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AN EASIER PROOF OF THE CANONICAL RAMSEY THEOREM

BY

PIERRE MATET (Caen)

Abstract. We give a new proof of the Canonical Ramsey Theorem of Erdős and
Rado.

In Ramsey theory one assigns one of several colors to each element of a
structure A, and look for a large, nice substructure B that is monochromatic
(i.e. with one and the same color assigned to each element of B). At the
origin of the theory is a result of Ramsey. For a set X and m in the set N
of positive integers, let [X]m denote the collection of all m-element subsets
of X. For n in N, RT(n) asserts that for any F : [N]n → {1, 2}, there is
an infinite subset A of N such that F is constant on [A]n. Note that it
easily follows from RT(n) that given k in N, an infinite subset M of N, and
F : [M ]n → {1, . . . , k}, there is an infinite subset A of M such that F is
constant on [A]n. The Infinite Ramsey Theorem [Ram] affirms that RT(n)
holds for every n in N.

Canonical Ramsey theory is a branch of Ramsey theory dealing with
situations where we use so many colors that there may not be any large,
nice, monochromatic substructure. The archetypal result in this theory is
the Canonical Ramsey Theorem of Erdős and Rado. Let n ∈ N. For any
n-element subset x of N, let 〈x1, . . . , xn〉 be the increasing enumeration of x.
We let CRT(n) assert that for any F : [N]n → N, there is an infinite subset
A of N and L ⊆ {1, . . . , n} such that for any two elements e, e′ of [A]n,
F (e) = F (e′) if and only if L ⊆ {i : ei = e′i}. Note that RT(n) easily follows
from CRT(n). The Canonical Ramsey Theorem affirms that CRT(n) holds
for all n in N.

Several proofs appeared in print. The proof of Erdős and Rado [ER]
proceeds by induction, as does that of Mileti [M]. A non-inductive proof
was published by Rado [Rad]. An important feature of the proofs in [ER]
and [Rad] is that RT(2n) is used in the derivation of CRT(n). These three
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proofs are all fairly complicated. Recall that the antilexicographic order <
on [N]n is defined by e < e′ whenever (a) there is i such that ei 6= e′i, and
(b) for the greatest such i, ei < e′i. Thus for n = 2, e < e′ if and only if we
are in one of the following six cases:

• e1 < e2 < e′1 < e′2,
• e1 < e2 = e′1 < e′2,
• e1 < e′1 < e2 < e′2,
• e1 < e′1 < e2 = e′2,
• e1 = e′1 < e2 < e′2,
• e′1 < e1 < e2 < e′2.

It is due to this relatively small number of possibilities that the proof
of CRT(2) is so much easier. Trouble starts with n = 3, where we counted
31 cases. This explains why the Canonical Ramsey Theorem is often cited
without proof (see e.g. [H]), or with just the (not so representative) proof
for n = 2 (see e.g. [GRS]). The proof we present is both inductive and
straightforward.

We found it convenient to replace CRT(n) with an equivalent statement
denoted by Φ(n). Given G : [[N]n]2 → {1, 2}, we abbreviate G({e, e′}) as
G(e, e′). We say that G is 1-transitive if G(e, e′′) = 1 whenever e, e′, e′′ are
three distinct elements of [N]n such that G(e, e′) = G(e′, e′′) = 1. We let
Φ(n) assert that for any 1-transitive G : [[N]n]2 → {1, 2}, there is an infinite
subset A of N, and L ⊆ {1, . . . , n}, such that for any two distinct elements
e, e′ of [A]n, G(e, e′) = 1 if and only if L ⊆ {i : ei = e′i}.

Lemma. Φ(n) and CRT(n) are equivalent.

Proof. We start by showing that Φ(n) implies CRT(n). For F : [N]n→N,
define G : [[N]n]2 → {1, 2} by G(e, e′) = 1 if and only if F (e) = F (e′). Let
A and L be as in the statement of Φ(n). Then for any two distinct elements
e, e′ of [A]n, F (e) = F (e′) if and only if L ⊆ {i : ei = e′i}.

