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A NEW GENERALIZED CASSINI DETERMINANT

IVICA MARTINJAK and IGOR URBIHA (Zagreb)

Abstract. We extend the notion of Cassini determinant to recently introduced hyper-
fibonacci sequences. We find the Q-matrix for the rth generation hyperfibonacci numbers
and prove an explicit expression of the Cassini determinant for these sequences.

1. Introduction. Given a second order recurrence relation

(11) Ap+2 = AQp+1 + Banv

where o and /3 are constants, a sequence (ag)r>0 is called a solution of
if its terms satisfy this recurrence. The set of all solutions of forms
a linear space, meaning that if (a)r>0 and (by)r>0 are two solutions then
(a4 b) k>0 is also a solution, and for any constant ¢, (cag)k>0 is a solution.
Using these basic properties one can derive the identity

(1.2) Ambm—1 — Gm—1bm = (=)™ (arbo — aob1),

where (ag)r>0 and (bg)r>0 are any two solutions of [VO]. When o =
B =1 and the first two initial terms are 0 and 1, relation defines the
well known Fibonacci sequence (Fy,)p>0. One can find more on this subject
in the classical reference [VA]. In the case of the Fibonacci sequence, relation
(1.2) with a,, = F,+1 and b,, = F}, reduces to

(1.3) Fo 1Fny1 — F2 = (—-1)"

and it is called Cassini’s identity [GKP) IMI, [WZ]. This relation can also be
written in matrix form as

(1.4) det< Fe F"“) = (-1

Fn+1 Fn+2

Stakhov [ST] found a generalization of the Cassini identity for the p-Fibonacci
numbers. Krattenthaler and Oller-Marcén [KQOJ also present a similar result.
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In this paper we study the hyperfibonacci sequences defined by

(15) FO=N"F"Y F9=F, F’=0 F’ =1,

where r € N and F), is the nth Fibonacci number. The number F,S’“) will be
called the nth hyperfibonacci number of the rth generation. These sequences
were recently introduced by Dill and Mez6 [DM]. Several interesting number-
theoretical and combinatorial properties of these sequences have already
been proven, e.g. in |[CZ].

Here we define the matrix

() (r) ()
SO
A _ Fn+1 Fn+2 e Fn+r+2
F?ECr)rJrl FT(L:)TJrQ T FV(L:)27’+2

and we prove a formula for det(A, ) extending (1.4).

2. Q-matrix of the hyperfibonacci sequences. According to defini-
tion (|1.5)), we have

(2.1) =

-1
ntl1 = F + F?E:-l )

In the case r = 1 the second term Fygfﬁl)
recurrence relation,

1 1
FT(L+)3 = F7522 + (Fél)z F75+)1> (F7521 — F{V),

thus we have

is determined by the Fibonacci

1
(2.2) FY, =2r, — F).
Now, iteratively using (2.2)) we derive the recurrence relation
(2.3) FO, = FY 4+ FO 4
by computing
F( ) F( ) + 2F(1) _ F(l) _ F(l)

n+3 = T n+2 n

1 1
- £+ P, + 2800 — £, = F, ~ F)

7522 + F(l) 4t F?El) _ Fél) _ Fl(l) .M

_ @ (1)
When r = 2 we use the same approach to get the recurrence for the second
generation of hyperfibonacci numbers,

(2.4) FO, =F% +F? +n+2
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Namely, in this case the second term in (2.1)) is determined by the recurrence
relation ([2.3)). This means that again we can perform the (n+1)-step iterative
procedure, this time using

(2.5) F®, —2Fr® —F® 1.

The fact that terms indexed by 3 through n cancel each other and that n+1
ones remain, completes the proof of (2.4)).

Recall that polytopic numbers are a generalization of square and trian-
gular numbers. These numbers can be represented by a regular geometrical
arrangement of equally spaced points. The nth regular r-topic number P,§’")
is equal to

(2.6) P = (” e 1>.

r

When r = 3, the ith step of the iterative procedure described above re-
sults in an extra ¢, which sum to a triangular number (”;3) after the final
(n + 1)st iteration. Furthermore, in the next case we add the ith triangu-
lar number in the ith step of the iteration. According to the properties of
polytopic numbers, these numbers sum to the tetrahedral number ("§4). In
general, in the ith step of the iteration we add the ith regular (r — 1)-topic
number, and the sum of these numbers after the final step of the procedure

is the regular polytopic number (:j ) Now we collect all this reasoning into

LEMMA 2.1. The difference between the nth r-generation hyperfibonacci
number and the sum of its two predecessors is the nth regular (r — 1)-topic
number,

r r r n4+r
(2.7) F, = ,5+)1+F7§)+<r_1>.
We can also write (2.7 as
By = B+ P + PUSY.

