomposed as the sum of four op-
erators which will be fairly easy to bound. First note that for ε 6= 1,

IDα h
ε
Q =

∑
P∈D:P(Q

|P |α/nhεQ(P )1P =
( ∑
P∈D:P(Q

|P |α/n1P
)
hεQ = cα|Q|α/nhεQ.

Similarly,

IDα 1Q = (1 + cα)|Q|α/n1Q + |Q|
∑

R∈D:Q(R
|R|α/n 1R

|R|
.

Using these computations we obtain

IDα (hεPh
η
Q) =


cα|P ∩Q|α/nhεPh

η
Q if P 6= Q,

or if P =Q and ε 6= η,

(1+ cα)|Q|α/n 1Q|Q| +
∑

R)Q |R|α/n
1R
|R| if P = Q and ε = η.
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Thus

[hεP , I
D
α ]hηQ =


cαh

η
Q(P )hεP (|Q|α/n − |P |α/n) if P ( Q,

−|Q|α/n 1Q|Q| −
∑

R)Q |R|α/n
1R
|R| if P = Q and ε = η,

0 if Q ( P,

or if Q = P and ε 6= η.

Expressing b and f in terms of their Haar coefficients, we obtain

[b, IDα ]f =
∑

P,Q∈D

∑
ε,η 6=1

b̂(P, ε)f̂(Q, η)[hεP , I
D
α ]hηQ.

Hence

[b, IDα ]f = cαT1f − cαΠ(0,1,0)
b,α f −Π(0,0,1)

b,α f − T2f,(4.1)

where

Π
(0,1,0)
b,α f :=

∑
Q∈D, ε 6=1

b̂(Q, ε)〈f〉Q|Q|α/nhεQ,

Π
(0,0,1)
b,α f :=

∑
Q∈D, ε 6=1

b̂(Q, ε)f̂(Q, ε)|Q|α/n
1Q

|Q|
,

T1f :=
∑

P∈D, ε 6=1

b̂(P, ε)
( ∑
Q)P, η 6=1

f̂(Q, η)hηQ(P )|Q|α/n
)
hεP ,

T2f :=
∑

P∈D, ε 6=1

b̂(P, ε)f̂(P, ε)

( ∑
Q)P
|Q|α/n

1Q

|Q|

)
.

We will show that all of these operators are bounded Lp(µp)→ Lq(λq).
Below, all implied constants are allowed to depend on n, α, p, [µ]Ap,q , and
[λ]Ap,q . Also all inner products below are taken with respect to dx, and
therefore it is enough to show

|〈Tf, g〉| . ‖b‖BMO(ν)‖f‖Lp(µp)‖g‖Lq′ (λ−q′ )
for each of the four operators above (this is because the dual of Lq(λq) with
respect to the unweighted inner product is Lq

′
(λ−q

′
)). The idea, which is

taken from [HLW1, HLW2], is to write the bilinear form 〈Tf, g〉 as 〈b, Φ〉
and then show that ‖SDΦ‖L1(ν) is controlled by ‖f‖Lp(µp)‖g‖Lq′ (λ−q′ ); by

the weighted H1-BMO duality, this is enough to prove the claim.

The estimates for the two paraproducts are almost identical, and we only

give the proof for Π
(0,1,0)
b,α . First with

Φ :=
∑

Q∈D,ε 6=1

〈f〉Q|Q|α/nĝ(Q, ε)hεQ,
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we have

〈Π(0,1,0)
b,α f, g〉 = 〈b, Φ〉.

Then

(SDΦ)2 =
∑

Q∈D,ε6=1

|〈f〉Q|2|Q|2α/n|ĝ(Q, ε)|2
1Q

|Q|
≤ (Mαf)2(SDg)2.

Therefore,

‖SDΦ‖L1(ν) ≤ ‖Mαf‖Lq(µq)‖SDg‖Lq′ (λ−q′ ) . ‖f‖Lp(µp)‖g‖Lq′ (λ−q′ ),

where the last inequality follows from Theorem 2.3 for the fractional max-
imal function, and from Theorem 2.1 and the fact that λ−q

′ ∈ Aq′ for the

dyadic square function. The proof for Π
(0,0,1)
b,α is very similar, and we omit

the details.

Now let us look at T1. As above, we have 〈T1f, g〉 = 〈b, Φ〉 with

Φ :=
∑

P∈D, ε 6=1

ĝ(P, ε)
( ∑
Q)P, η 6=1

f̂(Q, η)hηQ(P )|Q|α/n
)
hεP ,

Then

(SDΦ)2 ≤
∑

P∈D, ε 6=1

|ĝ(P, ε)|2
( ∑
Q)P, η 6=1

〈|f |〉Q|Q|α/n
)2 1P
|P |

≤ (IDα |f |)2(SDg)2.

