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Exotic Bailey—Slater spt-functions III:
Bailey pairs from groups B, F, G, and J

by

CHRIS JENNINGS-SHAFFER (Corvallis, OR)

1. Introduction. We proceed with the study of spt-crank-type func-
tions, begun in [18] and continued in [I7]. We begin with a brief introduction.
We recall that a partition of n is a non-increasing sequence of positive in-
tegers that sum to n. For example, the partitions of 4 are 4, 3+ 1, 2 + 2,
24+1+4+1,and 14+ 1+ 1+ 1. We have the Andrews smallest parts function
from [3], spt(n), as the weighted count on partitions given by counting a
partition by the number of times the smallest part appears. From the par-
titions of 4 we see that spt(4) = 10. In this article we consider variations of
the smallest parts function. We use the standard product notation
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We recall that a pair of sequences (a, 3) is a Bailey pair relative to (a, q) if
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One may consult [2] for a history of Bailey pairs and Bailey’s Lemma.
Motivated by the prototype spt-crank functions of [5] and [16] for par-
titions and overpartitions, we consider an spt-crank-type function to be a
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function of the form
o0

P(Q)) Z(z’ 2713 Q)nqnﬁna

(2,275 @)oo 24

where P(q) is some product and 3 comes from a Bailey pair relative to (1, q).
We consider an spi-type function to be the z = 1 case of an spt-crank-type
function. That is, for a Bailey pair (o™, %) relative to (1,¢) we have the
spt-crank-type and spt-type functions given by

Sx(z,q)—mz:(z,z‘ Ond" By = Z Z Mx (m,n)z"q",

n=1 n=1m=—00
Sx(q) = Sx(1,q) Zsptx

The author is in the process of studying interesting spt-crank-type and
spt-type functions. This article introduces the last of the spt-crank-type
and spt-type functions arising from Bailey pairs in [26] and [27] that possess
simple linear congruences of the form spty(pn + b) = 0 (mod p), where
p is an odd prime. In [I§] the author introduced the spt-crank-type func-
tions Sa1(z,q), Sas(z,q), Sas(z,q), and Sa7(z,q) which correspond to the
Bailey pairs A(1), A(3), A(5), and A(7) of [26]. In [I7] Garvan and the au-
thor introduced the spt-crank-type functions Se1(z, q), Scs(z, q), S22, q),
and Sp4(z,q). These spt-type functions satisfy many linear congruences,
in particular, spt;(3n) = spty3(3n + 1) = sptge(3n) = sptpu(B3n+1) =
0 (mod 3), spt43(5n + 1) = spt45(5n +4) = spt 47(5n + 1) = spt (5n + 3)
= sptos(5n + 3) = 0 (mod 5), and spt45(7n + 1) = 0 (mod 7). Here we
consider the Bailey pairs B(2), F(3), G(4), and the entry just above G(4)
from [26], and J(1), J(2), and J(3) from [27].

We prove simple linear congruences for the spty(n) by considering the
function Sx((,q), where ¢ is a root of unity. For ¢ a positive integer we
define

MX(kata n) = Z MX(mvn)‘
m=k (mod t)
We note that
sptx(n Z Mx (k,t,n)

When (; is a tth root of unity, we have

o
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The last equation is of great importance because if ¢ is prime and (; is
a primitive tth root of unity, then the minimal polynomial for (; is
142+ 22+ -+ 271 Thus if the coefficient of ¢"V in Sx((,q) is zero,
then 22;10 Mx (k,t, N)CF is zero, and so Mx (0,t, N) = Mx(1,t,N) = --- =
Mx(t —1,t,N). But then we would have spty(N) =t- Mx(0,t, N), and so
if Mx(0,t, N) is an integer then clearly sptx (/N) = 0 (mod ¢). That is, if the
coefficient of ¢ in Sx({;,q) is zero, then spty(N) = 0 (mod ¢). Thus not
only do we have the congruence spt y (V) = 0 (mod t), but also the stronger
combinatorial result that all of the Mx (r,t, N) are equal.

In [I8] the author found dissection formulas for the S4;(z,q) when z is
the appropriate root of unity to establish the various congruences. In [17]
Garvan and the author similarly found dissection formulas for the S¢;(z, q)
and Sg;(z,q) when z is the appropriate root of unity. The main difference
between those two papers is that the S¢;(z,q) and Sgi(z,q) could be ex-
pressed in terms of functions with known dissections, whereas the S4;(z, q)
could not. Additionally, in [I7] we found interesting series representations
for the Sci(z,q), Sgi(z,q), and the Sa;(z, ¢) that are valid for all values of z,
rather than just a fixed root of unity. These series representations were a
combination of single series representations that showed that some of the
spt-crank-type functions could be written just in terms of infinite prod-
ucts, and double series representations that could be written as so called
Hecke—Rogers-type double sums.

In the next section we define the new spt-crank-type and spt-type func-
tions and state our main results, which are congruences for the various
spt-type functions, single series representations for some of the spt-crank-
type functions, and dissection formulas for the other spt-crank-type func-
tions.

2. Preliminaries and statement of results. To begin we use the
Bailey pair B(2) from [26] and J(1), J(2), and J(3) from [27]. Each of these
is a Bailey pair relative to (1, ¢q), and in all cases ap = Sy = 1. We have:
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(—1)k1q(Ok*=3k)/2 ifn=3k—1,
g3 46 ) J3 K (9K2—3k)/2 .
P = (@ D)2n (G D ap” =9 (=1)"q (14 ¢°%) if n = 3k,
e (C1)FHGOREIZ i gk,

We note that these Bailey pairs from group J also appear as unlabeled
Bailey pairs on page 467 of [26]. Additionally, we use the following Bailey
pairs relative to (1, ¢?), from [26]:

F3 _ q " F3:{1 if n=0,

, o'
" (4,4%6¢%)n " g ifn > 1,
/BG4 (*1)nqn2 G4 ]. lf n = 0,
= N [0 =
T (@5 4)n(=4 ¢ " (=1)"g"=D/2(1 4 ¢") ifn>1,
2 .
AGA (—1)ngm AGA 1 if n =0,
e s (87 =
& (¢* q¢*)n (=4 ¢*)n " (=1)"g"=3/2(1 4 ¢3) if n > 1.

The Bailey pair AG(4) is the entry just above G(4) in [26]. For each Bailey
pair we define a two-variable spt-crank-type series as follows:

(G000 ~= (2,275 0)nd™
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227 9) (2,275 @)oo ; (¢ @)n
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Sra(z,q) = >
72(54) (q3;q3)oo(zazIQQ)oo; (45 Q)2n (@ @)n—1
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7% 0) (0% 0%)oc (2, 2715 @)oo ; (45 @)2n (@ Dn—1

While it is not true that J(1) = J(2) + J(3), because 8§! = 1, we do have
Bt = B2 + B for n > 1, and so Syi(z,q) = Sra(z,q) + Ss3(z,q).

Next we define the corresponding spt-type functions. For B2, J1, J2,
and J3 we just set z = 1 and simplify the products, but for F3, G4, and



Ezxotic spt functions II1 321

AG4 we make some additional rearrangements:
2n

oo
q
Se2(q Zsptm =D
_ +1. ’
= (=) (")

o n
q
SJ1 spt = ,
Z n nz::l (1 =¢")?(@"" 5 @)n-1(4"" ¢*)oa
o
Sr2(q ZSth? :Z qns 3y
(0 Dn1(67 ¢ ) o
Si3(q) = ) sptyz(n)g" =
; nzl (" Dn+1(0°"5 ¢%)
OO St 2n+1.
"(¢*" %) oo
Sr3(q) = ) sptps(n)q" =
; #3(7) nzl (1= ¢*)%(¢*% ¢*) o
= " (@5 0)oo
B ; (1= ¢*)2(" 1 @)n(@® % ¢*) o (€2"7216%)o0”
o0
Scu(q) = sptaa(n)q"
n=1
i (1) 2 (—¢*" %) oo
o — (1 _ q2n)2(q2n+2; q2)n+1(q2n+2; q2)oo(q4n+6; q4)oo
> ( 1)nqn2+2n
= ; (1 o an)Q(qn—‘rl; q) (q2n+27 q ) (q4n+6; q4)oo
ECAST Gl e
(¢*"2%¢%) o ’
0
Sacalq) = Z sptaa(n)q
n=1
Re (1) (=¢*™'; )
= (1= ¢?)2(*" 201 (022 ¢%) oo (077163 ¢%)
e (—1) g™
= (1= ) (@ )26 )1 (07165 ¢Y) oo
(= )
(q2”+2,q )oo

We recall that an overpartition is a partition in which a part may be
overlined the first time it appears; overpartitions can be identified with
partition pairs (71, m2) where 7y is restricted to having distinct parts. For 7
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either a partition or an overpartition, we let s(m) denote the smallest part
of 7, spt(m) denote the number of times s(7) occurs, and #(m) denote the
number of parts of w. For overpartitions we let a superscript n in these
operators mean the restriction to the non-overlined parts and a superscript
o mean the restriction to the overlined parts. For example, #°(m) is the
number of overlined parts of the overpartition 7 and s™(m) is the smallest
non-overlined part. We can now give the combinatorial interpretation of the
various spt-type functions.

We see spt go(n) is the number of partitions 7 of n weighted by the num-
ber of times s(7) appears past the first occurrence. From this interpretation
we see that sptgy(n) = spt(n) — p(n). Next, spt;;(n) is the number of par-
titions 7 of n weighted by the number of times s(m) appears, where the
allowed parts are those from s(m) to 2s(m) — 1 and those that are divisible
by 3 and at least 3s(m). We see spt j5(n) is the number of partitions 7 of n
where the parts are those from s(m) to 2s(7) and those that are divisible by
3 and at least 3s(m). Similarly spt j3(n) is the number of partitions 7 of n
where the smallest part appears at least twice and the parts are those from
s(m) to 2s(m) and those that are divisible by 3 and at least 3s(7).

From the generating functions we have spt ;;(n) = spt jo(n) + spt j3(n);
as pointed out by the referee it is also not difficult to explain this com-
binatorially. Suppose we fix n and let Ji(n) denote the set of partitions
counted by spt ;;(n). Then J1(n) is the set of partitions m of n where no
part m; satisfies 2s(7) < m; < 3s(w), and if w; > 3s(w) then 3 divides ;.
Similarly J2(n) is the set of partitions 7 of n where no part m; satisfies
2s(m) < m < 3s(m), and if m; > 3s(m) then 3 divides m;. Lastly J3(n)
is the set of partitions 7 of n where s(m) appears at least twice, no part
m; satisfies 2s(m) < m < 3s(m), and if m; > 3s(m) then 3 divides ;.
Given a partition 7 € J2(n), we obtain a partition of J1(n) by taking
the part 2s(m) and writing it as s(mw) + s(7), so the smallest part appears
two more times for each time 2s(7) appeared; this function is clearly onto
and is exactly [(spt(m)+ 1)/2]-to-one. Given a partition 7 € J3(n), we
obtain a partition of J1(n) in the same way, but now we miss the ele-
ments of J1(n) whose smallest part appears exactly once, and this function
is |spt(m)/2]-to-one. Since |(spt(m) +1)/2| + |spt(m)/2] = spt(m), we see
that spt () = spt5(n) + spt j3(n).

