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COMPOSANTS IN INDECOMPOSABLE INVERSE LIMITS OF
UNIMODAL MAPS
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Abstract. We consider indecomposable inverse limits of certain unimodal maps on
intervals, and we use the Axiom of Choice to assign sequences of zeros and ones to points
of these spaces so that two points belong to the same composant if and only if their
itineraries agree on their tails. This extends results long known to hold for any indecom-
posable continuum that arises as the inverse limit of a single tent core with a nonrecurrent
or periodic critical point. For the context in which the inverse limit is generated by a single
unimodal map, it is shown that sequences may be assigned in such a way that the shift on
the resulting sequence space is semiconjugate to the shift homeomorphism on the inverse
limit.

1. Introduction. Composant structure in indecomposable continua can
often be described with sequences of zeros and ones. In inverse limits of tent
cores with nonrecurrent critical points, backward itineraries of points in the
inverse limit may be used to identify each point of the inverse limit with a
sequence of zeros and ones with the effect that two points of the inverse limit
belong to the same composant if and only if their backward itineraries agree on
their tails [3]. Similar results exist for Knaster continua and, more generally,
inverse limits of Markov maps [7, 8]. From the perspective of descriptive set
theory, the composant equivalence relation of an indecomposable continuum
is always Borel bireducible with one of two canonical forms, the simpler of
which is the equivalence relation on {0, 1}N according to which two sequences
of zeros and ones are equivalent if and only if they agree on their tails [9].

It is well known, however, that the equivalence relation obtained by
equating points whose backward itineraries agree on their tails does not
always correspond to the composant equivalence relation. For example, for
some inverse limits of tent maps with recurrent critical points, the partition
of the space thus induced is a proper refinement of the partition of the space
into composants.
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In this paper, tails of sequences on two symbols are used to classify
composants of indecomposable inverse limits generated by a sequence of
unimodal maps. For some composants, backward itineraries suffice. Com-
posants that contain a proper subcontinuum whose projections straddle the
critical point for infinitely many positive integers are less easily described.
The Axiom of Choice is used to extract a transversal to the collection of all
such composants—that is, a set containing exactly one point from each such
composant—and the transversal is used to assign a sequence of symbols to
each point.

Transversals lay at the heart of a classic problem in the history of contin-
uum theory: Does an indecomposable continuum admit a Borel transversal?
When this problem was answered in the negative [9], the solution revealed
two categories for the complexity of the composant equivalence relation of
an indecomposable continuum. Specifically, the composant equivalence re-
lation is always Borel bireducible with one of two canonical equivalence
relations, E0 and E1. The simpler of the two, E0, is the equivalence relation
on {0, 1}N according to which two sequences of zeros and ones are equivalent
if and only if they agree on their tails. Associated with this category are all
Knaster continua [9] and, more generally, all indecomposable inverse limits
of Markov maps on intervals [8]. By contrast, all hereditarily indecompos-
able continua are associated with E1, the equivalence relation on ({0, 1}N)N

according to which two sequences of sequences are equivalent if and only if
they agree on their tails [9].

The composant equivalence relations of the spaces studied here are shown
to have kinship with the E0-type continua. Certainly, the identification of
each point in the space with a sequence of zeros and ones in such a way
that two points of the space belong to the same composant if and only if
their corresponding sequences agree on their tails does reduce the composant
equivalence relation to E0. But is the function that makes these identifica-
tions Borel? This function, which is presented in Section 1.2, is defined in
terms of a transversal selected by the Axiom of Choice. Hence its Borelness
or lack thereof is in a sense subject to the whimsy of the Axiom of Choice.
For some unimodal maps, those which are also Markov maps for example,
it is known [8] that the inverse limit has the simpler E0-type, but whether
or not indecomposable inverse limits of unimodal maps are always of the
E0-type remains open.

