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On complemented copies of c0(ω1) in C(Kn) spaces
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Abstract. Given a compact Hausdorff space K we consider the Banach space of real
continuous functions C(Kn) or equivalently the n-fold injective tensor product

⊗̂n

εC(K)
or the Banach space of vector valued continuous functions C(K,C(K,C(K . . . , C(K) . . . ).

We address the question of the existence of complemented copies of c0(ω1) in
⊗̂n

εC(K)
under the hypothesis that C(K) contains such a copy. This is related to the results of
E. Saab and P. Saab that X ⊗̂ε Y contains a complemented copy of c0 if one of the
infinite-dimensional Banach spaces X or Y contains a copy of c0, and of E. M. Galego
and J. Hagler that it follows from Martin’s Maximum that if C(K) has density ω1 and
contains a copy of c0(ω1), then C(K ×K) contains a complemented copy of c0(ω1).

Our main result is that under the assumption of ♣ for every n ∈ N there is a com-
pact Hausdorff space Kn of weight ω1 such that C(K) is Lindelöf in the weak topology,
C(Kn) contains a copy of c0(ω1), C(Kn

n ) does not contain a complemented copy of c0(ω1),
while C(Kn+1

n ) does contain a complemented copy of c0(ω1). This shows that additional
set-theoretic assumptions in Galego and Hagler’s nonseparable version of Cembrano and
Freniche’s theorem are necessary, as well as clarifies in the negative direction the matter
unsettled in a paper of Dow, Junnila and Pelant whether half-pcc Banach spaces must be
weakly pcc.

1. Introduction. Given a compact Hausdorff space K, the geometry
of the Banach space C(K×K), besides being interesting in its own right, is
important because C(K×K) spaces form paradigmatic examples of Banach
spaces of vector valued continuous functions C(K,C(K)) and of the injec-
tive tensor products C(K) ⊗̂ε C(K), and hence they are relevant to the
investigations of the properties of tensor products X ⊗̂ε Y in terms of the
properties of X and Y . It is well known, by a surprising and celebrated
result of P. Cembranos [3] and F. Freniche [7], that if C(K) contains a copy
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of c0 (i.e., C(K) is infinite-dimensional), then C(K × K) always contains
a complemented copy of c0. This result has been generalized by E. Saab
and P. Saab [17] to any tensor product X ⊗̂ε Y of infinite-dimensional
Banach spaces X,Y one of which contains c0 or even to spaces of compact
operators [16].

A consistent nonseparable version of this result has recently been ob-
tained by E. M. Galego and J. Hagler [8, Corollary 4.7] who in particular
proved that it is relatively consistent with ZFC that if C(K) has density ω1

and C(K) has a copy of c0(ω1), then C(K ×K) has a complemented copy
of c0(ω1). Their proof relies on Todorcevic’s analysis of nonseparable Banach
spaces [20, Corollary 6] under the assumption of an additional set-theoretic
axiom known as Martin’s Maximum [6], which in particular implies that
2ω > ω1 [6, 20]. However A. Dow, H. Junnila and J. Pelant [4, Example 2.16]
constructed in ZFC a Banach space (of the form C(K)) of density 2ω which
contains a copy of c0(ω1) but its injective tensor square has no comple-
mented copy of c0(ω1) (e.g., by [4, Corollaries 4.2 and 2.16]). For more on
complemented copies of c0(ω1) see [1] and [10].

In order to discuss our results, let us recall some terminology. A Banach
space X is called weakly pcc if any point-finite family of open sets in the
weak topology on X is countable, and is half-pcc if any point-finite family
of half-spaces (i.e., sets of the form {x ∈ X : x∗(x) > a} for some a ∈ R and
x∗ ∈ X∗) is countable. This kind of chain conditions were first considered
by Rosenthal [15] and are fundamental in the work of Dow, Junnila and
Pelant [4]. If X is a Banach space, then a sequence (x∗ξ)ξ<ω1 of elements
of the unit sphere of X∗ is called an ω1-Josefson–Nissenzweig sequence if
(x∗ξ(x))ξ<ω1 belongs to c0(ω1) for any x ∈ X. This notion plays a crucial role
in the result of Galego and Hagler and of Todorcevic mentioned above [8, 20].

Theorem 1.1 ([4, 20]). Let X be a Banach space. The following condi-
tions are equivalent:

(1) There is a bounded linear operator T : X → c0(ω1) with non-
separable range.

(2) There is an ω1-Josefson–Nissenzweig sequence in X.
(3) X is not half-pcc.

Proof. (1)⇒(2). If φα = T ∗(δα)/‖T ∗(δα)‖, where δα(f) = f(α) for each
α < ω1 and f ∈ c0(ω1), then φα(x) = T (x)(α)/‖T ∗(δα)‖. But for αs from
an uncountable set A ⊆ ω1 the numbers ‖T ∗(δα)‖ are uniformly separated
from zero. Hence (φα)α∈A is an ω1-Josefson–Nissenzweig sequence in X.

(2)⇒(1). Given an ω1-Josefson–Nissenzweig sequence (φα)α<ω1 in X de-
fine an operator T : X → c0(ω1) by T (x) = (φα(x))α<ω1 . By the Hahn–
Banach theorem it has a nonseparable range.

The equivalence of (1) and (3) is proved in [4, Theorem 1.6].
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Note that the conditions above are in general much weaker than con-
taining a complemented copy of c0(ω1), but following the ideas of Cem-
branos and Freniche, Galego and Hagler showed that if C(K) contains a
copy of c0(ω1), then C(K×K) contains a complemented copy of c0(ω1) un-
der one of the above conditions (1)–(3) on the space X = C(K). Actually,
Todorcevic proved that under Martin’s Maximum any nonseparable Banach
space of density ω1 satisfies the above conditions, which gives the previously
mentioned result of Galego and Hagler under Martin’s Maximum. The sep-
arable version of Todorcevic’s result is the classical theorem of Josefson and
Nissenzweig [9, 12] which implies that on any infinite-dimensional Banach
space there is a linear operator with range dense in c0.

