
STUDIA MATHEMATICA 234 (1) (2016)

Noncoherent uniform algebras in Cn

by

Raymond Mortini (Metz)

Abstract. Let D = D be the closed unit disk in C and Bn = Bn the closed unit ball
in Cn. For a compact subset K in Cn with nonempty interior, let A(K) be the uniform
algebra of all complex-valued continuous functions on K that are holomorphic in the
interior of K. We give short and non-technical proofs of the known facts that A(Dn

) and
A(Bn) are noncoherent rings. Using, additionally, Earl’s interpolation theorem in the unit
disk and the existence of peak functions, we also establish with the same method the new
result that A(K) is not coherent. As special cases we obtain Hickel’s theorems on the
noncoherence of A(Ω), where Ω runs through a certain class of pseudoconvex domains
in Cn, results that were obtained with deep and complicated methods. Finally, using a
refinement of the interpolation theorem we show that no uniformly closed subalgebra A
of C(K) with P (K) ⊆ A ⊆ C(K) is coherent provided the polynomial convex hull of K
has no isolated points.

1. Introduction. In this paper we are interested in a certain algebraic
property of some standard Banach algebras of holomorphic functions of
several complex variables. By introducing new methods we are able to solve
a fourty-year old problem first considered by McVoy and Rubel in the realm
of uniform algebras appearing in approximation theory and complex analysis
of several variables.

Let us start by recalling the notion of a coherent ring.

Definition 1.1. A commutative unital ring A is said to be coherent if
the intersection of any two finitely generated ideals in A is finitely generated.

We refer the reader to the article [6] for the relevance of the property of
coherence in commutative algebra.
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Definition 1.2. Let D := {z ∈ C : |z| < 1} be the open unit disk in C
and Bn = {z = (z1, . . . , zn) ∈ Cn :

∑n
j=1 |zj |2 < 1} the open unit ball in Cn.

Their Euclidean closures are denoted by D and Bn, respectively.

For a bounded open set Ω in Cn, let H∞(Ω) be the Banach algebra of
all bounded and holomorphic functions f : Ω → C, with pointwise addition
and multiplication, and the supremum norm:

‖f‖∞ := sup
z∈Ω
|f(z)|, f ∈ H∞(Ω).

For a compact set K ⊂ Cn, let A(K) be the uniform algebra of all
complex-valued continuous functions on K that are holomorphic in the in-
terior K◦ of K. If K = Ω, then we view A(K) as a subalgebra of H∞(Ω).

If K = Dn, then A(K) is called the polydisk algebra; if K = Bn, then
A(K) is the ball algebra.

In the context of function algebras of holomorphic functions in the unit
disk D in C, we mention [11], where it was shown that the Hardy algebra
H∞(D) is coherent, while the disk algebra A(D) is not. For n ≥ 3, Amar [1]
showed that the Hardy algebras H∞(Dn), H∞(Bn), the polydisk algebra
A(Dn) and the ball algebra A(Bn) are not coherent.

The missing n = 2 case for the bidisk algebraA(D2) (respectively the ball
algebra A(B2)) follows as a special case of a general result due to Hickel [8]
on the noncoherence of the algebra A(Ω) of continuous functions on Ω
that are holomorphic in Ω, where Ω ⊂ Cn (n ≥ 2) is a bounded strictly
pseudoconvex domain with a C∞ boundary. But the proof in [8] is technical.
To illustrate our subsequent methods, we first give a short, elegant proof
of the noncoherence of A(Dn) and A(Bn). Let me mention that an entirely
elementary proof, developed after this manuscript had been written in 2013,
has been published in [15].

Using techniques from the theory of Banach algebras which are based on
peak functions, bounded approximate identities and Cohen’s factorization
theorem (cf. [13]), and, additionally, function-theoretic tools, like Earl’s in-
terpolation theorem for H∞(D) in the unit disk (a refinement of Carleson’s
interpolation theorem) [5, p. 309], we succeed in showing the noncoherence
of A(K) for every compact set K in Cn.