In Section 2, it is shown that two points of the inverse limit belong to the
same composant if and only if their corresponding sequences agree on their
tails. This generalizes a well known result of Brucks and Diamond [3]. In
Section 3, the focus is narrowed to indecomposable inverse limits generated
by a single unimodal bonding map, and it is shown that if the transversal
to the unruly composants is shift invariant, then the shift homeomorphism



INVERSE LIMITS OF UNIMODAL MAPS 221

is semiconjugate to the shift on the corresponding symbolic sequence space.
In Section 4, attention is further restricted to indecomposable inverse limits
generated by a single tent core, and the Axiom of Choice is used to define a
shift invariant transversal to the desired composants.

This paper does not address the question of which inverse limits of uni-
modal maps are indecomposable. However indecomposability has been char-
acterized for inverse limits in general [6], as well as for inverse limits gen-
erated by a single bonding map in a variety of settings: organic maps on
intervals [8], tent cores [3], cores of logistic maps [1], and piecewise linear
unimodal maps [4]. Many of these results are summarized in Ingram and
Mahavier’s book [5] on inverse limits.

1.1. Definitions. A continuum is a compact connected metrizable space.
A continuum is said to be indecomposable if it is not the union of two of its
proper subcontinua; otherwise it is decomposable. A continuum is irreducible
between two points if none of its proper subcontinua contain both points.
The composant of a point p of a continuum X is the union of all proper
subcontinua of X that contain p. The composants of an indecomposable
continuum partition it into 2ℵ0 sets. A transversal to the composants of an
indecomposable continuum X is a set that contains exactly one point from
each composant of X.

A map is a continuous function. A unimodal map is a continuous func-
tion f from an interval [a, b] onto itself for which there is a point c ∈ (a, b)
called a critical point such that f is monotone on both [a, c] and [c, b],
f(c) = b, and f(b) = a. Note that this is more restrictive than the usual def-
inition of unimodal map. Noticeably excluded are maps obtained by replac-
ing “f(b) = a” with “f(a) = a” in the definition just given. This omission
is mitigated somewhat in noting that, at least in the restricted setting of
inverse limits generated by a single bonding map, the maps we are excluding
do not generate indecomposable inverse limits.

A map f : X → X is said to be semiconjugate to a map g : Y → Y if
there is a surjective map m : X → Y such that m ◦ f = g ◦m. In this case,
m is said to be a semiconjugacy, and f is said to be semiconjugate to g via m.

Suppose {Xn}n∈Z is a sequence of topological spaces and {fn}n∈Z a se-
quence of maps such that fn maps Xn+1 into Xn for each n ∈ Z. Then
{Xn, fn} is an inverse sequence, and the inverse limit of {Xn, fn} is the
subspace of

∏
ZXn to which a point (. . . , x−2, x−1, x0, x1, x2, . . .) belongs if

and only if f(xn+1) = xn for each n ∈ Z. The spaces Xn are called factor
spaces, and the maps fn are called bonding maps. The projection of the in-
verse limit into the factor spaces Xn is denoted for each n ∈ Z by πn. It is
well known that an inverse limit is a continuum if each of its factor spaces
is a continuum.
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If each factor space is an interval, the topology on the inverse limit is
generated by the metric defined as follows:

d(x, y) =

∞∑
n=0

|xn − yn|
2n

.

The continuity of the bonding maps guarantees that it is sufficient to sum
over the nonnegative integers.

Suppose X is the inverse limit of an inverse sequence of the form {Y, f}
for some space Y and some map f . The shift map is the function f̂ : X → X

defined coordinatewise by πn ◦ f̂(x) = f(xn) = xn−1. It is well known that
the shift map is a homeomorphism of the inverse limit onto itself.

1.2. Notation. The following notation will be used throughout without
further reference. X denotes an indecomposable continuum that arises as the
inverse limit of an inverse sequence {I, fn} where, for each n ∈ Z, fn is a
unimodal map with critical point cn.

For any collection of sets G, the symbol G∗ denotes the union of the
members of G. Denote by C the collection of composants of X that contain
a proper subcontinuum K of X such that πn[K] contains cn for infinitely
many positive integers n. Denote by T a transversal to C. For each x in C∗,
define T (x) to be T ∩ Cx, where Cx denotes the composant of x in X.