Hyperfibonacci sequences can be defined by the vector recurrence rela-
tion

iy "

Fnr Fnr
(2.8) .+2 _ Qr+2 +1

F(T) F(T)

n4+r+2 n4+r+1
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where Q12 is a square matrix

0 1 0 0 0
0 O 0
(2.9) Qris = S
0 .- 1 0
0 --- 0 1
a1 92 43 - GQr41 Gr42
In order to determine gqi,...,q.42 we use the fact that terms from —r

through 0 of the rth generation hyperfibonacci numbers take values
0,...,£1,0,0,...,0,1,r4+1,....

This follows from Lemma [2.] since

(2.10) (n—2)+r :n(n+1)(n+2)---(n+7“72)'
r—1 (r—1)!
These expressions are obviously 0 for n =0,—1,...,—7.
In particular, when n = —r + 2 we get
0 o 1 0 --- 0 0 0
0 o o0 1 -+ 0
0 00 0 - 1 0 ’
1 o 0 o0 --- 0 1 0
Fy" @@ g3 Gl Gr2

meaning that ¢.40 = F2(T)

elements of @42,

. In the same way we obtain relations for all

qr+2 = F2(r)7
— F("') _ F(T)
dr+1 3 2 "d4r+2,
qr = F4r) - F[)ET)QT—FZ - FQ(T)QT—&-la

1= Dy~ Earsa =~ F
This reasoning gives Theorem
THEOREM 2.2. For the hypefibonacci sequences we have
(2.11) Arn = QrpaAr0,

where A, is defined in the introduction.
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Proof. Relation (2.8) in expanded form can be written as A,, =
Qr+2A4; n—1. Now the statement of the theorem follows immediately:

Ar,n = Qr+2Ar,n—1 = Q72~+2Ar,n—2 = Q;}-g-zAr,O- u

The elements ¢, ..., ¢-+2 can be given explicitly. In particular, expres-
sions for ¢, ¢r41, gr42 are

7'+1) _r3—7r
b T .

Gri2 =1+, QT+1:1_< 9 6

As an example, we calculate the hyperfibonacci numbers F3(2), F 4(2), e ,F9(2)
of the second generation, collected in the matrix As 3.

For the second generation of the hyperfibonacci sequences we have

o 1 3 7 0 1 0 O

1 3 7 14 0 O 1 0
Az = , Qu= ,

3 7 14 26 0 O 0 1

7 14 26 46 1 -1 -2 3

according to (1.5 and (2.9). Now we determine the matrix As 3 from The-
orem 2.2

3

0 1 0 O 0o 1 3 7 7T 14 26 46

Ay = 0 0 1 0 1 3 7 14 _ 14 26 46 79
’ 0 0 0 1 3 7 14 26 26 46 79 133

1 -1 -2 3 7 14 26 46 46 79 133 221

Note that the eigenvalues of Q4 are ¢, 1,1, ¢, where

_1+5 1-V5
27 2

¢ ¢ =

The class of matrices (2.9) has some further interesting properties. Here
we point out that all these matrices have determinant —1:

LEMMA 2.3. For allr € N,
det(QH_g) =—1.
Proof. We prove this by comparing the determinants of A, _, and A, _,_1,

Ar,fr = QrJrQAr,frfl'



214 I. MARTINJAK AND I. URBIHA

We have
(<170 0 "
0 0 0
det(A, 1) = det 3
0o 0 1 E",
0 1 r+4+1 Fr@l X
0 0 - 0 1
0 0 1 r+1
= (—1)" det : : :
0 1 - Fr(i)?) FT(Z)Q
1 or+l o B FY (r=1)x(r=1)

= =1y (=)l gyl

On the other hand, det(A, ) = (—1)"/2), which proves that
(2.12) det(A, ) = —det(A4, —r_1).

Now, the statement follows from the Binet—Cauchy theorem. m

It is worth noting that in [LLS], the authors give some properties of the
k-generalized Fibonacci (Q-matrix.