Finally, by replacing Earl’s theorem with a result on asymptotic inter-
polation, we can handle for compact sets K ⊆ Cn without isolated points
the case of any uniformly closed algebra A with P (K) ⊆ A ⊆ C(K), where
P (K) is the smallest closed subalgebra of C(K) containing the polynomials.

To conclude, let me point out that the coherence of rings of stable transfer
functions of multidimensional systems, such as A(Bn) or A(Dn), plays a role
in the stabilization problem in control theory via the factorization approach
(see [17]).
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2. Preliminaries. In this section we collect some technical results which
we will use in our proofs.

Lemma 2.1. Let A be a commutative unital ring and M an ideal in A
such that M 6= A. Suppose that I is a finitely generated ideal of A which
satisfies I = IM . Then there exists m ∈ M such that (1 + m)I = 0. If A
has no zero divisors, then I = 0.

Proof. This follows from Nakayama’s lemma [10, Theorem 76].

Lemma 2.2. Let I be a non-finitely generated ideal in a commutative
unital ring A. Suppose that a ∈ A is not a zero-divisor. Then aI is not
finitely generated either.

Proof. Suppose, on the contrary, that aI = (G1, . . . , Gm) for some
G1, . . . , Gm in A. Then there exist F1, . . . , Fm ∈ I such that Gj = aFj , j =
1, . . . ,m. We claim that I = (F1, . . . , Fm). Indeed, trivially (F1, . . . , Fm) ⊆ I.
Also, for any f ∈ I, af ∈ aI = (G1, . . . , Gm) gives the existence of α1, . . . , αm
in A such that

af = α1G1 + · · ·+ αmGm = α1aF1 + · · ·+ αmaFm.

Since a is not a zero-divisor, it follows that

f = α1F1 + · · ·+ αmFm ∈ (F1, . . . , Fm).

This shows that the reverse inclusion I ⊆ (F1, . . . , Fm) is true, too. But
this means that I, which coincides with (F1, . . . , Fm), is finitely generated,
a contradiction.

Here is an example that shows that the condition of a being a non-zero-
divisor is necessary:

Example 2.3. Let D1 and D2 be two disjoint copies of the unit disk, say
D1 = {|z−0.5| < 0.5} and D2 = {|z+0.5| < 0.5}, and let A be the algebra of
bounded analytic functions on D1∪D2. Let S(z) = exp(−(1+z)/(1−z)) be
the atomic inner function. Consider the associated elements fn of A given by

fn(z) =

{
S1/n(z) if z ∈ D1,

S(z) if z ∈ D2.

and let a ∈ A be defined as

a(z) =

{
0 if z ∈ D1,

1 if z ∈ D2.

Then the ideal I = (f1, f2, . . . , ) generated by the functions fn in A is not
finitely generated, although the ideal aI is finitely generated.

Definition 2.4. Let X be a metrizable space.

(1) Cb(X,C) denotes the space of bounded, complex-valued continuous
functions on X.
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(2) A function algebra A on X is a uniformly closed, point separating
subalgebra of Cb(X,C), containing the constants.

(3) A point x0 ∈ X is called a peak point for A if there is a function
p ∈ A (called a peak function) with p(x0) = 1 and

(2.1) sup
x∈X\U

|p(x)| < 1

for every open neighborhood U of x.

Note that in case X is compact, condition (2.1) is equivalent to

|p(x)| < 1 for all x ∈ X,x 6= x0.

Definition 2.5. Let A be a commutative Banach algebra (without an
identity element), and M a closed ideal of A. Then a bounded sequence
(en)n∈N in M is called a (strong) approximate identity for M if

lim
n→∞

‖enf − f‖ = 0 for all f ∈M .

For compact spaces, the following is [2, p. 74, Corollary 1.6.4].

Proposition 2.6. Let X be a metric space and x0 ∈ X a peak point for
the function algebra A on X. If p is an associated peak function, then the
sequence (en) defined by

en = 1− pn

is a bounded approximate identity for the maximal ideal

M(x0) = {f ∈ A : f(x0) = 0}.

Proof. For the reader’s convenience here is the outline. For f ∈ A,

|ekf − f | = |p|k|f |.

