Hardy-Littlewood-Paley inequalities and Fourier multipliers on $\mathrm{SU}(2)$

by
Rauan Akylzhanov (London), Erlan Nursultanov (Astana) and Michael Ruzhansky (London)

Abstract

We prove noncommutative versions of Hardy-Littlewood and Paley inequalities relating a function and its Fourier coefficients on the group $\operatorname{SU}(2)$. We use it to obtain lower bounds for the $L^{p}-L^{q}$ norms of Fourier multipliers on $\mathrm{SU}(2)$ for $1<p \leq$ $2 \leq q<\infty$. In addition, we give upper bounds of a similar form, analogous to the known results on the torus, but now in the noncommutative setting of $\operatorname{SU}(2)$.

1. Introduction. Let \mathbb{T}^{n} be the n-dimensional torus and let $1<p \leq$ $q<\infty$. A sequence $\lambda=\left\{\lambda_{k}\right\}_{k \in \mathbb{Z}^{n}}$ of complex numbers is said to be a multiplier of trigonometric Fourier series from $L^{p}\left(\mathbb{T}^{n}\right)$ to $L^{q}\left(\mathbb{T}^{n}\right)$ if the operator

$$
T_{\lambda} f(x)=\sum_{k \in \mathbb{Z}^{n}} \lambda_{k} \widehat{f}(k) e^{i k x}
$$

is bounded from $L^{p}\left(\mathbb{T}^{n}\right)$ to $L^{q}\left(\mathbb{T}^{n}\right)$. We denote by \mathbf{m}_{p}^{q} the set of such multipliers.

Many problems in harmonic analysis and partial differential equations can be reduced to the boundedness of multiplier transformations. There arises a natural question of finding sufficient conditions for $\lambda \in \mathbf{m}_{p}^{p}$. The topic of \mathbf{m}_{p}^{q} multipliers has been extensively researched. Using methods such as Littlewood-Paley decomposition and Calderón-Zygmund theory, it is possible to prove Hörmander-Mihlin type theorems (see e.g. Mihlin Mih57, Mih56, Hörmander Hör60, and later works).

Multipliers have been analysed in a variety of different settings (see e.g. Gaudry (Gau66], Cowling Cow74], Vretare Vre74]). The literature on spectral multipliers is too rich to be reviewed here (see e.g. a recent paper

[^0][CKS11] and references therein). The same is true for multipliers on locally compact abelian groups (see e.g. Arh12]), or for Fourier or spectral multipliers on symmetric spaces (see e.g. Ank90 or CGM93], resp.). We refer to the above and to other papers for further references on the history of \mathbf{m}_{p}^{q} multipliers on spaces of different types.

In this paper we are interested in Fourier multipliers on compact Lie groups, in which case the literature is much more sparse; below, we will make a more detailed review of the existing results. In this paper we will be investigating several questions in the model case of Fourier multipliers on the compact group $\mathrm{SU}(2)$. Although we will not explore them in this paper, there are links between multipliers on $\mathrm{SU}(2)$ and those on the Heisenberg group (see Ricci and Rubin RR86]).

In general, most of the multiplier theorems imply that $\lambda \in \mathbf{m}_{p}^{p}$ for all $1<p<\infty$ at once. Stein Ste70 raised the question of finding more subtle sufficient conditions for a multiplier to belong to some $\mathbf{m}_{p}^{p}, p \neq 2$, without implying that it also belongs to all $\mathbf{m}_{p}^{p}, 1<p<\infty$. Nursultanov and Tleukhanova NTl00 provided conditions on $\lambda=\left\{\lambda_{k}\right\}_{k \in \mathbb{Z}}$ to belong to \mathbf{m}_{p}^{q} for $1<p \leq 2 \leq q<\infty$. In particular, they established lower and upper bounds for the norms of $\lambda \in \mathbf{m}_{p}^{q}$ which depend on p and q. This provided a partial answer to Stein's question. Let us recall their result in the case $n=1$:

Theorem 1.1. Let $1<p \leq 2 \leq q<\infty$ and let M_{0} denote the set of all finite arithmetic progressions in \mathbb{Z}. Then

$$
\sup _{Q \in M_{0}} \frac{1}{|Q|^{1+1 / q-1 / p}}\left|\sum_{m \in Q} \lambda_{m}\right| \lesssim\left\|T_{\lambda}\right\|_{L^{p} \rightarrow L^{q}} \lesssim \sup _{k \in \mathbb{N}} \frac{1}{k^{1+1 / q-1 / p}} \sum_{m=1}^{k} \lambda_{m}^{*}
$$

where λ_{m}^{*} is a non-increasing rearrangement of λ_{m}, and $|Q|$ is the number of elements in the arithmetic progression Q.

In this paper we study noncommutative versions of this and other related results. As a model case, we concentrate on Fourier multipliers between Lebesgue spaces on the group $\mathrm{SU}(2)$ of 2×2 unitary matrices with determinant one. Sufficient conditions for Fourier multipliers on $\operatorname{SU}(2)$ to be bounded on L^{p}-spaces have been analysed by Coifman-Weiss CW71b and Coifman-de Guzman CdG71 (see also Chapter 5 in Coifman and Weiss’ book [CW71a), and are given in terms of the Clebsch-Gordan coefficients of representations of $\mathrm{SU}(2)$. A more general perspective was provided in [RW13] where conditions on Fourier multipliers to be bounded on L^{p} were obtained for general compact Lie groups, and Mihlin-Hörmander theorems on general compact Lie groups have been established in RW15.

Results about spectral multipliers are better known, for functions of the Laplacian (N. Weiss Wei72] or Coifman and Weiss [W74), or of the
sub-Laplacian on $\mathrm{SU}(2)$ (Cowling and Sikora [CS01]). However, following CW71b, CW71a, RW13, RW15], here we are rather interested in Fourier multipliers.

In this paper we obtain lower and upper estimates for the norms of Fourier multipliers acting between L^{p} and L^{q} spaces on $\mathrm{SU}(2)$. These estimates explicitly depend on the parameters p and q. Thus, this paper can be regarded as a contribution to Stein's question in the noncommutative setting of $\mathrm{SU}(2)$. At the same time we provide a noncommutative analogue of Theorem 1.1. Briefly, let A be the Fourier multiplier on $\mathrm{SU}(2)$ given by

$$
\widehat{A f}(l)=\sigma_{A}(l) \widehat{f}(l) \quad \text { for } \sigma_{A}(l) \in \mathbb{C}^{(2 l+1) \times(2 l+1)}, l \in \frac{1}{2} \mathbb{N}_{0}
$$

where we refer to Section 2 for definitions and notation related to Fourier analysis on $\mathrm{SU}(2)$. For such operators, in Theorem 3.1 , for $1<p \leq 2 \leq q<\infty$, we give two lower bounds, one of which is

$$
\begin{equation*}
\sup _{l \in \frac{1}{2} \mathbb{N}_{0}} \frac{1}{(2 l+1)^{1+1 / q-1 / p}} \frac{1}{2 l+1}\left|\operatorname{Tr} \sigma_{A}(l)\right| \lesssim\|A\|_{L^{p}(\mathrm{SU}(2)) \rightarrow L^{q}(\mathrm{SU}(2))} \tag{1.1}
\end{equation*}
$$

A related upper bound

$$
\begin{equation*}
\|A\|_{L^{p}(\mathrm{SU}(2)) \rightarrow L^{q}(\mathrm{SU}(2))} \lesssim \sup _{s>0} s\left(\sum_{\substack{l \in \frac{1}{2} \mathbb{N}_{0} \\\left\|\sigma_{A}(l)\right\|_{\mathrm{op}} \geq s}}(2 l+1)^{2}\right)^{1 / p-1 / q} \tag{1.2}
\end{equation*}
$$

will be given in Theorem 4.1.
The proof of the lower bound is based on the new inequalities describing the relationship between the "size" of a function and the "size" of its Fourier transform. These inequalities can be viewed as a noncommutative $\mathrm{SU}(2)$ version of the Hardy-Littlewood inequalities [HL27]. To explain this briefly, we recall that Hardy and Littlewood [HL27] showed that for $1<p \leq 2$ and $f \in L^{p}(\mathbb{T})$,

$$
\begin{equation*}
\sum_{m \in \mathbb{Z}}(1+|m|)^{p-2}|\widehat{f}(m)|^{p} \leq K\|f\|_{L^{p}(\mathbb{T})}^{p} \tag{1.3}
\end{equation*}
$$

and argued that this is a suitable extension of the Plancherel identity to L^{p}-spaces. Referring to Section 1 and to Theorem 2.1 for more details, our analogue for this is the inequality

$$
\begin{equation*}
\sum_{l \in \frac{1}{2} \mathbb{N}_{0}}(2 l+1)(2 l+1)^{5(p-2) / 2}\|\widehat{f}(l)\|_{\mathrm{HS}}^{p} \leq c\|f\|_{L^{p}(\mathrm{SU}(2))}^{p}, \quad 1<p \leq 2 \tag{1.4}
\end{equation*}
$$

which for $p=2$ gives the ordinary Plancherel identity on $\operatorname{SU}(2)$ (see (2.1)). We refer to Theorem 2.2 for this statement and to Corollary 2.3 for its dual. For $p \geq 2$, necessary conditions for a function to belong to L^{p} are usually
harder to obtain. In Theorem 2.8 we give such a result for $2 \leq p<\infty$:

$$
\begin{equation*}
\sum_{l \in \frac{1}{2} \mathbb{N}_{0}}(2 l+1)^{p-2}\left(\sup _{\substack{k \in \frac{1}{2} \mathbb{N}_{0} \\ k \geq l}} \frac{1}{2 k+1}|\operatorname{Tr} \widehat{f}(k)|\right)^{p} \leq c\|f\|_{L^{p}(\mathrm{SU}(2))}^{p} \quad 2 \leq p<\infty . \tag{1.5}
\end{equation*}
$$

In turn, this gives a noncommutative analogue to the known similar result on the circle (which we recall in Theorem 2.7). Similar to (1.1), the averaged trace appears also in (1.5) -it is the usual trace divided by the number of diagonal elements in the matrix.

Hörmander [Hör60] proved a Paley-type inequality for the Fourier transform on \mathbb{R}^{N}. In this paper we obtain an analogue of this inequality on $\mathrm{SU}(2)$.

The results on the group $\mathrm{SU}(2)$ are usually quite important since, in view of the resolved Poincaré conjecture, they provide information about corresponding transformations on general closed simply-connected threedimensional manifolds (see RT10] for a more detailed outline of such relations). In our context, they give explicit versions of known results on the circle \mathbb{T} or on the torus \mathbb{T}^{n}, in the simplest noncommutative setting of $\mathrm{SU}(2)$.

At the same time, we note that some results of this paper can be extended to Fourier multipliers on general compact Lie groups. However, such analysis requires a more abstract approach, and will appear elsewhere.

The paper is organised as follows. In Section 2 we fix the notation for the representation theory of $\mathrm{SU}(2)$ and formulate estimates relating functions to their Fourier coefficients: the $\mathrm{SU}(2)$-version of the Hardy-Littlewood and Paley inequalities and further extensions. In Section 3 we formulate and prove lower bounds for the operator norms of Fourier multipliers, and in Section 4 we establish upper bounds. Our proofs are based on the inequalities from Section 2. In Section 5 we complete the proofs of the results presented in the previous sections.

We shall use the symbol C to denote various positive constants, and $C_{p, q}$ for constants which may depend only on p and q. We shall write $x \lesssim y$ for the relation $|x| \leq C|y|$, and write $x \cong y$ if $x \lesssim y$ and $y \lesssim x$.
2. Hardy-Littlewood and Paley inequalities on $\mathrm{SU}(2)$. The aim of this section is to discuss necessary conditions and sufficient conditions for the $L^{p}(\mathrm{SU}(2))$-integrability of a function by means of its Fourier coefficients. The main results of this section are Theorems $2.2,2.4$ and 2.8 . They provide a noncommutative version of known results of this type on the circle \mathbb{T}. The proofs of most of the results of this section are given in Section 5.

First, let us fix the notation concerning representations of the compact Lie group $S U(2)$. There are different types of notation in the literature for the relevant objects; we follow the notation of Vilenkin [Vil68], as well as
that in RT10, RT13]. Let us identify $z=\left(z_{1}, z_{2}\right) \in \mathbb{C}^{1 \times 2}$, and let $\mathbb{C}\left[z_{1}, z_{2}\right]$ be the space of two-variable polynomials $f: \mathbb{C}^{2} \rightarrow \mathbb{C}$. Consider mappings

$$
t^{l}: \mathrm{SU}(2) \rightarrow \mathrm{GL}\left(V_{l}\right), \quad\left(t^{l}(u) f\right)(z)=f(z u)
$$

where $l \in \frac{1}{2} \mathbb{N}_{0}$ is called the quantum number, $\mathbb{N}_{0}=\mathbb{N} \cup\{0\}$, and where V_{l} is the $(2 l+1)$-dimensional subspace of $\mathbb{C}\left[z_{1}, z_{2}\right]$ consisting of the homogeneous polynomials of order $2 l \in \mathbb{N}_{0}$, i.e.

$$
V_{l}=\left\{f \in \mathbb{C}\left[z_{1}, z_{2}\right]: f\left(z_{1}, z_{2}\right)=\sum_{k=0}^{2 l} a_{k} z_{1}^{k} z_{2}^{2 l-k},\left\{a_{k}\right\}_{k=0}^{2 l} \subset \mathbb{C}\right\}
$$

The unitary dual of $\mathrm{SU}(2)$ is

$$
\widehat{\mathrm{SU}(2)} \cong\left\{t^{l} \in \operatorname{Hom}(\mathrm{SU}(2), \mathrm{U}(2 l+1)): l \in \frac{1}{2} \mathbb{N}_{0}\right\}
$$

where $\mathrm{U}(d) \subset \mathbb{C}^{d \times d}$ is the unitary matrix group, and the matrix components $t_{m n}^{l} \in C^{\infty}(\mathrm{SU}(2))$ can be written as products of exponentials and LegendreJacobi functions (see Vilenkin [Vil68]). It is also customary to let the indices m, n range from $-l$ to l, equi-spaced with step one. We define the Fourier transform on $\mathrm{SU}(2)$ by

$$
\widehat{f}(l):=\int_{\operatorname{SU}(2)} f(u) t^{l}(u)^{*} d u
$$

with the inverse Fourier transform (Fourier series) given by

$$
f(u)=\sum_{l \in \frac{1}{2} \mathbb{N}_{0}}(2 l+1) \operatorname{Tr} \widehat{f}(l) t^{l}(u)
$$

The Peter-Weyl theorem on $\mathrm{SU}(2)$ implies, in particular, that this pair of transforms are inverse to each other and that the Plancherel identity

$$
\begin{equation*}
\|f\|_{L^{2}(\mathrm{SU}(2))}^{2}=\sum_{l \in \frac{1}{2} \mathbb{N}_{0}}(2 l+1)\|\widehat{f}(l)\|_{\mathrm{HS}}^{2}=:\|\widehat{f}\|_{\ell^{2}(\mathrm{SU}(2))}^{2} \tag{2.1}
\end{equation*}
$$

holds true for all $f \in L^{2}(\mathrm{SU}(2))$. Here $\|\widehat{f}(l)\|_{\text {HS }}^{2}=\operatorname{Tr} \widehat{f}(l) \widehat{f}(l)^{*}$ denotes the Hilbert-Schmidt norm of matrices. For more details on the Fourier transform on $\mathrm{SU}(2)$ and on arbitrary compact Lie groups, and for subsequent Fourier and operator analysis, we refer to RT10.

