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SOLYANIK ESTIMATES IN ERGODIC THEORY

BY

PAUL HAGELSTEIN (Waco, TX) and IOANNIS PARISSIS (Bilbao)

Abstract. Let U1, . . . , Un be a collection of commuting measure preserving trans-
formations on a probability space (Ω,Σ, µ). Associated with these transformations is the
ergodic strong maximal operator M∗S given by

M∗Sf(ω) := sup
0∈R⊂Rn

1

#(R ∩ Zn)

∑
(j1,...,jn)∈R∩Zn

|f(U j11 · · ·U
jn
n ω)|,

where the supremum is taken over all open rectangles in Rn containing the origin whose
sides are parallel to the coordinate axes. For 0 < α < 1 we define the sharp Tauberian
constant of M∗S with respect to α by

C∗S(α) := sup
E⊂Ω
µ(E)>0

1

µ(E)
µ({ω ∈ Ω : M∗SχE(ω) > α}).

Motivated by previous work of A. A. Solyanik and the authors regarding Solyanik esti-
mates for the geometric strong maximal operator in harmonic analysis, we show that the
Solyanik estimate

lim
α→1

C∗S(α) = 1

holds, and that in particular

C∗S(α)− 1 .n (1/α− 1)1/n

provided that α is sufficiently close to 1. Solyanik estimates for centered and uncentered
ergodic Hardy–Littlewood maximal operators associated with U1, . . . , Un are shown to
hold as well. Further directions for research in the field of ergodic Solyanik estimates are
also discussed.

1. Introduction. This paper is intended to be an introduction of the
topic of Solyanik estimates to the field of ergodic theory. Solyanik estimates
first emerged in the field of harmonic analysis in the mid-1990’s with the
work of A. A. Solyanik [11] regarding fine properties of the restricted weak
type distribution functions of the Hardy–Littlewood and strong maximal
functions. Recall that the uncentered Hardy–Littlewood maximal operator
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MHL is defined on functions f ∈ L1
loc(Rn) by

MHLf(x) := sup
x∈B⊂Rn

1

|B|

�

B

|f |,

where the supremum is taken over the set of all balls B in Rn containing x.
The closely related centered Hardy–Littlewood maximal operator MHL,c is
defined by

MHL,cf(x) := sup
r>0

1

|B(x, r)|

�

B(x,r)

|f(y)| dy,

where the supremum is taken over the set of all balls B(x, r) in Rn that
are centered at x and f is a locally integrable function on Rn. The strong
maximal operator MS is defined on locally integrable functions on Rn by

MSf(x) := sup
x∈R⊂Rn

1

|R|

�

R

|f |,

where the supremum is taken over the set of rectangles in Rn containing x
whose sides are parallel to the coordinate axes.

The Hardy–Littlewood maximal operator is relatively easily seen to sat-
isfy the weak type estimate

|{x ∈ R : MHLf(x) > α}| ≤ 3n

α
‖f‖L1(Rn);

the sharp weak type estimate for MHL acting on functions on R may be
improved, as is shown by Grafakos and Montgomery-Smith [3]. From this
the restricted weak type estimate

|{x ∈ R : MHLχE(x) > α}| ≤ 3n

α
|E|

immediately follows. The centered Hardy–Littlewood maximal operator
MHL,c satisfies a similar restricted weak type estimate. Now, these estimates
hold for MHL and MHL,c for all 0 < α < 1, but it is reasonable to expect
that the quantity 3n/α may be replaced by a value arbitrarily close to 1
provided that we only consider values of α sufficiently near 1. This expecta-
tion is validated by results collectively due to the authors and Solyanik. In
order to state these results in a precise manner we introduce the following
definitions.