Let ε > 0. As f(x0) = 0, there is an open neighbourhood U of x0 such that
|f | < ε on U . By assumption,

m := sup
X\U
|p| < 1.

Now choose k0 ∈ N large enough so that for k > k0, m
k‖f‖∞ < ε. Thus for

k > k0,

|ekf − f | = |pkf | ≤

{
mk‖f‖∞ on X \ U
1k · ε on U

}
< ε.

Hence ‖ekf − f‖∞ ≤ ε for k > k0.

Our central Banach-algebraic tool will be Cohen’s Factorization Theorem
(see [2, p. 74, Theorem 1.6.5]).
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Proposition 2.7. Let A be a commutative unital real or complex Ba-
nach algebra, I a closed ideal of A, and suppose that I has an approximate
identity. Then every f ∈ I can be decomposed as a product f = gh of two
functions g, h ∈ I.

The main function-theoretic tool for the construction of our ideals in
general uniform algebras in Cn will be the following result on asymptotic
interpolation given in [12, p. 515], with predecessors in [7] and [3]. Recall
that ρ(z, w) = |(z −w)/(1− zw)| is the pseudohyperbolic distance between
z and w in D.

Theorem 2.8. Let (an) be a thin sequence in D, that is, a sequence such
that the associated Blaschke product b satisfies

lim
n

(1− |an|2)|b′(an)| = 1.

Then for any sequence (wn) ∈ `∞ with supn |wn| ≤ 1 there exists a Blaschke
product B and a sequence of positive numbers τn → 1 such that for any
0 ≤ τ ′n ≤ τn with τ ′n → 1, the zeros of B can be chosen to be contained
in the union of the pseudohyperbolic disks {z ∈ D : ρ(z, an) ≤ τ ′n} and to
satisfy

|B(an)− wn| → 0.

If the interpolating nodes (an) cluster only at the point 1, then the zeros
of B can be chosen so that they cluster also only at 1.

Proof. It remains to verify the assertion on the zeros of B whenever (an)
clusters only at 1. Since the pseudohyperbolic disk Dρ(a, r) coincides with
the Euclidean disk D(C,R) where

C =
1− r2

1− r2|a|2
a, R =

1− |a|2

1− r2|a|2
r

(see [5]), it suffices to choose τ ′n := min{τn, rn} where

rn =

√
1−

√
1− |an|2
|an|2

and to verify that in that case Rn → 0 and Cn → 1.

3. A sufficient criterion for noncoherence. The following concept
of multipliers is new and is the key for our short proofs of the noncoherence
results.

Definition 3.1. Let A be a function algebra on a metrizable space X
and x0 ∈ X a nonisolated point (1). A function S ∈ Cb(X \{x0},C) is called

(1) This means that there is a sequence of distinct points in X converging to x0.
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a multiplier for the maximal ideal

M(x0) = {f ∈ A : f(x0) = 0},
if the ideal

L := LS := {f ∈ A : Sf ∈ A}
coincides with M(x0) and if there exists p ∈ M(x0) such that pS is not a
zero-divisor (2).

As a canonical example we mention the atomic inner function

S(z) = exp

(
−1 + z

1− z

)
,

which is a multiplier for the maximal ideal M(1) of the disk algebra A(D).

Theorem 3.2. Let A be a function algebra on a metrizable space X.
Suppose that x0 ∈ X is a nonisolated peak point for A and that the function
S ∈ Cb(X \ {x0},C) is a multiplier for the maximal ideal M(x0). Then A is
not coherent.

Proof. We shall exhibit two principal ideals whose intersection is not
finitely generated. By assumption, S is a multiplier for M(x0). In particular,
there is a function p ∈ M(x0) such that pS ∈ A is not a zero-divisor. This
implies that p is not a zero-divisor either. Let

I := (p), K := {pSf : f ∈ A and Sf ∈ A},
J := (pS), L := {f ∈ A : Sf ∈ A}.

We claim that K = I ∩ J . Trivially K ⊆ I ∩ J . On the other hand,
if g ∈ I ∩ J , then there exist f, h ∈ A such that g = ph = pSf , and so
Sf = h ∈ A. In other words, g ∈ K. Thus also I ∩ J ⊆ K.