There are different ways to compare the "sizes" of f and \widehat{f}. Apart from the Plancherel identity (2.1), there are other important relations, such as the Hausdorff-Young or the Riesz-Fischer theorems. However, such estimates usually require the change of the exponent p in L^{p}-measurements of f and \widehat{f}. Our first results deal with comparing f and \widehat{f} in the same scale of L^{p}-measurements. Let us indicate the background of this problem. Hardy and Littlewood [HL27, Theorems 10 and 11] proved the following generalisation of the Plancherel identity.

Theorem 2.1 (Hardy-Littlewood HL27]).
(1) Let $1<p \leq 2$. If $f \in L^{p}(\mathbb{T})$, then

$$
\begin{equation*}
\sum_{m \in \mathbb{Z}}(1+|m|)^{p-2}|\widehat{f}(m)|^{p} \leq K_{p}\|f\|_{L^{p}(\mathbb{T})}^{p}, \tag{2.2}
\end{equation*}
$$

where K_{p} is a constant which depends only on p.
(2) Let $2 \leq p<\infty$. If $\{\widehat{f}(m)\}_{m \in \mathbb{Z}}$ is a sequence of complex numbers such that

$$
\begin{equation*}
\sum_{m \in \mathbb{Z}}(1+|m|)^{p-2}|\widehat{f}(m)|^{p}<\infty, \tag{2.3}
\end{equation*}
$$

then there is a function $f \in L^{p}(\mathbb{T})$ with Fourier coefficients $\widehat{f}(m)$, and

$$
\|f\|_{L^{p}(\mathbb{T})}^{p} \leq K_{p}^{\prime} \sum_{m \in \mathbb{Z}}(1+|m|)^{p-2}|\widehat{f}(m)|^{p}
$$

Hewitt and Ross HR74 generalised this theorem to all compact abelian groups. Now, we give an analogue of Theorem 2.1 in the noncommutative setting of the compact group $\mathrm{SU}(2)$.

Theorem 2.2. If $1<p \leq 2$ and $f \in L^{p}(\mathrm{SU}(2))$, then

$$
\begin{equation*}
\sum_{l \in \frac{1}{2} \mathbb{N}_{0}}(2 l+1)^{5 p / 2-4}\|\widehat{f}(l)\|_{\mathrm{HS}}^{p} \leq c_{p}\|f\|_{L^{p}(\mathrm{SU}(2))}^{p} . \tag{2.4}
\end{equation*}
$$

We can write this in the form more resembling the Plancherel identity:

$$
\begin{equation*}
\sum_{l \in \frac{1}{2} \mathbb{N}_{0}}(2 l+1)(2 l+1)^{5(p-2) / 2}\|\widehat{f}(l)\|_{\mathrm{HS}}^{p} \leq c_{p}\|f\|_{L^{p}(\mathrm{SU}(2))}^{p}, \tag{2.5}
\end{equation*}
$$

providing a link to both (2.2) and (2.1). By duality, we obtain
Corollary 2.3. If $2 \leq p<\infty$ and $\sum_{l \in \frac{1}{2} \mathbb{N}_{0}}(2 l+1)^{5 p / 2-4}\|\widehat{f}(l)\|_{\mathrm{HS}}^{p}<\infty$, then $f \in L^{p}(\mathrm{SU}(2))$ and

$$
\begin{equation*}
\|f\|_{L^{p}(\mathrm{SU}(2))}^{p} \leq c_{p} \sum_{l \in \frac{1}{2} \mathbb{N}_{0}}(2 l+1)^{5 p / 2-4}\|\widehat{f}(l)\|_{\mathrm{HS}}^{p} . \tag{2.6}
\end{equation*}
$$

For $p=2$, both statements reduce to the Plancherel identity (2.1).
Hö̈mander Hör60] proved a Paley-type inequality for the Fourier transform on \mathbb{R}^{N}. We now give an analogue of this inequality on $\mathrm{SU}(2)$.

Theorem 2.4. Let $1<p \leq 2$. Suppose $\{\sigma(l)\}_{l \in \frac{1}{2} \mathbb{N}_{0}}$ is a sequence of complex matrices $\sigma(l) \in \mathbb{C}^{(2 l+1) \times(2 l+1)}$ such that

$$
\begin{equation*}
K_{\sigma}:=\sup _{s>0} s \sum_{\substack{l \in \frac{1}{N_{0}} \mathbb{N}_{0} \\\|\sigma(l)\|_{0} \geq s}}(2 l+1)^{2}<\infty . \tag{2.7}
\end{equation*}
$$

Then

$$
\begin{equation*}
\sum_{l \in \frac{1}{2} \mathbb{N}_{0}}(2 l+1)^{p(2 / p-1 / 2)}\|\widehat{f}(l)\|_{\mathrm{HS}}^{p}\|\sigma(l)\|_{\mathrm{op}}^{2-p} \lesssim K_{\sigma}^{2-p}\|f\|_{L^{p}(\mathrm{SU}(2))}^{p} \tag{2.8}
\end{equation*}
$$

It will be useful to recall the spaces $\ell^{p}(\widehat{\mathrm{SU}(2)})$ on the discrete unitary dual $\widehat{\mathrm{SU}(2)}$. For general compact Lie groups these spaces have been introduced and studied in [RT10, Section 10.3]. In the particular case of $S U(2)$, for a sequence of complex matrices $\sigma(l) \in \mathbb{C}^{(2 l+1) \times(2 l+1)}$ they can be defined by the finiteness of the norms

$$
\begin{equation*}
\|\sigma\|_{\ell^{p}(\widehat{\mathrm{SU}(2)})}:=\left(\sum_{l \in \frac{1}{2} \mathbb{N}_{0}}(2 l+1)^{p(2 / p-1 / 2)}\|\sigma(l)\|_{\mathrm{HS}}^{p}\right)^{1 / p}, \quad 1 \leq p<\infty \tag{2.9}
\end{equation*}
$$

and

$$
\begin{equation*}
\|\sigma\|_{\ell \infty(\widehat{\mathrm{SU}(2)})}:=\sup _{l \in \frac{1}{2} \mathbb{N}_{0}}(2 l+1)^{-1 / 2}\|\sigma(l)\|_{\mathrm{HS}} \tag{2.10}
\end{equation*}
$$

Among other things, it was shown in [RT10, Section 10.3] that these spaces are interpolation spaces, they satisfy the duality property and, with $\sigma=\widehat{f}$, the Hausdorff-Young inequality holds:

$$
\begin{align*}
\left(\sum_{l \in \frac{1}{2} \mathbb{N}_{0}}(2 l+1)^{p^{\prime}\left(2 / p^{\prime}-1 / 2\right)}\|\widehat{f}(l)\|_{\mathrm{HS}}^{p^{\prime}}\right)^{1 / p^{\prime}} & \equiv\|\widehat{f}\|_{\ell^{p^{\prime}}(\widehat{\mathrm{SU}(2)})} \tag{2.11}\\
& \lesssim\|f\|_{L^{p}(\mathrm{SU}(2))}, \quad 1 \leq p \leq 2
\end{align*}
$$

Further, we recall a result on interpolation of weighted spaces from BL76]:

TheOrem 2.5 (Interpolation of weighted spaces). Let $d \mu_{0}(x)=$ $\omega_{0}(x) d \mu(x)$, $d \mu_{1}(x)=\omega_{1}(x) d \mu(x)$, and write $L^{p}(\omega)=L^{p}(\omega d \mu)$ for the weight ω. Suppose that $0<p_{0}, p_{1}<\infty$. Then

$$
\left(L^{p_{0}}\left(\omega_{0}\right), L^{p_{1}}\left(\omega_{1}\right)\right)_{\theta, p}=L^{p}(\omega)
$$

where $0<\theta<1,1 / p=(1-\theta) / p_{0}+\theta / p_{1}$, and $\omega=w_{0}^{p(1-\theta) / p_{0}} w_{1}^{p \theta / p_{1}}$.
From this we obtain:
Corollary 2.6. Let $1<p \leq b \leq p^{\prime}<\infty$. If $\{\sigma(l)\}_{l \in \frac{1}{2} \mathbb{N}_{0}}$ satisfies condition (2.7) with constant K_{σ}, then

$$
\begin{align*}
\left(\sum _ { l \in \frac { 1 } { 2 } \mathbb { N } _ { 0 } } (2 l + 1) ^ { b (2 / b - 1 / 2) } \left(\|\widehat{f}(l)\|_{\mathrm{HS}} \|\right.\right. & \left.\left.\sigma(l) \|_{\mathrm{op}}^{1 / b-1 / p^{\prime}}\right)^{b}\right)^{1 / b} \tag{2.12}\\
& \lesssim\left(K_{\sigma}\right)^{1 / b-1 / p^{\prime}}\|f\|_{L^{p}(\mathrm{SU}(2))}
\end{align*}
$$

This reduces to (2.11) when $b=p^{\prime}$ and to 2.8 when $b=p$.

Proof. We consider a sublinear operator A which takes a function f to its Fourier transform $\widehat{f}(l)$ divided by $\sqrt{2 l+1}$, i.e.

$$
f \mapsto A f:=\{\widehat{f}(l) / \sqrt{2 l+1}\}_{l \in \frac{1}{2} \mathbb{N}_{0}}
$$

where

$$
\widehat{f}(l)=\int_{\operatorname{SU}(2)} f(u) t^{l}(u)^{*} d u \in \mathbb{C}^{(2 l+1) \times(2 l+1)}, \quad l \in \frac{1}{2} \mathbb{N}_{0}
$$

The statement follows from Theorem 2.5 if we regard the left-hand sides of inequalities (2.8) and 2.11 as an $\|A f\|_{L^{p} \text {-norm in a weighted sequence }}$ space over $\frac{1}{2} \mathbb{N}_{0}$ with the weights given by $w_{0}(l)=(2 l+1)^{2}\|\sigma(l)\|_{\text {op }}^{2-p}$ and $w_{1}(l)=(2 l+1)^{2}, l \in \frac{1}{2} \mathbb{N}_{0}$.

Coming back to the Hardy-Littlewood Theorem2.1, we see that the convergence of the series 2.3 is a sufficient condition for f to belong to $L^{p}(\mathbb{T})$, for $p \geq 2$. However, this condition is not necessary. Hence, the question arises of finding necessary conditions for f to belong to L^{p}, or in other words, of finding lower estimates for $\|f\|_{L^{p}}$ in terms of the series of the form (2.3). Such a result on $L^{p}(\mathbb{T})$ was obtained by Nursultanov and can be stated as follows.

Theorem 2.7 ([Nur98a]). If $2<p<\infty$ and $f \in L^{p}(\mathbb{T})$, then

$$
\begin{equation*}
\sum_{k=1}^{\infty} k^{p-2}\left(\sup _{\substack{e \in M \\|e| \geq k}} \frac{1}{|e|}\left|\sum_{m \in e} \widehat{f}(m)\right|\right)^{p} \leq C\|f\|_{L^{p}(\mathbb{T})}^{p} \tag{2.13}
\end{equation*}
$$

where M is the set of all finite arithmetic progressions in \mathbb{Z}.
We now present a (noncommutative) version of this result on the group $\mathrm{SU}(2)$.

