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Locally convex algebras which determine
a locally compact group

by

Gholam Hossein Esslamzadeh (Shiraz), Hossein Javanshiri (Yazd)
and Rasoul Nasr-Isfahani (Isfahan and Tehran)

Abstract. There are several algebras associated with a locally compact group G
which determine G in the category of topological groups, such as L1(G), M(G), and their
second duals. In this article we add a fairly large family of locally convex algebras to this
list. More precisely, we show that for two infinite locally compact groups G1 and G2, there
are infinitely many locally convex topologies τ1 and τ2 on the measure algebras M(G1) and
M(G2), respectively, such that (M(G1), τ1)∗∗ is isometrically isomorphic to (M(G2), τ2)∗∗ if
and only if G1 and G2 are topologically isomorphic. In particular, this leads to a new proof
of Ghahramani–Lau’s isometrical isomorphism theorem for compact groups, different from
those of Ghahramani and J. P. McClure (2006) and Dales et al. (2012).

1. Introduction. A long-standing question in abstract harmonic anal-
ysis is: Which Banach algebras (or more generally locally convex algebras)
associated to a locally compact group G determine G in the category of topo-
logical groups? The present paper is an effort towards the answer to this gen-
eral question. The first publication towards this is by Helson [7], who showed
that, for two locally compact abelian groups G1 and G2, if T is a contractive
isomorphism from L1(G1) onto L1(G2), then T is isometric and G1 and G2
are topologically isomorphic. Wendel [17, 18] extended this to non-abelian
groups; on his result, all later conclusions relied. In particular, Johnson [11]
showed that the measure algebra M(G) determines G. In the past three
decades research on the above problem has centred on second dual type al-
gebras, after publication of [14] and [9]. In [14] the authors showed that if
LUC (G1)∗ and LUC (G2)∗ are isometrically algebra isomorphic, then G1 and
G2 are topologically isomorphic. Lau and Losert [13] showed that, for locally
compact abelian groups, L1(G)∗∗ determines G. This was extended to arbi-
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trary locally compact groups in [2] (see also [5]). Some other algebras which
also determine G are L∞0 (G)∗ [15], and VN (G)∗ for discrete groups [3]. In [4],
Ghahramani and Lau proved that for two locally compact groups G1 and G2
such that the algebras M(G1)∗∗ and M(G2)∗∗ are isometrically isomorphic,
the groups G1 and G2 are algebraically isomorphic. Motivated by this result,
they raised the following question for arbitrary locally compact groups.

Ghahramani–Lau’s Problem. Does M(G)∗∗ determine G in the cat-
egory of topological groups?

This question was answered positively for compact groups in [6] and
recently for locally compact groups in [1, p. 87].

In all of the above mentioned results all algebras considered are Banach
algebras and all the discussed isomorphisms are assumed to be or become
isometric. But very little is known about the answer to the above-mentioned
general question when the associated algebras are just locally convex. Our
approach is different from earlier works on the second duals of measure
algebras, and relies on the theory of generalized functions on topological
semigroups, which was invented by Shrĕıder [16] and Wong [19]. The second
and third authors have recently shown in [10] that, for a locally compact
group G, there are infinitely many locally convex topologies τ on M(G) under
which (M(G), τ)∗ endowed with the strong topology can be identified with
a closed subspace of (M(G), n(G))∗. They have also shown that, except for
the trivial case where G is finite, M(G) has infinitely many locally convex
topologies τ with the same strong dual.

In this paper, we use this result to show that (M(G), τ)∗ is an introverted
subspace of (M(G), n(G))∗. This enables us to introduce an Arens-type mul-
tiplication on (M(G), β(G))∗∗ and use it to show that (M(G), τ)∗∗ determines
G for infinitely many locally convex topologies τ on M(G). This result is not
only of interest on its own, but it also paves the way for an alternative proof
of Ghahramani–Lau’s theorem: if G1 and G2 are two locally compact groups
and T is an isometric isomorphism from M(G1)∗∗ onto M(G2)∗∗ which maps
(M(G1), β(G1))∗∗ onto (M(G2), β(G2))∗∗, where β is the largest of the above
topologies, then G1 and G2 are topologically isomorphic.

2. Preliminaries. Throughout, G denotes a locally compact group with
left Haar measure λ. Also C0(G), M(G), L1(G) and L∞(µ) for µ ∈ M(G)
have their usual meanings, as in [8]. We denote the norm topology of M(G)
by n(G).