Definition 1.1. The sharp Tauberian constant of the centered Hardy–
Littlewood maximal operator MHL,c with respect to α ∈ (0, 1) is defined
as

CHL,c(α) := sup
E⊂R

0<|E|<∞

1

|E|
|{x ∈ R : MHL,cχE(x) > α}|.
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Similarly, the sharp Tauberian constant of the uncentered Hardy–Littlewood
maximal operator MHL with respect to α ∈ (0, 1) is

CHL(α) := sup
E⊂R

0<|E|<∞

1

|E|
|{x ∈ R : MHLχE(x) > α}|.

Finally, the sharp Tauberian constant of the geometric strong maximal op-
erator MS with respect to α is defined as

CS(α) := sup
E⊂Rn

0<|E|<∞

1

|E|
|{x ∈ Rn : MSχE(x) > α}|.

The following theorem provides asymptotic estimates as α → 1− for
the sharp Tauberian constants of the geometric maximal operators defined
above.

Theorem 1.2 (Hagelstein and Parissis [4], Solyanik [11]). We have the
following Solyanik estimates for the centered and uncentered sharp Taube-
rian constants:

(i) limα→1− CHL,c(α) = 1. In particular,

CHL,c(α)− 1 .n 1/α− 1

for α sufficiently close to 1.
(ii) limα→1− CHL(α) = 1. In particular,

CHL(α)− 1 .n (1/α− 1)1/(n+1)

for α sufficiently close to 1.

An analogous result exists for the strong maximal operator:

Theorem 1.3 (Hagelstein and Parissis [4], Solyanik [11]). limα→1− CS(α)
= 1. In particular,

CS(α)− 1 .n (1/α− 1)1/n

for α sufficiently close to 1.

Now, as is well-known, a close relationship exists between the distribu-
tion functions of geometric maximal functions commonly arising in harmonic
analysis and their counterparts in ergodic theory. Papers describing this cor-
respondence range from the pioneering work of Calderón [2] on transference
principles to the more recent works of Hagelstein and Stokolos [6, 7]. Hence
it is quite natural to inquire as to whether the above Solyanik estimates have
analogues in the ergodic-theoretic context. The purpose of this paper is to
show that desirable Solyanik estimates do indeed exist for ergodic analogues
of the centered and uncentered Hardy–Littlewood maximal operators as well
as of the strong maximal operator. Our techniques will be rather classical,
relying on the above estimates for the geometric strong maximal operator as
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well as the ideas behind the general transference principles of Calderón. We
will also indicate intriguing directions for future work regarding Solyanik
estimates in ergodic theory.

It is interesting to observe that, although the Solyanik estimate for the
Hardy–Littlewood maximal operator was first observed and proven only
about twenty years ago, the corresponding Solyanik estimate for one-para-
meter ergodic maximal operators has been known since the infancy of er-
godic theory. In particular, let T be a measure preserving transformation on
a probability space (Ω,Σ, µ). We may associate to T the maximal operator
T ∗ defined by

T ∗f(ω) := sup
N≥1

1

N

N−1∑
j=0

|f(T jω)|.

Then

µ({ω ∈ Ω : T ∗f(ω) > α}) ≤ 1

α

�

Ω

|f | dµ.

This result goes back to Wiener [12] and Yosida and Kakutani [13]. One
may consult Petersen [10] for a more recent presentation of a proof of this
result. This directly implies that

µ({ω ∈ Ω : T ∗χE(ω) > α}) ≤ 1

α
µ(E),

and hence

lim
α→1−

sup
E⊂Ω
µ(E)>0

1

µ(E)
µ({ω ∈ Ω : T ∗χE(ω) > α}) = 1.

However, this estimate may not be iterated to directly achieve Solyanik
estimates for multiparameter ergodic maximal operators, in particular for
ergodic maximal operators associated to multiple measure preserving trans-
formations. Using additional ideas we will show that Solyanik estimates
for multiparameter ergodic maximal operators do indeed hold. For speci-
ficity, we will now explicitly define analogues of the centered and uncentered
Hardy–Littlewood maximal operators in the ergodic setting, and state three
associated theorems regarding the Solyanik estimates; the proofs constitute
the following four sections of this paper.