It remains to show that K is not finitely generated. Note that by defini-
tion, K = pSL. Moreover, since S is a multiplier for M , we have M = L.

Let f ∈ L. Since M has an approximate identity (by Proposition 2.6),
we may apply Cohen’s Factorization Theorem (Proposition 2.7) to conclude
that there exist g, h ∈M such that

f = hg.

Consequently, L=LM . Assuming that L is finitely generated, byNakayama’s
Lemma 2.1 there exists m ∈M such that (1 +m)L = 0. Note that L = M .
Since A is point separating, there exists for every x1 ∈ X \ {x0} a function
f ∈ M = L such that f(x1) 6= 0. Hence (1 + m(x1))f(x1) = 0 implies that
m(x1) = −1. Since, by assumption, x0 is not an isolated point in X, the

(2) The notation Sf ∈ A is to be interpreted in the usual way that Sf : X \{x0} → C
has a continuous extension F to X with F ∈ A.
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continuity of m on X implies that m(x0) = −1, contradicting the fact that
m ∈M(x0). Thus we conclude that L cannot be finitely generated.

Because S is a multiplier, pS ∈M(x0). Moreover, pS is not a zero-divisor.
Hence, by Lemma 2.2, K = pSL is not finitely generated either.

In the next sections we apply Theorem 3.2 to concrete function algebras
of several complex variables.

4. The noncoherence of the ball and polydisk algebra. In view
of Theorem 3.2, to prove the noncoherence, it suffices to exhibit a peak
function and a multiplier for some distinguished maximal ideal.

Theorem 4.1. The ball algebra A(Bn) is not coherent for any n =
1, 2, . . . .

Proof. Indeed,

P (z1, . . . , zn) =
1 + z1

2

is a peak function at (1, 0, . . . , 0) for A(Bn) (note that if |1 + z1| = 2,
then z1 = 1 and the remaining coordinates z2, . . . , zn are automatically zero
because (z1, . . . , zn) ∈ Bn), and

S(z1, . . . , zn) = exp

(
−1 + z1

1− z1

)
is a multiplier for M(1, 0, . . . , 0).

Theorem 4.2. The polydisk algebra A(Dn) is not coherent for any n =
1, 2, . . . .

Proof. Indeed,

P1(z1, . . . , zn) =

(
1 + z1

2

)
· · ·
(

1 + zn
2

)
is a peak function at a = (1, . . . , 1) for A(Dn) and

S(z1, . . . , zn) = exp

(
−1 + z1

1− z1

)
· · · exp

(
−1 + zn

1− zn

)
is a multiplier for M(1, . . . , 1).

Thus we have obtained a short proof of the result by Amar and Hickel
[1, 8].

5. The noncoherence of P (K) ⊆ A ⊆ C(K). For a compact set
K ⊂ Cn, let C(K) denote the uniform algebra of complex-valued continuous
functions on K, let A(K) be the uniform algebra of all functions continuous
on K and holomorphic in K◦, and let P (K) be the subalgebra of those
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functions in A(K) that can be uniformly approximated on K by holomorphic
polynomials.

Let us recall the following well-known result:

Theorem 5.1. Let K ⊆ Cn be a compact set. Then

(1) Endowed with the usual pointwise operations (3) and the supremum
norm

‖f‖∞ = sup{|f(z)| : z ∈ K}

A(K) = A(+, ·, •, ‖ ·‖∞) and P (K) = A(+, ·, •, ‖ ·‖∞) are uniformly
closed point separating subalgebras of C(K).

(2) Let A be A(K) or P (K). Standard maximal ideals in A are given by

M(z0) := {f ∈ A : f(z0) = 0}

for a unique z0 ∈ K (4).
(3) The spectrum (or maximal ideal space) of P (K) coincides with the

polynomial convex hull K̂ of K.
(4) The Shilov boundary, ∂A, of A is a nonvoid closed subset of ∂K.
(5) The set Π(A) of peak points for A is a nonvoid dense subset of ∂A.
(6) For each z0 ∈ Π(A), the associated maximal ideal M(z0) has a

bounded approximate identity.