Theorem 2.8. If $2<p<\infty$ and $f \in L^{p}(\mathrm{SU}(2))$, then

$$
\begin{equation*}
\sum_{l \in \frac{1}{2} \mathbb{N}_{0}}(2 l+1)^{p-2}\left(\sup _{\substack{k \in \frac{1}{2} \mathbb{N}_{0} \\ k \geq l}} \frac{1}{2 k+1}|\operatorname{Tr} \widehat{f}(k)|\right)^{p} \leq c\|f\|_{L^{p}(\mathrm{SU}(2))}^{p} \tag{2.14}
\end{equation*}
$$

For completeness, we give a simple argument for Corollary 2.3 .
Proof of Corollary 2.3. The application of the duality of L^{p} spaces yields

$$
\|f\|_{L^{p}(\mathrm{SU}(2))}=\sup _{\substack{g \in L^{p^{\prime}} \\\|g\|_{L^{p^{\prime}}=1}}}\left|\int_{\mathrm{SU}(2)} f(x) \overline{g(x)} d x\right|
$$

Using Plancherel's identity (2.1), we get

$$
\int_{\mathrm{SU}(2)} f(x) \overline{g(x)} d x=\sum_{l \in \frac{1}{2} \mathbb{N}_{0}}(2 l+1) \operatorname{Tr} \widehat{f}(l) \widehat{g}(l)^{*}
$$

It is easy to see that

$$
\begin{aligned}
& 2 l+1=(2 l+1)^{5 / 2-4 / p+5 / 2-4 / p^{\prime}} \\
& \left|\operatorname{Tr} \widehat{f}(l) \widehat{g}(l)^{*}\right| \leq\|\widehat{f}(l)\|_{\text {HS }}\|\widehat{g}(l)\|_{\text {HS }} .
\end{aligned}
$$

Using these inequalities, and applying the Hölder inequality, for any $g \in L^{p^{\prime}}$ with $\|g\|_{L^{p^{\prime}}}=1$ we have

$$
\begin{aligned}
& \left|\sum_{l \in \frac{1}{2} \mathbb{N}_{0}}(2 l+1) \operatorname{Tr} \widehat{f}(l) \widehat{g}(l)^{*}\right| \\
& \quad \leq \sum_{l \in \frac{1}{2} \mathbb{N}_{0}}(2 l+1)^{5 / 2-4 / p}\|\widehat{f}(l)\|_{\mathrm{HS}}(2 l+1)^{5 / 2-4 / p^{\prime}}\|\widehat{g}(l)\|_{\mathrm{HS}} \\
& \quad \leq\left(\sum_{l \in \frac{1}{2} \mathbb{N}_{0}}(2 l+1)^{5 p / 2-4}\|\widehat{f}(l)\|_{\mathrm{HS}}^{p}\right)^{1 / p}\left(\sum_{l \in \frac{1}{2} \mathbb{N}_{0}}(2 l+1)^{5 p^{\prime} / 2-4}\|\widehat{g}(l)\|_{\mathrm{HS}}^{p^{\prime}}\right)^{1 / p^{\prime}} \\
& \quad \leq\left(\sum_{l \in \frac{1}{2} \mathbb{N}_{0}}(2 l+1)^{5 p / 2-4}\|\widehat{f}(l)\|_{\mathrm{HS}}^{p}\right)^{1 / p}\|g\|_{L^{p^{\prime}}}
\end{aligned}
$$

where we have used Theorem 2.2 in the last line. Thus, we have just proved that

$$
\begin{aligned}
\left|\int_{\mathrm{SU}(2)} f(x) \overline{g(x)} d x\right| & \leq\left|\sum_{l \in \frac{1}{2} \mathbb{N}_{0}}(2 l+1) \operatorname{Tr} \widehat{f}(l) \widehat{g}(l)^{*}\right| \\
& \leq\left(\sum_{l \in \frac{1}{2} \mathbb{N}_{0}}(2 l+1)^{5 p / 2-4}\|\widehat{f}(l)\|_{\mathrm{HS}}^{p}\right)^{1 / p}\|g\|_{L^{p^{\prime}}}
\end{aligned}
$$

Taking the supremum over all $g \in L^{p^{\prime}}(\mathrm{SU}(2))$, we get 2.6 . This proves Corollary 2.3 .
3. Lower bounds for Fourier multipliers on $\mathrm{SU}(2)$. Let A be a continuous linear operator from $C^{\infty}(\mathrm{SU}(2))$ to $\mathcal{D}^{\prime}(\mathrm{SU}(2))$. Here we are concerned with left-invariant operators, which means that $A \circ \tau_{g}=\tau_{g} \circ A$ for the left-translation $\tau_{g} f(x)=f\left(g^{-1} x\right)$. Using the Schwartz kernel theorem and the Fourier inversion formula one can prove that every left-invariant continuous operator A can be written as a Fourier multiplier,

$$
\widehat{A f}(l)=\sigma_{A}(l) \widehat{f}(l)
$$

with symbol $\sigma_{A}(l) \in \mathbb{C}^{(2 l+1) \times(2 l+1)}$. It follows from the Fourier inversion formula that we can write this also as

$$
\begin{equation*}
A f(u)=\sum_{l \in \frac{1}{2} \mathbb{N}_{0}}(2 l+1) \operatorname{Tr} t^{l}(u) \sigma_{A}(l) \widehat{f}(l) \tag{3.1}
\end{equation*}
$$

where

$$
\sigma_{A}(l)=t^{l}(e)^{*} A t^{l}(e)=A t^{l}(e)
$$

where e is the identity matrix in $\mathrm{SU}(2)$, and $\left(A t^{l}\right)_{m k}=A\left(t_{m k}^{l}\right)$ is defined componentwise for $-l \leq m, k \leq l$. We refer to operators in these equivalent forms as (noncommutative) Fourier multipliers. The class of these operators on $\mathrm{SU}(2)$ and their L^{p}-boundedness were investigated in CW71b, CW71a, and on general compact Lie groups in [RW13. In particular, these authors proved Hörmander-Mihlin type multiplier theorems in those settings, giving sufficient condition for the L^{p}-boundedness in terms of symbols. These conditions guarantee that the operator is of weak type $(1,1)$, which, combined with a simple L^{2}-boundedness statement, implies the boundedness on L^{p} for all $1<p<\infty$.

For a general (non-invariant) operator A, its matrix symbol $\sigma_{A}(u, l)$ will also depend on u. Such quantization (3.1) has been consistently developed in RT10] and [RT13]. We note that the L^{p}-boundedness results in RW13] also cover such non-invariant operators.

For a noncommutative Fourier multiplier A we will write $A \in M_{p}^{q}(\mathrm{SU}(2))$ if A extends to a bounded operator from $L^{p}(\mathrm{SU}(2))$ to $L^{q}(\mathrm{SU}(2))$. We introduce a norm $\|\cdot\|$ on $M_{p}^{q}(\mathrm{SU}(2))$ by setting

$$
\|A\|_{M_{p}^{q}}:=\|A\|_{L^{p} \rightarrow L^{q}}
$$

Thus, we are concerned with the question of what assumptions on the symbol σ_{A} guarantee that $A \in M_{p}^{q}$. The sufficient conditions on σ_{A} for $A \in M_{p}^{p}$ were investigated in RW13]. The aim of this section is to give a necessary condition on σ_{A} for $A \in M_{p}^{q}$, for $1<p \leq 2 \leq q<\infty$.

Suppose that $1<p \leq 2 \leq q<\infty$ and that $A: L^{p}(\mathrm{SU}(2)) \rightarrow L^{q}(\mathrm{SU}(2))$ is a Fourier multiplier. The Plancherel identity (2.1) implies that the operator A is bounded from $L^{2}(\mathrm{SU}(2))$ to $L^{2}(\mathrm{SU}(2))$ if and only if $\sup _{l}\left\|\sigma_{A}(l)\right\|_{\mathrm{op}}<\infty$. Various other function spaces on the unitary dual have been discussed in RT10. Following Stein, we search for more subtle conditions on the symbols of noncommutative Fourier multipliers ensuring their $L^{p}-L^{q}$ boundedness, and we now prove a lower estimate which depends explicitly on p and q.

TheOrem 3.1. Let $1<p \leq 2 \leq q<\infty$ and let A be a left-invariant operator on $\mathrm{SU}(2)$ such that $A \in M_{p}^{q}(\mathrm{SU}(2))$. Then

$$
\begin{equation*}
\sup _{l \in \frac{1}{2} \mathbb{N}_{0}} \frac{\min _{n \in\{-l, \ldots,+l\}}\left|\sigma_{A}(l)_{n n}\right|}{(2 l+1)^{1 / p^{\prime}+1 / q}} \lesssim\|A\|_{L^{p}(\mathrm{SU}(2)) \rightarrow L^{q}(\mathrm{SU}(2))} \tag{3.2}
\end{equation*}
$$

$$
\begin{equation*}
\sup _{l \in \frac{1}{2} \mathbb{N}_{0}} \frac{\left|\operatorname{Tr} \sigma_{A}(l)\right|}{(2 l+1)^{1+1 / p^{\prime}+1 / q}} \lesssim\|A\|_{L^{p}(\mathrm{SU}(2)) \rightarrow L^{q}(\mathrm{SU}(2))} \tag{3.3}
\end{equation*}
$$

One can see a similarity between (3.2), (3.3) and (1.1) as

$$
\begin{equation*}
\sup _{l \in \frac{1}{2} \mathbb{N}_{0}} \frac{1}{(2 l+1)^{1 / p^{\prime}+1 / q}} \frac{1}{2 l+1}\left|\operatorname{Tr} \sigma_{A}(l)\right| \lesssim\|A\|_{L^{p}(\mathrm{SU}(2)) \rightarrow L^{q}(\mathrm{SU}(2))} . \tag{3.4}
\end{equation*}
$$

We also note that estimates (3.2) and (3.3) cannot be immediately compared because the trace in (3.3) depends on the signs of the diagonal entries of $\sigma_{A}(l)$.

Proof of Theorem 3.1. In [GT80] it was proven that for any $l \in \frac{1}{2} \mathbb{N}_{0}$ there exists a basis for $t^{l} \in \mathrm{SU}(2)$ and a diagonal matrix coefficient $t_{n n}^{l}$ (i.e. for some $-l \leq n \leq l)$ such that

$$
\begin{equation*}
\left\|t_{n n}^{l}\right\|_{L^{p}(\mathrm{SU}(2))} \cong \frac{1}{(2 l+1)^{1 / p}} \tag{3.5}
\end{equation*}
$$

Now, we use this result to establish a lower bound for the norm of $A \in$ $M_{p}^{q}(\mathrm{SU}(2))$. Fix $l_{0} \in \frac{1}{2} \mathbb{N}_{0}$ and the corresponding diagonal element $t_{n n}^{l_{0}}$. We consider $f_{l_{0}}(g)$ whose matrix-valued Fourier coefficient

$$
\begin{equation*}
\widehat{f_{l_{0}}}(l)=\operatorname{diag}(0, \ldots, 1,0, \ldots) \delta_{l_{0}}^{l} \tag{3.6}
\end{equation*}
$$

has only one non-zero diagonal coefficient 1 at the nth diagonal entry. Then by the Fourier inversion formula, $f_{l_{0}}(g)=\left(2 l_{0}+1\right) t_{n n}^{t_{0}}(g)$. By definition,

$$
\begin{aligned}
\|A\|_{L^{p} \rightarrow L^{q}} & =\sup _{f \neq 0} \frac{\left\|\sum_{l \in \frac{1}{2} \mathbb{N}_{0}}(2 l+1) \operatorname{Tr} t^{l}(u) \sigma_{A}(l) \widehat{f}(l)\right\|_{L^{q}(\mathrm{SU}(2))}}{\|f\|_{L^{p}(\mathrm{SU}(2))}} \\
& \geq \frac{\left\|\sum_{l \in \frac{1}{2} \mathbb{N}_{0}}(2 l+1) \operatorname{Tr} t^{l}(u) \sigma_{A}(l) \widehat{f_{l_{0}}}(l)\right\|_{L^{q}(\mathrm{SU}(2))}}{\left\|f_{l_{0}}\right\|_{L^{p}(\mathrm{SU}(2))}} .
\end{aligned}
$$

Invoking (3.6), we get

$$
\|A\|_{L^{p} \rightarrow L^{q}} \gtrsim \frac{\left\|\left(2 l_{0}+1\right) \operatorname{Tr} t^{l_{0}}(g) \sigma_{A}\left(l_{0}\right) \widehat{f_{l_{0}}}(l)\right\|_{L^{q}(\mathrm{SU}(2))}}{\left\|f_{l_{0}}\right\|_{L^{p}(\mathrm{SU}(2))}}
$$

Setting $h(g):=\left(2 l_{0}+1\right) \operatorname{Tr} t^{l_{0}}(g) \sigma_{A}\left(l_{0}\right) \widehat{f_{0}}\left(l_{0}\right)$, we have $\widehat{h}(l)=0$ for $l \neq l_{0}$, and $\widehat{h}\left(l_{0}\right)=\sigma_{A}\left(l_{0}\right) \widehat{l_{l_{0}}}\left(l_{0}\right)$. Consequently,

$$
\sup _{\substack{k \in \frac{1}{2} \mathbb{N}_{0} \\ k \geq l}} \frac{1}{2 k+1}|\operatorname{Tr} \widehat{h}(k)|= \begin{cases}0, & l>l_{0}, \\ \frac{1}{2 l_{0}+1}\left|\sigma_{A}\left(l_{0}\right)_{n n}\right|, & 1 \leq l \leq l_{0} .\end{cases}
$$

Using this, Theorem 2.8 and (3.5), we obtain

$$
\|A\|_{L^{p} \rightarrow L^{q}} \gtrsim \frac{\left(\sum_{l=1}^{l_{0}}(2 l+1)^{q-2}\left(\frac{1}{2 l_{0}+1}\left|\sigma_{A}\left(l_{0}\right)_{n n}\right|\right)^{q}\right)^{1 / q}}{\left(2 l_{0}+1\right)^{1-1 / p}}
$$

where l_{0} is an arbitrary fixed half-integer. Direct calculation now shows that

$$
\begin{aligned}
& \frac{\left(\sum_{l=1}^{l_{0}}(2 l+1)^{q-2}\left(\frac{1}{2 l_{0}+1}\left|\sigma_{A}\left(l_{0}\right)_{n n}\right|\right)^{q}\right)^{1 / q}}{\left(2 l_{0}+1\right)^{1-1 / p}} \\
& =\frac{1}{2 l_{0}+1}\left|\sigma_{A}\left(l_{0}\right)_{n n}\right| \frac{\left(\sum_{l=1}^{l_{0}}(2 l+1)^{q-2}\right)^{1 / q}}{\left(2 l_{0}+1\right)^{1-1 / p}} \\
& \quad=\frac{1}{2 l_{0}+1}\left|\sigma_{A}\left(l_{0}\right)_{n n}\right| \frac{\left(2 l_{0}+1\right)^{1-1 / q}}{\left(2 l_{0}+1\right)^{1-1 / p}} \cong \frac{\left|\sigma_{A}\left(l_{0}\right)_{n n}\right|}{\left(2 l_{0}+1\right)^{1 / p^{\prime}+1 / q}}
\end{aligned}
$$