For each n ∈ Z, define collections A0
n and A1

n as follows:

A0
n =


K : K is a subcontinuum of X,

ck ∈ πk[K] for infinitely many k ∈ N,

πk[K] ⊂ [ck, 1] for some k ≤ n,

T [K] ∈ K,
πn ◦ T [K] ∈ [0, cn)

 ,

A1
n =


K : K is a subcontinuum of X,

ck ∈ πk[K] for infinitely many k ∈ N,

πk[K] ⊂ [ck, 1] for some k ≤ n,

T [K] ∈ K,
πn ◦ T [K] ∈ [cn, 1]

 .

For each n ∈ Z, set B0
n = (π−1n [0, cn) ∪ A0∗

n ) − A1∗
n and B1

n =
(π−1n [cn, 1] ∪ A1∗

n ) − A0∗
n , and let Bn = {B0

n, B
1
n}. By Lemma 1.1 below,

each Bn is a partition of X. Denote the projection of X onto Bn by βn for
each n ∈ Z, i.e., βn(x) = Bj

n if x ∈ Bj
n, j ∈ {0, 1}.

For any distinct pair of real numbers, a and b, the notation [a, b) will
be used independent of whether a < b or b < a to denote the interval that
contains a, fails to contain b, and has endpoints a and b. If a = b, then [a, b)
refers to the empty set. Similar conventions will be used for each of (a, b),
(a, b], and [a, b].
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Lemma 1.1. The collections A0
n, A1

n, and Bn have the following proper-
ties for each n ∈ Z:

(1) A0
n ∪ A1

n ⊂ A0
n+1 ∪ A1

n+1.

(2) A0∗
n ∪ A1∗

n ⊂ A0∗
n+1 ∪ A1∗

n+1.

(3) A0∗
n ∪ A1∗

n ⊂ C∗.
(4) For any x in A0∗

n ∪A1∗
n , x is in A0∗

n if πn ◦ T (x) ∈ [0, cn), and x is
in A1∗

n if πn ◦ T (x) ∈ [cn, 1].
(5) A0

n ∩ A1
n = ∅.

(6) A0∗
n ∩ A1∗

n = ∅.
(7) Bn is a partition of X.

2. Composant classification. The goal of this section is to classify the
composants of X. Roughly speaking, each point of X is identified with an
element of the sequence space

∏
Z{B0

n, B
1
n}, and the composant of the point

is determined by the tail of the sequence. More specifically, the main result
of the section, Theorem 2.11, states that two points x and y of X belong
to the same composant if and only if βn(x) = βn(y) for cofinitely many
positive integers n. Along the way the result is established for x, y ∈ X−C∗
(Lemma 2.2), x, y ∈ T (Lemma 2.4), x, y ∈ C∗ (Lemma 2.8), and x ∈ X,
y ∈ C∗ (Lemma 2.10).

Lemma 2.1. If x and y are points of X such that cn 6∈ (xn, yn) for
cofinitely many n ∈ N, then x and y belong to the same composant of X.

Proof. The restriction of fn to [xn, yn] is monotone for cofinitely many
n ∈ N, so fn[xn+1, yn+1] = [xn, yn] for cofinitely many n ∈ N. It follows that
x and y are in the same composant of X.

Lemma 2.2. If x and y are points of X − C∗, then the following are
equivalent:

(1) βn(x) = βn(y) for cofinitely many n ∈ N.
(2) cn 6∈ (xn, yn) for cofinitely many n ∈ N.
(3) x and y belong to the same composant of X.