Proof. (1) is elementary; (2)–(5) are standard facts in the theory of uni-
form algebras (see for instance [2] and [4]); note that the Shilov boundary is
the closure of the set of weak peak points and that for function algebras on
metrizable spaces every weak peak point is actually a peak point [2, p. 96].
Finally, (3) is in [4, p. 67], and (6) follows from Proposition 2.6.

We note that if x0 ∈ ∂K is a peak point for P (K), then it is a peak
point for any uniformly closed algebra A with P (K) ⊆ A ⊆ C(K).

Lemma 5.2. Let K ⊆ Cn be compact with K◦ 6= ∅. If z0 ∈ ∂(K◦) is a
peak point for P (K◦), then it is a peak point for A(K).

Proof. Let f ∈ P (K◦) peak at z0. Then f(K◦) ⊆ D ∪ {1} ⊆ D. Let
F : Cn → C be a continuous extension of f to Cn. Since D is a retract for C,
there is a retraction r of C onto D with r(z) = z for z ∈ D. Hence r ◦ F is
an extension of f with target space D.

(3) Addition +, multiplication · and multiplication • by complex scalars.

(4) Note that, in general, there are many more maximal ideals than those given by
point evaluation at points in K; even in the case where K = Ω, Ω a bounded pseudoconvex
domain in Cn, n ≥ 2, every function f ∈ H∞(Ω) (a fortiori f ∈ A(Ω)) may have a bounded
holomorphic extension to a strictly larger domain Ω′ (see [9]). Hence, in that case, the
spectrum of A(Ω) is strictly larger than Ω itself.
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By Urysohn’s Lemma in metric spaces, there is a continuous function
u : Cn → [0, 1] such that

{z ∈ Cn : u(z) = 1} = K◦.

Now consider φ(z) = (1 + z)/2 that maps D onto |z − 1/2| ≤ 1/2. We claim
that

g := φ ◦ (u · (r ◦ F )) : K → D ∪ {1}

is a peak function at z0 that belongs to A(K).

To see this, we note that u(z) · (r(F (z)) ∈ D for every z ∈ K. Moreover,
for z ∈ K◦, F (z) = f(z) ∈ D; hence r(F (z)) = f(z) and so u(z)r(F (z)) =
f(z). Since φ and f are holomorphic, we deduce that g is holomorphic
in K◦. Thus g ∈ A(K). Now if for some z1 ∈ K, g(z1) = 1, then nec-
essarily u(z1) r(F (z1)) = 1. Now |r(F (z1))| ≤ 1; hence |u(z1)| = u(z1)
= 1. We conclude that z1 ∈ K◦. Therefore, as shown previously, we have
u(z1)r(F (z1)) = f(z1) = 1. Since f ∈ P (K◦) peaks at z0, we finally obtain
z1 = z0.

Definition 5.3. Let Ω ⊂ Cn be a bounded open set. For a ∈ ∂Ω and
f ∈ H∞(Ω), let Cl(f, a) denote the cluster set of f at a, that is, the set
of all points w ∈ C such that there exists a sequence (zn) in Ω such that
(f(zn)) converges to w.

It is obvious that Cl(f, a) is a compact, nonvoid subset of C. In fact

Cl(f, a) =
⋂

0<r≤1
f(Ω ∩B(a, r)).

In the case of the polydisk or the unit ball, Cl(f, a) is connected.

The proof of the following fundamental lemma was motivated by parts
of the proof of [14, Theorem 3.1] concerning the pseudo-Bézout property for
P (K) and its siblings, where K ⊂ C is compact. It gives us the possibility
to construct multipliers for maximal ideals.

Lemma 5.4. For a compact set K ⊆ Cn, let A be a uniformly closed
algebra with P (K) ⊆ A ⊆ C(K). Let x0 ∈ ∂K be a nonisolated peak point
for P (K) and p ∈ P (K) an associated peak function. Then there exists a
function S ∈ Cb(K \ {x0}) such that

0 ∈ Cl(S, x0) but Cl(S, x0) 6= {0},

and

(1− p)S ∈ A.