Taking the infimum over all $n \in\left\{-l_{0},-l_{0}+1, \ldots, l_{0}-1, l_{0}\right\}$ and then the supremum over all half-integers, we obtain

$$
\|A\|_{L^{p} \rightarrow L^{q}} \gtrsim \sup _{l \in \frac{1}{2} \mathbb{N}_{0}} \frac{\min _{n \in\{-l, \ldots,+l\}}\left|\sigma_{A}(l)_{n n}\right|}{(2 l+1)^{1 / p^{\prime}+1 / q}}
$$

This proves 3.2 .
Now, we will prove estimate (3.3). Fix $l_{0} \in \frac{1}{2} \mathbb{N}_{0}$ and consider $f_{l_{0}}(u):=$ $\left(2 l_{0}+1\right) \chi_{l_{0}}(u)$, where $\chi_{l_{0}}(u)=\operatorname{Tr} t^{l_{0}}(u)$ is the character of the representation $t^{l_{0}}$. Then, in particular,

$$
\widehat{f_{l_{0}}}(l)= \begin{cases}I_{2 l+1}, & l=l_{0} \tag{3.7}\\ 0, & l \neq l_{0}\end{cases}
$$

where $I_{2 l+1} \in \mathbb{C}^{(2 l+1) \times(2 l+1)}$ is the identity matrix. Using the Weyl character formula, we can write

$$
\chi_{l_{0}}(u)=\sum_{k=-l_{0}}^{l_{0}} e^{i k t}, \quad \text { where } \quad u=v^{-1}\left(\begin{array}{cc}
e^{i t} & 0 \\
0 & e^{-i t}
\end{array}\right) v
$$

The value of $\chi_{l_{0}}(u)$ does not depend on v since characters are central. Further, the application of the Weyl integral formula yields

$$
\begin{aligned}
\left\|f_{l_{0}}\right\|_{L^{p}(\mathrm{SU}(2))} & =\left(2 l_{0}+1\right)\left\|\chi_{l_{0}}\right\|_{L^{p}(\mathrm{SU}(2))} \\
& =\left(2 l_{0}+1\right)\left(\int_{0}^{2 \pi}\left|\sum_{k=-l_{0}}^{l_{0}} e^{i k t}\right|^{p} 2 \sin ^{2} t \frac{d t}{2 \pi}\right)^{1 / p}
\end{aligned}
$$

It is clear that

$$
\left|e^{i\left(-l_{0}-1\right) t} \sum_{k=-l_{0}}^{l_{0}} e^{i\left(k+l_{0}+1\right) t}\right|=\left|\sum_{k=1}^{2 l_{0}+1} e^{i k t}\right|
$$

Applying [Nur98a, Corollary 4] to the Dirichlet kernel $D_{2 l_{0}+1}(t):=\sum_{k=1}^{2 l_{0}+1} e^{i k t}$, we get

$$
\begin{equation*}
\left\|\chi_{l_{0}}\right\|_{L^{p}(\mathrm{SU}(2))} \lesssim\left\|D_{2 l_{0}+1}\right\|_{L^{p}(0,2 \pi)} \cong\left(2 l_{0}+1\right)^{1-1 / p} \tag{3.8}
\end{equation*}
$$

Just as before,

$$
\|A\|_{L^{p} \rightarrow L^{q}} \geq \frac{\left\|\sum_{l \in \frac{1}{2} \mathrm{~N} \mathrm{~N}_{0}}(2 l+1) \operatorname{Tr} t^{l}(u) \sigma_{A}(l) \widehat{f_{l_{0}}}(l)\right\|_{L^{q}(\mathrm{SU}(2))}}{\left\|f_{l_{0}}\right\|_{L^{p}(\mathrm{SU}(2))}}
$$

From (3.7), we obtain

$$
\|A\|_{L^{p} \rightarrow L^{q}} \gtrsim \frac{\left\|\left(2 l_{0}+1\right) \operatorname{Tr} t^{l_{0}}(g) \sigma_{A}\left(l_{0}\right)\right\|_{L^{q}(\mathrm{SU}(2))}}{\left\|f_{l_{0}}\right\|_{L^{p}(\operatorname{SU}(2))}}
$$

Setting $h(g):=\left(2 l_{0}+1\right) \operatorname{Tr} t^{l_{0}}(g) \sigma_{A}\left(l_{0}\right)$, we have $\widehat{h}(l)=0$ for $l \neq l_{0}$, and $\widehat{h}\left(l_{0}\right)=\sigma_{A}\left(l_{0}\right)$. Consequently,

$$
\sup _{\substack{k \in \frac{1}{2} \mathbb{N}_{0} \\ k \geq l}} \frac{1}{2 k+1}|\operatorname{Tr} \widehat{h}(k)|= \begin{cases}0, & l>l_{0} \\ \frac{1}{2 l_{0}+1}\left|\operatorname{Tr} \sigma_{A}\left(l_{0}\right)\right|, & 1 \leq l \leq l_{0}\end{cases}
$$

Using this and Theorem 2.8, we get

$$
\|A\|_{L^{p} \rightarrow L^{q}} \gtrsim \frac{\left(\sum_{l=1}^{l_{0}}(2 l+1)^{q-2}\left(\frac{1}{2 l_{0}+1}\left|\operatorname{Tr} \sigma_{A}\left(l_{0}\right)\right|\right)^{q}\right)^{1 / q}}{\left(2 l_{0}+1\right)\left(2 l_{0}+1\right)^{1-1 / p}}
$$

where l_{0} is an arbitrary fixed half-integer. Direct calculation shows that

$$
\begin{aligned}
& \left(\sum_{l=1}^{l_{0}}(2 l+1)^{q-2}\left(\frac{1}{2 l_{0}+1}\left|\operatorname{Tr} \sigma_{A}\left(l_{0}\right)\right|\right)^{q}\right)^{1 / q} \\
& \left(2 l_{0}+1\right)\left(2 l_{0}+1\right)^{1-1 / p} \\
& \quad=\frac{1}{2 l_{0}+1}\left|\operatorname{Tr} \sigma_{A}\left(l_{0}\right)\right| \frac{\left(\sum_{l=1}^{l_{0}}(2 l+1)^{q-2}\right)^{1 / q}}{\left(2 l_{0}+1\right)\left(2 l_{0}+1\right)^{1-1 / p}} \\
& \quad=\frac{1}{2 l_{0}+1}\left|\operatorname{Tr} \sigma_{A}\left(l_{0}\right)\right| \frac{\left(2 l_{0}+1\right)^{1-1 / q}}{\left(2 l_{0}+1\right)\left(2 l_{0}+1\right)^{1-1 / p}} \cong \frac{\left|\operatorname{Tr} \sigma_{A}\left(l_{0}\right)\right|}{\left(2 l_{0}+1\right)^{1+1 / p^{\prime}+1 / q}}
\end{aligned}
$$

Taking the supremum over all half-integers, we get

$$
\|A\|_{L^{p} \rightarrow L^{q}} \gtrsim \sup _{l \in \frac{1}{2} \mathbb{N}_{0}} \frac{\left|\operatorname{Tr} \sigma_{A}(l)\right|}{(2 l+1)^{1+1 / p^{\prime}+1 / q}}
$$

This proves (3.3).
4. Upper bounds for Fourier multipliers on $\mathrm{SU}(2)$. In this section we give a noncommutative $\mathrm{SU}(2)$ analogue of the upper bound for Fourier multipliers, analogous to the one on the circle \mathbb{T} in Theorem 1.1 (see also [Nur98b, NTi11] for the circle case).

Theorem 4.1. If $1<p \leq 2 \leq q<\infty$ and A is a left-invariant operator on $\mathrm{SU}(2)$, then

$$
\begin{equation*}
\|A\|_{L^{p}(\mathrm{SU}(2)) \rightarrow L^{q}(\mathrm{SU}(2))} \lesssim \sup _{s>0} s\left(\sum_{\substack{l \in \frac{1}{2} \mathbb{N}_{0} \\\left\|\sigma_{A}(l)\right\|_{\text {op }}>s}}(2 l+1)^{2}\right)^{1 / p-1 / q} \tag{4.1}
\end{equation*}
$$

Proof. Since A is a left-invariant operator, it acts on f via multipication of \widehat{f} by the symbol σ_{A},

$$
\begin{equation*}
\widehat{A f}(\pi)=\sigma_{A}(\pi) \widehat{f}(\pi) \tag{4.2}
\end{equation*}
$$

where

$$
\sigma_{A}(\pi)=\left.\pi(x)^{*} A \pi(x)\right|_{x=e} .
$$

Let us first assume that $p \leq q^{\prime}$. Since $q^{\prime} \leq 2$, for $f \in C^{\infty}(\operatorname{SU}(2))$ the Hausdorff-Young inequality gives

$$
\begin{align*}
\|A f\|_{L^{q}(\mathrm{SU}(2))} & \leq\|\widehat{A f}\|_{\ell^{\prime}(\widehat{\mathrm{SU}(2)})}=\left\|\sigma_{A} \widehat{f}\right\|_{\ell^{\prime}(\widehat{\mathrm{SU}(2))}} \tag{4.3}\\
& =\left(\sum_{l \in \widehat{\mathrm{SU}(2)}}(2 l+1)^{2-q^{\prime} / 2}\left\|\sigma_{A}(l) \widehat{f}(l)\right\|_{\mathrm{HS}}^{q^{\prime}}\right)^{1 / q^{\prime}} \\
& \leq\left(\sum_{l \in \widehat{\mathrm{SU}(2)}}(2 l+1)^{2-q^{\prime} / 2}\left\|\sigma_{A}(l)\right\|_{\mathrm{op}}^{q^{\prime}}\|\widehat{f}(l)\|_{\mathrm{HS}}^{q^{\prime}}\right)^{1 / q^{\prime}}
\end{align*}
$$

The case $q^{\prime} \leq\left(p^{\prime}\right)^{\prime}$ can be reduced to the case $p \leq q^{\prime}$ as follows. The application of Theorem 4.2 below with $G=\mathrm{SU}(2)$ and μ the Haar measure on $\operatorname{SU}(2)$ yields

$$
\begin{equation*}
\|A\|_{L^{p}(\mathrm{SU}(2)) \rightarrow L^{q}(\mathrm{SU}(2))}=\left\|A^{*}\right\|_{L^{q^{\prime}}(\mathrm{SU}(2)) \rightarrow L^{p^{\prime}}(\mathrm{SU}(2))} \tag{4.4}
\end{equation*}
$$

We have

$$
\begin{equation*}
\sigma_{A^{*}}(l)=\sigma_{A}^{*}(l), \quad l \in \frac{1}{2} \mathbb{N}_{0} \tag{4.5}
\end{equation*}
$$

and $\left\|\sigma_{A^{*}}(l)\right\|_{\text {op }}=\left\|\sigma_{A}(l)\right\|_{\text {op }}$. Now, we are in a position to apply Corollary 2.6. Set $1 / r=1 / p-1 / q$. We observe that with $\sigma\left(t^{l}\right):=\left\|\sigma_{A}\left(t^{l}\right)\right\|_{\mathrm{op}}^{r} I_{2 l+1}$, $l \in \frac{1}{2} \mathbb{N}_{0}$ and $b=q^{\prime}$, the assumptions of Corollary 2.6 are satisfied and we obtain

$$
\begin{align*}
& \left(\sum_{l \in \widehat{\mathrm{SU}(2)}}(2 l+1)^{2-q^{\prime} / 2}\left\|\sigma_{A}(l)\right\|_{\mathrm{op}}^{q^{\prime}}\|\widehat{f}(l)\|_{\mathrm{HS}}^{q^{\prime}}\right)^{1 / q^{\prime}} \tag{4.6}\\
& \quad \lesssim\left(\sup _{s>0} s \sum_{\substack{t^{l} \in \widehat{\mathrm{SU}(2)} \\
\left\|\sigma\left(t^{t}\right)\right\|_{\mathrm{op}}^{2}>s}}(2 l+1)^{2}\right)^{1 / r}\|f\|_{L^{p}(\mathrm{SU}(2))}, \quad f \in L^{p}(\mathrm{SU}(2)),
\end{align*}
$$

in view of $1 / q^{\prime}-1 / p^{\prime}=1 / p-1 / q=1 / r$. Thus, for $1<p \leq 2 \leq q<\infty$,

$$
\begin{equation*}
\|A f\|_{L^{q}(\mathrm{SU}(2))} \lesssim\left(\sup _{s>0} s \sum_{\substack{t^{l} \in \widehat{\operatorname{SU}(2)} \\\left\|\sigma\left(t^{l}\right)\right\|_{\mathrm{op}}^{r}>s}}(2 l+1)^{2}\right)^{1 / r}\|f\|_{L^{p}(\mathrm{SU}(2))} \tag{4.7}
\end{equation*}
$$

Further, it can be easily checked that

$$
\begin{aligned}
& \left(\sup _{s>0} s \sum_{\substack{t^{l} \in \widehat{\operatorname{SUC}(2)} \\
\left\|\sigma\left(t^{l}\right)\right\|_{\mathrm{op}}^{r}>s}}(2 l+1)^{2}\right)^{1 / r}=\left(\sup _{s>0} s \sum_{\substack{t^{l} \in \widehat{\operatorname{SU}(2)} \\
\left\|\sigma_{A}\left(t^{l}\right)\right\|_{\mathrm{op}}>s^{1 / r}}}(2 l+1)^{2}\right)^{1 / r} \\
& =\left(\sup _{s>0} s^{r} \sum_{\substack{t^{l} \in \widehat{\operatorname{SU}(2)} \\
\left\|\sigma_{A}\left(t^{l}\right)\right\|_{\text {op }}>s}}(2 l+1)^{2}\right)^{1 / r}=\sup _{s>0} s\left(\sum_{\substack{t^{l} \in \widehat{\operatorname{SUS}(2)} \\
\left\|\sigma_{A}\left(t^{l}\right)\right\|_{\text {op }}>s}}(2 l+1)^{2}\right)^{1 / r} .
\end{aligned}
$$