3. Cassini’s identity in matrix form
LEMMA 3.1.
F,—1 F,1—1 Fho—1
(3.1) det | Foo1—1 Fuio—1 F,3—-1]=(-1)" n>0.
Fopo—1 Fyy3—1 Fpg—1

Proof. Using the definition of Fibonacci numbers and elementary trans-
formations on rows and columns of determinants we get

Fo=1 Foi—1 Fpo—1
det | Fror =1 Fopo—1 Fppig—1
Fopo—1 Fopz—1 Fppg—1
F—1 Fopt — 1 Fpig—1
—det| F, -1 Fppo—1 Fpug — 1
FpdFoii—1 Fooi+ Furo—1 Fppo+ Fopg—1
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Fo—1 Fypi—1 Fho—1
=det | Frp1—1 Fupo—1 Fu3-1
1 1 1

F,—1 Fo—1 Fo+F1—1
=det | Fop1 —1 Fppo—1 Fhp+ Fopo—1

1 1 1
F,—1 Fpi1-1 1 F, Fnu1 0
- det Fn+1 - 1 Fn+2 - 1 ]. - det Fn+1 Fn+2 0
1 1 -1 1 1 -1

= —(FpFor2 = Fop) = (-1)" =

LEMMA 3.2. For the first generation of hyperfibonacci sequences,
(F)n0,

Fzgl)) F{:%l Fé}%Q

1 1 1 n

det | Foly Fppp Fpps| = (D%
PO R0 R0

n+2 n+3 n+4
Proof. By using the relation
(3.2) FM =F, -1
(which follows immediately from the elementary Fibonacci identity Y . Fj
= Fhy2—1,n>0) and Lemma we have
FY Fr(:k)l Félﬁz Foio—1 Fh3—1 Fupig—1

det | FY EU, EU | = det | By =1 Fuja—1 Fups— 1

Fr(zi—)2 FT(LQS F?E}i-)él Frnpa—1 Foys =1 Fupe—1
=(—1)". =
THEOREM 3.3. For allr € N andn € Z,
(3.3) det(A,.,) = (=1)"FLr+3)/2],

Proof. Using elementary transformations on matrices and Lemma [2.3
we get

RN LR LA

Fl(r) Fz(r) L. Fr(i)l FT(T’)
det(A, ) = det : : : :

F FO o B, R

U R ¢ P A
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o R R ED,
F” R F0,  ED
= —det : :
Fr(i)3 Fr(i)2 FQ(:)_5 FQ(Z:)_4
ROy RO B R
0 0 1
0 1 B
= (—1)"det : :
0 1 - B, E,
1 R Dy FY
LR R
o 1 - F7, Y
= (1) (=Dl ger | 0 - 0 [ = (—ple
1 B
0o 1

According to Theorem [2.2] we obtain
det(A, ) = det(Qry2)" det(Aro) = (—1)" det(Ayp)
_ (_1>n(_1>L(r+3)/2J _ (_1)n+L(r+3)/2J' .

Let M = M™n7) he a matrix with M;; = F(T)

W 1< <m
Theorem [3.3] can be restated as

det(M(n,r,rJrQ)) _ (_1)n+L(r+3)/2J.

Finally, let us show that for m > r + 2,
(3.4) det(M ™)y = 0.

The proof is by performing elementary transformations on M (™™") leading
to a matrix having one column consisting of zeros.
Take a look at the ith row of M/(mm7):

[FTS,:-)i—l Fr&?z F7(L:2i+1 e Fr&?i—‘rj—Q e FrS?ier—S F’rS,?i—l-m—Q]'

Using (2.1) and subtracting the jth element from the (5 + 1)st for j =
m—1,m—2,...,2,1 (thus simulating subtracting column j from column
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j+1in M) we get

(r) (r=1) p(r—1) (r—1) (r—1) (r—1)
[Fn:-i—l Fn:-z Fnii—f—l e Fn:-i—&-j—Q e Fn:—i—i-m—S Fn:—i—i-m—Q]'
We can repeat the process for j =m —1,m — 2,...,2 to get
-1 -2 -2 -2 -2
[Fr(z:)z‘—1 ngiz : FT(L:-i—f—)l ngz-i-&-)j—Q F7S,7:&—i+)m—3 Fr(L:—i—l-)m—Q]'
After repeating the process r times (for j =m —1,m —2,...,r), we get
-1 -2 1)
[FT(QF1 Fr(:H : Fr(zcri+)1 e FT(L+7;+T72 Foivror o Frvigm—al

Since m > r 4+ 2 we have n+i+r —1 <n+ i+ m — 4, so the above row
contains

[’ o Fn+i+r71 Fn+z’+r Fn+i+r+1 o ]

at positions r — 1, r and r 4+ 1. Subtracting the first two elements from the
third, we get

[' ’ 'Fn+i+r—1 Fn+i+r 0-- ]

That way we arrive at a matrix with a column consisting of zeros, whose
determinant is therefore zero.
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