Moreover, S is a multiplier for the maximal ideal M(x0) = {f ∈A : f(x0) = 0}.
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Proof. We consider two cases:

Case 1: K is the closure of a domain D in Cn (5). Let (zn) ∈ K be
a sequence of distinct points in K converging to x0. Then p(zn) → 1 and
p(zn) ∈ D. By passing to a subsequence if necessary, we may assume that
(p(zn)) is a (thin) interpolating sequence for H∞(D). By Earl’s interpolation
theorem [5, p. 309], there is an interpolating Blaschke product B satisfying

(5.1) B(p(z2n)) = 0 and B(p(z2n+1)) = δ

for all n and some constant δ > 0 and such that the zeros of B cluster only
at 1. Hence B ◦ p is discontinuous at x0.

Now let S := B ◦ p. Since |p| < 1 everywhere on K \ {x0} and B is
continuous on D \ {1}, it follows that S = B ◦ p is continuous on K \ {x0}.
Moreover, since x0 is not an isolated point, we have 0 ∈ Cl(S, x0) and
δ ∈ Cl(S, x0).

It remains to show that (1 − p)S ∈ A and that S is the multiplier we
are looking for. Let us point out that for any q ∈ C(Ω) with q(x0) = 0, the
function qS = q · (B ◦ p) is continuous at x0. We claim that if q ∈ A and
q(x0) = 0, then q(B ◦ p) ∈ A.

To see this, consider the partial products Bn :=
∏n
j=1 Lj of the Blaschke

product B. Then Bn converges locally uniformly (in D) to B. Since Bn is an-
alytic in a neighbourhood of the P (K)-spectrum σ(p) of p, where σ(p) ⊆ D,
we see that Bn ◦ p ∈ P (K) ⊆ A. Now q(Bn ◦ p) converges uniformly in K to
q(B ◦ p). Hence q(B ◦ p) ∈ A. In particular, (1− p)(B ◦ p) ∈ A.

Thus we have shown that

M(x0) ⊆ IS := {f ∈ A : Sf ∈ A}.
To show the reverse inclusion, let f ∈ IS . Then the continuity of f and the
discontinuity of S at x0 imply that f(x0) = 0. Hence f ∈ M(x0) and so
IS ⊆M(x0). Consequently,

IS = {f ∈ A : Sf ∈ A} = M(x0).

To show that (1 − p)S is not a zero-divisor in A, we have to use the
special structure of K, namely that K = D for a domain D in Cn. Note
that for general K, S = B◦p may vanish identically on whole components of
K◦ (for example if B has a zero at p(a) and p ≡ p(a) on such a component).
Now (1 − p)S is analytic on D; since its zeros are isolated, we deduce that
(1− p)Sq ≡ 0 implies q ≡ 0 on D for every q ∈ A.

Putting it all together, we have shown that S is a multiplier for M(x0).

Case 2: K ⊆ Cn is an arbitrary compact set. To avoid the phenomenon
described in the last paragraph, we have to look for a multiplier S that has

(5) This is only for the purpose of simplicity, because the tools applied in this case
are more elementary than in the general case.



Noncoherent uniform algebras 93

no zeros on K \ {x0}. It will have the form

S = (1 +B) ◦ p = 1 + (B ◦ p)
for some Blaschke product B whose zeros cluster only at 1. Note that B ◦ p
never takes the value −1 on K \ {x0}, since B(ξ) = −1 only for ξ ∈ T \ {1},
and the only unimodular value p takes is 1.

Here is the construction of B. According to the asymptotic interpolation
theorem 2.8, there is a Blaschke product B whose zeros cluster only at 1
such that

(5.2) B(p(z2n))→ −1 and B(p(z2n−1))→ 1.

Hence 0 ∈ Cl(S, x0) and 2 ∈ Cl(S, x0). The rest is now clear in view of
the proof of Case 1, always having in mind that x0 is not an isolated point
in K.

Theorem 5.5.

(i) If Ω is a bounded domain in Cn, then A(Ω) is not coherent.
(ii) If K ⊂ Cn is compact with K◦ 6= ∅, then A(K) is not coherent.