Let us now deal with the converse. Given a 1-transitive G : [[N]n]2 →
{1, 2}, consider the equivalence relation ≡ on [N]n defined by e ≡ e′ if and
only if either e = e′, or e 6= e′ and G(e, e′) = 1. Now define F : [N]n → N
so that for any e, e′ in [N]n, F (e) = F (e′) if and only if e ≡ e′. We may
find an infinite subset A of N and L ⊆ {1, . . . , n} such that for e, e′ in [A]n,
F (e) = F (e′) if and only if L ⊆ {i : ei = e′i}. Now fix e < e′ in [A]n. Then
G(e, e′) = 1 if and only if F (e) = F (e′) if and only if L ⊆ {i : ei = e′i}.

Theorem. Φ(n) holds for every n in N.

Proof. We proceed by induction. To prove Φ(1), fix a 1-transitive f :
[[N]1]2 → {1, 2}. Define an equivalence relation ≡ on N by r ≡ s if and
only if either r = s, or r 6= s and f({r}, {s}) = 1. First suppose that there
is an infinite equivalence class V . Then f takes the constant value 1 on
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[[V ]1]2, which is equivalent to saying that for any two distinct elements e, e′

of [V ]1, f(e, e′) = 1 if and only if ∅ ⊆ {i : ei = e′i}. Now suppose that every
equivalence class is finite. Pick a subset W of N such that W ∩ Y has size 1
for each equivalence class Y . Then f is identically 2 on [[W ]1]2, which is the
same as saying that for any two distinct elements e, e′ of [W ]1, f(e, e′) = 1
if and only if {1} ⊆ {i : ei = e′i}.

Now suppose that Φ(m) holds for every m in N with m ≤ n. To show
Φ(n + 1), let F : [[N]n+1]2 → {1, 2} be 1-transitive. Using induction, define
g : [N]n → {1, 2}, three functions G,H, J from [[N]n]2 to {1, 2}, and ai and
Bi for i in N so that:

(1) Bi is an infinite subset of N.
(2) ai = min(Bi).
(3) Bi+1 ⊆ {m ∈ Bi : m > ai}.
(4) For i ≤ n, Bi = {m ∈ N : m ≥ i}.
(5) For any e ∈ [{1, . . . , ai}]n and any two distinct elements a, a′ of Bi+1,

we have F (e ∪ {a}, e ∪ {a′}) = g(e).
(6) Let e < e′ in [{1, . . . , ai}]n. Then

• F (e ∪ {a}, e′ ∪ {a}) = G(e, e′) for all a in Bi+1;
• F (e ∪ {a}, e′ ∪ {a′}) = H(e, e′) whenever a, a′ ∈ Bi+1 and a < a′;
• F (e ∪ {a}, e′ ∪ {a′}) = J(e, e′) whenever a, a′ ∈ Bi+1 and a > a′.

Note that (5) is obtained by applying Φ(1) repeatedly (once for each e),
whereas for (6) we appeal to RT(1) (once for each (e, e′) with e < e′) and
RT(2) (twice for each (e, e′) with e < e′). Set A = {a1, a2, . . . }. By RT(n),
we may find an infinite subset B of A and j ∈ {1, 2} such that g is identically
j on [B]n.

Case 1: j = 1. Define K : [[B]n]2 → {1, 2} by K(e, e′) = F (e ∪ {a}, e′ ∪
{a}), where a is the least q in B such that max(e) < q and max(e′) < q.

Claim 1. Let e, e′, e′′ be three distinct elements of [B]n such that K(e, e′)
= K(e′, e′′) = 1. Then K(e, e′′) = 1.

Proof. Let a (respectively, b, c) be the least q in B such that max(e) < q
and max(e′) < q (respectively, max(e′) < q and max(e′′) < q, max(e) < q
and max(e′′) < q). Select d in B such that d > max({a, b, c}). Now since 1 =
g(e) = K(e, e′) = g(e′) = K(e, e′′) = g(e′′), we have 1 = F (e∪{c}, e∪{d}) =
F (e∪{d}, e∪{a}) = F (e∪{a}, e′∪{a}) = F (e′∪{a}, e′∪{d}) = F (e′∪{d},
e′∪{b}) = F (e′∪{b}, e′′∪{b}) = F (e′′∪{b}, e′′∪{d}) = F (e′′∪{d}, e′′∪{c}).
By 1-transitivity of F , it follows that 1 = F (e ∪ {c}, e′′ ∪ {c}) = K(e, e′′),
which completes the proof of Claim 1.