We first introduce appropriate collections of sets in Rn which we will
use in order to define our ergodic maximal operators. These collections will
be liberally called bases, and will be used throughout the paper. Being very
specific, in this paper a basis in Rn will be a collection of bounded open
subsets of Rn containing the origin. We will be giving close consideration to
three particular bases and accordingly give them special notation.

Definition 1.4. We denote by BS the collection of all open rectangles in
Rn which contain the origin and have sides parallel to the coordinate axes,
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by BHL the collection of all open Euclidean balls in Rn which contain the
origin, and by BHL,c the collection of all open Euclidean balls in Rn which
are centered at the origin.

Let now B be a basis in Rn. We will consider three types of maximal
operators associated with B together with their associated Tauberian con-
stants.

Definition 1.5. Let B be a basis in Rn.

(i) The geometric maximal operator MB associated with B is defined
on f ∈ L1

loc(Rn) as

MBf(x) := sup
R∈B

1

|R|

�

R

|f(x+ y)| dy, x ∈ Rn.

(ii) The discrete geometric maximal operator M̃B associated with B is
defined on f ∈ L1

loc(Zn) as

M̃Bf(m) := sup
R∈B

1

#(R ∩ Zn)

∑
j=(j1,...,jn)∈R∩Zn

|f(m+ j)|, m ∈ Zn.

(iii) Let U1, . . . , Un be a collection of measure preserving transformations
on a probability space (Ω,Σ, µ). The ergodic maximal operator M∗B
associated with B is the maximal operator defined on f ∈ L1(Ω) as

M∗Bf(ω) := sup
R∈B

1

#(R ∩ Zn)

∑
j=(j1,...,jn)∈R∩Zn

|f(U j11 · · ·U
jn
n ω)|, ω ∈ Ω.

For these geometric, discrete, and ergodic maximal operators there is a
natural definition of the corresponding sharp Tauberian constants. We make
this precise below.

Definition 1.6. Let B be a collection of bounded open subsets of Rn
containing the origin and let 0 < α < 1. The Tauberian constants associated
to the maximal operators MB, M̃B, and M∗B are defined respectively by

CB(α) = sup
E⊂Rn

0<|E|<∞

1

|E|
|{x ∈ Rn : MBχE(x) > α}|,

C̃B(α) = sup
E⊂Zn

0<#E<∞

1

#E
#{m ∈ Zn : M̃BχE(m) > α},

C∗B(α) = sup
E⊂Ω
µ(E)>0

1

µ(E)
µ({ω ∈ Ω : M∗BχE(ω) > α}).

Remark 1.7. As noted before, in this paper we will be primarily inter-
ested in the bases BS, BHL, and BHL,c, corresponding to the strong maximal
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operator, the uncentered Hardy–Littlewood maximal operator, and the cen-
tered Hardy–Littlewood maximal operator, respectively. As a convenient
shorthand notation, we will denote the ergodic maximal operators M∗BS ,
M∗BHL , and M∗BHL,c respectively by M∗S, M∗HL, and M∗HL,c. We will also denote

the discrete maximal operators M̃BS , M̃BHL , and M̃BHL,c
respectively by M̃S,

M̃HL, and M̃HL,c.
The same notational conventions will be consistently applied for the

Tauberian constants corresponding to the bases BS, BHL, and BHL,c in both
the ergodic and discrete contexts. Thus we will have

C̃S(α) := C̃BS(α) = sup
E⊂Zn

0<#E<∞

1

#E
#{x ∈ Zn : M̃S(x) > α},

C̃HL(α) := C̃BHL(α) = sup
E⊂Zn

0<#E<∞

1

#E
#{x ∈ Zn : M̃HL(x) > α},

C̃HL,c(α) := C̃BHL,c(α) = sup
E⊂Zn

0<#E<∞

1

#E
#{x ∈ Zn : M̃HL,c(x) > α},

C∗S(α) := C∗BS(α) = sup
E⊂Ω
µ(E)>0

1

µ(E)
µ({ω ∈ Ω : M∗SχE(ω) > α}),

C∗HL(α) := C∗BHL(α) = sup
E⊂Ω
µ(E)>0

1

µ(E)
µ({ω ∈ Ω : M∗HLχE(ω) > α}),

C∗HL,c(α) := C∗BHL,c(α) = sup
E⊂Ω
µ(E)>0

1

µ(E)
µ({ω ∈ Ω : M∗HL,cχE(ω) > α}).