For Sr3(q), we first note that

q n 3n 5n ™ In
S S 2 3 4 5 e

(1= gy ¢ +2¢7 +o¢ +49 " +o¢ +
We let F'3 denote the set of pairs (mj,m2) where 7 is a partition with
spt(m) odd and the parts that are at least 2s(7) must be even; and 79 is an
overpartition where all non-overlined parts are even, s"(m2) > 2s(m) + 2,

n
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and s°(m2) > s(m) + 1. Then sptpg(n) is the number of partition pairs
(m1,m2) of n from F3, weighted by (—1)#°(™)(spt () +1)/2.
For Sca(q), we first note that

qn2+2n

e
We let G4 be the set of pairs (m1,m2) where 71 is a partition such that
spt(my) > s(m1) + 2, spt(m1) + s(m1) is even, parts larger than 2s(m;) must
be even, and parts larger than 4s(m) must be congruent to 2 (mod 4); and
9 is an overpartition with all non-overlined parts even, s™(ma) > 2s(m) +2,
s°(mg) > s(m) + 1, and such that overlined parts that are at least 2s(m) + 1
are odd. For an overpartition 7, we let k,,(7) denote the number of overlined
parts of 7 that are less than 2m+1. Then spt4(n) is the number of partition
pairs of n from G4, weighted by (—1)*™)F ks (72) (gpt (7)) — s(mr)) /2.

For Saca(q), we first note that

n2

n(n+2) + zqn(n+4) + 3qn(n+6) + 4qn(n+8) 4.

¢
(1—¢*)?
We let AG4 be the set of pairs (my,m2) where mp is a partition such that
spt(my) > s(my), spt(my) + s(m) is even, parts larger than 2s(7;) must be
even, and parts larger than 4s(m) must be congruent to 2 (mod 4); and
is an overpartition with all non-overlined parts even, s"(me) > 2s(m1) + 2,
s°(m2) > s(m) + 1, and such that overlined parts that are at least 2s(m;) + 1
are odd. Then spt 44(n) is the number of partition pairs of n from AG4,
weighted by (—1)*) s (™) (gpt () — s(7) + 2) /2.
These functions satisfy the following congruences.

— q"(”) + 2q”(”+2) + 3qn(”+4) + 4qn(n+6) 4o

THEOREM 2.1.

sptg(3n) =0 (mod 3),  sptay(5n +4) =0 (mod 5),
spt 1 (3n4+2) =0 (mod 3),  sptags(5n+4) =0 (mod 5),
spt j(3n) =0 (mod 3), sptpe(Tn+1) =0 (mod 7),
spty3(3n +1) =0 (mod 3),  sptpy(7n+5) =0 (mod 7),
sptpe(5n +1) = 0 (mod 5), sptps(7n) =0 (mod 7),
sptpa(5n +4) =0 (mod 5), sptps(7Tn+4) =0 (mod 7),
sptps(5n) =0 (mod 5), sptps(7n+6) =0 (mod 7)

sptpg(5n +4) =0 (mod 5),

That spt j; (3n+2) = 0 is actually known. Patkowski proved this in [23].
Although his proof is dependent on Bailey’s Lemma, it is not through an
spt-crank-type function as we have here. Since spt gy (n) = spt(n) —p(n), the
congruences spt gy (5n+4) = 0 (mod 5) and sptpo(7n+5) = 0 (mod 7) also
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follow from the fact that both spt(n) and p(n) satisfy these congruences. We
use the spt-crank-type functions to prove the congruences of Theorem
as explained in the introduction. This will be a corollary to the following

two theorems.

THEOREM 2.2.

21) (1+2)(z.27" ¢ 0)Sn(2.q)
5 (1—¢¥=3)(1 - ¢%)
x (1= =772+ ¢+ ¢772 = g7,
(22)  (142)(227" ¢ 0)0eS52(2,9)
B i (1— 29" 1)1 = 20)z 7 (— 1)j+1qj(j—1)/2
< (1— ¢ 31— ¢9)
) (1= g/t — g% g1 4 P73 q6j—3)’
(23) (1+Z)(Z,Z , 454 )OOSJS(Zuq)
B i (1— 2771 (1 = 29)2 9 (=1)I 1= 1)/2
= (1 =¢=2)(1 = ¢%)
) (@Y= = TR g g g gL i3 52,
(24)  (1+2)(227",¢0)ocSr3(2,q)
= > (== )R T (Y
j=—00
25)  (1+2)(z2 5 D)wSalza) = 3 (1= )1 =) T,
j=—o00
(26)  (1+2)(z2 1 )wSaca(z0) = > (1— 2711 - 29)21 g%,
j=—o00
THEOREM 2.3.
25. 25 10. 25 25. 25
(27) SB2(C57Q) =1- (q ,q[qg,)ozgg]Q’q ]Oo + q2 ([2101325])00
25. 25 5. 25
959 )oold 39 oo
1 o0 (_1)nq75n(n+1)/2
+(1-G- G (5 ) > 1= 245
00 (_1)nq75n(n+1)/2
+(G+ ¢)d° () >, 1 gontio

n=—oo
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(2.8) Sp2(¢r,q)
49. 49 21. 49
= C7 + C? - (<7 + C?) (q iqq77 31027[(2497]1 ]OO

(7" ") o [q*; ¢*°
[q7, *%; %o

49. 49
4 (G e g

49, 49 49, 49 7. .49

q*5q 7iq q:q
+(1+C7+<$+<$+<$)q4( 21. 49)Oo+q6( 14 )(2)?[ 49 ]OO

(4?1 ¢%) o ', ¢?1; ¢%) o

+¢2

1 asd (_1)nq147n(n+1)/2
1 6y 7
+ ( + C7 + C?)q (q49; q49)oo nz_:oo 1— q49n+7
1 0 (71)nq147n(n+1)/2
— (G + C?)q13449‘ 19 Z On+14
(@:¢")0  —~  1—g*"
1 X (—1)nglTnn+))/2
+ 1+ G+ g Z ont2l
(@00 —~  1—g*"
(29)  Sra(Gaq) = q(qlg;qlg)oo(qg;q9)oo e (¢"% 0" (0% ¢%) o
’ (4% ¢%) o (@°:¢°)%(¢% %)%,

(210)  Sps(s.q) = LC0 )00 BHGHG (6767 )e0l0"1 0 e
’ [qlo; q50]oo 5 (q25; q50)oo[q10; q50]oo
1426 +2¢5 2 (473 4*) o [0"; 4% 0
5 [q5; QZS}OO[QQO; q50]oo
3+ G+ G 2 (6%50%)old’s % )o0
5 [47%: ¢*°]os [0 ¢°) o0
_1426+2G 7 (4°% 4™ oo [4”; 4™
5 (4775 4°%)o0[47%; %)
(¢%54%)o0
[¢2%;¢%] o’
(2.11) SF3(<7 q) _ 18 +9¢7 + 3C§ + 3C75 + 9C$q(q98; q98)00[q35§ qgg]oo
’ 7 (4% ¢%)o0la"; 4%
54607 +203+200 + 6<$q(q14; 7")oo
7 (74"
L2+ G -2 -2 + C?q(ff‘g; 0*)o0l6*; 4% oo
7 [4*'; ¢*%)o0
4+ 2¢r + 36 +30 + 267 (6%54") o0l 4% oo
- q 7. 49
7 [47; %]

_l’_

+(1+6G+EG)d°
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49, 49) (q49; q49)oo[q7; q49]oo

DO it T e PSRN 6
[47; 4]0 [4?8; ¢°%] T (1+C7+C7)[q21;q49]oo[q14;q98]oo
(@ ¢ ool®"; 4]0

+ 1+ G+ G+ G +C7)[ %, %) o 10%2; ¢80

L 2ra- 202 — 22 + ¢ 5(”%¢”)ocld®; %o

- q (@ 0%) oo [4%5; 0%
(2.12)  Sca(Gs.q)
__G: 5 (q50 q50)oo G (¢°%;¢°°) o
T @ )l e T (G ) 0o [0 ¢V
e 100 100) [ : g200] L (q190; g100) _[g30; ¢200]
-¢ [q107q50]oo[q15 quO] — (G +6)d° 1720 4590 [ ¢100] o
100. 100 200
- (1 4 (q 5 q ) [q 5 q ]
(A+6+6)7 (4" 4] 0[q%; ¢ o
_ 12(q100?q100) [q 7q200]
[4%%; 4% 045 ¢
(2.13)  Saca(Gs.9)
(¢19; ¢100)__[g7; ¢200] (qIOO’qIOO) 1470 2]
=9 [q107g50]oo[q35 q;]oo] — (G + G’ [420; 0] o [4%5; q100]
G190 g100Y g0 q200] 0 (q100; g100)  [40; 4290
—(1+G +C§)q6([q10 q50]) [(1[157(1100]0]O -4 ([q2o q50]) [q[15 qloo]]
10 (q100’q100) [q aq200] 12(q100aq100) [q »QQOO]

_ 4
T ool G+ [47%; °%)o[4%; 4" P

We note the identities of Theorems and [2.3]are inherently different. In
Theorem [2.3] we have an identity for z = (;, a primitive ¢th root of unity, and
we have an explicit formula for each term of the ¢-dissection. In Theorem [2.2]
we have an identity for general z, but if we set z = (y, we are able to
determine some but not necessarily all of the terms in the ¢-dissection.

With these two theorems we will show that the coefficients of the follow-
ing terms are zero: ¢°" in Sr3((3,q), ¢*" 2 in S;1((3,q), ¢®" in Sj2((3,4),
" in S73(¢3,9), ¢°" 11 in Spa(Cs, q), ¢°" T in Spa(Cs, ), ¢°" in SE3((s, ),
q5n+4 in SF3(C57 Q), q5n+4 in SG4(<57 Q)v q5n+4 in SAG4(C57 Q)a q7n+1 in

SBQ(C77 )a nts in SBQ(C%‘])) q7n in SF3(<77Q)7 q7n+4 in SF3(C77Q)7 and
q¢™6 in Sp3(Cr, q). As explained in the introduction, this gives the follow-
ing corollary which also establishes the congruences of Theorem [2.1]

COROLLARY 2.4. Forn >0,
Mp3(0,3,3n) = Mps(1,3,3n) = Mp3(2,3,3n) = % sptps(3n),
Mjy1(0,3,3n+2) = Mj1(1,3,3n+2) = Mj1(2,3,3n+2) = %sth1(3n+2),
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My5(0,3,3n) = Mya(1,3,3n) = M2(2,3,3n) = L spt ;5 (3n),
My5(0,3,3n + 1) = Mys(1,3,3n + 1) = My3(2,3,3n + 1)
= gspty3(3n + 1),
Mp2(0,5,5n + 1) = Mpa(1,5,5n + 1) = Mpa(2,5,5n + 1)
= Mp2(3,5,5n + 1) = Mpa(4,5,5n + 1)
= 5 sptpa(5n + 1),
Mp2(0,5,5n +4) = Mpa(1,5,5n + 4) = Mps(2,5,5n + 4)
= Mpa(3,5,5n +4) = Mpa(4,5,5n + 4)
= 5 sptpa(5n +4),

Mps(0,5,5n) = Mps(1,5,5n) = Mps(2,5,5n) = Mps(3,5,5n)

= Mp3(4,5,5n) = 4 sptp3(5n),

MF3(O, 5,5n + 4) = Mpg(l, 5,5n + 4) = MF3(2, 5,5n + 4)
= Mps3(3,5,5n 4+ 4) = Mps(4,5,5n + 4)
= & sptps(5n +4),

Mc4(0,5,5n +4) = Mga(1,5,5n +4) = Mga(2,5,5n + 4)
= Mcu(3,5,5n + 4) = May(4,5,5n + 4)
= & sPtga(5n +4),

MAg4(O, 5,6n+4) = Maga(1,5,5n +4) = Maga(2,5,5n + 4)
= Maca(3,5,5n 4+ 4) = Maga(4,5,5n + 4)
= 3 sPtacu(5n +4),

MBQ(O, 7,Tn + 1) = MBQ(1,7, n + 1) = MBQ(2, 7,7n + 1)
= Mp2(3,7, T+ 1) = Mpa(4,7,Tn + 1)
= Mpa(5,7, T+ 1) = Mps(6,7,Tn+ 1)
= % sptpa(7n + 1),

Mpo(0,7,7n +5) = Mpo(1,7,7n +5) = Mpa(2,7,7n + 5)
= Mp2(3,7,Tn+5) = Mpa(4,7,Tn +5)
= Mpa(5,7,Tn +5) = Mpa(6,7,7n + 5)
= & sptga(Tn + 5),

Mps3(0,7,7n) = Mps(1,7,7n) = Mps(2,7,7n) = Mps(3,7,7n)
= Mp3(4,7,7n) = Mp3(5,7,7n) = Mp3(6,7,7n)
= 1 sptps(7n),

Mp3(0,7,7n +4) = Mps(1,7,7Tn + 4) = Mps(2,7,Tn + 4)
= Mps(3,7,Tn +4) = Mps(4,7,Tn + 4)

327
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= Mp3(5,7,Tn+4) = Mp3(6,7,7n + 4)
= & sptps(Tn +4),
Mp3(0,7,7n+6) = Mp3(1,7,Tn+6) = Mp3(2,7,7n + 6)
= Mp3(3,7,Tn +6) = Mp3(4,7,7n + 6)
= Mp3(5,7,Tn + 6) = Mp3(6,7,7n + 6)
= %Sptm(?n +6).
We note that follows from adding and (2.3)). Theorem [2.2] also

lets us easily deduce the following product identities for Sg3(z, q), Sca(z, q),
and Sag4(z,q).
COROLLARY 2.5.