Proof. (i) By Theorem 5.1, there exists a peak point z0 ∈ ∂Ω for A(Ω)
and M(z0) has an approximate identity. Of course Ω is a compact set with-
out isolated points. Hence, by Lemma 5.4, there is a multiplier S for M(z0).
The noncoherence of A(Ω) now follows from Theorem 3.2.

(ii) Similar to (i); just use Lemma 5.2 to get the nonisolated peak point
x0 for A(K).

If K◦ = ∅, then A(K) = C(K). In Section 6 we will give a characteriza-
tion of those compacta in Cn for which C(K) is coherent. Let us also note
that (i) is not a special case of (ii), because there are algebras of the form
A(Ω) that do not belong to the class of algebras of type A(K): just take
as Ω the unit disk with a Cantor set (= compact and totally disconnected
set) of positive planar Lebesgue measure deleted.

Definition 5.6. A compact set K ⊆ Cn is called admissible if its poly-
nomial convex hull K̂ contains no isolated points.

Our final theorem contains (more or less) all the preceding ones as special
cases.

Theorem 5.7. Let K ⊆ Cn be an admissible compact set and let A be
a uniformly closed subalgebra of C(K) with P (K) ⊆ A ⊆ C(K). Then A is
not coherent.

Proof. Similar to the proof above; note that Theorem 5.1(5) yields the
desired peak point for P (K), and Lemma 5.4 the associated multiplier.

If we are considering algebras of a single complex variable, then we have
the following refinement:
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Theorem 5.8. Let K ⊆ C be an infinite compact set and let A be a
uniformly closed subalgebra of C(K) with P (K) ⊆ A ⊆ C(K). Then A is
not coherent.

Proof. The infinity of K implies that the polynomial convex hull K̂ of
K is an infinite compact set, too. This in turn implies that its topological
boundary ∂K̂ is an infinite compact set. Hence, there exists a nonisolated
point x0 ∈ ∂K̂ ⊆ K. Now by Mergelyan’s Theorem, P (K̂) = R(K̂) = A(K̂).

Using the fact that C \ K̂ is connected, Gonchar’s peak point criterion for

R(K) (see [4, Corollary 4.4, p. 205]) shows that x0 is a peak point forR(K̂) =

P (K̂). The noncoherence now follows as in the preceding theorems.

We guess that this result can be extended to the case of several variables.

6. Noncoherence of C(K). Let K be a compact set in Cn. A gen-
eral result in [16] tells us that for completely regular spaces X, C(X,R) is
coherent if and only if X is basically disconnected (6). This result can be
used to conclude that C(K,C) is coherent if and only if K is finite. Since
our compacta K are metrizable, for the reader’s convenience we present the
following independent easy proof.

Theorem 6.1. If K ⊆ Cn is compact, then C(K) is coherent if and
only if K is finite.

Proof. Suppose that K is not finite. Then there is x0 ∈ K such that
limxn = x0 for some sequence (xn) of distinct points in K. Let E be a
closed subset of K not containing x0. Then

p(x) =
d(x,E)

d(x,E) + d(x, x0)

is a peak function for x0. By passing to a subsequence if necessary, we
may assume that p(xn) 6= p(xm) for n 6= m. Choose a continuous zero-free
function B : [0, 1[→ ]0, 1] such that

B(p(x2n)) = 1 and B(p(x2n−1)) = 1/n→ 0,

and let S := B ◦ p. Then S ∈ Cb(K \ {x0}). It is now straightforward to
check that the continuous function (1 − p)S is not a zero-divisor and that
S is a multiplier for M(x0) (note that the cluster set of S at x0 is not a
singleton and contains 0). Then we apply Theorem 3.2.

If, on the other hand, X is finite, then C(X) is a principal ideal ring. In
fact, if I ⊆ C(X) is an ideal, then we define a generator g of I by g(x) = 1
if x /∈ Z(I) and g(x) = 0 if x ∈ Z(I). Hence C(X) is trivially coherent.

(6) Recall that X is said to be basically disconnected if the closure of {x ∈X : f(x) 6= 0}
is open for every f ∈ C(X,R).
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