By Claim 1 and Φ(n), there must be an infinite subset C of B and L ⊆
{1, . . . , n} such that for any two distinct elements e, e′ of [C]n, K(e, e′) = 1
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if and only if L ⊆ {i : ei = e′i}. Now given two distinct elements x, x′ of
[C]n+1, let e = {x1, . . . , xn}, e′ = {x′1, . . . , x′n} and a be the least q in B
such that both xn and x′n are less than q. Then L ⊆ {i : xi = x′i} if
and only if L ⊆ {i : ei = e′i} if and only if K(e, e′) = 1 if and only if
F (e ∪ {a}, e′ ∪ {a}) = 1 if and only if F (e ∪ {a}, x′) = 1 if and only if
F (x, x′) = 1, since F (e′ ∪ {a}, x′) = 1 = F (e ∪ {a}, x).

Case 2: j = 2. We may find an infinite subset D of B, and three subsets
M,S, P of {1, . . . , n} such that for any two distinct elements e, e′ of [D]n:

• G(e, e′) = 1 if and only if M ⊆ {i : ei = e′i};
• H(e, e′) = 1 if and only if S ⊆ {i : ei = e′i};
• J(e, e′) = 1 if and only if P ⊆ {i : ei = e′i}.

Claim 2. S = P = {1, . . . , n}.

Proof. Suppose otherwise, and pick e < e′ in [D]n such that 1∈ {H(e, e′),
J(e, e′)}. Select a, a′, a′′ in D such that max(e′) < a < a′ < a′′. Now
H(e, e′) 6= 1, since otherwise F (e ∪ {a}, e′ ∪ {a′}) = 1 = F (e ∪ {a},
e′ ∪ {a′′}), and therefore F (e′ ∪ {a′}, e′ ∪ {a′′}) = 1. Hence, J(e, e′) = 1.
But then F (e ∪ {a′′}, e′ ∪ {a′}) = 1 = F (e ∪ {a′′}, e′ ∪ {a}). It follows that
F (e′∪{a}, e′∪{a′}) = 1. This contradiction completes the proof of Claim 2.

We set Q = M ∪{n+ 1}. Now let x < x′ in [D]n+1. Set e = {x1, . . . , xn}
and e′ = {x′1, . . . , x′n}. Observe that if F (x, x′) = 1, then e 6= e′ (since j = 2),
and moreover, by Claim 2, xn+1 = x′n+1. Hence, Q ⊆ {i : xi = x′i} if and
only if xn+1 = x′n+1 and M ⊆ {i : ei = e′i} if and only if xn+1 = x′n+1 and
G(e, e′) = 1 if and only if xn+1 = x′n+1 and F (e ∪ {xn+1}, e′ ∪ {x′n+1}) = 1
if and only if xn+1 = x′n+1 and F (x, x′) = 1 if and only if F (x, x′) = 1.

Corollary. CRT(n) holds for every n in N.

Let us observe thatRT(n) can be reformulated in the same spirit. Say that
G : [[N]n]2 → {1, 2} is 2-antitransitive if G(e, e′′) = 1 whenever e, e′, e′′ are
three distinct elements of [N]n such that G(e, e′) = G(e′, e′′) = 2. We let Ψ(n)
assert that for any 1-transitive, 2-antitransitive G : [[N]n]2 → {1, 2}, there is
an infinite subset A of N such that G takes the constant value 1 on [[A]n]2.

The proof of the following is similar to that of the above lemma.

Observation. The following are equivalent:

(i) RT(n).
(ii) Ψ(n).

(iii) For any 1-transitive, 2-antitransitive G : [[N]n]2 → {1, 2}, there is
an infinite subset A of N, and L ⊆ {1, . . . , n} such that for any
distinct e, e′ ∈ [A]n, G(e, e′) = 1 if and only if L ⊆ {i : ei = e′i}.



CANONICAL RAMSEY THEOREM 191

REFERENCES
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