From Theorems 2.3 and 2.1, it follows that

‖SDΦ‖L1(ν) ≤ ‖IDα |f |‖Lq(µq)‖SDg‖Lq′ (λ−q′ ) . ‖f‖Lp(µp)‖g‖Lq′ (λ−q′ ).

The estimates for T2 are similar and we omit the details.

5. Lower bound. In this section, we prove the lower bound in Theorem
1.1, which follows immediately from the lemma below. In particular, we will
show the following:

Lemma 5.1. For all cubes Q,

1

ν(Q)

�

Q

|b(x)− 〈b〉Q| dx . ‖[b, Iα] : Lp(µp)→ Lq(λq)‖.

Proof. The proof follows the lines of the proof in [Chaf]. We first make
some reductions. As with unweighted BMO, we can replace the 〈b〉Q with
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any constant. Indeed,

1

ν(Q)

�

Q

|b(x)− 〈b〉Q| dx ≤
1

ν(Q)

�

Q

|b(x)− CQ| dx+
|Q|
ν(Q)

|CQ − 〈b〉Q|

≤ 2

ν(Q)

�

Q

|b(x)− CQ| dx.

Second, let P be the cube with l(P ) = 4l(Q), where l(Q) is the side length
of Q, and with the same “bottom left corner” as Q. By the doubling property
of A∞ weights, we have ν(P ) ' ν(Q), and therefore it is enough to prove

1

ν(P )

�

Q

|b(x)− CQ| dx . ‖[b, Iα] : Lp(µp)→ Lq(λq)‖.

Finally, let PR be the “upper right half” of P . Below, we will use CQ = 〈b〉PR .

Now, for x ∈ Q and y ∈ PR,

|x− y|
2
√
n |P |1/n

≥
√
n |Q|1/n

2
√
n |P |1/n

=
1

8
and

|x− y|
2
√
n |P |1/n

≤
√
n |P |1/n

2
√
n |P |1/n

≤ 1

2
.

The point is that there is a function, K(x), that is smooth on [−1, 1]n, has a
smooth periodic extension to Rn, and is equal to |x|n−α for 1/8 ≤ |x| ≤ 1/2.
Therefore, for x ∈ Q and y ∈ PR,(

|x− y|
2
√
n |P |1/n

)n−α
= K

(
x− y

2
√
n |P |1/n

)
.

Important for us is the fact that K has a Fourier expansion with summable
coefficients.

We are now ready to prove the main estimate. First, we denote σ(x) =
sgn(b(x)− 〈b〉PR). Then
�

Q

|b(x)− 〈b〉PR | dx =
1

|PR|

�

R

�

R

(b(x)− b(y))σ(x)1Q(x)1PR(y) dy dx

=
1

|PR|

�

R

�

R

b(x)− b(y)( |x−y|
2
√
n|P |1/n

)n−α( |x− y|
2
√
n |P |1/n

)n−α
σ(x)1Q(x)1PR(y) dy dx

' |P |−α/n
�

R

�

R

b(x)− b(y)

|x− y|n−α
K

(
x− y

2
√
n |P |1/n

)
σ(x)1Q(x)1PR(y) dy dx.

Observe that the integral above is positive, so the “'” is not a problem.
Expanding K in its Fourier series yields

K

(
x− y

2
√
n |P |1/n

)
=
∑
k

ake
ikx/2

√
n |P |1/ne−iky/2

√
n |P |1/n ,
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and inserting this into the integral, we continue:

|P |−α/n
∑
k

ak
�

Q

�

PR

b(x)− b(y)

|x− y|n−α
σ(x)eikx/c|P |

1/n
e−iky/c|P |

1/n
dy dx

= |P |−α/n
∑
k

ak
�

R

hk(x)[b, Iα]fk(x) dx,

where hk(x) = σ(x)eikx/c|P |
1/n
1P (x) and fk(y) = e−iky/c|P |

1/n
1PR(y). We

control the integral by�

R

hk(x)[b, Iα]fk(x) dx ≤ ‖[b, Iα] : Lp(µp)→ Lq(λq)‖‖fk‖Lp(µp)‖hk‖Lq′ (λ−q′ )

= ‖[b, Iα] : Lp(µp)→ Lq(λq)‖µp(PR)1/pλ−q
′
(P )1/q

′

≤ ‖[b, Iα] : Lp(µp)→ Lq(λq)‖µp(P )1/pλ−q
′
(P )1/q

′
.

By (2.6), this is dominated by

‖[b, Iα] : Lp(µp)→ Lq(λq)‖ |P |α/nν(P ).

This completes the proof.
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