Proof. Since x and y are not in C∗, it follows that xn, yn 6= cn for
cofinitely many n ∈ N, and xn, yn 6∈ A0∗

n ∪ A1∗
n for n ∈ Z. Consequently,

βn(x) = B0
n if and only if xn ∈ [0, cn), and βn(x) = B1

n if and only if
xn ∈ [cn, 1], and similarly for y. Thus (1) implies (2), and, as xn, yn 6= cn
for cofinitely many n ∈ N, (2) implies (1). By Lemma 2.1, (2) implies (3).
Conversely, if (3) holds, there is a proper subcontinuum of X that contains
both x and y and fails to belong to C. Then (2) follows from the definition
of C.
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Lemma 2.3. For each x ∈ T and each n ∈ Z,

βn(x) =

{
B0

n if xn ∈ [0, cn),

B1
n if xn ∈ [cn, 1].

Proof. First suppose xn ∈ [0, cn). If x 6∈ A0∗
n ∪ A1∗

n , then x ∈ B0
n. Hence

βn(x) = B0
n. Suppose x ∈ A0∗

n ∪ A1∗
n . Then there is a proper subcontinuum

K of X containing x that belongs to one of A0
n and A1

n. Since πn◦T [K] = xn
and xn ∈ [0, cn), we see that K belongs to A0

n. Then x ∈ A0∗
n , so x ∈ B0

n

and βn(x) = B0
n. Similarly, if xn ∈ [cn, 1], then βn(x) = B1

n.

Lemma 2.4. If x and y are points of T , the following are equivalent:

(1) βn(x) = βn(y) for cofinitely many n ∈ N.
(2) cn 6∈ (xn, yn) for cofinitely many n ∈ N.
(3) x and y belong to the same composant of X.
(4) x = y.

Proof. The proof goes (1)⇒(2)⇒(3)⇒(4)⇒(1). The first two implica-
tions follow from Lemmas 2.3 and 2.1 respectively. The third follows from
the fact that T contains at most one point from each composant of X, and
the fourth is trivial.

Lemma 2.5. If K is a proper subcontinuum of X, then πn[K] ⊂
[0, cn) ∪ (cn, 1] for infinitely many n ∈ N. Furthermore, if cn ∈ πn[K] for
infinitely many n ∈ N, then πn[K] ⊂ (cn, 1] for infinitely many n ∈ N.

Proof. If cn ∈ πn[K] for cofinitely many n ∈ N, then each of the fol-
lowing also holds for cofinitely many n ∈ N: 1 ∈ πn[K], [cn, 1] ⊂ πn[K],
and [0, 1] ⊂ πn[K]. Thus K = X, contrary to hypothesis. Hence πn[K] ⊂
[0, cn) ∪ (cn, 1] for infinitely many n ∈ N. Suppose further that cn ∈ πn[K]
for infinitely many n ∈ N. Then 1 ∈ πn[K] for infinitely many n ∈ N. Since
it is not true that [cn, 1] ⊂ πn[K] for infinitely many n ∈ N, it follows that
πn[K] ⊂ (cn, 1] for infinitely many n ∈ N.

Lemma 2.6. If x ∈ T and K is a proper subcontinuum of X contain-
ing x, then there are cofinitely many n ∈ N for which K is contained by one
of B0

n and B1
n.

Proof. There is a proper subcontinuum L of X containing K such that
cn ∈ πn[L] for infinitely many n ∈ N. By Lemma 2.5, there is a positive
integer N such that πN [L] ⊂ (cN , 1]. Suppose n ≥ N . Notice that T [L] = x,
and therefore T [L] ∈ L. Then L ∈ A0

n if xn ∈ [0, cn), and L ∈ A1
n if

xn ∈ [cn, 1]. Consequently, L ⊂ B0
n if xn ∈ [0, cn), and L ⊂ B1

n if xn ∈ [cn, 1].
The conclusion of the lemma follows.

Lemma 2.7. If x is a point of T and y is a point of X from the com-
posant of x, then βn(x) = βn(y) for cofinitely many n ∈ N.
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Proof. Denote by xy the continuum irreducible between x and y. By
Lemma 2.6, there are cofinitely many n ∈ N such that xy is contained by
one of B0

n and B1
n. Consequently, βn(x) = βn(y) for cofinitely many n ∈ N.