One of the goals of the research project leading to this paper was to
decide whether Galego and Hagler’s nonseparable version of Cembranos and
Freniche’s theorem, and consequently the Saabs’ theorem, is indeed sensitive
to its additional set-theoretic assumption, i.e., whether one can or cannot
obtain the same result without that assumption. We prove that one cannot:
it is consistent that there exists a compact Hausdorff space K such that the
density of C(K) is ω1 and C(K) contains a copy of c0(ω1), but C(K ×K)
does not contain a complemented copy of c0(ω1). In fact we have encountered
two different kinds of examples of spaces satisfying the above statement.
We found one of them existing already in the literature ([4, Example 2.17]
discussed in Section 4 and denoted DJP1 there) after we had constructed
our original space. The analysis of the differences between these examples
led us to a more delicate result:

Theorem 1.2. It is consistent that there are compact Hausdorff
spaces Kn for all 1 ≤ n ≤ ω such that each C(Kn) contains a copy of
c0(ω1), while C(Km

n ) with n ≤ ω and m < ω contains a complemented copy
of c0(ω1) if and only if n < m.

Proof. Kn is constructed in Section 3; its properties are stated in Theo-
rem 3.1. Since Kn is (n+ 1)-diverse (see Definition 1.5), by Proposition 2.3
the space C(Kn

n ) is half-pcc and so by Theorem 1.1, C(Kn
n ) does not contain

a complemented copy of c0(ω1). On the other hand, by Theorem 3.1 there is
an n-to-1 continuous map fromKn\{∞} onto [0, ω1) with the order topology,
so C(Kn+1

n ) contains a complemented copy of c0(ω1) by Proposition 2.1.

Kω is the example from Proposition 3.5; if we are not interested in ad-
ditional properties, which we state in Theorem 1.8, it is Example 2.17 of [4]
which we call DJP1 and analyze in Section 4. Since these are nonsepara-
ble scattered compact spaces, they contain uncountable subspaces of iso-
lated points, and so C(Kω) contains c0(ω1). The properties of Kω follow
from Proposition 3.5 and Theorem 1.6. The properties of DJP1 follow from
Corollary 4.3 and Theorem 1.1.
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For additional properties of the Kns see Theorem 1.8. In fact our con-
structions are generalizations of the space from [10] which can serve as K1

above. As we note in Corollary 4.2 that for K compact scattered, if C(K)
is weakly pcc, then C(Kn) is weakly pcc for every n, our examples Kn for
n < ω from Theorem 1.2 give the following:

Theorem 1.3. It is consistent that there are half-pcc spaces C(K) of
density ω1 which are not weakly pcc.

This seems to have been unknown until now (see [4, p. 1330]), but we
still do not know if such examples can be constructed without any additional
assumptions (see Proposition 4.5). Among the three equivalent conditions of
Theorem 1.1 the topological notion of being half-pcc is the simplest. More-
over in the case of scattered compact spaces it admits a simple topological
criterion extracted in [4] from a paper of Arhangel’skii and Tkačuk [2]. Our
refinements of these notions are the following:

Definition 1.4. Let K be a compact space, let m ∈ N and let
F1, . . . , Fk a partition of {1, . . . ,m}. A point (x1, . . . , xm) ∈ Km is said to
be (F1, . . . , Fk)-diverse if {xj : j ∈ Fi} ∩ {xj : j 6∈ Fi} = ∅ for all 1 ≤ i ≤ k.

Definition 1.5. LetK be a Hausdorff compact space and n ∈ N. We say
that K is n-diverse if for any given m ∈ N and for any partition F1, . . . , Fk
of {1, . . . ,m} with k ≤ n, any sequence {(xα1 , . . . , xαm)}α<ω1 ⊆ Km of
(F1, . . . , Fk)-diverse points admits a cluster point which is (F1, . . . , Fk)-
diverse.

Theorem 1.6. Suppose that K is a scattered compact space. Then C(K)
is weakly pcc if and only if K is n-diverse for each n ∈ N.

Proof. By [4, Proposition 2.2 and Lemma 2.13] (cf. [2, Proposition 2.7])
we need to prove that Kn \∆n is ω1-compact for all n ∈ N if and only if K
is n-diverse for all n ∈ N (for terminology see Section 4). For the forward

implication, given a sequence vξ = (xξ1, . . . , x
ξ
m) of (F1, . . . Fk)-diverse points

in Km one can assume that there is a partition of {1, . . . ,m} into sets (Ai)i≤l
for some l ≤ m such that the coordinates of the points vξ in the same part
of the partition are all equal. Form wξ ∈ K l \∆l from the coordinates of vξ

in distinct Aks. Use the ω1-compactness to obtain an accumulation point
of wξs in K l \∆l and apply it to find an (F1, . . . , Fk)-diverse accumulation
point of vξs. The backward implication is clear.

Theorem 1.7. Let K be a compact, totally disconnected space and let
n ∈ N. Each of the following conditions implies the next.

(1) K is (n+ 1)-diverse.
(2) C(Kn) is half-pcc.
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(3) C(Kn) contains no complemented isomorphic copy of c0(ω1).
(4) There is no point ∞ ∈ K such that K \ {∞} can be mapped onto

[0, ω1) by an (n− 1)-to-1 continuous map.

Proof. (1)⇒(2) by Proposition 2.3; (2)⇒(3) by Theorem 1.1; and Propo-
sition 2.1 yields (3)⇒(4).

Our examples Kn for n ≤ ω, unlike [4, Example 2.17], have all these
properties for a given n ∈ N and none of these properties for bigger num-
bers. Another feature of our examples is the Lindelöf property of the weak
topology:

Theorem 1.8. It is consistent that there are totally disconnected com-
pact Hausdorff spaces Kn as in Theorem 1.2 such that C(Kn) is Lindelöf in
the weak topology and Kn is (n + 1)-diverse and there is a point ∞ ∈ Kn

such that Kn\{∞} can be mapped onto [0, ω1) by an n-to-1 continuous map.