Sps(z,q) = G 000 (@)
(22746 (22756
Sea(e.q) = H(—2"q,—2¢% q*qYo | (—20,—27'¢% q% ¢
(1+2)(2 275 ¢%)o0 (1+2)(z 271 ¢%)o0
(%)
(4,227 %)o0’
I AR G e W T WL
(1+2)(2 275 ¢%)o0 (1+2)(2 27 ¢)o0
(%)
(¢,2,27156%)0

These follow by rearranging the series in Theorem and applying the
Jacobi triple product identity. For example,

(14 2)(2,27 % ¢;6*)0SF3(2, q)

= Z (1-— zj_l)(1 — zj)zl_j(_l)j+1q(j—1)2
Jj=—o00
=y (M ) (—1)Y U _ (14 2) > (—1)i+1qU—1?
j=—0o0 oo
G ] ; . . . 4)2
= 3 () (1P - (14 2) LD
Jj=—00 (q » 4 )oo
<. . N2
= (1 +z) Z Zj(fl)]q‘]Z o (1 i 2)%
oo (4% ¢%) o
- (¢; 9)?
= (1+2)(2¢, 270, ¢*1¢%)oo — (1 4+ 2) 75—
e e )(q2;q2)oo

The identities for Sqa(z,q) and Saga(z, q) are similar.
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We summarize the results of this article in the following table:

Bailey pair Linear Single series Product Dissection
X congruence identity for  identity for identity for
mod p Sx(z,q) Sx(z,q) Sx(Cp,q)

B2 p=2>5,7 No No Yes

F3 p=3,5"17 Yes Yes Yes

G4 p=>5 Yes Yes Yes

AG4 p=>5 Yes Yes Yes

J1 p=3 Yes No No

J2 p=3 Yes No No

J3 p=3 Yes No No

In Section 3 we prove the series identities in Theorem[2.2] In Section 4 we
prove the dissections for Spa((s, ¢) and Sp2((7,q). In Section 5 we prove the
dissections for Sps3((s,q), Sr3(Cs,q), and Sp3(¢7,q). In Section 6 we sketch
a proof, independent of Theorem for the dissections for S4g4((s,q) and
Saca(C7,q). In Section 7 we use Theorems and to prove Corollary
In Section 8 we give some concluding remarks, in particular we discuss some
additional Bailey pairs from [26] whose spt-crank-type functions reduce to
previous functions after a change of variables.

3. Proof of series identities. The proof of these identities is to verify
that the coefficients of each power of z on the left hand side and right hand
side agree. This depends on an identity of Garvan from [I5] to determine
the coefficients of the powers of z on the left hand side of the identities in
Theorem and a variant of Bailey’s Lemma applied to one of two general
Bailey pairs to transform the coefficients of the powers of z. The following
is Proposition 4.1 of [15]:

(1+2) (2,275 CR (=111 — g2 1) 20 giG=8)/241
(¢ @)2n : (@ Qi (@ Dn—jr

j=-n

(3.1)

We recall that a limiting case of Bailey’s Lemma [§] states that if («, 3)
is a Bailey pair relative to (a,q) then

Z(plv P25 Q)n <P?ZQ) Bn

n=0

n
- (GQ/PLGQ/P% Z (P, P25 @) (5155) "
(ag, aq/(p1p2); @)oo = GQ/PlaGQ/P2a Qn

For one of the variants of Bailey’s Lemma, we need the conjugate Bailey
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pair in the following lemma. We recall that a pair of sequences (J,7) is a
conjugate Bailey pair relative to (a,q) if

J
’}/ = .
! jzn (4 0)j-n(aq; @)j+n

Different conjugate Bailey pairs give rise to different variants of Bailey’s
Lemma because Bailey’s Transform states that if («, ) is a Bailey pair
relative to (a,q) and (d,7) is a conjugate Bailey pair relative to (a,q),
then

o0 o)
Z ﬂnan = Z AnYn-
n=0 n=0
LEMMA 3.1. The following is a conjugate Bailey pair relative to (a,q):

8y = (avaq ' 2 Waq 2 g,
n
1_ q
" (¢, 0¢59)c
y (Z\/aq—l/27z—1\/aq—1/2;q)oo(1 _ (z + Z—l)\/aqn+1/2 + aq2n)
(1 _ Z\/&q”_lﬂ)(l _ z\/&q"H/?)(l _ Z_l\/&q”_lﬂ)(l _ 2_1\/6(]”"'1/2)'
With z = w, a primitive third root of unity, and a # q this conjugate Bailey
pair becomes

2 _ (@3/2¢73/2; %) nq"

" Wag ),

s (@20 ) (1= a g™ V) (1= a2 (14 a ¢+ /2 + ag?)
" (q,aq, vVaq=t2; q) oo (1—ad/2q37=3/2) (1 —a3/2¢3n+3/2) .

Proof. We are to show that

¢"(zv/aq 2 27N aq V2 q) s (1— (24271 a " 2 +ag®)
(q,aq;q)oo(l—Z\/aq”‘l/Q)(1—Z\/5q”+1/2)(1—2‘1fq"‘l/Q)(l—Z‘lfq”“/?)
_Z Z\/>q—l/2 —l\fq 1/2 )q]

(¢ Q)j n(ag; q)]+n

Other than elementary rearrangements, we only need Heine’s Transforma-
tion, which can be found in [I, Corollary 2.3]. We recall that Heine’s Trans-
formation is

201 (CL’ lc) ;4 Z> = quﬁ <abz/c b 5 Qs C/b>

(CvZ;Q)oo bz
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We have

i (=vaq 2 =" Vaq ' q);¢

(4590)j-n(aq; @) j1n

$ (VA ag S g

= (¢:9)j(ag; q)g+2n

_¢"evaq e ag ) ni z\fqn V22 ag P g)d

(ag; @)2n = q);(ag>*;q);
_CVa P ag i (evagt e a

(aq7q)n agztt P
_"(Vag P ag i) (2agtt 2T Va2 )

(ag; @)2n (ag** 1, ¢; q)oc

-1 -1 n—1/2
g, 2 Waq .
X 201 ( A g . q, 2/aq +3/2>
q"(zv/aqg % 2 Vag 2 g)x
(aq, ;@)oo(1 — 2/a g 12)(1 — 2\/a "t /2)(1 — 2=\ /a q"1/2)

(1— ¢ N1 =z~ ag?)z/a g3/
X <1 + (1 — q)(l — Z—l\/aqn+1/2) >

n

I
(aq,4;q) o
x (zvaq % 2 Vag g1 = (2 + 27)Vag" 2 + ag®™) .
(1—2y/aq 2 (1—z\/a gt 1/2)(1— 2z~ a g 12) (1— 2~ aqt1/2)

LEMMA 3.2. If (e, B) is a Bailey pair relative to (a,q) then

(3.2) Z(f Q)n(—1)"a"2q D23,

n=0

_ (Vagq) ooz (1 — a)(—1)"a"/2qn+1)/2
(ag: @)oo 2= (1—+aq") ’

63) S (ag (1w, = YTy S,

n=0 (a% )oo
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34) D (avaq ' Wag " q)ng" B

n=0
_ (ag ' ag  Pg)e
(4,04; q)o
oo
1— -1 n+1/2 2n\ n
<3 (I—(2+2"")Vagq + ag®")q"a,

o (1—z/aq=12)(1—2y/a q"t1/2)(1— 2"\ /a q"=1/2) (1 — 2~ 1\ Ja qnt1/2)’

(35) Y (=Vaq 2 Wag Vi q)ng™ B

n=0
_ (ag ' ag P g)e
(4,045 )0
% Z (1 - Q>q2nan
= (1=2v/aq" V) (1—2y/aq /) (1—z"aq12)(1—2"1agrt1/2)’

i (@2q73%,)" B (a®2473%¢%) 00

3.6 —
30 = (Vag g (¢, a4, vVaq 2 q)oc
(30 vad (= Vagt 1+ Vgt agga,
(1 — a3/2g3n=3/2)(1 — a3/2¢3n+3/2) ’
(3.7) — (@273 %) g B

= Vag '),

_ (@) i (1—a)(1—vag" ') (1 - vag )¢
(¢,a0,Vaqg % q)e 2= (1= a32g3n=3/2)(1 — a¥/2¢3+3/2)

If (o, B) is a Bailey pair relative to (a,q?) then

o0 (—ag; q - (1+ Va)q"ay,
(38) T;)( f Q)an Bn = (aq 4. q Z +\fq2n> ’

Proof. Equation follows from Bailey’s Lemma by letting p1 = v/a
and py — oco. Equation (3.3] follows from Bailey’s Lemma by letting p; =
Vvaq and p2 — 00. Equatlon ) follows from Balley S Lemma by letting
q— ¢% p1 = —+/a, and py = —q\f Equations (3 and are Balley s
Transform with the conjugate Bailey pairs of Lemma Equatlon fol—
lows from Bailey’s Lemma by letting p; = zfq 12 and py = 2 1\fq
Lastly, equation . ) follows by letting z = w, a primitive third root of

unity, in (3.5)). =
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We use the following Bailey pairs relative to (a, q):

1 1, n=0

3.9 “(a,q) = ————, a*(a,q)=<" ’

(39) Pula:q) (aq,q; q)n n(@q) {0, n>1,
. 1, n =0,
(310) /3;;*(@’ q) = Wa a:;*(a7Q) =4y —aq, n= 17
y 44 )n O, n 2 9

That these are Bailey pairs relative to (a,q) follows immediately from the
definition of a Bailey pair.