Lemma 2.8. If x and y are points of C∗, then the following are equiv-
alent:

(1) βn(x) = βn(y) for cofinitely many n ∈ N.
(2) x and y belong to the same composant of X.

Proof. Denote T (x) and T (y) by a and b respectively. By Lemma 2.7,
βn(x) = βn(a) and βn(y) = βn(b) both hold for cofinitely many n ∈ N.
Hence (1) is equivalent to the statement: βn(a) = βn(b) for cofinitely many
n ∈ N. Note that (2) holds if and only if a = b. Thus the result follows from
Lemma 2.4.

Lemma 2.9. If y is a point of C∗ and x is a point of X such that
βn(x) = βn(y) for cofinitely many n ∈ N, then x ∈ C∗.

Proof. Denote T (y) by a. It follows from Lemma 2.7 and the hypothesis
of the present lemma that βn(a) = βn(x) for cofinitely many n ∈ N. By
Lemma 2.3, for each n ∈ N, βn(a) = B0

n if an ∈ [0, cn), and βn(a) = B1
n if

an ∈ [cn, 1]. Suppose, contrary to the lemma, that x 6∈ C∗. Then, for each
n ∈ N, x 6∈ A0∗

n ∪ A1∗
n , so βn(x) = B0

n if xn ∈ [0, cn), and βn(x) = B1
n if

xn ∈ [cn, 1]. It follows that cn 6∈ (xn, an) for cofinitely many n ∈ N. By
Lemma 2.1, x and a belong to the same composant of X, which contradicts
the assumption that x 6∈ C∗. Consequently, x ∈ C∗.

Lemma 2.10. If y is a point of C∗ and x is a point of X, then the
following are equivalent:

(1) βn(x) = βn(y) for cofinitely many n ∈ N.
(2) x and y belong to the same composant of X.

Proof. Both conditions imply that x ∈ C∗: (1) via Lemma 2.9, and (2)
trivially. Thus the result follows from Lemma 2.8.

Theorem 2.11. Two points x and y of X belong to the same composant
if and only if βn(x) = βn(y) for cofinitely many n ∈ N.

Proof. Either x and y are both in X − C∗, or at least one of them is
in C∗. Thus the theorem follows from Lemmas 2.2 and 2.10.

3. Single bonding map. In this section, we will assume that there is a
single unimodal map f such that fn = f for each positive integer n. Prior to
this section, the sequences of symbols with which points of X were identified
were points of the space

∏
Z{B0

n, B
1
n}. One naturally regards such points as

sequences of zeros and ones, and that connection is formally established in
this section. In Theorem 3.5, the resulting set Ω of all points of

∏
Z{0, 1}
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that correspond to points of X is shown to be invariant under the shift on∏
Z{0, 1}, and the restriction of that shift to Ω is shown to be semiconjugate

to the shift homeomorphism on X.

Notation. Define β̃n for each n ∈ Z by

β̃n(x) =

{
0 if βn(x) = B0

n,

1 if βn(x) = B1
n,

and define β̃ : X →
∏

Z{0, 1} coordinatewise by πn ◦ β̃(x) = β̃n(x) for each

n ∈ Z. Denote the range of β̃ by Ω.
Denote the quotient topology on {0, 1} induced by β̃n by Qn for each n.

(Qn is nontrivial if and only if one of B0
n and B1

n is open.) Note that β̃ is a
continuous function from X into

∏
Z({0, 1},Qn).

Define σ to be the shift on
∏

Z({0, 1},Qn) given by πn ◦ σ(x) = πn−1(x)
for each n ∈ Z. Since each coordinate of σ is a projection map, it ap-
pears that σ is continuous as the rising sun. However, πn−1, although con-
tinuous as a projection onto ({0, 1},Qn−1), is not necessarily continuous
when regarded as a function into ({0, 1},Qn). That is, the continuity of
πn ◦σ :

∏
Z({0, 1},Qn)→ ({0, 1},Qn) does not follow from the continuity of

πn−1 :
∏

Z({0, 1},Qn)→ ({0, 1},Qn−1). If Qn = Qn−1 for each n, then πn◦σ
is continuous for each n, and σ is continuous. It is shown in Theorem 3.4
that this is the case if T is shift invariant.