Proof. Applying Theorems 3.1 and 1.7 we are left with proving the Lin-
delöf property of C(Kn) with the weak topology. First note that the Lindelöf
property of the weak topology in C(K) for K scattered is equivalent to this
property for the pointwise convergence topology. Now the Lindelöf property

follows from the fact that K
(ω1)
n = ∅ by a theorem of G. Sokolov [19, The-

orem 2.3] which says that for such scattered spaces the Lindelöf property
of Cp(K) is equivalent to ℵ0-monolithicity of K, that is, the property that
the closure of every countable set has a countable network. In our case the
closures of countable sets are included in sets of the form [0, β] ∪ {ω1} for
some countable ordinal β (see Theorem 3.1) and so are metrizable because
they are countable and scattered.

The Lindelöf property of the weak topology is relevant here because
it is proved in [4, Proposition 1.16] that a nonseparable weakly Lindelöf
determined C(K) space cannot be half-pcc. Also, as noted in [4, beginning
of Section 1], the Lindelöf property of the weak topology is equivalent to
being paracompact. Thus our spaces C(Kn) are paracompact in the weak
topology in contrast to the space C(DJP1) from [4] (see Corollary 4.3 below)
which is not even σ-metacompact in the weak topology since it is weakly pcc.

We obtain our consistent examples assuming the combinatorial principle
♣ of Ostaszewski (see [13]; it is explained at the beginning of Section 2 be-
low) and we note that this principle is also sufficient to obtain [4, Example
2.17] originally deduced from ♦ of R. Jensen (see [11]). The advantage of ♣
over ♦ is that the former is compatible with both CH and its negation, while
♦ implies CH. This kind of example cannot be obtained without additional
set-theoretic assumptions because under Martin’s Maximum, Banach spaces
of density ω1 map continuously and linearly into c0(ω1) with nonseparable
ranges [20] and under the P-ideal dichotomy any weakly Lindelöf C(K) space
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with K(ω1) = ∅ containing an isomorphic copy of c0(ω1) contains a comple-
mented copy of c0(ω1) [10, Theorem 3.2]. In this context, because DJP2 (see
Section 4) is a subspace of a separable scattered space, one should also recall
a result of R. Pol [14, Theorem 2] saying that if K is separable, nonmetriz-
able, scattered of countable height, then C(K) is not Lindelöf in the weak
topology (see also [5]). But we do not know if dropping the requirement of
C(K) being Lindelöf in the weak topology one can construct in ZFC a K of
weight continuum such that C(Kn) contains complemented copies of c0(ω1)
for some n and not for others. Using the notion of n-diverse spaces in the
context of the ZFC Example 2.16 of [4], called DJP2 here, doees not seem
to work as in the case of DJP1, which is shown in Propositions 4.4 and 4.5.

We will denote by L(ω1) the set of all countable ordinals which are limit
ordinals. The other notation is standard.

2. n-to-1 maps onto [0, ω1), n-diverse spaces and the pcc

Proposition 2.1. Let K be a compact totally disconnected space and
∞ ∈ K. If there exists a continuous surjective map φ : K \ {∞} → [0, ω1)
such that |φ−1[{α}]| ≤ n for all α < ω1 and some n ∈ N, where [0, ω1) is
endowed with the order topology, then C(Kn+1) contains a complemented
copy of c0(ω1). In particular C(Kn+1) is not half-pcc.

Proof. Set L = K\{∞}. For each γ ∈ ω1 pick any xγ ∈ φ−1[{γ}]. We will
consider the sets of points xγ+1, . . . , xγ+(n+2) for γ ∈ L(ω1). All these points
are isolated in L and hence in K because successors are isolated in [0, ω1)
and φ is continuous. Note that given a pairwise disjoint clopen partition
of K into sets U1, . . . , Uk for some k ∈ N, the set of all γ ∈ L(ω1) such
that the sets U1, . . . , Uk separate all the points xγ+1, . . . , xγ+(n+2) is at most
finite. Indeed, at most one of the clopen sets, say Uj for some 1 ≤ j ≤ k,
contains ∞. So, any accumulation point of an infinite sequence (xγm+i)m∈N
from outside Uj with 1 ≤ i ≤ n+2 and with an increasing sequence (γm)m∈N
must be in φ−1[{supm∈N γm}]. This set has at most n elements, while there
will be n+1 such distinct accumulation points, if U1, . . . , Uk separate all the
points xγm+1, . . . , xγm+(n+2) for infinitely many m ∈ N—a contradiction.

Now we define measures on Kn+1 which will serve to define a projection
from C(Kn+1) onto a copy of c0(ω1). Let S(k) denote the set of all per-
mutations of {1, . . . , k}, and for σ ∈ S(k) let sgn(σ) denote the sign of the
permutation σ. Let λγ be a Radon measure on Kn+1 defined by

λγ =
∑

σ∈S(n+2)

sgn(σ) · δ{(xγ+σ(1),...,xγ+σ(n+1))}.

Note that σ above is a permutation of all n+ 2 points but the coordinates
of points of Kn+1 use only the first n+ 1 numbers.
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Claim. For any clopen V1, . . . , Vn+1 in K the set {γ ∈ L(ω1) :
λγ(V1 × · · · × Vn+1) 6= 0} is finite.

To see this, first note that if U1, . . . , Uk are all the Boolean components
of the finite field of sets generated by V1, . . . , Vn+1, then only for finitely
many γs the sets U1, . . . , Uk, and so V1, . . . , Vn+1, separate all the points
xγ+1, . . . , xγ+(n+2).

For those γ such that none of V1, . . . , Vn+1 separate say xγ+i from xγ+j
and for σ ∈ S(n+ 2) such that σ(i), σ(j) < n+ 2 we have

(xγ+σ(1), . . . , xγ+σ(i), . . . , xγ+σ(j), . . . , xγ+σ(n+1)) ∈ V1 × · · · × Vn+1

if and only if

(xγ+σ′(1), . . . , xγ+σ′(i), . . . , xγ+σ′(j), . . . , xγ+σ′(n+1)) ∈ V1 × · · · × Vn+1

where σ′ is obtained by composing σ with the transposition of i and j. In this
case sgn(σ) = −sgn(σ′) and so the contributions of δ{(xγ+σ(1),...,xγ+σ(n+1))}
and δ{(xγ+σ′(1),...,xγ+σ′(n+1))} to λγ on V1 × · · · × Vn+1 cancel each other.