Proof of (2.2)). By (3.1 we have

(1+2)(2, 27" 9)00S52(2,9)
(¢:9)2 i (0°¢*)n1q"(1+ 2) (2,271 @)n

(%) (4 @)2n (@ O)n—1
_ (@9% Z(q 14 )n1q" ’f 1;+1 (1— g% 1)zglu—®/2
(6% 6% )0 = (@ 0)n (& @t (€ Dn—jitr

j=-—n

Since the coefficients of 277 and 27! in the above expression are the same,
we need only determine the coefficients of 27 for j > 1. For j > 2 we see
that the coeflficient of 27 is

(¢:9)2% i (6% 1 (—1)7H1(1 — g%~ 1)gnti=3)/2+1
(¢ ¢%) (5 =145 Q)nt5 (G On—j+1

n=j—1

(@)% i (0% @*)naj—2(=1) (1 — g% 1)g D/
(0% ¢*) o0 = (@3 Dntj—2( Dnt25-1(43 D

(i (=17 ¢%) 2 (1 — ¢¥ ) glUm D2

; (4% 6%)oo (0 0)j—2(q: @)2j1

<Y (@72 ¢*)ng”
= (505 O)n (g @n

(% (1) (P ¢%)a(1 — ¢¥ gl Um /2

; (q3'q3) (¢;0)j-2(q:q) 251
xi (@3 )82 (¢, q)

qJ L)

o0

)

which by (3.6) equals
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(6% (=17 (g% ¢%)j2(1 = ¢ U2 (%73, %) (1 — ¢~ (1 = ¢)
(@3 43)00(4 @) j—2(0 0)2j-1(4, 4%, 7715 @)oo (1 — ¢3773) (1 — ¢37)
x (14+q’ +¢¥7)
(D =¥ )@V - ¢ - )+ ¢ +¢P)
(4 @)oo (1 = ¢373)(1 — ¢%)
_ (17 (1 = g )l D2(1 4 ¢ 4+ ¢¥ )
(4 @)oo(1 —wgd (1 —w g/ 1) (1 —wg)(1 —wlgl)
Similarly, by (3.4) the coefficient of z in (1 + 2)(2,271;¢)s0Ss2(2, q) is

(9% ~ (¢*¢*)n14"(1—q)
(6% 6*)o0 =1 (6 Dn—1(G Q)nt1(5 @)

(4:9)2% Z(wqw 4 On-14"(1—q)

T (03¢ = (& Dnt1(0; Dn
_ (59% i (wg, v ' @)n14"(1—q)  ($:9)%
(0% ¢%)o0 2=, (@3 Dn+1(@ O 3(¢% ¢%)oo

N (¢:9)% = (w,w e (0%
(@)1l —w)(1 —wh) nz:;] (% @)nlg;

n
s On 3(63¢%) 0
o0

(¢ 9)% 1 nge (4:9)%
S P o) 2 00 — g
_ (4:0)3(w, w5 @)oo (1 + 24) U
(0% 6%)oe (¢, 4 @)oo (1 —w)?(1 —w™1)?(1 —wq)(1 —wtq)  3(¢%¢*)c
_ (1 - ¢)(1+2q) (g9
(¢ )oc(l —w)(I —w (1 —wg)(1 —w™q)  3(¢*¢*)eo
Thus,

(1+ 2)(z, 271 1) ooS72(2,q)

_ 4z (695
3 (6%¢%)
4 1 i (Z] + Zl—j)(_l)j-‘rlqj(j—l)/Q(l _ q2j—1)(1 + q] + q2j—1)
om0 —wg (0 — o )1 — g1 — 1)

j=1
Here setting z = 1 yields

1 (9% _ J“qj(” 1)/2(1—4129 D1 +¢ +¢% )
3 (6% ¢ Z (1—wgi—1) (1 —wed)(1 —wlgd)’

> j=1
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so in fact

(1+2)(z, P q)ooS72(2,q)
L& (1)1 = AT )i g
(9 2 (I -wg H(1 —w g 1)1 —wg)(1 —wg’)

j=1
X (L+¢ +¢77)

(1= 29) (1 — 207 1) 210 (=1)d+1gdU=D/2(1 — ¢2i-1)

1—w¢1<1—w4w*wu—wWX1—w4w>

Pﬂ

]:2
x (1+¢ +¢¥7)
(1= 29)(1 — 2~ 1)1 =d (= 1)i+1gdG=1)/2
(L —¢%=3)(1—¢%)
x (1= N1+ +¢7 H1-¢d 1 -¢)
(1—2)(1—2"1z 1—j(_1)j+1qj(j—1)/2
(1—=¢¥2)(1 = g¢¥)
x(1—q ' =g+ 4+ ¢ — g%,

Proof of (2.3). By (3.1) we have

(1 + Z)(Z7Z_1;Q)OOSJ3(qu)
(¢; Q)% i (0% ¢*)n1®" (1 + 2) (2,27 550)n

M8

=2

qug

(@) (4 )20 (¢ -1
41 . . Co
_ (q;q)go i (63 6%)n_1q>" n (=1)7+1(1 — ¢% 1)qu](] 3)/2+1
(@%@ 2= (GDn1 22 (¢ Dn+ (@ Dn—jt

Again the coefficients of 277 and 2z/*! are the same, and using (3.8) we see
that for j > 2 the coeflicient of 27 is

(4:9)% i (0% P n—1(—1)7T1(1 — ¥~ 1)g?rHiG=3)/241
(% @)oo (@ Dn—1(G Dnt5 (@ On—jt1

n=j—1
C (390% > (@5 ny2(—1)TI A = gF gD
B (q3;q3)oo ,;) (q;Q)n+j—2(q; Q)n+2j—1(QS Qn
) (—1)j+1(q3; q3)j_2(1 _ qzj—l)qj(j—i-l)/z—l
(4% %) (q;q)j 2(¢; q)2j-1
(@72 ¢%)ng™
= (@5 ) (0¥ (@ Dn

_ (@9%

[e.9]
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_ (#0511 (¢% ¢%)j—2(1 — g¥ Ut
(¢% q3) (450)5—2(q:9)25-1
3] 3 Qnﬁ*( 2j71,q)

o0
XZ qﬂlq)

(g Q)oo(_l)J+1(q 1 @°)j—2(1 — ¢¥ )Pt /2!
B (05 4%)oo (43 @) j—2(43 @) 2j—1
(6772 ¢%) (1= )1 = ¢ (1 - ¢)
(4%, ¢ @)oo (1 — ¢373)(1 — ¢%7)
(=171 - ¢¥ (1 - g)(1 — ¢/ H(1 — ¢/)g/u T2
(4 @)oo (1 = ¢¥73)(1 — ¢39)
B o Ve
(Gl —wg (1 —w g (1 —wg/ ) (1 —wgi 1)’

Similarly, by (3.5) the coefficient of z in (1 + 2)(z, 271 ¢)s0Ss3(2, q) is

(49)% i (6% ¢*)n-1¢*"(1 - q)
(4% ¢*)o0 = (¢ Dn—1(¢5 Dn41(¢ @)n

o0

(9% 5 (wq,w L q;@)n-14"(1 — q)
)

T (03¢0 = (4 Ont1(4 Dn
_ (g9 i (wg,w G n-10"" 1 —a)  (6:9)5%
(6% ¢%) 0 = (¢ Dn+1(g5 3(0% ¢%)os
_ (4 9)% > (ww 59nd™ (G0
(0% @)ool —w)(I —w™) = (% (G 0)n  3(¢% %)
. )2 0 . 4)\2
T s a0 -
_ (4 0% W w5 q)oo(L — q) @)k
(0% @%)oo (0, 4% Poo(1 —w)*(1 —w™1)?(1 —wg)(1 —w™lq)  3(¢% ¢%)oo
_ (1-q)? - (69%
(43 @)oo(1 —w)(1 —w ™ (1 —wg)(1 —w™q)  3(¢%¢%)oo
Thus,
1+2 (9%
(1+Z)(Z,zil;q)oost]3(2,q> = — ;; (;gg:).))oo
(2 4 2179) 1)j+1qj<j+1)/2—1(1 — (1 = q)
Z (1 —wgi- 1 wlg=H(1 —wed)(1 —w1gd)

* j=1
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Here setting z = 1 yields

1 (g;9) —1)iH1grUHD/2=1(] — ¢%—1)(1 — q)
3 (6% ¢%)oo ; 1—wqﬂ DI —w g =)(1 - wgd)(1 —wlgd)’
so in fact
( +Z>( Z_laq.q) SJ3(Z7Q)
oo 1 . ZJ Zj—l) l—j( 1)j+1qj(j+1)—1/2(1 _ q2j—1)(1 _ q)
_;; l—wwlﬂl—w =11 —wgd)(1 —w=1¢d)

(1= 29)(1 = 2071 9 (—1)i g+ /2-1
=)= ¢7)
(1—27)(1 — 27~V i(=1)iH 7= 1)/2
(1—=¢%=3)(1 —q%)
X (71— — B2 g g g8 g 58 B2y
Proof of (2.4). By (3.1) we have

(1+2)(z, 275 ¢%)oeSF3(2, )

> 2R Z_l’ 2n
D Ve

<.
[|
N

<
[|
N

o

n

n=1
i (L+2)(2,2~ ,q) 0" (—;9)2n
(4% ¢%)2n
n+l (—1)I+1(1 — q¥2)2 gI=3)+2

"¢ Y

j=—n

The coefficients of 277/ and z/*! are the same; by (3.8) for j > 2, the coeffi-
cient of 27 is

i q" (1)1 —

(@2 4®)n+5(0% ¢*)n—j+1

= (¢ q)oo

I
—_

n

NE

= (¢;q)
e (025 4) 15 (4% G n—j+1

Il
—

n

n=j—1
"7 —q; @)ant2i—2

= (g @)oo(—1)TT(1 — ¢¥=2)gd T=3)+2
(q Q) ( ) ( Z n+2j 1(q Q)

_ (G@)oo(=1)7H (1 — g 2)glu D" (—q;q)zj_z > ¢"(—=¢” "1 q)2n
(4% 4%)2j—1 = (@:¢%)n(¢% ¢*)n
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338
_ (@917 (1 = Y)Y (—g3 )2
(¢%4%)2j—1
> Zq - Qnﬁ ( 452 2)

(g Q)oo(_l)]Jrl(l — ¢4 72U (—q;q)2—2(—0¥; @)oo
(4% 4%)2j-1(q4Y, ¢; ¢*) oo
(—1)7+1(1 — g% —1)qU—D?
(¢ 4%) oo
By (3.8), the coefficient of z in (1 + 2)(z, 27} ¢%)0oSF3(2, q) is
" n(1—q — (=% q)2m
Z 2 )_(Q;Q)ooz( _ ( 2),22 — (4 @)oo

Dn+1(¢%: ¢?) a* *)n(q% ¢*)n

Z 7"(—¢:Q)2nB(¢% 6*) — (¢ @)oo

_ (Q7Q)oo(_q o _ (1-4)

(Y3 (9%
Thus
(1+2)(z,27 g q2)OOSF3(Za q)
~(1+ 2)(6: @)oo (:4%)oc + Z (27 + 2" () (1 =g g
—(1+2)(g;q °°+Z (29 4 2179 (=1)iF1gU—D?

o
+ZZJ+21 ] )]+1q
7j=1

= (14 2)(@ Do (@ D)oo + Y (27 + 2177 (=1)THg0=D7,

However, by Gauss, g==eo
(@ D@ D) = Y (~1)7¢" = 3 (~1)yHLg-D”,
Therefore T =
(1+2)(2,27 " 4:¢%) 00 SF3(2,q) = i (9 4+ 2179 — 1 = 2)(—1)iFLg=D’
j=—o0

= 3 (12T - ) (-1 U

j=—o00
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Proof of (2.5). By (3.1) we have

(14 2)(z,27 4 ¢*)0oSca(2, q)
(q q OOZ 1+Z)(Z,Z_I;QQ)n(_l)nan—O—%L

() = (=@ ®)n(a% q*)n
(5600 o= (L4 2)(2, 275 ) (=1)"g" " (46D
()= nzl (4% 4%)2n

ntl j+1 45-2Y ] i (G—3)+2
q > — 1)1 — ghi=2) 4 iU
qq 00§ nn+2n q’q2)n § : ( ) ( ) ]

(0%6®)n+5(0% ¢*)n—j+1

j=—n

The coefficients of 277 and 2/T! are the same. By (3.2), for j > 2, the
coefficient of 27 is

q q o Z j+TL+1 n +2n(q,q2)n(]~ _q4j—2)qj(j—3)+2
Joo & = (@2 6®)nt5 (0% 63 n—j11
_ (@071 = Y72 I N (1) (4367 ntj—1
(45 4%) o — (4%} n+2j-1(4% ¢*)n
n=0
_ (@%56Y)oo(@:¢%)j-1(1 = ¢¥ )¢ T S (1) (@ T )
(43 4%)o0 (4% ¢%)2j—1 —= (@Y Pn
s
_ (@*0)o(g3 )1 (1 — gV 2)g?
(Q'QZ)oo(qz;qzqu
XZ nn+2]n( 2j— 1 ),8*( 4]2 2)

o
(@07 oo(3:6%)j-1(1 — gV 72)g* I (¢ %)