Lemma 3.1. If fn = f for each n ∈ N, and T is a shift invariant
transversal to the composants in C, then f̂ |C∗ ◦ T = T ◦ f̂ |C∗.

Proof. It suffices to show that f̂ ◦T (x) = T ◦ f̂ ◦T (x) = T ◦ f̂(x) for each

x ∈ C∗. The first equality holds since f̂ ◦ T (x) belongs to the transversal T ,

and the second holds since f̂(x) and f̂◦T (x) belong to the same composant.

Lemma 3.2. If fn = f for each n ∈ N, and T is a shift invariant
transversal to the composants in C, then, for each i ∈ {0, 1}, a subcontinuum

K of X belongs to the collection Ai
n if and only if f̂ [K] belongs to the

collection Ai
n+1.

Proof. The proof is similar for i = 0 and i = 1, so only the case in which
i = 0 will be considered. Suppose K is a subcontinuum of X. Since fn = f
and hence cn = c for each n ∈ Z, the definition of A0

n is as follows, and that
of A0

n+1 is similar:

A0
n =



K : 1) K is a subcontinuum of X,

2) c ∈ πk[K] for infinitely many k ∈ N,

3) πk[K] ⊂ [c, 1] for some k ≤ n,

4) T [K] ∈ K,

5) πn ◦ T [K] ∈ [0, c)


.
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It is straightforward to verify that K satisfies the first three properties
of A0

n if and only if f̂ [K] satisfies the first three properties of A0
n+1. Notice

that T [K] ∈ K if and only if f̂ ◦ T [K] ∈ f̂ [K]. Applying Lemma 3.1 shows

that T [K] ∈ K if and only if T ◦ f̂ [K] ∈ f̂ [K]. Hence K satisfies the fourth
property of A0

n if and only if f̂ [K] satisfies the fourth property of A0
n+1.

Finally, notice that πn◦T = πn+1◦ f̂ ◦T = πn+1◦T ◦ f̂ |C∗ . Hence πn◦T [K] =
πn+1◦T◦f̂ [K] for each subcontinuumK ofX lying in C∗ ofX, andK satisfies
the fifth property ofA0

n if and only if f̂ [K] satisfies the fifth property ofA0
n+1.

Consequently, K ∈ A0
n if and only if f̂ [K] ∈ A0

n+1.

Lemma 3.3. If fn = f for each n ∈ Z, and T is a shift invariant

transversal to the composants in C, then f̂(B0
n) = B0

n+1 and f̂(B1
n) = B1

n+1

for each n ∈ Z.

Proof. Since f̂ is one-to-one and {B0
n, B

1
n} is a partition of X for each

n ∈ Z, it suffices to show that f̂(B0
n) = B0

n+1 for each n ∈ Z. It follows

from Lemma 3.2 that, for each i ∈ {0, 1}, a point x of X belongs to Ai∗
n

if and only if f̂(x) belongs to Ai∗
n+1. Since a point x belongs to π−1n [0, c)

if and only if f̂(x) belongs to π−1n+1[0, c), it follows that a point x belongs

to B0
n = (π−1n [0, c) ∪ A0∗

n ) − A1∗
n if and only if f̂(x) belongs to B0

n+1 =

(π−1n+1[0, c) ∪ A0∗
n+1)−A1∗

n+1.

Theorem 3.4. If fn = f for each n ∈ Z, and T is a shift invariant

transversal to the composants in C, then σ is continuous.