For those γ such that none of V1, . . . , Vn+1 separate say xγ+i from xγ+j
and for σ ∈ S(n+ 2) such that σ(j) = n+ 2 we have

(xγ+σ(1), . . . , xγ+σ(i), . . . , xγ+σ(n+1)) ∈ V1 × · · · × Vn+1

if and only if

(xγ+σ′(1), . . . , xγ+σ′(j), . . . , xγ+σ′(n+1)) ∈ V1 × · · · × Vn+1

where σ′ is obtained by composing σ with the transposition of i and j, i.e.,
σ′(i) = n + 2. In this case sgn(σ) = −sgn(σ′) and so the contributions of
δ{(xγ+σ(1),...,xγ+σ(n+1))} and δ{(xγ+σ′(1),...,xγ+σ′(n+1))} on V1 × · · · × Vn+1 cancel

each other as well.

Having fixed distinct 1 ≤ i, j ≤ n+ 2 such that the sets V1, . . . , Vn+1 do
not separate the points xγ+i and xγ+j for a fixed γ < ω1, it is clear that
the set of all permutations can be partitioned into two sets such that the σs
above belong to one of them and the σ′s to the other, just by reversing the
roles of i and j in the permutation. Hence the contribution of any point in the
definition of λγ is canceled by the contribution of the corresponding point
from the other group and so λγ(V1×· · ·×Vn+1) = 0 when one pair of points
in {xγ+1, . . . , xγ+(n+2)} is not separated by any of the sets V1, . . . , Vn+1. But
as previously noted, this holds for all but finitely many γs. This completes
the proof of the claim.

Now note that for each f ∈C(Kn+1) we have (λγ(f))γ∈L(ω1)∈c0(L(ω1)).

Indeed, consider the operator T : C(Kn+1) → `∞(L(ω1)) given by T (f) =
(λγ(f))γ∈L(ω1). It is a well defined bounded linear operator and the claim
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means that T (f) ∈ c0(L(ω1)) for f being the characteristic function of any
clopen subset of Kn+1. So it is true for any f ∈ C(Kn+1) by the Weierstrass–
Stone theorem and the fact that c0(L(ω1)) is a closed subspace of `∞(L(ω1)).

Now we are in a position to construct the required projection onto a
copy of c0(ω1). Since all points xγ+i for γ ∈ L(ω1) and i ∈ N are isolated,
we may consider

Y = span{χ{(xγ+1,...,xγ+n+1)} : γ ∈ L(ω1)}

where the closure is taken in C(Kn+1). It is clear that Y is isometric
to c0(ω1). We define

P (f) =
∑

γ∈L(ω1)

λγ(f) · χ{(xγ+1,...,xγ+n+1)}, f ∈ C(Kn+1).

For any f ∈ C(Kn+1) we see that (λγ(f))γ∈L(ω1) ∈ c0(L(ω1)) and it follows

that P defines a bounded operator from C(Kn+1) to C(Kn+1). Moreover
P [C(Kn+1)] ⊆ Y .

To see that P is a projection, we only need to check that P �Y = IdY , and
for that it is enough to prove that P (χ{(xγ+1,...,xγ+n+1)}) = χ{(xγ+1,...,xγ+n+1)}
for each γ ∈ L(ω1). This is clear since for all γ, θ ∈ L(ω1)

λθ(χ{(xγ+1,...,xγ+n+1)}) = λθ({(xγ+1, . . . , xγ+n+1)}) =

{
0 if θ 6= γ,

1 if θ = γ.

Corollary 2.2. Suppose K is the space obtained under the assump-
tion ♣ in [10, Section 4]. Then C(K) is half-pcc and contains an isomorphic
copy of c0(ω1). Moreover C(K×K) contains a complemented copy of c0(ω1),
in particular C(K) is not weakly pcc.

Proposition 2.3. If a compact scattered Hausdorff K is (n+1)-diverse
for some n ∈ N, then C(Kn) is half-pcc.

Proof. Consider the half-spaces Hα = {f ∈ C(Kn) :
	
f dµα > aα} for

aα ∈ R and some Radon measures µα on Kn and any α < ω1. We will
prove that this collection cannot be point-finite. It is enough to prove that
its refinement is not point-finite, so we may assume that the aαs are all
equal to some a ∈ R larger than uncountably many aαs. By going to an
uncountable subset we may assume that there is an ε > 0 and finite sets
Gα ⊆ K such that there is yα = (yα1 , . . . , y

α
n) ∈ Gnα with

|µα({yα})| > 2ε and |µα(Kn \Gnα)| < ε.

Here we have used the fact that all Radon measures on scattered compacta
are atomic. Going further to a smaller uncountable subsequence we may
assume that there is a partition I1 ∪ · · · ∪ Ik = {1, . . . , n} for some k ≤ n
such that yαi = yαj for all α < ω1 if and only if i, j ≤ n are in the same set
of the partition.
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We may assume that all the sets Gα = {xα1 , . . . , xαm} have the same
cardinality m ∈ N and that the first k elements of each Gα (in the above
enumeration) yield all different coordinates of yα, so that xαi = yαj if and
only if j ∈ Ii for i ≤ k and j ≤ n. Form points (xα1 , . . . , x

α
m) ∈ Km.

They are ({1}, . . . , {k}, {k + 1, . . . ,m})-diverse so let (x1, . . . , xm) be a
({1}, . . . , {k}, {k+ 1, . . . ,m})-diverse cluster point. It follows that there are
pairwise disjoint clopen neighborhoods U1, . . . , Uk of x1, . . . , xk respectively
such that

{xk+1, . . . , xm} ∩ (U1 ∪ · · · ∪ Uk) = ∅.
Now let Vj = Ui if and only if j ∈ Ii for j ≤ n and i ≤ k. Consider
V1 × · · · × Vn. We will prove now that for infinitely many αs we have
Gnα∩V1×· · ·×Vn = {yα}. Indeed W = U1×· · ·×Uk×[K\(U1∪· · ·∪Uk)]m−k
is a clopen neighborhood of the cluster point (x1, . . . , xm), so the points
(xα1 , . . . , x

α
m) are in it for infinitely many αs. For the same αs we must have

yα ∈ V1×· · ·×Vn. Now if y = (y1, . . . , yn) ∈ Gnα is in V1×· · ·×Vn note that
none of the coordinates of y may be among {xαk+1, . . . , x

α
m} because these

must be in K \ (U1 ∪ · · · ∪Uk) = K \ (V1 ∪ · · · ∪Vn). Only one of the remain-
ing possible values {xα1 , . . . , xαk} of the coordinates of y may belong to Vj for
j ≤ n, namely xαi such that j ∈ Ii, because Vjs are pairwise disjoint, so we
conclude that y = yα. Hence for infinitely many α < ω1 we have∣∣∣�χV1×···×Vn dµα∣∣∣ ≥ |µα({yα})| −

∣∣∣ �

Kn\Gnα

χV1×···×Vn dµα

∣∣∣ > ε.