The following theorems are the main results of this paper, and provide
the ergodic-theoretic Solyanik estimates for the ergodic strong, centered,
and uncentered Hardy–Littlewood maximal operators, respectively.

Theorem 1.8. The sharp Tauberian constants C∗S(α) satisfy

lim
α→1−

C∗S(α) = 1.

In particular,
C∗S(α)− 1 .n (1/α− 1)1/n

for α sufficiently close to 1.

Theorem 1.9. The sharp Tauberian constants C∗HL,c satisfy

lim
α→1−

C∗HL,c(α) = 1.

In particular,
C∗HL,c(α)− 1 .n 1/α− 1

for α sufficiently close to 1.
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Theorem 1.10. The sharp Tauberian constants C∗HL(α) satisfy

lim
α→1−

C∗HL(α) = 1.

In particular,
C∗HL(α)− 1 .n (1/α− 1)1/(n(n+1))

for α sufficiently close to 1.

2. Notation. We use the letters C, c to denote positive numerical con-
stants whose value might change even in the same line of text. We indicate
the dependence of some constant C on a parameter n by writing Cn. We use
the notation A . B whenever A ≤ CB. If the implicit constant depends on
some parameter n, we write A .n B.

3. Transference of Solyanik estimates. The purpose of this section
is to provide a general transference principle that will enable us to transfer
Solyanik type estimates for discrete maximal operators acting on L1(Zn) to
their ergodic counterparts.

Theorem 3.1. Let U1, . . . , Un be a collection of commuting measure pre-
serving transformations on a probability space (Ω,Σ, µ) and B be a collection
of nonempty bounded open subsets of Rn. Let M̃B and M∗B be the discrete

and ergodic maximal operators as above, and C̃B(α) and C∗B(α) their respec-
tive sharp Tauberian constants. For every 0 < α < 1 we have

C∗B(α) ≤ C̃B(α).

Proof. We proceed by taking advantage of transference principles devel-
oped by A. P. Calderón [2]. Let E be a measurable subset of Ω and T > 0.
We associate with E the function FE,T on Ω × Zn given by

FE,T (ω, t) := χE(U t11 · · ·U
tn
n ω)χ(−T,T )n(t), ω ∈ Ω, t = (t1, . . . , tn) ∈ Zn.

Note that for fixed t ∈ (−T, T )n the functions FE,T (·, t) and χE are equimea-
surable on Ω.

Fix ω ∈ Ω and let r > 0. Also let R ∈ B be such that R ⊂ (−r, r)n. If
m = (m1, . . . ,mn) ∈ Zn ∩ [−T, T ]n, we can write

1

#R

∑
j=(j1,...,jn)∈R

χE(U j11 · · ·U
jn
n ω)

=
1

#R

∑
j=(j1,...,jn)∈R

χE(Um1+j1
1 · · ·Umn+jnn U−m1

1 · · ·U−mnn ω)

× χ(−r−T,r+T )n(m+ j)

=
1

#R

∑
j=(j1,...,jn)∈R

FE,r+T (U−m1
1 · · ·U−mnn ω,m+ j)
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using the hypothesis that U1, . . . , Un commute. Defining the discrete maxi-
mal operator M̃B,r by

M̃B,rf(x) := sup
R∈B

R⊂(−r,r)n

1

#R

∑
(j1,...,jn)∈R

|f(x1 + j1, . . . , xn + jn)|,

x = (x1, . . . , xn) ∈ Zn,

and the ergodic maximal operator M∗B,r by

M∗B,rf(ω) := sup
R∈B

R⊂(−r,r)n

1

#R

∑
(j1,...,jn)∈R

|f(U j11 · · ·U
jn
n ω)|, ω ∈ Ω,

we have

M∗B,rχE(ω) = [M̃B,rFE,r+T (U−m1
1 · · ·U−mnn ω, ·)](m).