(45 4*) o0 (0% ¢%)2j-1 (4% ¢%) o
_ (1+q2j 1)q2]2—3g+1

By (3.2)), the coefficient of z in (1 + 2)(z, 27} ¢%)0oSca(z, q) is

q q o Z )" q" +2"(61'q2) (1—-¢%

*)n+1(¢% ¢*)n

q q o Z )"q" +2"((1;612) (%)
Joo = n(@%6)n (66



340 C. Jennings-Shaffer

2. 2
q q Z a9
o n n +2n 2)nﬁ;(q2§q2) _ ( ) )OO

¢ (45 4%) oo
_ (q iq )oo (q3;q2)oo (5P (%))
() (5P (G0 L+e (¢;4%) o

Thus
(14 2)(2, 27 ¢%)ooSaa(z, q)

x
_(1+Z)(qq qq)> + D (& + 2 I+ g
3 j=1

(
(¢%¢%) -
: . . 9
_(1+2)ﬁ+ Z 2 (1 + g¥ 1) g¥ 3
0o i
(1+z) %+ Z Al A AL Z g
j=—00 j=—o0
(1+z) —i—Zzl i g2 ]+sz 24% =i
j=—o00 j=—o00
(q Q) - 1—i\ 242
—(I+2) 5 > (B )
(45 ¢%) =
However, by Gauss,
(q2§q2)oo 1 (n+1)/2
(6% 2
1 > > 2
_ - n(2n+1) 2n—1)n\) _ 2n°—n
=5( X ey > )= >
2 n——00 n=—o0o n=-—o0o
Thus
(14 2)(5 2 P)oeSaa(zq) = 3 (57 + 2179 — 1= 2)g2*d
Jj=—00
= Z (127711 =27t ¢%7 7w
j=—00
Proof of (2.6). By (3.1) we have
(1+2)(2,27 "5 ¢%)00Sac4(2,9)
(@58 o= (L4 2)(2,27 1 ¢2)a(=1)"g™
(4:¢*) (—4:¢*)n(q* ¢*)n

n=1
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_ (@07 i (L+2)(z2 5 (=)0 (4:6)n
— (¢%9%)2n
oo n+1 ; ; S oG(s
(4% ¢%)oc ng? SV e E
= (a2 Z(_l) q" (4" Z 2.2 (a2 a2). .
(¢4 ¢%)0 = (0% 4% )n+ (05 % In—j+1

j=—n

The coefficients of 277 and 2/*! are the same. By (3.3), for j > 2, the
coefficient of z7 is

q q 0 Z D7 (g; ) (1 — g¥72)g/0 )12
o (4% @*)n+(@% ¢*)n—j11
. 2 ks 2 .
_ (q2;q2)oo(1—q4” g s (CD)" 2 (g )
(43 4%)oc = (@50 nt2i-1(0% ¢%)n
. 2k 2 S — ) —
_ (0%0%)o0(9:¢%)j-1(1 = ¢¥ )¢ I G~ (1) (P 6P
(45 4%)oo (4% ¢%)2j—1 v (¢%5¢*)n(4% ¢*)n
e
_ (@%0%)oo(@367)j—1(1 — gV 72)g? 3
(43 4*)o0 (4% ¢%)2j—1

> Z n n 242jn— Zn(qu—l;q2)nI8;;*(q4j—4’q2)

o .
_ (@%6))o0(36%)j-1(1 — ¢ 72) g (¢ %)
(43 4*)o0 (0% ¢%)2j—1 (Y7 ¢%) o0

nn+2n2n sk 4j—4 2
><§ e (g7 )

_ q2] —5j+3(1 +q6j—3)‘

Similarly, the coefficient of z is

q q o 44*)n(l = %)
(¢:4%) Z a?q n+1(q ¢*)n
q q o G (%))
Z n(q?; q) (45 6%) o
q q o0 N L
Z 0P (1) (4;¢%) o0

_ (q 1q )oo (q;q )oo (4% — (% ¢*) o

(4% 4")oo
(:6%)00 (6% 0% (45 6%) o0 '

(G
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Along with (3.11]), this gives
(1 + Z)(Zv 2_1; qg)OOSAGZl(Z’ q)

[e.e]
-1+ Z)M + Z (27 4+ 27 (1 + ¢%- )q23 —5j+3
7j=1

(45 4%)oo
(4% %) S
: : oo s
—(1+z)ﬁ+ > (14 g R
) j——oo
(l—l—z) +ZZJ J—53+3+Zz3 252+
j=—00 j=—00
(1—|-z) =+ Z I 4 Z PGl
j=—00 Jj=—o00
o)
j=—00
oo
. . o
= Z (1—2"H1 =2 ¢¥ 7. u
j=—o00

4. Dissections for Spy(z,q). To begin, by Bailey’s Lemma with p; = z
and py = 2z~ we have

(1-2)(1- z_l)SBg(z, q)

i 2~ ,qnq (43 9)o

N (Zq,z lq, = (20,271 0o
- (¢;9)
n B2 ) ')
— 6 N2/
(zq,z lq, Z (24, 271¢;¢) oo

n=0

00 1 1_2—1 n,(3n%2—n)/2 14 g3n
R g )

(g (1—=2¢")(1—271¢")

n=1
(43 9)oo
(2¢: 27143 0)oo
While the series term is not the generating function for the rank of partitions,
it is surprisingly close to it. We recall that the rank of a partition is the
largest part minus the number of parts. One form of the generating function
for the rank of partitions, given in [28| p. 64], is

I S N[t [V s i
(4.1) R(z,q) = (¢ 0)o0 <1+nz:1 (1—=2¢")(1—271¢") )
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We recall the crank of a partition is the largest part if there are no 1’s,
and otherwise is the number of parts larger than the number of 1’s minus
the number of 1’s. One form of the generating function for the crank of
partitions, given in [14, (7.15)], is

__ (@9o
(4.2) <x@@_(wﬂ4%®m
LEMMA 4.1.
(1—2)(1—-2" )(—1)”qn(3"—1)/2(1 + q3n)
(q C] ( Z_: 1 - Zq")(l — Zflqn) )

=(z+2z = DR(z,q) + (L —2)(1 - 271).

Proof. To prove this identity, we multiply both sides by (¢;¢)s and
expand (¢; ¢)oo into a series by Euler’s Pentagonal Number Theorem. We
then have

(¢ Q)0 ((z+ 2" =1DR(z,9) + (1= 2)(1 —271))
=242 =14+ (1= 2)(1 -2 (g0

o~ (1—=2)(1 =z ) (=)g"BmtUR2 (A 4 g7)(z + 27! — 1)
> (1—2¢g")(1—=z""¢")

n=1

1430 = )1 — 1) gD 4 g
n=1
A L)
<<1 (g T 1)

1 fj (=90 = Y= 2
(-

1—zq")(1—271¢")

s Z 1 _ Z 1 — 5 1) 1)nqn(3n—1)/2(1 + q3n)
- (= 2q)(1— 2 1q") '

This proves the lemma.

With Lemma [4.1] we now have

(Z + Z_l — 1)R(27Q) — C(Z,q)

I—201-27) 1

(4.3) Spa(z,q) =

Using the rank difference formulas from [7], we can deduce the following dis-
sections for the rank function. Theorem 4 of [7] gives the following dissection
for R((s,q), which can also be found in [4, Entry 2.1.2]:
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(4.4) R(Gs,q) = (q25; q25)oo[q10; q25]oo

(4% ¢%°)2,
e e e A
(q25; q25) (q25; q25)oo

gt 800 | 2 4 () 2T S
TP ) 1 (G 46 )[q10§q25]oo

(4% 6%°)00[d”; %)

-G+ EY

[ ¢*]%
Rt 2t el e
25. 425 — q25m+10
(@®:¢%)e A 1—g®"

Similarly, [7, Theorem 5] gives the following dissection for R((7,q), which is
also [4, Entry 2.1.5]:

45) R
49. 49 21. ,49
(-G @)+ (14 G+ I
n,147n(n+1)/2 49. 49

1 = (-1)g (6734 )oc
6,7 :
+(2-C¢G -G (% ¢) 0 Z 1 — q4on+7 +4q (47 %o

(0" ¢") o [g; ¢

a7, ¢*'; ¢* o

1 X (=1 g T /2
2 5 6\ 16
+ (C7 - C? - C? + C?)q (q49; q49)oo Z 1— q49n+21

n=—oo

n=—oo

14.
)

+ (& + g

(44"

[ ¢Y]0 (& + @)’ [¢?; ¢%9]

o0

+(1+ ¢+’
1 0 (_1)nq147n(n+1)/2
2 5, +6y.13
+ (1 +¢7 +2¢7 +2¢7 +¢7)q (@ ) Z 1 — g2on+14

49]

n=—oo

(0" q*)xld"; q
+(G+E+E+E)° g q;f. 7]

oo

[ee)

Next by [14, (3.8)] we see that

(@9 25 o ([qm;q%]oo R
(46) (<5q,Cg,‘1q;q)oo_( 47 ) [47; 42512, TG+ 1)q[q5;q25]oo

5. .25
—@+¢+wag; M”]w)

Ve G+ G [¢'0; g2,
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Also by [14, Theorem 5.1] we have

_ (@9
“7) (SUNGRIHNRS
(49, 49 M 1
=(¢";q )oo<[q7 TR + (G + G -1 N
e
+ (G + ) M —(G+E+E+ @) [q'; 149]
1
G+ e — @ MM)

We then find that of Theorem follows by (4.3] , -, and -,
and follows by , , and .

5. Dissections of Sp3(z,q). By Bailey’s Lemma with p; = z and ps =

2~1 we have

(1=2)(1—=2"")Srs(2,9)
e —-1. .2 n
(4 9)oo 3 (2,270 )ng" (4 9)s
(zq2,2*1q2;q2)oon — (G0 (2%, 27¢% ¢%) 0

_ (%97 (+Z (1-2)(1—=2" )Q”(1+q2”))_( (¢ Voo

(4®;:¢%) l—qu” 1 —z71¢%) 2%, 271¢% ¢) o

We first find the dissections for the product term and then proceed with
the series term. When z = (7 we use the theory of modular functions for
both terms. We recall some facts about modular functions from [24] and
use the notation of [9] and [25]. The generalized eta function is defined
by

ng(r) =g"W 1] (-¢» [ (-av,

n>0 n>0
n=g (mod d) n=—g (mod d)
where ¢ = ¢*™7 and P(t) = {t}> — {t} + 1/6. So nso(7) = (% ¢%)%,
and 7;54(7) = qP9/%)8/2[q9. %], for 0 < g < §. We use [25, Theorem 3]
to determine when a quotient of 754(7) is a modular function with re-
spect to a congruence subgroup I (N), and use [25, Theorem 4] to de-
termine the order at the cusps. Suppose f is a modular function with re-
spect to the congruence subgroup I" of I'h(1). For A € Ih(1) we have a
cusp given by ¢ = A~ loo. The width W := W(I,() of the cusp is given
by

W(I,¢) =min{k >0:+A'T*A e I'},



346 C. Jennings-Shaffer

where T is the translation matrix
(o 1)
T = .
0 1

FATT) = " bpg™"

m=mgo

If

and by, # 0, then we say my is the order of f at { with respect to I" and we
denote this value by Ordr(f; (). By ord(f;¢) we mean the invariant order
of f at ¢ given by

~ Ordr(f;¢)

ord(f;¢) = —

For z in the upper half-plane H, we write ord(f;z) for the order of f
at z as an analytic function in z. We define the order of f at z with respect
to I' by

Ordp(f;2) = 2U2),
m
where m is the order of z as a fixed point of I".