Now considering f = ±(a/ε)χV1×···×Vn we obtain
	
f dµα > a for infinitely

many αs, which shows that the Hαs do not form a point-finite family and
completes the proof of the proposition.

3. A compact space from ♣. Our main result of this section is as
follows:

Theorem 3.1 (♣). For each n ∈ N there is an (n+ 1)-diverse nonsep-
arable Hausdorff compact scattered topology τ on [0, ω1] of height ω+ 1 and
weight ω1 where the sets [0, α+(n−1)]∪{ω1} are closed for all α < ω1. More-
over, there is a finite-to-one surjective function φ : [0, ω1) → [0, ω1) which
is τ -to-order-topology continuous such that |φ−1[{α}]| ≤ n for all α < ω1.

Ostaszewski’s principle ♣ ([13]) is stated as follows:

Definition 3.2. ♣ is the following sentence: There is a sequence
(Sα)α∈L(ω1) such that for each α ∈ L(ω1):

(1) Sα ⊆ α;
(2) Sα converges to α in the order topology;
(3) for every uncountable X ⊆ ω1 there is α ∈ L(ω1) such that Sα ⊆ X.
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In order to establish Theorem 3.1, we need to enrich our terminology.
Following the notation of [10], for an ordinal α ≤ ω1 we define F0(α) =
α = {β : β < α} and for n > 0 we let Fn+1(α) be the set of all finite
sequences of elements of Fn(α). Define F (α) =

⋃
n∈N Fn(α). For A ∈ F (α)

such that A ∈ Fn(α), by induction on n ∈ N we define the support of A,
denoted supp(A), as the union of all sets supp(B) where B is a term of the
sequence A, with supp(A) = {A} for A ∈ F0(α). If A,B ∈ F (α), α < ω1,
then we write A < B if β < γ for all β ∈ supp(A) and γ ∈ supp(B).

For a collection W ⊆ F (ω1), we say that it is consecutive if A < B or
B < A whenever A and B are two distinct elements of W.

Definition 3.3. A collection W of elements of F (ω1) converges to
γ ∈ L(ω1) if W is consecutive and for every β < γ the set {A ∈ W :
supp(A) 6⊆ [β + 1, γ)} is finite.

In fact, we will deal only with elements of F0(α) or F1(α) for α ≤ ω1.
For our purpose, we need the following version, which is in fact equivalent
to Ostaszewski’s ♣ [10, Lemma 4.4]:

Definition 3.4. ♣′ is the following sentence: There is a sequence
(S ′α)α∈L(ω1) such that for each α ∈ L(ω1):

(i) S ′α ⊆ F (α);
(ii) S ′α converges to α in the sense of Definition 3.3;
(iii) for every uncountable consecutive W ⊆ F (ω1) there is α ∈ L(ω1)

such that S ′α ⊆ W.

Proof of Theorem 3.1. Given n ∈ N, we fix a sequence (S ′γ)γ∈L(ω1) sat-
isfying the conditions of ♣′. This sequence will hereafter be referred to as
the ♣′-sequence. For each γ ∈ L(ω1), since S ′γ converges to γ in the sense of
Definition 3.3, without losing generality we may assume that S ′γ = {sr(γ) :
r ∈ N} satisfies max{supp(sr(γ))} + (n − 1) < min{supp(st(γ))} for any
integers r < t.

The set of points of our space will be the set [0, ω1] where [0, ω1) is a lo-
cally compact space which is one-point compactified by adding ω1. To define
the locally compact topology on [0, ω1), for each γ < ω1 we will construct
a countable neighborhood basis Bγ at γ. We use transfinite induction. We
start by letting τ0 be the topology on [0, 0] generated by B0 = {{0}}. Given
γ < ω1, we assume that we have constructed for each β < γ a topology τβ
on [0, β] satisfying:

(1) [0, β] is a scattered locally compact Hausdorff space of height not
greater than ω;

(2) each point δ ∈ [0, β] has a countable neighborhood basis Bδ consist-
ing only of compact clopen sets and such that δ = max{V } for each
V ∈ Bδ;



Complemented copies of c0(ω1) in C(Kn) 219

(3) if α < β, then τα ⊆ τβ and {U ∩ [0, α] : U ∈ τβ} = τα;
(4) if α+ (n− 1) < β, then [0, α+ (n− 1)] is closed in [0, β].

Then we consider the topology τ∗γ on [0, γ) whose basis is
⋃
β<γ τβ.

By conditions (1)–(3) the space [0, γ) endowed with the topology τ∗γ is
Hausdorff, locally compact scattered with height not greater than ω. We
will find an appropriate countable local basis for γ, Bγ , and then define on
[0, γ] the topology τγ generated by τ∗γ ∪ Bγ .

If γ < ω1 let γ′ be the greatest limit ordinal such that γ′ ≤ γ. In the
construction of Bγ we shall consider the following three cases:

Case 1: γ′ + (n− 1) < γ. Then we define Bγ = {{γ}}.

Case 2: γ′ ≤ γ ≤ γ′ + (n− 1) and the following condition fails to hold:

(∗) For every r ∈ N every member sr(γ) of S ′γ is a (k + 1)-tuple

sr(γ) = (G1
r , . . . , G

k+1
r ) ∈ ωn1

1 × · · · × ω
nk+1

1 for 0 ≤ k ≤ n such
that {supp(Gir) : 1 ≤ i ≤ k + 1, r ∈ N} is a pairwise disjoint family
and the heights of the points of supp(Gir) for 1 ≤ i ≤ k+1 considered
within the space ([0, γ′), τ∗γ′) for all r ∈ N are uniformly bounded by
some p ∈ N.