This completes the proof of Theorem 4.1.
For completeness, we give a short proof of Theorem 4.2 used above.
Theorem 4.2. Let (X, μ) be a measure space and $1<p, q<\infty$. Then

$$
\begin{equation*}
\|A\|_{L^{p}(X, \mu) \rightarrow L^{q}(X, \mu)}=\left\|A^{*}\right\|_{L^{q^{\prime}}(X, \mu) \rightarrow L^{p^{\prime}}(X, \mu)} \tag{4.8}
\end{equation*}
$$

where $A^{*}: L^{q^{\prime}}(X, \mu) \rightarrow L^{p^{\prime}}(X, \mu)$ is the adjoint of A.
Proof. Let $f \in L^{p} \cap L^{2}$ and $g \in L^{q^{\prime}} \cap L^{2}$. By the Hölder inequality,

$$
\begin{align*}
\left|(A f, g)_{L^{2}}\right| & =\left|\left(A^{*} g, f\right)_{L^{2}}\right| \leq\left\|A^{*} g\right\|_{L^{p^{\prime}}}\|f\|_{L^{p}} \tag{4.9}\\
& \leq\left\|A^{*}\right\|_{L^{q^{\prime}} \rightarrow L^{p^{\prime}}}\|g\|_{L^{q^{\prime}}}\|f\|_{L^{p}}
\end{align*}
$$

Thus,

$$
\begin{equation*}
\|A\|_{L^{p} \rightarrow L^{q}} \leq\left\|A^{*}\right\|_{L^{q^{\prime}} \rightarrow L^{p^{p^{\prime}}}} \tag{4.10}
\end{equation*}
$$

Analogously,

$$
\begin{equation*}
\left\|A^{*}\right\|_{L^{q^{\prime}} \rightarrow L^{p^{\prime}}} \leq\|A\|_{L^{p} \rightarrow L^{q}} \tag{4.11}
\end{equation*}
$$

The combination of 4.10 and (4.11) yields

$$
\|A\|_{L^{p} \rightarrow L^{q}}=\left\|A^{*}\right\|_{L^{q^{\prime}} \rightarrow L^{p^{\prime}}}
$$

5. Proofs of theorems from Section 2

Proof of Theorem 2.4. Let μ give measure $\left\|\sigma\left(t^{l}\right)\right\|_{\text {op }}^{2}(2 l+1)^{2}, l \in \frac{1}{2} \mathbb{N}_{0}$, to the set consisting of the single point $\left\{t^{l}\right\}, t^{l} \in \widehat{\mathrm{SU}(2)}$, and measure zero to every set which does not contain any of these points, i.e.

$$
\mu\left\{t^{l}\right\}:=\left\|\sigma\left(t^{l}\right)\right\|_{\mathrm{op}}^{2}(2 l+1)^{2}
$$

We define $L^{p}(\widehat{\mathrm{SU}(2)}, \mu), 1 \leq p<\infty$, as the space of complex (or real)
sequences $a=\left\{a_{l}\right\}_{l \in \frac{1}{2} \mathbb{N}_{0}}$ such that

$$
\begin{equation*}
\|a\|_{L^{p}(\widehat{\mathrm{SU}(2)}, \mu)}:=\left(\sum_{l \in \frac{1}{2} \mathbb{N}_{0}}\left|a_{l}\right|^{p}\left\|\sigma\left(t^{l}\right)\right\|_{\mathrm{op}}^{2}(2 l+1)^{2}\right)^{1 / p}<\infty \tag{5.1}
\end{equation*}
$$

We will show that the sublinear operator

$$
A: L^{p}(\mathrm{SU}(2)) \ni f \mapsto A f=\left\{\frac{\left\|\widehat{f}\left(t^{l}\right)\right\|_{\mathrm{HS}}}{\sqrt{2 l+1}\left\|\sigma\left(t^{l}\right)\right\|_{\mathrm{op}}}\right\}_{t^{l} \in \widehat{\mathrm{SU}(2)}} \in L^{p}(\widehat{\mathrm{SU}(2)}, \mu)
$$

is well-defined and bounded from $L^{p}(\mathrm{SU}(2))$ to $L^{p}(\widehat{\mathrm{SU}(2)}, \mu)$ for $1<p \leq 2$. In other words, we claim that

$$
\begin{align*}
\|A f\|_{L^{p}(\widehat{\mathrm{SU}(2)}, \mu)} & =\left(\sum_{t^{l} \in \widehat{\mathrm{SU}(2)}}\left(\frac{\left\|\widehat{f}\left(t^{l}\right)\right\|_{\mathrm{HS}}}{\sqrt{2 l+1}\left\|\sigma\left(t^{l}\right)\right\|_{\mathrm{op}}}\right)^{p}\left\|\sigma\left(t^{l}\right)\right\|_{\mathrm{op}}^{2}(2 l+1)^{2}\right)^{1 / p} \tag{5.2}\\
& \lesssim K_{\sigma}^{(2-p) / p}\|f\|_{L^{p}(\mathrm{SU}(2))}
\end{align*}
$$

which would give (2.8) and where we have set

$$
K_{\sigma}:=\sup _{s>0} s \sum_{\substack{t^{l} \in \widehat{\mathrm{SU}(2)} \\\left\|\sigma\left(t^{l}\right)\right\|_{\mathrm{op}} \geq s}}(2 l+1)^{2} .
$$

We will show that A is of strong type $(2,2)$ and of weak type $(1,1)$. For definition and discussions we refer to Section 6 where we give definitions of weak type, and we formulate and prove the Marcinkiewicz interpolation theorem6.1. More precisely, with the distribution function ν as in Theorem6.1, we show that

$$
\begin{array}{ll}
\nu_{\widehat{\mathrm{SU}(2)}}(y ; A f) \leq\left(\frac{M_{2}\|f\|_{L^{2}(\mathrm{SU}(2))}}{y}\right)^{2} & \text { with norm } M_{2}=1 \\
\nu_{\widehat{\mathrm{SU}(2)}}(y ; A f) \leq \frac{M_{1}\|f\|_{L^{1}(\mathrm{SU}(2))}}{y} & \text { with norm } M_{1}=K_{\sigma} \tag{5.4}
\end{array}
$$

Then (5.2) follows from Theorem 6.1.
Now, to show (5.3), using Plancherel's identity (2.1), we get

$$
\begin{aligned}
y^{2} \nu_{\widehat{\mathrm{SU}(2)}}(y ; A f) & \leq\|A f\|_{L^{p}(\widehat{\mathrm{SU}(2)}, \mu)}^{2} \\
& :=\sum_{t^{l} \in \widehat{\mathrm{SU}(2)}}\left(\frac{\left\|\widehat{f}\left(t^{l}\right)\right\|_{\mathrm{HS}}}{\sqrt{2 l+1}\left\|\sigma\left(t^{l}\right)\right\|_{\mathrm{op}}}\right)^{2}\left\|\sigma\left(t^{l}\right)\right\|_{\mathrm{op}}^{2}(2 l+1)^{2} \\
& =\sum_{t^{l} \in \widehat{\mathrm{SU}(2)}}(2 l+1)\left\|\widehat{f}\left(t^{l}\right)\right\|_{\mathrm{HS}}^{2}=\|\widehat{f}\|_{\ell^{2}(\widehat{\mathrm{SU}(2)})}^{2}=\|f\|_{L^{2}(\mathrm{SU}(2))}^{2}
\end{aligned}
$$

Thus, A is of strong type $(2,2)$ with norm $M_{2} \leq 1$. Further, we show that A is of weak type $(1,1)$ with norm $M_{1}=C$; more precisely, we show that

$$
\begin{equation*}
\nu_{\widehat{\mathrm{SU}(2)}}\left\{t^{l} \in \widehat{\mathrm{SU}(2)}: \frac{\left\|\widehat{f}\left(t^{l}\right)\right\|_{\mathrm{HS}}}{\sqrt{2 l+1}\left\|\sigma\left(t^{l}\right)\right\|_{\mathrm{op}}}>y\right\} \lesssim K_{\sigma} \frac{\|f\|_{L^{1}(\mathrm{SU}(2))}}{y} . \tag{5.5}
\end{equation*}
$$

The left-hand side here is the weighted sum $\sum\left\|\sigma\left(t^{l}\right)\right\|_{\mathrm{op}}^{2}(2 l+1)^{2}$ taken over those $t^{l} \in \widehat{\mathrm{SU}(2)}$ for which $\left\|\widehat{f}\left(t^{l}\right)\right\|_{\text {HS }} /\left(\sqrt{2 l+1}\left\|\sigma\left(t^{l}\right)\right\|_{\text {op }}\right)>y$. From the definition of the Fourier transform it follows that

$$
\left\|\widehat{f}\left(t^{l}\right)\right\|_{\mathrm{HS}} \leq \sqrt{2 l+1}\|f\|_{L^{1}(\mathrm{SU}(2))}
$$

Therefore,

$$
y<\frac{\left\|\widehat{f}\left(t^{l}\right)\right\|_{\mathrm{HS}}}{\sqrt{2 l+1}\left\|\sigma\left(t^{l}\right)\right\|_{\mathrm{op}}} \leq \frac{\|f\|_{L^{1}(\mathrm{SU}(2))}}{\left\|\sigma\left(t^{l}\right)\right\|_{\mathrm{op}}}
$$

Hence

$$
\left\{t^{l} \in \widehat{\mathrm{SU}(2)}: \frac{\left\|\widehat{f}\left(t^{l}\right)\right\|_{\mathrm{HS}}}{\sqrt{2 l+1}\left\|\sigma\left(t^{l}\right)\right\|_{\mathrm{op}}}>y\right\} \subset\left\{t^{l} \in \widehat{\mathrm{SU}(2)}: \frac{\|f\|_{L^{1}(\mathrm{SU}(2))}}{\left\|\sigma\left(t^{l}\right)\right\|_{\mathrm{op}}}>y\right\}
$$

for any $y>0$. Consequently,

$$
\mu\left\{t^{l} \in \widehat{\mathrm{SU}(2)}: \frac{\left\|\widehat{f}\left(t^{l}\right)\right\|_{\mathrm{HS}}}{\sqrt{2 l+1}\left\|\sigma\left(t^{l}\right)\right\|_{\mathrm{op}}}>y\right\} \leq \mu\left\{t^{l} \in \widehat{\mathrm{SU}(2)}: \frac{\|f\|_{L^{1}(\mathrm{SU}(2))}}{\left\|\sigma\left(t^{l}\right)\right\|_{\mathrm{op}}}>y\right\}
$$

Setting $v:=\|f\|_{L^{1}(\mathrm{SU}(2))} / y$, we get

$$
\begin{equation*}
\mu\left\{t^{l} \in \widehat{\mathrm{SU}(2)}: \frac{\left\|\widehat{f}\left(t^{l}\right)\right\|_{\mathrm{HS}}}{\sqrt{2 l+1}\left\|\sigma\left(t^{l}\right)\right\|_{\mathrm{op}}}>y\right\} \leq \sum_{\substack{t^{l} \in \widehat{\mathrm{SU}(2)} \\\left\|\sigma\left(t^{l}\right)\right\|_{\mathrm{op}} \leq v}}\left\|\sigma\left(t^{l}\right)\right\|_{\mathrm{op}}^{2}(2 l+1)^{2} \tag{5.6}
\end{equation*}
$$

We claim that

$$
\begin{equation*}
\sum_{\substack{t^{l} \in \widehat{\mathrm{SU}(2)} \\\left\|\sigma\left(t^{l}\right)\right\|_{\mathrm{op}} \leq v}}\left\|\sigma\left(t^{l}\right)\right\|_{\mathrm{op}}^{2}(2 l+1)^{2} \lesssim K_{\sigma} v \tag{5.7}
\end{equation*}
$$

In fact,

$$
\sum_{\substack{t^{l} \in \widehat{\operatorname{SU}(2)} \\\left\|\sigma\left(t^{l}\right)\right\|_{\mathrm{op}} \leq v}}\left\|\sigma\left(t^{l}\right)\right\|_{\mathrm{op}}^{2}(2 l+1)^{2}=\sum_{\substack{t^{l} \in \widehat{\operatorname{SU}(2)} \\\left\|\sigma\left(t^{l}\right)\right\|_{\mathrm{op}} \leq v}}(2 l+1)^{2} \int_{0}^{\left\|\sigma\left(t^{\bullet}\right)\right\|_{\mathrm{op}}} d \tau .
$$

We can interchange summation and integration to get

$$
\sum_{\substack{t^{l} \in \widehat{\mathrm{SU}(2)} \\\left\|\sigma\left(t^{l}\right)\right\|_{\mathrm{op}} \leq v}}(2 l+1) \int_{0}^{\left\|\sigma\left(t^{l}\right)\right\|_{\mathrm{op}}^{2}} d \tau=\int_{0}^{v^{2}} d \tau \sum_{\substack{t^{l} \in \widehat{\mathrm{SU}(2)} \\ \tau^{1 / 2} \leq\left\|\sigma\left(t^{l}\right)\right\|_{\mathrm{op}} \leq v}}(2 l+1)^{2} .
$$

Further, the substitution $\tau=s^{2}$ yields

$$
\begin{aligned}
\int_{0}^{v^{2}} d \tau \sum_{\substack{t^{l} \in \widehat{\operatorname{SU}(2)} \\
\tau^{1 / 2} \leq\left\|\sigma\left(t^{l}\right)\right\|_{\mathrm{op}} \leq v}}(2 l+1)^{2} & =2 \int_{0}^{v} s d s \sum_{\substack{t^{l} \in \widehat{\operatorname{SU}(2)} \\
s \leq\left\|\sigma\left(t^{l}\right)\right\|_{\mathrm{op}} \leq v}}(2 l+1)^{2} \\
& \leq 2 \int_{0}^{v} s d s \sum_{\substack{t^{l} \in \widehat{\operatorname{SU(2})} \\
s \leq\left\|\sigma\left(t^{l}\right)\right\|_{\text {op }}}}(2 l+1)^{2} .
\end{aligned}
$$