Proof. It was noted in the remarks prior to Lemma 3.1 that σ is con-

tinuous if Qn = Qn−1 for each n. Suppose n ∈ Z. Since Qn and Qn−1 both

contain the empty set and {0, 1}, it suffices to show that Qn contains {0} if

and only if Qn−1 does, and similarly for {1}. Note that Qn contains {0} if

and only if β̃−1n (0), which is equal to B0
n, is open. Similarly Qn−1 contains

{0} if and only if B0
n−1 is open. By Lemma 3.3, B0

n and B0
n−1 are homeo-

morphic. Consequently, Qn contains {0} if and only if Qn−1 does. Similarly

Qn contains {1} if and only if Qn−1 does. It follows that Qn = Qn−1. Hence

σ is continuous.

Theorem 3.5. If fn = f for each n ∈ Z, and T is a shift invariant

transversal to the composants in C, then Ω is a shift invariant subset of∏
Z{0, 1}, and σ ◦ β̃ = β̃ ◦ f̂ .

Proof. The shift invariance of Ω follows from σ ◦ β̃ = β̃ ◦ f̂ , which we

establish by showing that πn◦σ◦β̃ = πn−1◦β̃ = πn◦β̃◦f̂ for each n ∈ Z. The

former equality follows from the definition of σ. To see the latter, suppose
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x ∈ X and n ∈ Z. The definition of β̃ and Lemma 3.3 yield

β̃n ◦ f̂(x) =

{
0 if f̂(x) ∈ B0

n,

1 if f̂(x) ∈ B1
n

=

{
0 if x ∈ B0

n−1,

1 if x ∈ B1
n−1

= β̃n−1(x).

4. The tent family. In this section it is shown that there is a shift
invariant transversal to the composants of an indecomposable inverse limit
of tent cores (Theorem 4.3). The proof makes use of the fact that every
composant that is periodic under the shift map contains a periodic point
with the same period. This result about periodic composants was first proved
by Block, Jakimovik, and Keesling [2]. The proof given in Theorem 4.2 below
for the sake of completeness and consistency of notation is similar in spirit.

The tent map with slope s, for any s ∈ [0, 2], is given by

Ts(x) =

{
sx if x ∈ [0, 1/2],

s(1− x) if x ∈ [1/2, 1].

A tent core is a map of the form Ts|[T 2
s (c),Ts(c)], where c = 1/2. Notice that

if f is a tent core, then f is unimodal with critical point c = 1/2, and the
domain and range of f are both equal to [f2(c), f(c)].

Lemma 4.1. If f is a tent core, and I is an interval such that f2[I] 6=
[f2(c), f(c)], and r =

√
2/s, then diam(I) ≤ r2 diam(f2[I]).

Proof. First note that if J is a subinterval of [f2(c), f(c)] such that
f [J ] 6= [f2(c), f(c)], then

diam(f [J ])

{
= s diam(J) if c 6∈ J,
≥ (s/2) diam(J) if c ∈ J .

Applying this to f [I] and I, at least one of which fails to contain c, shows
that diam(f2[I]) ≥ (s2/2) diam(I). The conclusion follows.

Theorem 4.2 (Block, Jakimovik, Keesling; [2]). Suppose fn = f for
each n ∈ Z where f is a tent core, and suppose s >

√
2. Then every periodic

composant of f̂ contains a periodic point of f̂ with the same period.

Proof. Suppose C is a periodic composant of f̂ , and choose a point
x ∈ C. Denote the period of C under f̂ by p. Then x and f̂−p(x) belong
to the same composant, so there is a proper subcontinuum K of X that
contains both x and f̂−p(x). There is a positive integer N such that πn[K]

is a proper subset of [f2(c), f(c)] for each n ≥ N . Set z = f̂−Np(x) and

L = f̂−Np[K]. Then z belongs to the composant C, z and f̂−p(z) belong
to L, and πn[L] is a proper subset of [0, 1] for each nonnegative integer n.
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We wish to show that {f̂−np(z)} converges, and that its limit satisfies

the conclusion of the theorem. To that end, we show {f̂−np(z)} is Cauchy.
Set r =

√
2/s and M = max{diam(π0[L]), r−1 diam(π1[L])}, and note

that |r| < 1. By Lemma 4.1, diam(πn+2[L]) ≤ r2 diam(πn[L]) for each non-
negative integer n. Then diam(πn[L]) ≤Mrn for each nonnegative integer n.