Then we define Bγ = {{γ}} as in the first case.

Case 3: γ′ ≤ γ ≤ γ′+(n−1) and (∗) holds. In this case we assume γ = γ′

(and so γ is a limit ordinal), and we will define Bγ+i for all 0 ≤ i < n at
once. Consider the set S ′γ = {sr(γ) : r ∈ N} from our fixed ♣′-sequence and

assume (∗). Let m =
∑

1≤i≤k+1 ni and define xjr for 1 ≤ j ≤ m so that the

sequence (x1r , . . . , x
m
r ) is the concatenation of the sequences G1

r , . . . , G
k+1
r .

Set F1 = {1, . . . , n1}, . . . , Fk+1 = {
∑

1≤i≤nk ni, . . . ,m}.
Now we use our inductive hypotheses for τ∗γ . By applying (1)–(4) and the

fact that S′γ converges to γ ((ii) of Definition 3.4) we may find a collection

{W j
r (γ) : 1 ≤ j ≤ m, r ∈ N} of τ∗γ -clopen compact sets such that:

• xjr = max{W j
r (γ)};

• {W j
r (γ) : 1 ≤ j ≤ m, r ∈ N} are pairwise disjoint and converge to γ;

• the heights in τ∗γ of all points of W j
r (γ) are not greater than p.

For each 1 ≤ i ≤ k and each r ∈ N define

Vr(γ + (i− 1)) = {γ + (i− 1)} ∪
⋃
t≥r

⋃
l∈Fi

W l
t (γ).

By the construction it follows that for every r, s ∈ N we have:

• Vr(γ + (i− 1)) ∩ Vs(γ + (j − 1)) = ∅ whenever i 6= j;

• Vr(γ + (i− 1)) ∩ (supp(Gjs) ∪ supp(Gk+1
s )) = ∅ whenever i 6= j.
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We define

Bγ+(i−1) =

{
Vr(γ + (i− 1)) : r ∈ N} for 1 ≤ i ≤ k,

{{γ + (i− 1)}} for k + 1 ≤ i ≤ n.

It is straightforward to check that ([0, γ+(i−1)], τγ+(i−1)) satisfies conditions
(1)–(3) for each 1 ≤ i ≤ n. Given 1 ≤ i ≤ n we fix β = γ + (i − 1) and
we will show that ([0, β], τβ) also satisfies (4). Assume the opposite, that is,

α+ (n− 1) < β and there is δ ∈ [0, α+ (n− 1)]
τβ

such that α+ (n− 1) < δ.
By the inductive hypothesis (3) we may assume that γ ≤ δ ≤ γ + (n − 1)
and so α + (n − 1) < δ implies that α < γ, since γ is a limit ordinal. We
consider Bδ = {Vr(δ) : r ∈ N}. Since δ is not isolated in ([0, β], τβ) we may
assume that δ = γ + (i− 1) for 1 ≤ i ≤ k. Recalling the construction of our
space, there must exist r0 ∈ N such that δ ∈ Vr0(δ) ⊆ [α + n, δ]. This is a
contradiction and so [0, α+ (n− 1)] is closed in ([0, β], τβ).

Finally, we consider on [0, ω1) the locally compact Hausdorff topology
generated by the basis

⋃
γ<ω1

τγ . This space will be denoted by Ln and

its one-point compactification will be denoted by Kn = Ln
.
∪ {ω1}. This

concludes the construction of the compact space.

Claim 1. The space Kn has height not greater than ω + 1.

Indeed, for any γ < ω1, the heights of the points of V0(γ) \ {γ} are
uniformly bounded by some p ∈ N, so the height of γ cannot be greater
than p+ 1.

Claim 2. There is a finite-to-one continuous function φ : Ln → [0, ω1)
such that |φ−1[{α}]| ≤ n for all α < ω1.

Let L
(1)
n be the set of all accumulation points of Ln. We define φ :

Ln → [0, ω1) by setting first φ(α) = α if α ∈ Ln \ L(1)
n . If α ∈ L(1)

n , then
there are γ ∈ L(ω1) and 0 ≤ i ≤ n− 1 such that α = γ + i. In this case we
define φ(α) = φ(γ + i) = γ.

It is clear that |φ−1[{α}]| ≤ n for all α < ω1 and that φ[Ln] is hom-
eomorphic to the interval [0, ω1) with the order topology. To see that φ is
continuous, recall that the intervals [0, α] for α < ω1 generate the Boolean
algebra of all clopen subsets of [0, ω1). So it is enough to note that for
every α < ω1 the preimage φ−1[[0, α]] is clopen in Ln. These preimages are
intervals of the form [0, α′] for some α′ < ω1, which are open in Ln by (2).

Claim 3. The compact space Kn is (n+ 1)-diverse.

Let m ∈ N and F1, . . . , Fk+1 be a partition of {1, . . . ,m} such that
k ≤ n. Let {(xα1 , . . . , xαm)}α<ω1 ⊆ Km

n be a sequence of (F1, . . . , Fk+1)-
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diverse points. We will prove that this sequence has an (F1, . . . , Fk+1)-diverse
cluster point.

Using Claim 1, by passing to an uncountable subset we may assume
that the collection {{xα1 , . . . , xαm} : α < ω1} constitutes a ∆-system of finite
sets of points of bounded finite heights less than some p ∈ N with root
∆ = {xαj : j ∈ D} for some D ⊆ {1, . . . ,m}. We will denote the element
xαj ∈ ∆ by aj for j ∈ D. By passing to a further uncountable subset we may
assume that δ < xαj for every δ ∈ ∆ and every j ∈ {1, . . . ,m} \D. By (2)
a cluster point of a set cannot lie strictly below all elements of the set, so
by taking a smaller k ≤ n we may assume that all the sets F ′i = Fi \D for
1 ≤ i ≤ k + 1 are nonempty. By changing the enumeration of F ′i s we may
assume that if ω1 = aj for some 1 ≤ j ≤ m, then j ∈ Fk+1.