The wvalence formula for modular functions is as follows. Suppose a subset
F of HU {00} UQ is a fundamental region for the action of I" along with a
complete set of inequivalent cusps. If f is not the zero function then

(5.1) ZOrdp(f;z) = 0.

z€F
We can verify an identity between sums of generalized eta quotients as
follows. Suppose we are to show

aifi+ -+ apfi = appr fror1 + -0 F QGpm Srgm,

where each a; € C and each f; is of the form
fi= H 15,9, (7).
j=1

We verify each f; is a modular function with respect to a common I (N),
so that f = a1f1 + -+ 4+ apfe — ap+1fe+1 — - — Qkrm fr+m iS @ modular
function with respect to I'1 (V). Although f may have zeros at points other
than the cusps, the poles must occur only at the cusps. At each cusp ¢ not
equivalent to oo, we compute a lower bound for Ordp(f;() by taking the
minimum of the Ordr(f;, (); we call this lower bound B;. We then use the
g-expansion of f to find that Ordp(f;oc0) is larger than — de(y B¢, where
C’ is a set of cusps with a representative of each cusp not equivalent to co.
By the valence formula we have f =0 since ) _»Ordp(f;z) > 0.
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ProrosiTIiON 5.1.

(4,4% ¢*) o
5.2
(5:2) (€302 G5 102 0%) 0
B (0% ¢”)3 @000 (@%0% 2 (08%50%)5(0%5 %)
@%@ e L (@560 (@ )% ()%
(4,4% ¢*)
(5:3) (G542, (2% 4%
25. 25 15. .50 25. .25 25. .25 10. 25
- 7q[q5):£g} 4 e _q([;llo;Zm]):: +(G+ G’ (E5;;25]13([1%0;7q%0]5
25. .25 25. 25
- 2[(;10;;25]10[5]10(2 ]] — (G +G)g ([qz 350])00
- G+ G
(4,4% ¢*) o
5.4
54 (Crg?, C?’qu;QQ)oo
49, 49 35. 98
- - G
49. 49 21. .98 98
o
ey 2@ 0" sle™ M) 5 (4% 4*)la”; 4o
O 5 e~ T T T

5 (0" ") 0l0*5 4700

+ (1+C$+C$)q4([(q]28’(q]9])oo (¢r +C7+C7+C7) (% 4% o [¢%2; ¢%8] oo

(7" ¢")

2, 5\.6
(¢7 +¢7)g % %

Proof. Equation follows from [16, Theorem 2.11] by replacing ¢ by
—¢q and simplifying the products. Similarly, follows from [16, Theorem
2.12] with ¢ replaced by —q.

We recognize the left hand 51de of (5.4 . (¢: %) C(C7, ¢%), where C(z, q)
is defined in (4.2)). For C(Cr7,q?), we use (4.7) with ¢ replaced by ¢2. If we
divide both sides by
[4*%; ¢%]

%)oo
4% oo ’

(43 6% (4% ¢°
[, ¢%5;
we find that (5.4) is equivalent to
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(5.5)
718, 28(7') 5 ovMosas(T)® 4 a1\ Mosaa(7)
1 + (C’Y C 1)7798,42 (7_) (C? + §7)7798,42(7—)2 + (C7 + C? =+ 1)7798 42(7_)
6 198,14 (7)n98,28(T) 198,14(7)*
R e T R A woes
_ nos.as(T)mos.a0(T)? &+ C3)7798,14(7)7798,28(7')7798,35( T)nos,a9(7)/?

12,1 (7)1/2149 21 (T) 98 42(T)
1/2

B 772,1(7')1/27798,42(7')
198,14 (T)N98,21 (T) 198 28 (T)M98,49(T)
+(E+E+1)= ’ ’ ’
G+ +D) 12,1 (7)Y 2n49,7(7) M98 42(T)
198,28 (T)M98,35(T)
m2,1(7) Y2198 42(T) 98,49 () 1/
6 7749,14(7)7798,14(7)7798,49(T>
(-1
(G -G+l 02.1(T) Y2049 7(T) 198 42(T)
N49.7(T )08 28 (T)198,49(7) /2
02,1 (7)1 /2149 21 (T)N9s 42(T)
198,14 (T)M98,49(7) /2
(21 ,
G+ & )772,1(7)1/27798,42(7)
1/2
(O <7)7749,21(7)7798,1142(7)7798,28(7)7798,49(27)
12,1 (7)Y 149,14 (T) 198 42(T)
e Cg)7798,14(7—)7]98,28(7—)7798,49(7—)1/2
T n2,1(7)Y/?n98,42(7)?

1/2

— (¢ +¢r)

However, by [25] Theorem 3] each individual term of is a modular
function with respect to I7(98). Using [25, Theorem 4] to compute the orders
at the cusps, as explained previously, we find that to prove we need
only check this identity in the g-series expansion past ¢*!°. This we do with

Maple, and so (5.4)) is true. =

PROPOSITION 5.2.

(4;4%) oo o (1 G — G He" (1 + ¢
(56) (%5 ¢*) o <1 i nz::l (1= Gg®) (1 — ¢35 'q?) )
B (¢%;4°)% (¢”;0°)00 ("% 00 | 2(6%0°)0e(¢"®; ¢"®)%
T (6% 6%) (g8 ¢¥) % 2 (45 ¢%) o0 Ta (45 45)2.(¢% ¢,

(q 1—G)(1— ¢ N (1 +¢*)
57 (*Z ) (1 — G )
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_(00)ld3 0" (6767
B [4°: 4% 0 TG Gle (41 ¢°%) 0
2 (0% ") oo g 50]00 7 ("% ¢°°)l0”; %) oo
T, ) [ 0] ~ G+ &) (4% 6%)014%%; %00
25 25.
FA+ G+ ([203350]) - G+ (gt el e
(4 4%) 0 — (1—¢)(1 = ¢ Hg"(1+ %)
C8) (@) (”n O GG )
9 98 35. 98 14. 14
R EEED: ool
e 5 (0% 0" o [ ] 2 (0% ¢%) s [0"; ¢ oo
(GG +¢7)a (@ %) o [625; 0%) +4q 07 0% [ng.qgs]
5 (0% 0")oold”; "o 4 (07%4")o0

(C? + C?)q [qg q49] [q14 qgg] (1 + C? + <7)

[y
49. 49
+<1+<$+<?>q5(§14’g49]) [[542’3 ]] (@t ([ ])

We see that (2.9)) follows by subtracting (/5.2] fro and d1v1d1ng

by (1 —¢3)(1—¢3h), (2.10) follows by subtractmg 1.’ from (5.7) and
dividing by (1 — ¢5)(1 — {5 1), and (2.11)) follows by subtracting (5.4

and dividing by (1 — ¢7)(1 — ¢; ). While we can prove (5.6) with
elementary rearrangements, the proofs of and will require the
following identities. We use [9, p. 303, (17.1)], which in our notation is

4 (6% ¢%)5la, b, ab; ¢*)o
B9 2 (0% [0g, ba, aba; Plos

o0 n
q 1 11
= 1_qzn<w‘w‘bn+“”+b”‘“"b")-

We also use [0, Theorem 1] with b = a and ¢ = q1/2,

(¢:9)%[a?, aq*/?, ag"/%; g 7" /a
(510) [a)avql/27a2 1/2a ] a 1+22 170“(] Z 17qk/a
k+1/2 k=1/2 42

_Z 2k+1/2 Z : qk=1/2 /a2’
—a Ja

Lastly, we will use the following dlssectlon formula for certain quotients of
theta functions.
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LEMMA 5.3. Let M be a positive integer and ]q2M| < |z| < 1. Then
(q 2M?2, 2M M M (2k+1). 2M2]oo

(@M *M)2 [2¢™; *M e %
(@ P2 22 M e [M QMQ,;l

where A is any full set of residues modulo N (e.g. A = {O, 1,...,M—1}).
Proof. We recall that a specialization of Ramanujan’s 1V, formula gives

(4 03 [2y; dloo _ i z

[z, y5 ¢loo 1—yq"

n=—oo

4
2 )
M(2k+1), 2M?]_

n

for |¢| < |z| < 1. We let ¢ — ¢*M, x = 2, and y = ¢ to find that

M e n
Joo

(@542 [2¢" ¢ 3 z
(@M% [z Moo A 1= gPMntM
Mn+k
- Z Z PMPn+2ME+M
keAn=—o0
Mn

= Z Z P2MPn+2ME+M

keA n=—00
keA

In particular, we can set z = +¢* for 1 < a < 2M. Similar dissection
formulas for certain quotients of theta functions follow from the Quintuple
Product Identity and [10, Theorem 2.1].

Proof of (5.6). We have

(1= &)1 = G a1+ ¢
1
*Z (=G (1= G e

2 2 2
M(2k+1). q2M] (q2M ;(]2M )go

MM 2k+1); 2M?]

q"(1+¢*) (1 — ¢*)
_1+3Z 1_q6n)
—1+3Zq 1+3Zq”E1n6)

n=1

_ (g% q) (a*; q)
(4 9)3.(a% ¢°)%

E.(N;m) = > 1- > 1,

d|N, d=r (mod m) d|N,d=—r (mod m)
by [13] (32.42)]. By Gauss and the Jacobi Triple Product Identity,

)

where
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(@ ¢*)2, _1 i /2
2

(¢; 9)oo =

1 & 2 ¢ ) PR ,

—— 9n+3n)/2 | 4 (9n+9n)/2 | 4 (9n*+15n)/2

) Z q +2 Z q + 9 Z q
n=-—00 n=-—00 n=—00
1 q

= 5(—(13, —45%,¢%¢") o0 + 5 (-1 —¢°,¢% %)

¢ -3 12 9.9

+5( q ,—4q 7q7Q)OO

= - y ) ) 00
(—¢* —d%, % 4%)oo + a(—0°, —¢°, % ¢°)

Thus
2. .2\4
7% q : :
<(q.q)§°° =(—¢*,—¢" ¢"; "% +2¢(—¢*, —¢®, ", —¢°. ¢, ¢*; ")
Y o
+ (=% ¢, % )%
=(—¢*, -4, ¢"; ") % + 2¢(—¢* ¢*) oo (0”; ") 0 (0% ¢"%) o
+¢*(—¢%¢") 2% (4" ¢"*)2
and so

(4o (1 A g i) G q2“>)

(¢% ¢} = (-G (-G e
_ (%6°)5(@% 0)oc

(45 0)2%.(q% %)%
_ (@)oo~ 0" %475 | (0767)00(075 4 )0

(45 ¢%)%, (4% ¢%) 0
3. .3 9. ,,9\2 18. 18\2

_ (0% 4”)3 (0% 07)00 (0500 (%0 (a'8; ¢'®)2,
(0% 6300 ("B ¢"8)2 2 (4% 4%) 0 T E O (P PR

Proof of (5.7). To begin, we have

B = o q"(1+q2")
PGl — G );(1_C5q2n)(1—<5q2”)

X n 1 2n 1— 2n 1— 2 2n 1— 3,.2n
+(1—C5)(1—45_1)Zq L) ql )(qlonC5q 0 &r™)
n=1

o0
q ¢
+(2-6-G) Zl 10n + (14265 + 25) Z 10n'
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We claim that

( q3n_q7n
) R (e T )

n=1
(0" ¢")sld*; M0
B (57 7'9) o [q; ¢* ]
o (q 25 oo[ 5 ]oo (q25§q25)oo
B [q5 q25]oo U719 5],
+q2(q ") oold; 000 3(6%%4%) 0

+4q
(255 ) 0o [¢10; %] oo [¢20; 0] oo
We note the second identity of (5.11]) is just an application of Lemma
with M = 5 and z = ¢ and simplifying the resulting products. So we need
to verify the first identity. We have

1_1_2261 IOn Zq 10n

10n+1 o 10n—1 a 10n+7 o 10n—7
q

=1+ 2; qfonﬂ B 2n:0 1zq10n71 - ~ 1zq10n+7 T n:1 1—qlon—7
_ (64" e%, a% 4% 4"
 9,4.4°.4%4"

where we have used with ¢ = ¢'° and a = ¢. Thus

s <1+22q /0 Zq )

_ (@0)w(a% "5 00% 6% 0% ¢ (474
(0%:0*) 00,4, 6°, 475 40 o (4% ¢') o0 (45 419 0
Next we claim that

(5.12) (’ (Zq o+ Zq mn)

_q(q sqt )oo[q 5000
(4°;4")oc[q?; 4" oc
B (q25;(]25)oO 4 (qSO;q50)w[q5;q50]oo
[0 ¢50] q (0% ) o002 70
L (0*6") . (4*5 4% )oola”; %)
[42; ¢ 710 ¢%]

The second identity of (5.11)) follows by Lemmawith M =5and z = ¢>.