Now, using the fact that U1, . . . , Un are measure preserving together with
Fubini’s theorem we can conclude that for any r, T ∈ N we have

µ({ω ∈ Ω : M∗B,rχE(ω) > α})

=
1

(2T + 1)n

T∑
m1=−T

· · ·
T∑

mn=−T
µ({ω ∈ Ω : M∗B,rχE(Um1

1 · · ·Umnn ω) > α})

=
1

(2T + 1)n

T∑
m1=−T

· · ·
T∑

mn=−T
µ({ω ∈ Ω : [M̃B,rFE,r+T (ω, ·)](m) > α})

=
1

(2T + 1)n

�

Ω

#{m ∈ Zn ∩ [−T, T ]n : [M̃B,rFE,r+T (ω, ·)](m) > α} dµ(ω)

≤ 1

(2T + 1)n

�

Ω

#{m ∈ Zn : M̃BχEr,T,ω(m) > α} dµ(ω)

where

Er,T,ω := {t ∈ Nn ∩ (−r − T, r + T )n : U t11 · · ·U
tn
n ω ∈ E}.

By the definition of the sharp Tauberian constant C̃B we thus conclude that

µ({ω ∈ Ω : M∗B,rχE(ω) > α}) ≤ 1

(2T + 1)n

�

Ω

C̃B(α)#ER,T,ω dµ(ω)

≤ (2T + 2r + 1)n

(2T + 1)n
C̃B(α)µ(E)

by another application of Fubini’s theorem. Letting T tend to infinity yields

µ({ω ∈ Ω : M∗B,rχE(ω) > α}) ≤ C̃B(α)µ(E).
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Subsequently letting r tend to infinity shows that

µ({ω ∈ Ω : M∗BχE(ω) > α}) ≤ C̃B(α)µ(E).

Hence C∗B(α) ≤ C̃B(α).

4. Solyanik estimates for the ergodic strong maximal operator.
The proof that follows utilizes the transference principle developed in the
previous section, together with the Euclidean counterpart of the desired
estimate, contained in Theorem 1.3.

Proof of Theorem 1.8. We now establish the desired Solyanik estimates
for the ergodic strong maximal operator M∗S associated with some collection
of commuting measure preserving transformations U1, . . . , Un on a probabil-
ity space (Ω,Σ, µ). Remember that M∗S = M∗BS where BS denotes the collec-
tion of open rectangles in Rn that contain the origin and have sides parallel
to the coordinate axes. By the transference theorem of the preceding section,
it suffices to prove an equivalent Solyanik estimate for the corresponding dis-
crete strong maximal operator M̃S acting on functions on Zn. We will obtain
such Solyanik estimates by taking advantage of known Solyanik estimates
for the geometric strong maximal operator MS acting on functions on Rn,
given by Theorem 1.3.

To that end, recall that M̃S is given by

M̃Sf(m) := sup
0∈R∈Rn

1

#(R ∩ Zn)

∑
j=(j1,...,jn)∈R∩Zn

|f(m+ j)|, m ∈ Zn,

where the supremum is taken over all open rectangles in Rn containing the
origin whose sides are parallel to the coordinate axes.

To each set Ẽ ⊂ Zn we associate a set E ⊂ Rn defined by

χE(x1, . . . , xn) := χẼ(bx1c, . . . , bxnc), (x1, . . . , xn) ∈ Rn.