Define sequences Giα = (xαj : j ∈ F ′i ) for each 1 ≤ i ≤ k + 1 and
α < ω1. For each α < ω1 define (yα1 , . . . , y

α
m) to be the concatenation of

the sequences G1
α, . . . , G

k+1
α . It follows that {(yα1 , . . . , yαm)}α<ω1 ⊆ Km

n is a
sequence of (F ′1, . . . , F

′
k+1)-diverse points.

Note that {supp(G1
α, . . . , G

k+1
α ) : α < ω1} is pairwise disjoint since

{{xα1 , . . . , xαm} : α < ω1} is a ∆-system, so by passing to a further subse-
quence we may assume that W = {(G1

α, . . . , G
k+1
α ) : α < ω1} is consecutive.

Recalling the use of the ♣′-sequence in the construction of K, there is
γ ∈ L(ω1) such that S ′γ ⊆ S and S ′γ can be enumerated in increasing order
as

S ′γ =
{
{G1

r(γ), . . . , Gk+1
r (γ)} : r ∈ N

}
.

We define z = (z1, . . . , zm) in the following way: for 1 ≤ i ≤ k, if
j ∈ F ′i = Fi \ D we define zj = γ + (i − 1); if j ∈ F ′k+1 = Fk+1 \ D we
set zi = ω1; and if j ∈ D we define zj = aj ∈ ∆. According to the con-
struction of Kn, if 1 ≤ i ≤ k then (Gir(γ))r∈N converges to γ + (i − 1). We
will now also argue that (Gk+1

r (γ))r∈N converges to ω1. Indeed, the fact that
then (Gir(γ))r∈N is a discrete family of sets in ([0, γ + (n − 1)), τγ+(n−1))
(every point in the space has a neighborhood which meets at most one
element of the family) follows directly from the construction. Conditions
(2) and (4) imply that this property holds in ([0, ω1), τ

∗
ω1

). It follows that

(Gk+1
r (γ))r∈N converges to the point ω1 of the one-point compactifica-

tion. It follows that z is an accumulation point of the original sequence
{(xα1 , . . . , xαm)}α<ω1 .

If z is not (F1, . . . , Fk+1)-diverse, then there is x ∈ {zj : j ∈ Fi1} ∩
{zj : j ∈ Fi2} for some i1 6= i2. By definition of z, there are j1 ∈ Fi1 ∩ D
and j2 ∈ Fi2 ∩ D such that x = aj1 = aj2 ∈ ∆ or x = ω1. Since our
original sequence is (F1, . . . , Fk+1)-diverse, it follows that {aj : j ∈ Fi1 ∩D}
∩ {aj : j ∈ Fi2 ∩ D} = ∅. Also if x = ω1, then one of the ils for l ∈ {1, 2}
is k + 1 and ω1 is the value of zj for all j ∈ F ′k+1 and for the other element
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i3−l there is j ∈ Fi3−l with ω1 = aj . But we have chosen such an element
i3−l to be k + 1, so i1 = i2, a contradiction.

Claim 4. The space Kn has height ω + 1.

By Claim 1 it is enough to note that the height cannot be finite. If
the height were finite, considering the last uncountable Cantor–Bendixson
level, we would construct an uncountable 2-diverse sequence of its elements
whose members are larger than all the members of ω1 which are in the
following Cantor–Bendixson levels. This would imply that there can only
be one accumulation point of this sequence, which would have to have all
coordinates equal to ω1, which contradicts the 2-diversity.

Proposition 3.5 (♣). There is a nonseparable Hausdorff compact scat-
tered topology τ on [0, ω1] which is n-diverse for every n, has height ω + 1
and weight ω1 and for every α < ω1 there is nα ∈ N such that the set
[0, α+(nα−1)]∪{ω1} is closed. Moreover, there is a finite-to-one surjective
function φ : [0, ω1)→ [0, ω1) which is τ -to-order-topology continuous.

Proof. Do a similar construction to the previous one but allowing the
limit points γ to split into n points {γ+ i : i < n} without limiting n ∈ N.

4. The spaces of A. Dow, H. Junnila and J. Pelant. In this section,
the symbol DJP1 stands for the compact Hausdorff space constructed in [4,
Example 2.17], denoted by K3 there, under the assumption of ♦, and DJP2

stands for the ZFC compact space from [4, Example 2.16], denoted by K2

there. It is proved in [4] that C(DJP1) is weakly pcc and admits a finite-
to-one continuous map onto [0, ω1] with the order topology. The proof in
[4] of C(DJP1) being weakly pcc relies on the fact that it is pointwise pcc,
which means that every point-finite family of open sets in the topology of
pointwise convergence is at most countable. In fact, it is proved in [4, Lemma
2.13] that for C(K) with K a scattered compact space, being weakly pcc
is the same as being pointwise pcc. On the other hand, Arhangel’skii and
Tkačuk implicitly proved in [2] (see [4, Proposition 2.2]) that a compact
Hausdorff K is pointwise pcc if and only if Kn \ ∆n is ω1-compact for all
n ∈ N, where ω1-compact means that every set of cardinality ω1 has an
accumulation point and ∆n = {(x1, . . . , xn) ∈ Kn : xi = xj for some i 6= j}.
Our main observation concerning these notions is the following:

Lemma 4.1. Suppose K is a compact space. If C(K) is pointwise pcc,
then so is C(K2).

Proof. Suppose K is pointwise pcc. Then by [4, Proposition 2.2] (based
on [2, Proposition 2.7]) we find that Kn \∆n is ω1-compact for each n ∈ N.



Complemented copies of c0(ω1) in C(Kn) 223

By the same result we need to prove that (K2)n \∆n(K2) is ω1-compact for
every n ∈ N, where

∆n(K2) = {(x1, x2, . . . , x2n−1, x2n) : ∃i 6= j (x2i+1, x2i+2) = (x2j+1, x2j+2)}.
So X = (K2)n \∆n(K2) is

{(x1, x2, . . . , x2n−1, x2n) : ∀i 6= j (x2i+1, x2i+2) 6= (x2j+1, x2j+2)}.