)
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For the first identity, we apply (5.9 5.9 with ¢ — ¢° and a = b = ¢® to get

q" " (qlo; %1% ¢% 0% ¢
Z 10n Z 10n - (q57 q5)go[q7’ q7’ q97 qlo]oo

Thus
(467)o0 7" ¢*"
(q q Z lOn + Z 10n
q(q;q )oo (@' ¢")5 0% ¢*, 4% 4]0
(0% ¢*)oo (0% 0°)3[0", 4", 473 4"loo
(¢"5 ¢")oole?; 4"
@0 ela% ¢V
Equation ([5.7) now follows from (5.11)) and (5.12)). =
Proof of (5.8). We begin with

3 o0 n(q] 2n
L= 0= 6D Y o

n=1

=1+ 1 -¢)1-¢Gh

Zq (1+¢*) (1 - )1 - Ge*) (1 - G*M) (1 - Ga*) (1 — Z¢*")
— 1_q14n

" " — g
2 Cr C7 Z 1— l4n C <7 C7 + <7 Z ql4n
+ (14 ¢ +2¢ +26 +¢0) qu q14n'

We claim that

2 5n 21371
(5.13) ((qq <1+Zq+q an 1 )

(¢"

" a)sold®, 4% Mo
(47 ') oola, 4 4100
(¢*;¢%) N (0% 4%®) 0 [0 ¢”%) 0 N 2 (0% ¢ s la™; ¢ o
T SR O ey N P I PP I PEEp
N q4 (q49; q49>oo N q5 (q49; q49)oo[q21; q49]oo

[qQS; q98]oo [q14; q49}oo[q42; (198]0o

For this we apply (5.10) with ¢ — ¢'* and a = ¢ to get
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2(] + q5n _ q 2q13n q14n+1 o0 q14n—1
1+Z = gin —1+22w—22m
n=1 n=0 n=1
Z 14n+9 0 q14n—9
- 1 _ 14n+9 +9 _ 14n—9
! q " n=1 1 q "
_ (@4 d"ile? 6% ¢%
[4,4,47, ¢ ¢"]
Thus

(40Y)0 2¢" + q5” — " —2¢"%"
q 1+ Z 14n

(q
_ (@@l a3 ¢, 6% 0
(0% 4®)0la, 4,475 4% ¢*] o
_ (@"0")le’, 6% ¢
(@7 ") oola, 4% ¢ 1] 0o

To verify the second identity of (b.13), we divide both sides by

(¢ 14) l¢? 7q ,q Yoo
(@74™) oo [0,4%:¢ oo
As we did in the proof of ([5.4]), we examine the orders at the poles of various

modular functions and find that to prove the identity between modular func-
tions we just need to verify the identity in the g-series expansion past ¢'4".
We do this in Maple.

Next we claim that

to get an identity between modular functions on 7(98).

(514) (q2’ q22)oo <i _qn + q3n + q5n o q9n o qlln + q13n
(4% ¢%)oc
LT
(4754")oc
This is actually [9, Entry 17(i)], so there is nothing for us to prove.
Lastly we claim that

(@ @) (o~ —a™" +24"" — 2¢°" +¢""
(519) (6% 4o (n 1 1 —glan >
_ q3( 0" 4")le, 4% 4o
(¢";q ) [4°, 4% ']
B 8(q 0*)[0®; 0%l 3 (0" 0")ld”; ¢
g )l g ] g
+q4( oo | 50" 0)l6®; 07l 600" 0"

+q —q
[47% ¢%] o 9" 400 (9" %o [4*%; 4%
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For this we apply (5.9) with ¢ — ¢” and a = b = ¢? to get

Z q _ 2q5n 4 2q9n _ qlln _ 3 (q14; q14)go[q2’ q27 q4; q14]oo

— gt (a7:4M)%le", %, a5 Mo
Thus
(q;q2>oo (oo _q3n+2q5n_2q9n+q11n>
2. 2 _ 14
(4% ¢%)o0 \ i 1—gtn
_ qg(qq O I P e
(%49 ) (¢":4")% [q9 ¢°, 4" 4" oo
_ qg(q1 0" oo lg, 4% 4"
(47 ¢")oo[a®, 4% M)
To wverify the second identity of -, we divide both sides by
14.,14
¢ (g o Joo [qq 4 oo to get an identity between modular functions on 7 (98).

(a"3¢") o0 (0,455 oo
We examine the orders at the poles of various modular functions and find

that to prove the identity between modular functions we need to verify the
identity in the g-series expansion past ¢'47. We do this in Maple.

Equation (5.8) now follows from ({5.13)—(5.15). m

6. Dissections for Sg4(z,q) and Saga(z,q). Here we find the 5-dis-
sections of Sq4((s, q) and Saca(Cs, ¢) using the techniques in [I8]. Atkin and
Swinnerton-Dyer pioneered this method to study the rank of partitions [7].
Then Lovejoy and Osburn used it to study the Dyson rank of overparti-
tions [20], the My-rank of overpartitions [22], and the Ma-rank of partitions
without repeated odd parts [21]. Also, Ekin demonstrated that it could be
used for the crank of partitions [12]. However, it is quicker to derive these
dissections from the product and series forms of Sg4(z,q) and Saca(z,q).
For this reason, we omit some of the details but do include the general
identities that lead to the end results.

To begin, we use Bailey’s Lemma with p; = z and ps = 27! to get

(g% (—aiq 266 (% 4" oo (=4 ¢*)
Sealz:0) = (2,2 1,(1 Z ! P~ (2,275 ¢%) o0
_ 1 1)( 1)nq(n2+3n)/2(1+qn)
(=2 (1-2"1)(g (HZ 1—2¢?)(1—271¢g) )

(% %)

(42,275 ¢Y)s

Similarly, for S4g4(z, q), Bailey’s Lemma gives
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Saca(z,q)
. ! 1+Z 1)( 1)"g™ 2 (14 g*r)
(I—2)(1—-2" 1—zg®")(1—2z"1¢%)
B (q;q)oo
(02,275 ¢%) o0
PROPOSITION 6.1.
(7% ¢%) o

(¢, ¢50% 65 0% 42 o

25. .25 50. .50 25. .25
= ([3102325])::[[31073 ]] (< +<5) ( ;g())’q[q;()ooqa)]oo +q([qq5’7qu5]i:O
i 2055050 307 6%°) 0 [0"%5 ¢°%) o
HG A o g+ 6 O g

(@°%;¢°°)oo

+
¢ (4255 ¢°%) 00 [01%; 47 oo

Proof. By Gauss and the Jacobi Triple Product Identity we have

( Z qn(n+1

(q q%) 2
N C ) P e P X P U il PR L U L B
[4'%; ¢*] e [4°; 4% oo )
By [14, Lemma 3.9], with ¢ replaced by ¢?, we have
1 1 7>

_ 4
(02,6 0% )00 (0" 0700 TG +<5)[q20 700

Multiplying these two identities together gives the result. =

With Proposition we find (2.12)) and (2.13) to be equivalent to the
following.

PROPOSITION 6.2.

( + Z (L= G)(L =G (=1)rgmH5m/2 (1 + q")>

(¢:q (1= ¢ (1= ¢ ')
~(@%56%)0[6*% ¢ e B (6" ") oo
= [0 g, (%0~ 200
B 4 10(ql()O;ql()O) [qlo 200] ( 5 )
(1426 +2600" S o g g0
(qmo,qwo) [4°%; ¢**)sc 2(q 5 0% )oo

—2-¢— Cg,) [ q50] [(1157 qlo[)]oo + (¢ + CS)W
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100; q100)oo [qlo. 200]

q
20; ¢50] [q 1%
(¢°% ¢°) o
+ (=14 G+ g
( 5) (q25;q50)oo[q10;q50]oo
(6% 4*) 000" ¢
[q5;q25] [4%°; ¢°°]

100. 100 30. ,200

(2= G- g ﬁq

+ (G +¢)

] [q15;q100]oo ’
e = (-G -G ><—1>nq<n (1 4 q3">>
(@@ \ (1= Ga?) (1 -G ')
25. .25 20. .50 50. .50
= ([310; 325]):[[310;’550]]00 + (G + Cé)‘f)( 75. égO);oq[qz)oioqE)O}oo
0 (qloo’ q100) [q 7q200]

HG+G -2 (4% 47900 [455 419 0

e O )
I Ly N L N v
(4" 4" )00 ") i 2 (0% 6% oo
— (142G +2¢H)¢° + RLERA WL
( <5 CS)q [qlo q50] [q157q100]oo (C5 C5)q [qlo;q25]oo

100. 100 10. ,200
+(1—3¢ — 3C§)q12 (q[ 4 ]) [([Jq ql%o} Joo
3 (qloo 100) [ 200]

+ (13¢5 — 3¢5)a
5 [420; 5] oo [43%; quO]OO

(0% ¢%) 50[0'%; 47 i (@ ¢ oo
4% ¢%]0[4%; ¢%] (4% 6°) o0 ¢™]
o (q190; q100) _[¢%°; ¢2%0] .
[ e % ¢

The major work in proving identities like this is to find identities that
allow us to see the series terms on the left hand sides as products. To this
end, we note that

1+ Z (1-2)( -2 )(—1)”q(”2+3")/2(1 +q")
(1—2zg*)(1—z"1g*")

o (-2 (nrgntm
- (1= zg?)(1 = z71¢%)

+ (G + )

+(—24+ G+ )

n=—oo
[e.9]

Z (1 _ z)(l _ 271)q2n2+3n & (1 _ z)(l _ 271)q2n2+5n+2
(1 _ zq4”)(1 _ Z—1q4n) (1 _ zq4n+2)(1 _ Z—1q4n+2)'

n=—oo n=—oo
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We then define

o 2n2+bn o q2n2+bn

q
Ve(b) Z 1— g’ U(b) = Z 1 — gitntat
nZ;go n=-—oo

We note that replacing n by —n gives
Ve(b) = =Vy(40 = b),  Up(b) = —g* "7 2Up(40 + 4 - b).
Next we have
i (1= G5)(1 =5 g™ o
W (1= Gsa'™ (1 =G5 lg™m)

17 1— n2n+3n17 4n 172471 173471
1+Z )L -6 (1) (1_((12071)(1 ) —¢5a™) (A —¢Ga™)

n#0
=14 (2— ¢ — () (Va(3) = V5(15)) + (—1 + 3¢5 + 3¢5) (V5(7) — V5(11))
=14 (2— ¢ — ) (Va(3) + V5(5)) + (=1 + 3¢5 + 3¢5) (V5(7) + V5(9)).
Similarly,
0 (1—C5)(1 45— ) 2n2+5n42
Z ( _<5q4n+2)(1 C q4n+2)