Here, for z ∈ R we denote by bzc the greatest integer not exceeding z. With
this definition we have

#Ẽ =
∑

(j1,...,jn)∈Ẽ

∣∣∣ n∏
k=1

[jk, jk + 1)
∣∣∣ = |E|.

Let m = (m1, . . . ,mn) ∈ Zn and R ∈ BS. For any set Ẽ ⊆ Zn we have

1

#(R ∩ Zn)

∑
j∈R

χẼ(m+ j) =
1

#(R ∩ Zn)

∑
j∈R

�
∏n
k=1[mk+jk,mk+jk+1)

χE(buc) du

=
1

|R′m|

�

R′m

χE(u) du
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where R′m ⊆ Rn is a rectangle in Rn whose sides are parallel to the axes with
R′m ⊇ Rm := (m1,m1 + 1) × · · · × (mn,mn + 1). Note that infRm MSχE ≥
M̃SχE(m). Defining Ẽα := {m ∈ Zn : M̃SχẼ(m) > α} we thus have

#Ẽα =
∣∣∣ ⋃
m∈Ẽα

Rm

∣∣∣ ≤ |{x ∈ Rn : MSχE(x) > α}| ≤ CS(α)|E| = CS(α)#Ẽ

by the definition of CS(α) and the fact that #Ẽ = |E|. Thus, recalling that
C̃S(α) denotes the sharp Tauberian constant with respect to α associated
to M̃S, we have proven that C̃S(α) ≤ CS(α) for all α ∈ (0, 1). Now the
transference result of Theorem 3.1 together with the Solyanik estimate for
the strong maximal function of Theorem 1.8 implies that

C∗S(α)− 1 ≤ C̃S(α)− 1 .n (1/α− 1)1/n

for α sufficiently close to 1.

5. Solyanik estimates for the centered ergodic Hardy–Little-
wood maximal operator. The proof below relies again on the transfer-
ence principle of Theorem 3.1.

Proof of Theorem 1.9. Recall that M̃HL,c is the discrete centered Hardy–
Littlewood maximal operator defined on L1(Zn) by

M̃HL,cf(m) := sup
B∈BHL,c

1

#(B ∩ Zn)

∑
j=(j1,...,jn)∈B∩Zn

|f(m+ j)|, m ∈ Zn.

We will show that M̃HL,c satisfies the Solyanik estimate

C̃HL,c(α)− 1 .n 1/α− 1

for α sufficiently close to 1. Recall that C̃HL,c(α) is the sharp Tauberian
constant of M̃HL,c associated with α as defined in §1.

Fix now 0 < α < 1, and let Ẽ be a nonempty finite subset of Zn. Setting
Ẽα := {m ∈ Zn : M̃HL,cχẼ(m) > α} it is easy to see that Ẽα is a finite set.

Then, for each m ∈ Ẽα there exists a Euclidean ball Bm ∈ Rn such that

1

#(Bm ∩ Zn)

∑
w∈Bm∩Zn

χẼ(w) > α and Ẽα ⊆
⋃

m∈Ẽα

Bm.

By the Besicovitch covering theorem (see e.g. [9]), there exists a subcollection
{Bj}Nj=1 ⊆ {Bm}m∈Ẽα such that Ẽα ⊆

⋃
j Bj ∩Zn and

∑
j χBj ≤ An, where

An > 0 is a dimensional constant. We can now estimate

#Ẽα ≤ #Ẽ + #
⋃
j

(Bj ∩ Zn) \ Ẽ ≤ #Ẽ +
∑
j

#(Bj ∩ Zn) \ Ẽ

≤ #Ẽ +
1− α
α

∑
j

#Bj ∩ Ẽ ≤ #Ẽ +An
1− α
α

#Ẽ.
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This shows that C̃HL,c(α) ≤ 1+An(1− α)/α. Now Theorem 3.1 implies that

C∗HL,c(α)− 1 ≤ C̃HL,c(α)− 1 .n (1− α)/α,

as we wanted to show.