Let {xξ = (xξ1, x
ξ
2, . . . , x

ξ
2n−1, x

ξ
2n)) : ξ < ω1} be an uncountable subset

of X. By passing to an uncountable subset we may assume that xξj = xξl if

and only if xηj = xηl for all ξ < η < ω1 and 1 ≤ j, l ≤ n. In this way we
obtain a partition of {1, . . . , 2n} into sets (Ak)1≤k≤m for some m ≤ 2n such

that for every ξ < ω1 we have xξj = xξl if and only if j and l are in the same

set of the partition. Since the points xξ are in X = (K2)n \ ∆n(K2), for
every 0 ≤ i < j < n it is not true that at the same time 2i+ 1, 2j + 1 are
in the same part of the partition and 2i+ 2, 2j + 2 are in the same part of
the partition.

Choose a representative jk of each element Ak of the partition and con-
sider a point vξ = (xξj1 , . . . , x

ξ
jm

) for each ξ < ω1. We have vξ ∈ Km \∆m.

So by the pointwise pcc property of C(K), we conclude that (vξ)ξ<ω1 has
a cluster point, say (v1, . . . , vm), in Km \∆m, that is, with all coordinates
distinct.

Now define a point x of (K2)n by putting vk in all the coordinates
from Ak. Since for 0 ≤ i < j < n it is not true that at the same time
2i+ 1, 2j + 1 are in the same part of the partition and 2i+ 2, 2j + 2 are in
the same part of the partition, x is in X = (K2)n \∆n(K2) and x must be
a cluster point of the xξs.

Corollary 4.2. Let K be a compact scattered space. If C(K) is weakly
pcc, then so is C(Kn) for all n ∈ N. In particular C(Kn) does not contain
a complemented copy of c0(ω1) for any n ∈ N.

Proof. If K is compact scattered and C(K) is weakly pcc, then by [4,
Lemma 2.13], C(K) is pointwise pcc. By Lemma 4.1 we conclude that
C(K2n) is pointwise pcc for every n ∈ N and so weakly pcc for every n ∈ N
again by [4, Lemma 2.13]. As Kn is homeomorphic to a closed subset of
K2n , C(Kn) is a quotient Banach space of C(K2n) and so is weakly pcc as
well by [4, Lemma 1.8]. As weakly pcc implies half-pcc, by Theorem 1.1 we
conclude that C(Kn) does not contain a complemented copy of c0(ω1) for
any n ∈ N.

Corollary 4.3 (♣). C(DJPn
1 ) is weakly pcc for any n∈N and C(DJP1)

is not Lindelöf in the weak topology. In particular C(DJPn
1 ) does not contain

a complemented copy of c0(ω1) for any n ∈ N.
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Proof. It is shown in [4, Example 2.17] that C(DJP1) is weakly pcc. The
examination of the construction leads to the conclusion that the same can be
achieved under ♣ rather than ♦. As proved in [4, Example 2.17], DJP1 maps
continuously onto [0, ω1] and so C([0, ω1]) is a closed subspace of C(DJP1).
It is well-known however that C([0, ω1]) is not Lindelöf in the weak topology
(consider the open cover by the sets Vα = {f ∈ C([0, ω1]) : |f(α)| > 0} for
α < ω1 and by {f : |f(ω1)| < 1}), so C(DJP1) cannot be Lindelöf in the
weak topology.

Proposition 4.4. The space DJP2 has countable height and contains
a point ∞ such that DJP2 \ {∞} maps injectively and continuously onto a
subset of R.

Proof. The sets Ai of [4, Example 2.15] have heights no greater than
i ∈ N, and the entire space is obtained as the one-point compactification
of
⋃
i∈NAi, so the height of DJP2 is ω + 1. The topology on

⋃
i∈NAi is a

refinement of the topology inherited from R and so the identity is the desired
continuous map on DJP2 \ {∞}.

The following should be compared with the fact that our space K1 and
the space of [10] are 2-diverse and not weakly pcc by Theorems 3.1 and 1.7.

Proposition 4.5. Suppose that K is a compact scattered space which
contains a point ∞ such that K \ {∞} maps injectively and continuously
onto a subset of R. If K is 2-diverse, then C(K) is weakly pcc.

Proof. Let φ : K \ {∞} → R denote the continuous injective map. By
[4, Lemma 2.13 and Proposition 2.2] (cf. [2, Proposition 2.7]) it is enough

to prove that Kn \ ∆n is ω1-compact for every n ∈ N. So let (xξ1, . . . , x
ξ
n)

be points of Kn \ ∆n for ξ < ω1. By passing to a smaller power we may
assume that they have no coordinate ∞. By passing to an uncountable
subset we may assume that there is ε > 0 such that |φ(xξi ) − φ(xξj)| ≥ ε
for every ξ < ω1 and any distinct i, j ≤ n. Whenever (x1, . . . , xn) is an

accumulation point of {(xξ1, . . . , x
ξ
n) : ξ < ω1} in Kn and xi, xj ∈ K \ {∞},

(xi, xj) is an accumulation point of {(xξi , x
ξ
j) : ξ < ω1} in (K \ {∞})2 and

so |φ(xi) − φ(xj)| ≥ ε because otherwise {(y1, y2) : |φ(y1) − φ(y2)| < ε} is
an open neighborhood of the point (xi, xj) in (K \ {∞})2 which separates
it from the set.

Now the points (∞, xξ1, . . . , x
ξ
n) are ({1}, {2, . . . , n + 1})-diverse, so by

the hypothesis they should have a ({1}, {2, . . . , n+1})-diverse accumulation
point (see Definitions 1.4 and 1.5). But such a point would give rise to an

accumulation point of {(xξ1, . . . , x
ξ
n) : ξ < ω1} in (K \ {∞})n, which, as we

noted, must have all coordinates distinct, and so is in Kn \∆n as required
for the weak pcc.
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[2] A. Arhangel’skii and V. Tkačuk, Calibers and point-finite cellularity of the space
Cp(X) and some questions of S. Gul’ko and M. Hušek, Topology Appl. 23 (1986),
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