(1— g20n+10
W q )

n=—

(1 q4n+2)(1 CQ 4n+2)(1 C3 4n+2)
= (2= ¢ —¢)(@°Us(5) — ¢*Us(17)) + (—1+3¢5 +3¢5) (¢ Us (9) — ¢°Us (13))
= (2G5 —3)(Us(5) +¢°Us(7)) + (=1 43¢5 +3¢3) (¢ Us (9) + ¢°Us (11)).
Thus
(1= ¢)(1 = ¢ H(=1)ng™*+3m/2(1 4 g7
” Z (1= Gg™)(1 = G Tg#)
=14+ (2-¢—6G)(%B) - #Us(5) + V5(5) — ¢°Us(7))
+ (=14 3¢ +3¢) (Va(7) — ¢*Us(9) + V5(9) — ¢°Us(11)).
In the same fashion we deduce that
— )L = G H(=D)mg (1 ¢
H Z (1= ¢ (1= ¢ ')
=1+ (2— G —¢3)(Vs(1) — qUs(3) + V5(7) — ¢"Us(9))
+ (143G +363) (V5(5) — ¢°Us(7) = V5(9) + ¢°Us(11)).
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Similarly to Ekin’s work in [12], we use the functions

o0 (_1)nqn(n+1)/2wn

T(zw,q) = Y e

n=—00
oo
. (_1)nqn(n+l)/2wn
T*(w,q) = ) T
n=—00 q
n#0

LEMMA 6.3. For b and ¢ odd integers with £ > 1,

Vi(b) — ¢V 20U (b + 2)

2 2 2 2 2 2
= h(=q®" 7" ") + (¢ ") 2 = T M

o0

-1 2b0+8k(.

o Z 2k2-+bk lq i q
q [ RE, RO ARE 2P +blakE, A7)
kzl b b b o

462]00

Proof. We have

Vo(0) — ¢"TV2U (b + 2)
o0 q2n2+bn )2 0 q2n2+lm+2n
1—gin 1 1— qatn+2t

n=—oo n=—oo

~
3

IS

o

-1 o0 20202+ bln+4kin
2k2+-bk Z q

4 1 — gACn+ike
0 n=—oo

(n,k)#(0,0)

(]

B
Il

T
)

24 blo— A0 bO-20? 0 q2€2n2+4€2n—4k€n—b€n
> ]

- q

— q4€2n+4€2 —2b0—4k(

[en]

n=—oo

T
=

o _1\n,202n(n+1) (_ \bln+4kin—20%n
(=1) (=9)

_ el Z q

=0 n=-—00

(n,k)#(0,0)

1 — gAPn+akt

=

T
)

(_ 1)nq%2n(n+1) (_q)2€2n—4k€n—b€n

o0
. q2k2+bk74k€fb€+2€2 Z

1 — gAPnta62—2bl—ake

™
[en]

n=—oo

% 2€2—b€T( q4£2—2b€
)

be—202 442
q) -

9

Il
S

2 2
_ q _ PO A0

=R

+ q2k2+bk (T( q4ke . qb€+4ké—2£2 q4€2)

) )

T
I

—4kl—bl+-202 402 —2b0—4k( 202 —4kl—bl AL?
—q 2T (q ,—q ,q'))
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2_ 2
— h(_q% b€7q4€ )
-1
2 _op2 2
+ ZqQk +bk (T(q4k£, _qb£+4k€ 20 ,(]M )
k=1

—A4kl—bl+2¢2 402 —-2b0—4k( 202 —4kl—bl Al?

Here we have replaced n by ¢n + k in Vy(b), and replaced n by ¢n —k + ¢ —
(b+1)/2 in Up(b + 2). By [19, Lemma 2] we have

l’w—l’ ) (Q7Q) [Z w ,Q]

T T B
w (ZU},U),Q)+ (Z’LU [zw 1,Zw7waq]00

One could also deduce this identity using [11, Theorem 2.1]. Applying this
with g — q4£27 W — _q2Z2—b€—4k£’ - _q2£2—bé vields

4k bl+4ke—202 402 —4kl—bl+202 402 —2b0—4k( 202 —4kl—bl 402
T(q™", —q ") —q T(q ,—q q")

I 9

4@2) [ 202 b0 402 —2b0—8kL. 4@2]

 (¢*%;q q .q* i q

- [q4u q4£2 2b£74k€’_q2€27b£74k€ q4£2]oo
2 2 2

_ (q ’q4€ ) [ q2€ bf’ q2bé+8k£’ q4é ]

2 2
[q4ké7 q2b£+4k€ 20 —‘,—bﬂ—‘,—élkf7 q4€ ]OO

y —q
Also, one can express combinations of h(z,q) in terms of products by

using [12], Lemma 1]. For our purposes, we could use the following, the
proof of which is basic algebra and [12, Lemma 1].

PROPOSITION 6.4.

(3a — d)h(=4°,¢"") + (3b — a)h(=¢'%, ¢'")
+ (3¢ — b)h(—q*, ¢*°) + (3d — )h(—¢**, ') + c + d
. (qloo, qIOO) [ 1 ] N (C a) (qloo’ quO) [q20; qloo]:go
[_q q100] [ q15 ql(]O] [q10 q100]3 [q30.q100]
b (ql()O’ ql()O) [q ’qloo] N (d B b) (qloo’ ql()O) [q ’qloo]
[_q15 qloo]go[_q% q100} [q ’ql()O] [qlo q100]
4o )5 5 (0" ") %[0 ¢ )%,

q
[ q457q100]3oo[ q35aq100]00 [ q357q100]oo[ q aqloo]OO
Also we note that

(q100
h(=¢*,¢'") = =

100) [ 100]

¢'%)%[a™:d" % _ (6®5dP)%
[—¢%%; ¢100]4 (¢100; g100)2_
This would allow use to express the identities in Proposition just in

terms of infinite products. We could then rewrite the identities strictly in
terms of modular functions. The latter could then be proved just as (5.4)),

(5.13)), and ([5.15)). We do not include these calculations here.
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7. Proof of Corollary We note that Theorem [2.3] immediately
implies that the coefficients of ¢*" in Sr3((3,q), ¢>* ! in Spa((s, q), ¢4 in
Sp2(Gs, ), ¢ in Sr3(Gs, ), ¢°" T in Sr3(Gsyq), ¢°" T in Saa(Gs,q), ¢
in Saca(Cs,q), ¢ in Spa(Cr,q), ¢ in Spa(lr,q), ¢ in Sp3(Cr,q),
¢ in Sp3((7,q), and ¢""*6 in Sp3(C7,q) are all zero. Thus the identities
in Corollary 24] for B2, F3, G4, and AG4 follow. We still need to prove
that the coefficients of ¢***2 in S;1((3,¢q), ¢* in Sj2((3,q), and ¢***! in
Sy3((s, q) are zero. We prove this by using Theorem

For J1, we use to see that

(1+G)(1 = G = G (e 6%)ooS1(Csr0)

= (- 1~ GG (1)
(0~ 9)(1 — )

x (1 —qf — q¥2 4 g3 4 P32 _ 48i-3),

Thus the non-zero terms occur only when j =2 (mod 3), but one finds that

PUD2(1— ¢ — %2 4 Y3 4 ¢P7=2 — ¢57-3) only contributes terms of the

form ¢3* and ¢®"*! when j = 2 (mod 3). Thus S;1((3,q) has no non-zero

terms of the form ¢3"+2.
For J2, we use ([2.2]) to see that

(1+C3)(1—C3)(1—C3,_1)( %:4%)0S12(G3: 9)

1 A
(1 - CS)(l — ] )C:s ( 1)]+lq
(1- q?’] )1 —g%)
x (1— g™l — g% 4 g4 4 533 _ (65=3),
Thus the non-zero terms occur only when j = 2 (mod 3), but one finds that
GUDR2(1 =gt — 7 — ¢¥ + ¢ 4 ¢%73 — ¢5573) only contributes terms
of the form ¢*"*! and ¢3"*2 when j = 2 (mod 3). Thus S2((3,q) has no

non-zero terms of the form ¢3"
For J3, we use (2.3)) to see that

(1+ Cs)(l —3)(1 = G (g% 0°)00S13(C3,9)
1-) - G (-nitigi-v2
‘Z (=91 - )
) (7L — @ — B2y g g g8 A 58 gBi2y,

Thus the non-zero terms occur only when j = 2 (mod 3), but one finds
that g/U=D/2(gi=1 — ¢i — q%=2 4 g2 4 q=3 — g4i=1 — ¢51=3 4 453-2) only
contributes terms of the form ¢** and ¢*"*! when j = 2 (mod 3). Thus
S73(C3,q) has no non-zero terms of the form ¢>"*+1.

=2

iG=1)
2

=2
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8. Concluding remarks. We could also prove dissection identities for
Sj2(¢s,q) and Sy3((3,q) in the same way we proved the dissections for
Sca(Gs,q) and Saga(Cs,q). It would require defining functions similar to
Vo, Up, T, and h and finding appropriate identities. Whereas Sg4(z,q) and
Saca(z,q) use functions and formulas similar to those used for the crank,
Sia(z,q) and Sy3(z,q) would use functions and formulas similar to those
used for the rank. We save this for another time.

We might think to try the methods of this paper with the following
Bailey pairs relative to (1, ¢?):

C(q,¢%¢), " P14 g2 ifn>1,
BG* _ qn —2n
T (s n(g )]
aG* . 1 lf n = 0,
n (_1)n(n—1)/2qn(n—3)/2(1 + (_1)nq3n) if n > 1,
G*x — qn2
" (4% aM)n(a:4*)n’
Gk 1 if n=0,
Q. =
n (_1)n(n+1)/2qn(n71)/2(1 + (_1)nqn) ifn > 1.

These Bailey pairs are F(1), and the first two Bailey pairs as listed in [26],
p. 470]. We would then define:

() N, .- F
Sri(z,q) = m > (2™ B

n=1

(4;4%) 0 i(z,fl;(f)nq?"

- (2,2‘1;q2)oo —~ (04560
(¢*;q*)
SG*(qu) = (Z,Z T4 Z 7 Qnﬂg*
(¢* "o (a5 g ;q ¢
(z,z 1,q Z )n(a;q )n’
Sces(2,q) (q4» q;q Z 2nﬂG*
Gsx\%,q (Z,Z yq n
(q4 q;9 oo Z Z z 2+2n
- (z2 1,q — (q54Y(46*)n
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At first it appears that these series may explain congruences for other new
spt functions; however, they are old functions in disguise. In particular, one
finds that Sg«(z, —q) = Saca(z,q) and Sgux(z, —q) = Sca(z,¢q). Similarly
Sr1(z,—q) = S2(z,q), where S2(z, q) is a two-variable generalization of the
M2spt function studied in [16].

While this paper gives the last of the spt-crank-type functions for Bailey
pairs from [26] and [27], with such simple linear congruences, we should
expect there to be many more interesting spt-crank-type functions. There
are plenty of other Bailey pairs from other sources that may lead to new
functions. Also we have not used all the Bailey pairs from [26] and [27],
but only those that have simple congruences. So far all Bailey pairs have
been relative to (a,q) with a = 1, but a slight change in the form of the
spt-crank-type functions may allow for many useful functions coming from
other values of a. In a forthcoming paper, we investigate Bailey pairs arising
from variations of Bailey’s Lemma and conjugate Bailey pairs.

The functions studied here and in [I8] and [I7] may have additional
properties worth studying. While the M 41(m,n) were given a combinatorial
interpretation in [I8] (in particular they are non-negative), work on the other
Mx (m,n) still needs to be done. Additionally, the original spt functions
for partitions and overpartitions are known to be related to mock modular
forms and harmonic Maass forms. Any of the other spt functions that can
be expressed in terms of known rank functions and infinite products will
also lead to harmonic Maass forms, so these functions can be studied from
that aspect as well.
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