6. Solyanik estimates for the uncentered ergodic Hardy–Little-
wood maximal operator. Once more, the reasoning below follows the
familiar pattern of proving a corresponding result for a suitable discrete
geometric maximal operator and then using the transference principle of §3.

Proof of Theorem 1.10. Let us consider the discrete uncentered maximal

operator M̃HL defined on L1(Zn) by

M̃HLf(m) = sup
B∈BHL

1

#(B ∩ Zn)

∑
j=(j1,...,jn)∈B∩Zn

|f(m+ j)|, m ∈ Zn.

We will show that M̃HL satisfies the Solyanik estimate

C̃HL(α)− 1 .n (1/α− 1)1/(n(n+1))

for α sufficiently close to 1, where C̃HL(α) is the sharp Tauberian constant
of M̃HL associated with α as defined in §1.

Fix now 0 < α < 1, and let Ẽ be a nonempty finite subset of Zn.
Set Ẽα := {m ∈ Zn : M̃HLχẼ(m) > α}. We may assume without loss of

generality that Ẽα \ Ẽ 6= ∅.
Suppose that m ∈ Ẽα \ Ẽ. Then there exists a Euclidean ball Bm ⊂ Rn

such that m ∈ Bm and

1

#(Bm ∩ Zn)

∑
w∈Bm∩Zn

χẼ(w) > α.

Furthermore, since m ∈ Bm ∩ Zn \ Ẽ 6= ∅ we have the elementary estimate

α <
#(Bm ∩ Zn) ∩ Ẽ

#(Bm ∩ Zn)
≤ #(Bm ∩ Zn)− 1

#(Bm ∩ Zn)
,

and thus #(Bm ∩Zn) > (1−α)−1. Letting cm denote the center of Bm and
rm denote the radius of Bm, we find by elementary geometric considerations
that ⋃

w∈Bm∩Zn
(w + [−1, 1)n) ⊂ B(cm, rm +

√
n),

where B(c, r) denotes the open ball in Rn of radius r centered at c. Moreover,

B(cm, rm −
√
n) ⊂

⋃
w∈Bm∩Zn

(w + [0, 1)n).
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So

Cn(rm −
√
n)n ≤ #(Bm ∩ Zn) ≤ Cn(rm +

√
n)n

for some dimensional constant Cn > 0.

Just as previously, associate now to the discrete set Ẽ ⊂ Zn the set
E ⊂ Rn defined by

χE(t1, . . . , tn) := χẼ(bt1c, . . . , btnc), (t1, . . . , tn) ∈ Rn.

Observe that

B(m,
√
n) ⊂ B(cm, rm +

√
n)

so that for all y ∈ B(m,
√
n) we have

MHLχE(y) ≥ #(Ẽ ∩Bm)

Cn(rm +
√
n)n

> α
#(Bm ∩ Zn)

Cn(rm +
√
n)n

> α
Cn(rm −

√
n)n

Cn(rm +
√
n)n

= α

(
rm −

√
n

rm +
√
n

)n
.

Note that Cn(rm +
√
n)n ≥ #(Bm ∩ Zn) > (1 − α)−1 and thus rm ≥

(Cn(1− α))−1/n −
√
n. Thus the previous estimate implies that

MHLχE(y) > α

(
(Cn(1− α))−1/n − 2

√
n

(Cn(1− α))−1/n +
√
n

)n
=: c(α, n), ∀y ∈ B(m,

√
n).

We conclude that

m ∈ Ẽα\Ẽ ⇒ MHLχE > c(α, n) on (m1,m1+1)×· · ·×(mn,mn+1) =: Qm.

Suppose on the other hand that m ∈ Ẽ ∩ Ẽα. Then Qm ⊆ E, and thus
MHLχE is identically 1 on Qm.

Combining the estimates and observations above, we see that if m ∈ Ẽα
we must have MHLχE(x) > c(α, n) on Qm. Hence

#Ẽα =
∣∣∣ ⋃
m∈Ẽα

Qm

∣∣∣ ≤ |{x ∈ Rn : MHLχE(x) > c(α, n)}|

≤ CHL(c(α, n))|E| = CHL(c(α, n))#Ẽ.