It follows that diam(πn[f̂−kp[L]]) ≤ Mrn+kp for all nonnegative integers k

and n. Since f̂−kp(z) and f̂−(k+1)p(z) belong to f̂−kp[L] for each nonneg-

ative integer k, it follows that d(f̂−kp(z), f̂−(k+1)p(z)) ≤
∑∞

n=0Mrn+kp =
Mrkp/(1− r) for each nonnegative integer k.

Then, for j ≥ k,

d(f̂−kp(z), f̂−jp(z)) ≤
j−1∑
i=k

d(f̂−ip(z), f̂−(i+1)p(z))

≤
∞∑
i=k

M
1

1− r
rip =

M

1− r
rkp

1− rp
= o(1) as j, k →∞.

Hence {f̂−np(z)} is a Cauchy sequence, and therefore converges to some

point ζ ∈ X. Furthermore, f̂−p(ζ) = ζ. Thus ζ is periodic under f̂ with
period at most p. To see that the period of ζ is at least p, it suffices to show
that ζ ∈ C, or equivalently, that ζ belongs to the composant of z.

For each n = 0, 1, . . . , p− 1,

ζn = πn(ζ) = πn

(
lim
k→∞

f̂−kp(z)
)

= lim
k→∞

πn ◦ f̂−kp(z)

= lim
k→∞

πn+kp(z) = lim
k→∞

zn+kp.

Thus, for each n = 0, 1, . . . , p−1, ζn and zn+kp fail to straddle c for cofinitely
many nonnegative integers k. But ζn+kp = ζn for each nonnegative integer k

since f̂p(ζ) = ζ. Consequently, for each n = 0, 1, . . . , p− 1, ζn+kp and zn+kp

fail to straddle c for cofinitely many nonnegative integers k. Equivalently,
ζk and zk fail to straddle c for cofinitely many nonnegative integers k, and
ζ and z belong to the same composant by Lemma 2.1.

Theorem 4.3. If fn = f for each n ∈ Z where f is a tent core, then
there is a shift invariant transversal to the composants in C.

Proof. Consider the collections P and N defined as follows:

P =
{⋃
n∈Z

f̂n(C) : C ∈ C and f̂k(C) = C for some k ∈ Z
}
,

N =
{⋃
n∈Z

f̂n(C) : C ∈ C and f̂k(C) 6= C for each k ∈ Z
}
.

By the Axiom of Choice, there are a transversal SN to N and, via The-
orem 4.2, a transversal SP to P such that each point of SP is periodic
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under f̂ with period equal to that of the composant in which it resides. Set
S =

⋃
Z f̂

n[SP ∪ SN ], and note that f̂ [S] = S.
It remains to show that S is a transversal to C. Suppose C ∈ C. Then⋃

Z f̂
n[C] contains a unique point x of SP ∪ SN . Hence x ∈ f̂k[C] for some

k ∈ Z. Consequently, f̂−k(x) ∈ C, and C contains a point of S.
To see that C contains only one point of S, suppose y ∈ S ∩ C. We

wish to show that y = f̂−k(x). Since y ∈ S, y = fm(x′) for some point

x′ ∈ SP ∪ SN and some integer m ∈ Z. Since y ∈ C, f̂−m[C] contains x′.

But x is the unique point of SP ∪ SN from
⋃

Z f̂
n[C], so x = x′. Thus we

have f̂m(x) = y ∈ C and f̂−k(x) ∈ C. It follows that f̂k+m[C] = C. If C

fails to be periodic under f̂ , then m = −k, which implies that y = f−k(x).

If C is periodic under f̂ , then m+ k is a multiple of p where p is the period
of C, and hence of x. Thus f̂m+k(x) = x. Applying f̂−k yields y = f̂−k(x).
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