Since

$$
s \sum_{\substack{t^{l} \in \widehat{\mathrm{SU}(2)} \\ s \leq\left\|\sigma\left(t^{l}\right)\right\|_{\text {op }}}}(2 l+1)^{2} \leq \sup _{s>0} s \sum_{\substack{t^{l} \in \widehat{\mathrm{SU}(2)} \\ s \leq\left\|\sigma\left(t^{l}\right)\right\|_{\text {op }}}}(2 l+1)^{2}=K_{\sigma}
$$

is finite by the definition of K_{σ}, we have

$$
2 \int_{0}^{v} s d s \sum_{\substack{t^{l} \in \widehat{\operatorname{SU}(2)} \\ s \leq\left\|\sigma\left(t^{l}\right)\right\|_{\text {op }}}}(2 l+1)^{2} \lesssim K_{\sigma} v
$$

This proves (5.7). We have just proved inequalities (5.3), 5.4). Then by the Marcinkiewicz interpolation theorem (Theorem 6.1) with $p_{1}=1, p_{2}=2$ and $1 / p=1-\theta+\theta / 2$ we obtain

$$
\begin{aligned}
\left(\sum_{l \in \frac{1}{2} \mathbb{N}_{0}}\left(\frac{\|\widehat{f}(\pi)\|_{\mathrm{HS}}}{\sqrt{2 l+1}\|\sigma(\pi)\|_{\mathrm{op}}}\right)^{p}\|\sigma(\pi)\|_{\mathrm{op}}^{2}(2 l+1)^{2}\right)^{1 / p} \\
=\|A f\|_{L^{p}(\widehat{\mathrm{SU}(2)}, \mu)} \lesssim K_{\sigma}^{(2-p) / p}\|f\|_{L^{p}(\mathrm{SU}(2))}
\end{aligned}
$$

This completes the proof of Theorem 2.4 .
Now we prove the Hardy-Littlewood type inequality given in Theorem 2.2,

Proof of Theorem 2.2. Let ν give measure $1 /(2 l+1)^{4}$ to the set consisting of the single point l, where $l=0, \frac{1}{2}, 1, \frac{3}{2}, 2, \ldots$, and measure zero to every set which does not contain any of these points. We will show that the sublinear operator

$$
T f:=\left\{(2 l+1)^{5 / 2}\|\widehat{f}(l)\|_{\mathrm{HS}}\right\}_{l \in \frac{1}{2} \mathbb{N}_{0}}
$$

is well-defined and bounded from $L^{p}(\mathrm{SU}(2))$ to $L^{p}\left(\frac{1}{2} \mathbb{N}_{0}, \nu\right)$ for $1<p \leq 2$, with

$$
\|T f\|_{L^{p}(\widehat{\mathrm{SU}(2)}, \nu)}=\left(\sum_{l \in \frac{1}{2} \mathbb{N}_{0}}\left((2 l+1)^{5 / 2}\|\widehat{f}(l)\|_{\mathrm{HS}}\right)^{p} \cdot(2 l+1)^{-4}\right)^{1 / p}
$$

This will prove Theorem 2.2 .

We first show that T is of strong type $(2,2)$ and weak type $(1,1)$. Using Plancherel's identity (2.1), we get

$$
\begin{aligned}
\|T f\|_{L^{p}(\widehat{\mathrm{SU}(2), \nu)}}^{2} & =\sum_{l \in \frac{1}{2} \mathbb{N}_{0}}(2 l+1)^{5 p / 2-4}\|\widehat{f}(l)\|_{\mathrm{HS}}^{2}=\sum_{l \in \frac{1}{2} \mathbb{N}_{0}}(2 l+1)\|\widehat{f}(l)\|_{\mathrm{HS}}^{2} \\
& =\|\widehat{f}\|_{\ell^{2}(\widehat{\mathrm{SU}(2))}}^{2}=\|f\|_{L^{2}(\mathrm{SU}(2))}^{2} .
\end{aligned}
$$

Thus, T is of strong type $(2,2)$.
Further, we will show that T is of weak type $(1,1)$, more precisely,

$$
\begin{equation*}
\nu\left\{l \in \frac{1}{2} \mathbb{N}_{0}:(2 l+1)^{5 / 2}\|\widehat{f}(l)\|_{\mathrm{HS}}>y\right\} \leq \frac{4}{3} \frac{\|f\|_{L^{1}(\mathrm{SU}(2))}}{y} \tag{5.8}
\end{equation*}
$$

The left-hand side here is the sum $\sum 1 /(2 l+1)^{4}$ taken over those $l \in \frac{1}{2} \mathbb{N}_{0}$ for which $(2 l+1)^{5 / 2}\|\widehat{f}(l)\|_{\text {HS }}>y$. From the definition of the Fourier transform it follows that

$$
\|\widehat{f}(l)\|_{\text {HS }} \leq \sqrt{2 l+1}\|f\|_{L^{1}(\mathrm{SU}(2))}
$$

Therefore,

$$
y<(2 l+1)^{5 / 2}\|\widehat{f}(l)\|_{\text {HS }} \leq(2 l+1)^{5 / 2+1 / 2}\|f\|_{L^{1}(\mathrm{SU}(2))}
$$

Hence

$$
\left\{l \in \frac{1}{2} \mathbb{N}_{0}:(2 l+1)^{5 / 2}\|\widehat{f}(l)\|_{\text {HS }}>y\right\} \subset\left\{l \in \frac{1}{2} \mathbb{N}_{0}: 2 l+1>\left(\frac{y}{\|f\|_{L^{1}}}\right)^{1 / 3}\right\}
$$

for any $y>0$. Consequently,
$\nu\left\{l \in \frac{1}{2} \mathbb{N}_{0}:(2 l+1)^{5 / 2}\|\widehat{f}(l)\|_{\text {HS }}>y\right\} \leq \nu\left\{l \in \frac{1}{2} \mathbb{N}_{0}: 2 l+1>\left(\frac{y}{\|f\|_{L^{1}}}\right)^{1 / 3}\right\}$.
We set $w:=\left(y /\|f\|_{L^{1}(\mathrm{SU}(2))}\right)^{1 / 3}$. Now, we estimate $\nu\left\{l \in \frac{1}{2} \mathbb{N}_{0}: 2 l+1>w\right\}$. By definition, we have

$$
\nu\left\{l \in \frac{1}{2} \mathbb{N}_{0}: 2 l+1>\left(\frac{y}{\|f\|_{L^{1}}}\right)^{1 / 3}\right\}=\sum_{n>w}^{\infty} \frac{1}{n^{4}}
$$

In order to estimate this series, we introduce the following lemma.
Lemma 5.1. Let $\beta>1$ and $w>0$. Then

$$
\sum_{n>w}^{\infty} \frac{1}{n^{\beta}} \leq \begin{cases}\frac{\beta}{\beta-1}, & w \leq 1 \tag{5.9}\\ \frac{1}{\beta-1} \frac{1}{w^{\beta-1}}, & w>1\end{cases}
$$

The proof is rather straightforward. Now, suppose $w \leq 1$. Applying this lemma with $\beta=4$, we get

$$
\sum_{n>w}^{\infty} \frac{1}{n^{4}} \leq \frac{4}{3}
$$

Since $1 \leq 1 / w^{3}$, we obtain

$$
\sum_{n>w}^{\infty} \frac{1}{n^{4}} \leq \frac{4}{3} \leq \frac{4}{3} \frac{1}{w^{3}} .
$$

Recalling that $w=\left(y /\|f\|_{L^{1}(\mathrm{SU}(2))}\right)^{1 / 3}$, we finally obtain

$$
\nu\left\{l \in \frac{1}{2} \mathbb{N}_{0}: 2 l+1>\left(\frac{y}{\|f\|_{L^{1}}}\right)^{1 / 3}\right\}=\sum_{n>w}^{\infty} \frac{1}{n^{4}} \leq \frac{4}{3} \frac{\|f\|_{L^{1}(\mathrm{SU}(2))}}{y} .
$$

Now, if $w>1$, then

$$
\sum_{n>w}^{\infty} \frac{1}{n^{4}} \leq \frac{1}{3} \frac{1}{w^{3}}=\frac{4}{3} \frac{\|f\|_{L^{1}}}{y} .
$$

Finally,

$$
\nu\left\{l \in \frac{1}{2} \mathbb{N}_{0}: 2 l+1>\left(\frac{y}{\|f\|_{L^{1}}}\right)^{1 / 3}\right\} \leq \frac{4}{3} \frac{\|f\|_{L^{1}(\mathrm{SU}(2))}}{y}
$$

This proves (5.8).
By the Marcinkiewicz interpolation theorem 6.1 with $p_{1}=1, p_{2}=2$, we obtain

$$
\left(\sum_{l \in \frac{1}{2} \mathbb{N}_{0}}(2 l+1)^{5 p / 2-4}\|\widehat{f}(l)\|_{\mathrm{HS}}^{p}\right)^{1 / p}=\|T f\|_{L^{p}(\widehat{\mathrm{SU}(2)}, \nu)} \leq c_{p}\|f\|_{L^{p}(\mathrm{SU}(2))} .
$$

This completes the proof of Theorem 2.2.
Proof of Theorem 2.8. We first simplify the expression for $\operatorname{Tr} \widehat{f}(k)$. By definition, we have

$$
\widehat{f}(k)=\int_{\operatorname{SU}(2)} f(u) T^{k}(u)^{*} d u, \quad k \in \frac{1}{2} \mathbb{N}_{0}
$$

where T^{k} is a finite-dimensional representation of $\widehat{\mathrm{SU}(2)}$ as in Section 2 . Hence

$$
\begin{equation*}
\operatorname{Tr} \widehat{f}(k)=\int_{\operatorname{SU}(2)} f(u) \overline{\chi_{k}(u)} d u \tag{5.10}
\end{equation*}
$$

where $\chi_{k}(u)=\operatorname{Tr} T^{k}(u), k \in \frac{1}{2} \mathbb{N}_{0}$, where we have changed the notation from t^{k} to T^{k} to avoid confusion with the notation that follows. The characters $\chi_{k}(u)$ are constant on the conjugacy classes of $\mathrm{SU}(2)$ and we follow Vil68] to describe these classes explicitly.

It is well known from linear algebra that any unitary unimodular matrix u can be written in the form $u=u_{1} \delta u_{1}^{-1}$, where $u_{1} \in \mathrm{SU}(2)$ and δ is the
diagonal matrix

$$
\delta=\left(\begin{array}{cc}
e^{i t / 2} & 0 \tag{5.11}\\
0 & e^{-i t / 2}
\end{array}\right)
$$

where $\lambda=e^{i t / 2}$ and $1 / \lambda=e^{-i t / 2}$ are the eigenvalues of u. Moreover, among the matrices equivalent to u there is only one other diagonal matrix, namely, the matrix δ^{\prime} obtained from δ by interchanging the diagonal elements.

Hence, classes of conjugate elements in $\mathrm{SU}(2)$ are determined by one parameter t, varying in $-2 \pi \leq t \leq 2 \pi$, where t and $-t$ give the same class. Therefore, we can regard the characters $\chi_{k}(u)$ as functions of one variable t, which ranges from 0 to 2π.

The special unitary group $\mathrm{SU}(2)$ is isomorphic to the group of unit quaternions. Hence, the parameter t has a simple geometrical meaning: it is the angle of rotation which corresponds to the matrix u.

Let us now derive an explicit expression for $\chi_{k}(u)$ as function of t. It was shown e.g. in RT10] that $T^{k}(\delta)$ is a diagonal matrix with $e^{-i n t},-k \leq n \leq k$, on the diagonal.

Let $u=u_{1} \delta u_{1}^{-1}$. Since characters are constant on conjugacy classes, we get

$$
\begin{equation*}
\chi_{k}(u)=\chi_{k}(\delta)=\operatorname{Tr} T^{k}(\delta)=\sum_{n=-k}^{k} e^{i n t} \tag{5.12}
\end{equation*}
$$

It is natural to express the invariant integral over $\mathrm{SU}(2)$ in 5.10 in new parameters, one of which is t.

Since $\operatorname{SU}(2)$ is diffeomorphic to the unit sphere \mathbb{S}^{3} in \mathbb{R}^{4} (see, e.g., RT10), with

$$
\mathrm{SU}(2) \ni u=\left(\begin{array}{cc}
x_{1}+i x_{2} & x_{3}+i x_{4} \\
-x_{3}+i x_{4} & x_{1}-i x_{2}
\end{array}\right) \leftrightarrow \varphi(u)=x=\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \in \mathbb{S}^{3}
$$

we have

$$
\begin{equation*}
\int_{\mathrm{SU}(2)} f(u) \chi_{k}(u) d u=\int_{\mathbb{S}^{3}} f(x) \chi_{k}(x) d S \tag{5.13}
\end{equation*}
$$

where $f(x):=f\left(\varphi^{-1}(x)\right)$ and $\chi_{k}(x):=\chi_{k}\left(\varphi^{-1}(x)\right)$. In order to find an explicit formula for this integral over \mathbb{S}^{3}, we consider the parametrisation

$$
\begin{aligned}
& x_{1}=\cos (t / 2) \\
& x_{2}=v \\
& x_{3}=\sqrt{\sin ^{2}(t / 2)-v^{2}} \cdot \cos h \\
& x_{4}=\sqrt{\sin ^{2}(t / 2)-v^{2}} \cdot \sin h, \quad(t, v, h) \in D
\end{aligned}
$$

where $D=\left\{(t, v, h) \in \mathbb{R}^{3}:|v| \leq \sin (t / 2), 0 \leq t, h \leq 2 \pi\right\}$.