This proves

C̃HL(α) ≤ CHL(c(α, n)).

It is obvious that limα→1− c(α, n) = 1. Thus, if α is sufficiently close to 1,
depending only upon the dimension n, Theorem 1.2 implies

C̃HL(α)− 1 .n (1− c(α, n))1/(n+1).

By direct computation one may show that

(1− c(α, n))1/(n+1) . (1− α)1/(n(n+1)) as α→ 1−.
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Thus the previous estimate together with the transference principle of The-
orem 3.1 shows that

C∗HL(α)− 1 ≤ C̃HL(α)− 1 .n (1− c(α, n))1/(n+1) .n (1− α)1/(n(n+1))

for α sufficiently close to 1, as desired.

7. Future directions for research involving Solyanik estimates
in ergodic theory. Our original foray into the topic of Solyanik estimates
in ergodic theory has been promising, and we close here with some problems
that we believe to be appropriate directions for future development in the
subject.

Problem 7.1. In this paper we have been concerned with ergodic av-
erages associated to discrete sums. It is natural to consider whether or not
there exist Solyanik estimates associated to maximal operators correspond-
ing to measurable flows {T t} on a probability space (Ω,Σ, µ). Solyanik
estimates in this scenario involve substantial technical issues not treated in
this paper, although we look forward to considering this topic on a later
occasion. We wish to thank the anonymous referee for suggesting this line
of inquiry.

Problem 7.2. An intriguing question is whether the exponent 1
n(n+1)

occurring in the Solyanik estimate of Theorem 1.10 is sharp, in particular
holding for all choices of commuting measure preserving transformations
U1, . . . , Un. Indeed, we do not know if the exponent 1/(n+ 1) is sharp for the
Solyanik exponent associated to CHL(α) given in Theorem 1.2. The problem
of the optimal Solyanik exponent is discussed in detail in [4], where evidence
is given that suggests the optimal exponent might be as large as 1/n or
possibly even 2/(n+ 1).

Problem 7.3. It is natural to ask, provided B is any sort of reason-
able basis, whether or not ergodic Solyanik estimates must hold for C∗B(α).
In particular, if B is a basis consisting of convex subsets in Zn such that
C∗B(α) <∞ for every 0 < α < 1, must

lim
α→1−

C∗B(α) = 1

hold? It is highly unlikely that the convexity condition can be dispensed
with; see [1] for comments regarding bases of nonconvex sets in Rn for
which Solyanik estimates for the associated geometric maximal operators
are known not to hold.

Problem 7.4. It is not hard to see that for certain choices of commut-
ing measure preserving transformations U1, . . . , Un on a probability space
(Ω,Σ, µ) one might obtain especially good Solyanik estimates for C∗B(α).
Indeed, consider for example the case U1 = · · · = Un = Id where Id is the
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identity operator. It is natural to consider collections of transformations
U1, . . . , Un which yield the worst possible Solyanik exponent associated to
a given basis. We suspect that, in many cases, the worst possible exponent
may be obtained by requiring that U1, . . . , Un be nonperiodic in the sense of
Katznelson and Weiss [8]. It would be natural to first test this hypothesis in
the special case that B is the relatively well-understood basis BHL or BS, and
very likely the techniques devised by Hagelstein and Stokolos [7] on sharp
transference estimates would be helpful here.

Problem 7.5. The authors have recently shown [5] that Solyanik esti-
mates may be used to establish smoothness results for the functions CHL(α)
and CS(α) on (0, 1). In particular, both functions lie in the Hölder class
C1/n(0, 1). It is natural to consider whether or not, in the ergodic setting,
the Tauberian constants C∗HL(α) and C∗S(α) satisfy Hölder continuity esti-
mates or are possibly even differentiable or smooth.
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