The reader will have no difficulty showing that $d S=\sin (t / 2) d t d v d h$. Therefore,

$$
\int_{\mathbb{S}^{3}} f(x) \chi_{k}(t) d S=\int_{D} f(h, v, t) \chi_{k}(t) \sin (t / 2) d h d v d t
$$

Combining this with (5.13), we get

$$
\operatorname{Tr} \widehat{f}(k)=\int_{D} f(h, v, t) \chi_{k}(t) \sin (t / 2) d h d v d t
$$

Thus, we have expressed the invariant integral over $\mathrm{SU}(2)$ in the parameters t, v, h. An application of Fubini's theorem yields

$$
\begin{aligned}
& \int_{D} f(h, v, t) \chi_{k}(t) \sin (t / 2) d h d v d t \\
& \qquad=\int_{0}^{2 \pi} \chi_{k}(t) \sin (t / 2) d t \int_{-\sin (t / 2)}^{\sin (t / 2)} d v \int_{0}^{2 \pi} f(h, v, t) d h
\end{aligned}
$$

Combining this with (5.12), we obtain

$$
\operatorname{Tr} \widehat{f}(k)=\int_{0}^{2 \pi} d t \sum_{n=-k}^{k} e^{i n t} \sin (t / 2) \int_{-\sin (t / 2)}^{\sin (t / 2)} d v \int_{0}^{2 \pi} f(h, v, t) d h
$$

Interchanging summation and integration yield

$$
\operatorname{Tr} \widehat{f}(k)=\sum_{n=-k}^{k} \int_{0}^{2 \pi} e^{i n t} \sin (t / 2) d t \int_{-\sin (t / 2)}^{\sin (t / 2)} d v \int_{0}^{2 \pi} f(h, v, t) d h
$$

By making the change of variables $t \mapsto 2 t$, we get

$$
\begin{equation*}
\operatorname{Tr} \widehat{f}(k)=\sum_{n=-k}^{k} \int_{0}^{\pi} e^{-i 2 n t} \cdot 2 \sin t d t \int_{-\sin t}^{\sin t} d v \int_{0}^{2 \pi} f(h, v, 2 t) d h \tag{5.14}
\end{equation*}
$$

Let us now apply Theorem 2.7 in $L^{p}(\mathbb{T})$. To do this we introduce some notation. Denote

$$
F(t):=2 \sin t \int_{-\sin t}^{\sin t} \int_{0}^{2 \pi} f(h, v, 2 t) d h d v, \quad t \in(0, \pi)
$$

We extend $F(t)$ periodically to $[0,2 \pi)$, that is, $F(x+\pi)=F(x)$. Since $f(t, v, h)$ is integrable, the integrability of $F(t)$ follows immediately from Fubini's theorem. Thus $F(t)$ has a Fourier series representation

$$
F(t) \sim \sum_{k \in \mathbb{Z}} \widehat{F}(k) e^{i k t}
$$

where the Fourier coefficients are

$$
\widehat{F}(k)=\frac{1}{2 \pi} \int_{[0,2 \pi]} F(t) e^{-i k t} d t
$$

Let A_{k} be the $2 k+1$-element arithmetic progression with difference 2 and initial term $-2 k$, i.e.,

$$
A_{k}=\{-2 k,-2 k+2, \ldots, 2 k\}=\{-2 k+2 j\}_{j=0}^{2 k} .
$$

Using this notation and (5.14), we get

$$
\begin{equation*}
\operatorname{Tr} \widehat{f}(k)=\sum_{n \in A_{k}} \widehat{F}(n) \tag{5.15}
\end{equation*}
$$

Define

$$
B=\left\{A_{k}\right\}_{k=1}^{\infty}
$$

As B is a subset of the set M of all finite arithmetic progressions, 5.15) yields

$$
\begin{equation*}
\sup _{\substack{k \in \frac{1}{2} \mathbb{N}_{0} \\ 2 k+1 \geq 2 l+1}} \frac{1}{2 k+1}|\operatorname{Tr} \widehat{f}(k)| \leq \sup _{\substack{e \in B \\|e| \geq 2 l+1}} \frac{1}{|e|}\left|\sum_{i \in e} \widehat{F}(i)\right| \leq \sup _{\substack{e \in M \\|e| \geq 2 l+1}} \frac{1}{|e|}\left|\sum_{i \in e} \widehat{F}(i)\right| \text {. } \tag{5.16}
\end{equation*}
$$

Denote $m:=2 l+1$. If l runs over $\frac{1}{2} \mathbb{N}_{0}$, then m runs over \mathbb{N}. Using (5.16), we get

$$
\begin{align*}
\sum_{l \in \frac{1}{2} \mathbb{N}_{0}}(2 l+1)^{p-2}\left(\sup _{\substack{k \in \frac{1}{2} \mathbb{N}_{0} \\
2 k+1 \geq 2 l+1}}\right. & \left.\frac{1}{2 k+1}|\operatorname{Tr} \widehat{f}(k)|\right)^{p} \tag{5.17}\\
& \leq \sum_{m \in \mathbb{N}} m^{p-2}\left(\sup _{\substack{e \in M \\
e \in \mid \geq m}} \frac{1}{|e|}\left|\sum_{i \in e} \widehat{F}(i)\right|\right)^{p}
\end{align*}
$$

Application of 2.13 yields

$$
\begin{equation*}
\sum_{m \in \mathbb{N}} m^{p-2}\left(\sup _{\substack{e \in M \\|e| \geq m}} \frac{1}{|e|}\left|\sum_{i \in e} \widehat{F}(i)\right|\right)^{p} \leq c\|F\|_{L^{p}(0,2 \pi)}^{p} \tag{5.18}
\end{equation*}
$$

Using the Hölder inequality, we obtain

$$
\int_{0}^{\pi}|F(t)|^{p} d t \lesssim \int_{0}^{\pi} \sin t d t \int_{-\sin t}^{\sin t} d v \int_{0}^{2 \pi}|f(h, v, 2 t)|^{p} d h
$$

By making the change of variables $t \mapsto t / 2$ in the right hand side integral, we get

$$
\int_{0}^{\pi}|F(t)|^{p} d t \lesssim \int_{0}^{2 \pi} \sin (t / 2) d t \int_{-\sin (t / 2)}^{\sin (t / 2)} d v \int_{0}^{2 \pi}|f(h, v, t)|^{p} d h
$$

Thus, we have proved that

$$
\begin{equation*}
\|F\|_{L^{p}(0, \pi)} \leq c_{p}\|f\|_{L^{p}(\mathrm{SU}(2))} \tag{5.19}
\end{equation*}
$$

where c_{p} depends only on p. Combining (5.16), (5.17) and (5.19), we obtain

$$
\sum_{m \in \mathbb{N}} m^{p-2}\left(\sup _{\substack{k \in \frac{1}{2} \mathbb{N}_{0} \\ 2 k+1 \geq m}} 1 / 2 k+1|\operatorname{Tr} \widehat{f}(k)|\right)^{p} \leq c\|f\|_{L^{p}(\mathrm{SU}(2))}^{p} .
$$

This completes the proof of Theorem 2.8. -
6. Marcinkiewicz interpolation theorem. In this section we prove the Marcinkiewicz interpolation theorem for linear mappings between a compact group G and the space of matrix-valued sequences Σ that will be realised via

$$
\Sigma:=\left\{h=\{h(\pi)\}_{\pi \in \widehat{G}}, h(\pi) \in \mathbb{C}^{d_{\pi} \times d_{\pi}}\right\} .
$$

Thus, a linear mapping $A: \mathcal{D}^{\prime}(G) \rightarrow \Sigma$ takes a function to a matrix valued sequence, i.e.

$$
f \mapsto A f=: h=\{h(\pi)\}_{\pi \in \widehat{G}},
$$

where

$$
h(\pi) \in \mathbb{C}^{d_{\pi} \times d_{\pi}}, \quad \pi \in \widehat{G} .
$$

We say that a linear operator A is of strong type (p, q) if for every $f \in L^{p}(G)$, we have $A f \in \ell^{q}(\widehat{G}, \Sigma)$ and

$$
\|A f\|_{\ell^{q}(\widehat{G}, \Sigma)} \leq M\|f\|_{L^{p}(G)}
$$

where M is independent of f, and the space $\ell^{q}(\widehat{G}, \Sigma)$ is defined by the norm

$$
\begin{equation*}
\|h\|_{\ell^{q}(\widehat{G}, \Sigma)}:=\left(\sum_{\pi \in \widehat{G}} d^{p(2 / p-1 / 2)}\|h(\pi)\|_{\mathrm{HS}}^{p}\right)^{1 / p} \tag{6.1}
\end{equation*}
$$

(cf. (2.9)). The least M for which this is satisfied is taken to be the strong (p, q)-norm of the operator A.

Denote the distribution functions of f and h by $\mu_{G}(t ; f)$ and $\nu_{\widehat{G}}(u ; h)$, respectively, i.e.

$$
\begin{align*}
\mu_{G}(x ; f): & =\int_{\substack{u \in G \\
|f(u)| \geq x}} d u, \tag{6.2}\\
\nu_{\widehat{G}}(y ; h): & \sum_{\substack{\pi \in \widehat{G} \\
\|h(\pi)\| \text { нs } / \sqrt{d_{\pi}} \geq y}} d_{\pi}^{2}, \tag{6.3}\\
\nu_{y}, & y>0 .
\end{align*}
$$

Then

$$
\begin{aligned}
\|f\|_{L^{p}(G)}^{p} & =\int_{G}|f(u)|^{p} d u=p \int_{0}^{\infty} x^{p-1} \mu_{G}(x ; f) d x \\
\|h\|_{\ell^{q}(\widehat{G}, \Sigma)}^{q} & =\sum_{\pi \in \widehat{G}} d_{\pi}^{2}\left(\frac{\|h(\pi)\|_{\text {HS }}}{\sqrt{d_{\pi}}}\right)^{q}=q \int_{0}^{\infty} u^{q-1} \nu_{\widehat{G}}(y ; h) d y .
\end{aligned}
$$

A linear operator $A: \mathcal{D}^{\prime}(G) \rightarrow \Sigma$ satisfying

$$
\begin{equation*}
\nu_{\widehat{G}}(y ; A f) \leq\left(\frac{M}{y}\|f\|_{L^{p}(G)}\right)^{q} \tag{6.4}
\end{equation*}
$$

is said to be of weak type (p, q); the least value of M in 6.4 is called the weak (p, q) norm of A.

Every operation of strong type (p, q) is also of weak type (p, q), since

$$
y\left(\nu_{\widehat{G}}(y ; A f)\right)^{1 / q} \leq\|A f\|_{L^{q}(\widehat{G})} \leq M\|f\|_{L^{p}(G)}
$$

ThEOREM 6.1. Let $1 \leq p_{1}<p<p_{2}<\infty$. Suppose that a linear operator A from $\mathcal{D}^{\prime}(G)$ to Σ is simultaneously of weak types $\left(p_{1}, p_{1}\right)$ and $\left(p_{2}, p_{2}\right)$, with norms M_{1} and M_{2}, respectively, i.e.

$$
\begin{align*}
\nu_{\widehat{G}}(y ; A f) & \leq\left(\frac{M_{1}}{y}\|f\|_{L^{p_{1}}(G)}\right)^{p_{1}} \tag{6.5}\\
\nu_{\widehat{G}}(y ; A f) & \leq\left(\frac{M_{2}}{y}\|f\|_{L^{p_{2}}(G)}\right)^{p_{2}} \tag{6.6}
\end{align*}
$$

Then for any $p \in\left(p_{1}, p_{2}\right)$ the operator A is of strong type (p, p) and

$$
\begin{equation*}
\|A f\|_{\ell^{p}(\widehat{G}, \Sigma)} \leq M_{1}^{1-\theta} M_{2}^{\theta}\|f\|_{L^{p}(G)}, \quad 0<\theta<1 \tag{6.7}
\end{equation*}
$$

where $\frac{1}{p}=\frac{1-\theta}{p_{1}}+\frac{\theta}{p_{2}}$.
Proof. The proof is an adaptation of one in Zygmund Zyg56 to our setting. Let $f \in L^{p}(G)$. By definition,

$$
\begin{equation*}
\|A f\|_{\ell^{p}(\widehat{G}, \Sigma)}^{p}=\sum_{\pi \in \widehat{G}} d_{\pi}^{2}\left(\frac{\|A f(\pi)\|_{\mathrm{HS}}}{\sqrt{d_{\pi}}}\right)^{p}=\int_{0}^{\infty} p x^{p-1} \nu_{\widehat{G}}(x ; A f) d x \tag{6.8}
\end{equation*}
$$

For a fixed $z>0$ we consider the decomposition $f=f_{1}+f_{2}$, where $f_{1}=f$ whenever $|f|<z$, and $f_{1}=0$ otherwise; thus $\left|f_{2}\right|>z$ or else $f_{2}=0$. Since f is in $L^{p}(G)$, so are f_{1} and f_{2}; it follows that f_{1} is in $L^{p_{1}}(G)$ and f_{2} is in $L^{p_{2}}(G)$. Hence $A f_{1}$ and $A f_{2}$ exist, by hypothesis, and so does $A f=A\left(f_{1}+f_{2}\right)$. It follows that

$$
\begin{equation*}
\left|f_{1}\right|=\min (|f|, z), \quad|f|=\left|f_{1}\right|+\left|f_{2}\right| \tag{6.9}
\end{equation*}
$$

The inequality

$$
\left\|A\left(f_{1}+f_{2}\right)(\pi)\right\|_{\text {HS }} \leq\left\|A f_{1}(\pi)\right\|_{\mathrm{HS}}+\left\|A f_{2}(\pi)\right\|_{\mathrm{HS}}, \quad \pi \in \widehat{G},
$$

yields

$$
\begin{aligned}
& \left\{\pi \in \widehat{G}: \frac{\|A f(\pi)\|_{\mathrm{HS}}}{\sqrt{d_{\pi}}} \geq y\right\} \\
& \quad \subset\left\{\pi \in \widehat{G}: \frac{\left\|A f_{1}(\pi)\right\|_{\mathrm{HS}}}{\sqrt{d_{\pi}}} \geq \frac{y}{2}\right\} \cup\left\{\pi \in \widehat{G}: \frac{\left\|A f_{2}(\pi)\right\|_{\mathrm{HS}}}{\sqrt{d_{\pi}}} \geq \frac{y}{2}\right\}
\end{aligned}
$$

Then applying assumptions (6.5 and 6.6 to f_{1} and f_{2}, we obtain

$$
\begin{align*}
\nu_{\widehat{G}}(y ; A f) & \leq \nu_{\widehat{G}}\left(y / 2 ; A f_{1}\right)+\nu_{\widehat{G}}\left(y / 2 ; A f_{2}\right) \tag{6.10}\\
& \leq M_{1}^{p_{1}} y^{-p_{1}}\left\|f_{1}\right\|_{L^{p_{1}}(G)}^{p_{1}}+M_{1}^{p_{2}} y^{-p_{2}}\left\|f_{2}\right\|_{L^{p_{2}}(G)}^{p_{2}}
\end{align*}
$$

The right side depends on z and the main idea of the proof is to define z as a suitable monotone function of $t, z=z(t)$, to be determined later. By 6.9,

$$
\begin{array}{ll}
\mu_{G}\left(t ; f_{1}\right)=\mu_{G}(t ; f) & \text { for } 0<t \leq z \\
\mu_{G}\left(t ; f_{1}\right)=0 & \text { for } t>z \\
\mu_{G}\left(t ; f_{2}\right)=\mu_{G}(t+z ; f) & \text { for } t>0
\end{array}
$$

Here, the last equation is a consequence of the fact that wherever $f_{2} \neq 0$ we must have $\left|f_{1}\right|=z$, and so the second equation of (6.9) takes the form $|f|=z+\left|f_{2}\right|$.

It follows from (6.10) that the integral in 6.8 is less than

$$
\begin{align*}
M_{1}^{p_{1}} \int_{0}^{\infty} y^{p-p_{1}-1} & \left\{\int_{G}\left|f_{1}(u)\right|^{p_{1}} d u\right\}^{p_{1} / p_{1}} d y \tag{6.11}\\
& +M_{2}^{p_{2}} \int_{0}^{\infty} y^{p-p_{2}-1}\left\{\int_{G}\left|f_{2}(u)\right|^{p_{1}} d u\right\}^{p_{2} / p_{2}} d y \\
= & M_{1}^{p_{1}} p_{1} \int_{0}^{\infty} y^{p-p_{1}-1}\left\{\int_{z}^{z} x^{p_{1}-1} \mu_{G}(x ; f) d x\right\} d t \\
& +M_{2}^{p_{2}} p_{2} \int_{0}^{\infty} y^{p-p_{2}-1}\left\{\int_{z}^{\infty}(x-z)^{p_{2}-1} \mu_{G}(x ; f) d x\right\} d t
\end{align*}
$$

Set $z(y)=A / y$. Denote by I_{1} and I_{2} the last two double integrals. We change the order of integration in I_{1} :

$$
\begin{align*}
I_{1} & =\int_{0}^{\infty} t^{p-p_{1}-1}\left\{\int_{0}^{z} u^{p_{1}-1} \mu_{G}(u ; f) d u\right\} d t \tag{6.12}\\
& =\int_{0}^{\infty} x^{p_{1}-1} \mu_{G}(x ; f)\left\{\int_{0}^{A x} y^{p-p_{1}-1} d y\right\} d x \\
& =\frac{A^{p-p_{1}}}{p-p_{1}} \int_{0}^{\infty} x^{p_{1}-1+p-p_{1}} \mu_{G}(x ; f) d x
\end{align*}
$$

Similarly, making the substitution $x-z \mapsto x$ and using 6.9) we see that

$$
\begin{align*}
I_{2} & =M_{2}^{p_{2}} p_{2} \int_{0}^{\infty} y^{p-p_{2}-1}\left\{\int_{z}^{\infty}(x-z)^{p_{2}-1} \mu_{G}(x ; f) d x\right\} d y \tag{6.13}\\
& =M_{2}^{p_{2}} p_{2} \int_{0}^{\infty} y^{p-p_{2}-1}\left\{\int_{0}^{\infty} x^{p_{2}-1} \mu_{G}(x+z ; f) d x\right\} d y \\
& =M_{2}^{p_{2}} p_{2} \int_{0}^{\infty} y^{p-p_{2}-1}\left\{\int_{0}^{\infty} x^{p_{2}-1} \mu_{G}\left(x ; f_{2}\right) d x\right\} d y \\
& =M_{2}^{p_{2}} p_{2} \int_{0}^{\infty}\left\{\int_{0}^{\infty} x^{p_{2}-1} \mu_{G}\left(x ; f_{2}\right) y^{p-p_{2}-1} d y\right\} d x \\
& =M_{2}^{p_{2}} p_{2} \int_{0}^{\infty}\left\{\int_{A x^{1 / \xi}}^{\infty} x^{p_{2}-1} \mu_{G}\left(x ; f_{2}\right) y^{p-p_{2}-1} d y\right\} d x \\
& =M_{2}^{p_{2}} p_{2} \int_{0}^{\infty} x^{p_{2}-1} \mu_{G}\left(x ; f_{2}\right)\left\{\int_{A x}^{\infty} y^{p-p_{2}-1} d y\right\} d x \\
& =\frac{A^{p-p_{2}}}{p_{2}-p} M_{2}^{p_{2}} p_{2} \int_{0}^{\infty} x^{p_{2}-1+p-p_{2}} \mu_{G}\left(x ; f_{2}\right) d x \\
& \leq \frac{A^{p-p_{2}}}{p_{2}-p} M_{2}^{p_{2}} p_{2} \int_{0}^{\infty} x^{p_{2}-1+p-p_{2}} \mu_{G}(x ; f) d x .
\end{align*}
$$

Collecting (6.11)-(6.13) we see that the integral in (6.8) does not exceed

$$
\begin{equation*}
M_{1}^{p_{1}} p_{1} \frac{A^{p-p_{1}}}{p-p_{1}} \int_{0}^{\infty} x^{p-1} \mu_{G}(x ; f) d x+M_{2}^{p_{2}} p_{2} \frac{A^{p-p_{2}}}{p_{2}-p} \int_{0}^{\infty} x^{p-1} \mu_{G}\left(x ; f_{2}\right) d x \tag{6.14}
\end{equation*}
$$

Now, using the identity

$$
\int_{0}^{\infty} x^{p-1} \mu_{G}(x ; f) d x=\int_{G}|f(u)|^{p} d u=\|f\|_{L^{p}(G)}^{p}
$$

and inequalities (6.8) and (6.14) we get

$$
\|A f\|_{\ell^{p}(\widehat{G})}^{p} \leq\left(M_{1}^{p_{1}} p_{1} \frac{A^{p-p_{1}}}{p-p_{1}}+M_{2}^{p_{2}} p_{2} \frac{A^{p-p_{2}}}{p_{2}-p}\right)^{p}\|f\|_{\ell^{p}(\widehat{G})}^{p}
$$

Next we set

$$
A=M_{1}^{\frac{p_{1}}{p_{1}-p_{2}}} M_{2}^{\frac{p_{2}}{p_{2}-p_{1}}}
$$

A simple computation shows that

$$
\begin{aligned}
M_{1}^{p_{1}} A^{p-p_{1}} & =M_{2}^{p_{2}} A^{p-p_{2}}=M_{1}^{\frac{p_{1}\left(p_{2}-p\right)}{p_{2}-p_{1}}} M_{2}^{\frac{p_{2}\left(p_{1}-p\right)}{p_{1}-p_{2}}} \\
& =M_{1}^{1-\theta} M_{2}^{\theta}, \quad \frac{1}{p}=\frac{1-\theta}{p_{1}}+\frac{\theta}{p_{2}}
\end{aligned}
$$

Finally, we have

$$
\|A f\|_{\ell^{p}(\widehat{G})} \leq K_{p, p_{1}, p_{2}} M_{1}^{1-\theta} M_{2}^{\theta}\|f\|_{L^{p}(G)}
$$

where

$$
K_{p, p_{1}, p_{2}}=\left(\frac{p_{1}}{p-p_{1}}+\frac{p_{2}}{p_{2}-p}\right)^{1 / p}
$$

Acknowledgments. The authors would like to thank Véronique Fischer for useful remarks.

The first and the second authors were supported by the MESRK grants 4080/GF, 3311/GF4, 4080/GF4 and the third author was supported by the EPSRC Grant EP/K039407/1. No new data was collected or generated during the course of the research.

References

[Ank90] J.-P. Anker, \mathbf{L}_{p} Fourier multipliers on Riemannian symmetric spaces of the noncompact type, Ann. of Math. (2) 132 (1990), 597-628.
[Arh12] C. Arhancet, Unconditionality, Fourier multipliers and Schur multipliers, Colloq. Math. 127 (2012), 17-37.
[BL76] J. Bergh and J. Löfström, Interpolation Spaces. An Introduction, Grundlehren Math. Wiss. 223, Springer, Berlin, 1976.
[CdG71] R. R. Coifman and M. de Guzmán, Singular integrals and multipliers on homogeneous spaces, Rev. Un. Mat. Argentina 25 (1970/71), 137-143.
[CW71a] R. R. Coifman et G. Weiss, Analyse harmonique non-commutative sur certains espaces homogènes, Lecture Notes in Math. 242, Springer, Berlin, 1971.
[CW71b] R. R. Coifman and G. Weiss, Multiplier transformations of functions on $\mathrm{SU}(2)$ and \sum_{2}, Rev. Un. Mat. Argentina 25 (1971), 145-166.
[CW74] R. R. Coifman and G. Weiss, Central multiplier theorems for compact Lie groups, Bull. Amer. Math. Soc. 80 (1974), 124-126.
[Cow74] M. G. Cowling, Spaces A_{p}^{q} and $L^{p}-L^{q}$ Fourier multipliers, PhD thesis, The Flinders Univ. of South Australia, 1974.
[CGM93] M. Cowling, S. Giulini, and S. Meda, $L^{p}-L^{q}$ estimates for functions of the Laplace-Beltrami operator on noncompact symmetric spaces. I, Duke Math. J. 72 (1993), 109-150.
[CKS11] M. G. Cowling, O. Klima, and A. Sikora, Spectral multipliers for the Kohn sublaplacian on the sphere in \mathbb{C}^{n}, Trans. Amer. Math. Soc. 363 (2011), 611-631.
[CS01] M. Cowling and A. Sikora, A spectral multiplier theorem for a sublaplacian on SU(2), Math. Z. 238 (2001), 1-36.
[Gau66] G. I. Gaudry, Multipliers of type (p, q), Pacific J. Math. 18 (1966), 477-488.
[GT80] S. Giulini and G. Travaglini, L^{p}-estimates for matrix coefficients of irreducible representations of compact groups, Proc. Amer. Math. Soc. 80 (1980), 448-450.
[HL27] G. H. Hardy and J. E. Littlewood, Some new properties of Fourier constants, Math. Ann. 97 (1927), 159-209.
[Hör60] L. Hörmander, Estimates for translation invariant operators in L^{p} spaces, Acta Math. 104 (1960), 93-140.
[HR74] E. Hewitt and K. A. Ross, Rearrangements of L^{r} Fourier series on compact Abelian groups, Proc. London Math. Soc. (3) 29 (1974), 317-330.
[Mih56] S. G. Mihlin, On the theory of multidimensional singular integral equations, Vestnik Leningrad. Univ. 11 (1956), 3-24 (in Russian).
[Mih57] S. G. Mihlin, Singular integrals in L_{p} spaces, Dokl. Akad. Nauk SSSR (N.S.) 117 (1957), 28-31 (in Russian).
[Nur98a] E. Nursultanov, Net spaces and inequalities of Hardy-Littlewood type, Sb . Math. 189 (1998), 399-419.
[Nur98b] E. D. Nursultanov, On multipliers of Fourier series in a trigonometric system, Mat. Zametki 63 (1998), 235-247 (in Russian).
[NTi11] E. Nursultanov and S. Tikhonov, Net spaces and boundedness of integral operators, J. Geom. Anal. 21 (2011), 950-981.
[NT100] E. D. Nursultanov and N. T. Tleukhanova, Lower and upper bounds for the norm of multipliers of multiple trigonometric Fourier series in Lebesgue spaces, Funktsional. Anal. i Prilozhen. 34 (2000), no. 2, 86-88 (in Russian).
[RR86] F. Ricci and R. L. Rubin, Transferring Fourier multipliers from $\mathrm{SU}(2)$ to the Heisenberg group, Amer. J. Math. 108 (1986), 571-588.
[RT10] M. Ruzhansky and V. Turunen, Pseudo-Differential Operators and Symmetries. Background Analysis and Advanced Topics, Pseudo-Differential Operators Theory Appl. 2, Birkhäuser, Basel, 2010.
[RT13] M. Ruzhansky and V. Turunen, Global quantization of pseudo-differential operators on compact Lie groups, $\mathrm{SU}(2), 3$-sphere, and homogeneous spaces, Int. Math. Res. Notices 2013, 2439-2496.
[RW13] M. Ruzhansky and J. Wirth, On multipliers on compact Lie groups, Funct. Anal. Appl. 47 (2013), 87-91.
[RW15] M. Ruzhansky and J. Wirth, L^{p} Fourier multipliers on compact Lie groups, Math. Z. 280 (2015), 621-642.
[Ste70] E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton Math. Ser. 30, Princeton Univ. Press, Princeton, NJ, 1970.
[Vil68] N. J. Vilenkin, Special Functions and the Theory of Group Representations, Transl. Math. Monogr. 22, Amer. Math. Soc., Providence, RI, 1968.
[Vre74] L. Vretare, On L L_{p} Fourier multipliers on a compact Lie-group, Math. Scand. 35 (1974), 49-55.
[Wei72] N. J. Weiss, L^{p} estimates for bi-invariant operators on compact Lie groups, Amer. J. Math. 94 (1972), 103-118.
[Zyg56] A. Zygmund, On a theorem of Marcinkiewicz concerning interpolation of operations, J. Math. Pures Appl. (9) 35 (1956), 223-248.

Rauan Akylzhanov, Michael Ruzhansky
Department of Mathematics
Imperial College London
180 Queen's Gate
London SW7 2AZ, United Kingdom
E-mail: r.akylzhanov14@imperial.ac.uk m.ruzhansky@imperial.ac.uk

Erlan Nursultanov
Department of Mathematics
Moscow State University, Kazakh Branch
Astana, Kazakhstan
E-mail: er-nurs@yandex.ru

[^0]: 2010 Mathematics Subject Classification: Primary 43A85, 43A15; Secondary 35S05.
 Key words and phrases: Fourier multipliers, Hardy-Littlewood inequality, Paley inequality, noncommutative harmonic analysis.
 Received 16 October 2014; revised 21 April 2016.
 Published online 17 June 2016.