An element f = (fµ)µ∈M(G) of the product linear space
∏
{L∞(|µ|) :

µ ∈ M(G)} is called a generalized function if fµ = fν |µ|-a.e. for any
µ, ν ∈M(G) with µ � ν, where µ � ν means that |µ| is absolutely con-
tinuous with respect to |ν|. Note that this condition implies that for every
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generalized function f = (fµ)µ∈M(G),

sup{‖fµ‖µ,∞ : µ ∈M(G)} <∞,
where ‖fµ‖µ,∞ is the essential supremum norm of fµ in L∞(|µ|) (µ ∈M(G)).
Indeed, otherwise there is a sequence (µn) in M(G) for which ‖fµn‖µn,∞ ≥ n
for all n ∈ N. Set µ =

∑∞
n=1 2−n‖µn‖−1|µn|. Then µn � µ, and hence

‖fµ‖µ,∞ ≥ ‖fµn‖µn,∞ ≥ n for all n ∈ N, a contradiction. As in Wong [19],
we denote by GL(G) the commutative unital C∗-algebra of all generalized
functions endowed with coordinatewise operations, the involution f 7→ f∗,
where f∗ = (fµ)µ∈M(G), and the norm

‖f‖∞ = sup{‖fµ‖µ,∞ : µ ∈M(G)} (f = (fµ)µ∈M(G)).

The identity element of GL(G) is the generalized function 1 = (1µ)µ∈M(G),
where 1µ is the identity element of L∞(|µ|). Moreover, any bounded Borel-
measurable function f on G can be regarded as an element (fµ)µ∈M(G)
of GL(G), where fµ denotes the equivalence class of f in L∞(|µ|) for each
µ ∈ M(G). For simplicity we denote this generalized function by f again.
Also, if h is a Borel-measurable function on G, then hf is again a generalized
function for all generalized functions f = (fµ)µ∈M(G). Indeed (hf)µ = hfµ
for µ ∈M(G).

Wong [19], with an elegant use of the Radon–Nikodym Theorem, proved
that for each f = (fµ)µ∈M(G) in GL(G), the equation

〈Ψ(f), ζ〉 :=
�

G
fζ(x) dζ(x) (ζ ∈M(G))

defines a continuous linear functional Ψ(f) on M(G). Moreover, the map
f 7→ Ψ(f) is an isometric linear mapping from GL(G) onto (M(G), n(G))∗;
see [19, Theorems 2.1 and 2.2] and [16] for the same result in the special
case where G is a locally compact abelian group with countable basis, and
[12] for some recent work on GL(G). In particular, any L ∈ (M(G), n(G))∗

can be considered as a generalized function Ψ−1(L), and we do not distin-
guish between a generalized function f and its unique corresponding linear
functional Ψ(f).

Following Wong [19, 20], for a bounded Borel-measurable function g on
G and γ ∈M(G) define the left and right convolutions lγg and rγg by

lγg(x) =
�

G
g(yx) dγ(y), rγg(x) =

�

G
g(xy) dγ(y) (x ∈ G).

Denote the right and left dual module actions of ζ ∈M(G) on f ∈ GL(G)
by fζ and ζf , that is,

〈fζ, µ〉 = 〈f, ζ ∗ µ〉, 〈ζf, µ〉 = 〈f, µ ∗ ζ〉 (µ ∈M(G)).

Now define ζ ◦ f and f ◦ ζ in
∏
{L∞(|µ|) : µ ∈M(G)} by

(ζ ◦ f)µ = lζfζ∗µ, (f ◦ ζ)µ = rζfµ∗ζ (µ ∈M(G)).
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Then, as was shown in [19], ζ ◦ f and f ◦ ζ are equal to the generalized
functions corresponding to the functionals fζ and ζf , respectively. For a
more detailed study of these concepts see [19] and [20].

Let K(G) be the set of all compact subsets of G. For an increasing se-
quence (Kn) in K(G) and an increasing sequence (αn) of positive real num-
bers such that αn ↗∞, set

U((Kn), (αn)) = {µ ∈M(G) : |µ|(Kn) ≤ αn for all n ≥ 1}.

Then U((Kn), (αn)) is a convex, balanced, absorbing subset of M(G). We
denote by U(G) the family of all sets of the form U((Kn), (αn)). Then
U(G) is a base of neighbourhoods of zero for a locally convex topology,
called β(G), on M(G). Thus β(G) is the topology generated by the family
{pU : U ∈ U(G)} of seminorms on M(G), where

pU (µ) = sup{α−1n |µ|(Kn) : n ≥ 1}

for all µ ∈ M(G) and U := U((Kn), (αn)) ∈ U(G). Denote by τb(G) the
strong topology on (M(G), β(G))∗. Thus τb(G) is the topology of uniform
convergence on σ(M(G), (M(G), β(G))∗)-bounded subsets of M(G). Note
that β(G) ≤ n(G), and β(G) coincides with n(G) if and only if G is com-
pact. See [10] for more details.

The second and third authors [10] have recently considered the C∗-
subalgebra GL0(G) of GL(G) consisting of all generalized functions f =
(fµ)µ∈M(G) ∈ GL(G) vanishing at infinity : for any ε > 0, there is a com-
pact subset K of G for which ‖fχG\K‖∞ < ε. Let Ψ0 denote the restriction
of Ψ to GL0(G), and recall from [10, Theorem 3.2] that Ψ0 is a continuous
isomorphism from GL0(G) onto ((M(G), β(G))∗, τb(G)). Also by [10, Propo-
sition 2.2], the strong topology τb(G) and the relative norm topology τn
of (M(G), β(G))∗ inherited from (M(G), n(G))∗ coincide. From now on we
equip (M(G), β(G))∗∗ with the dual norm. In other words, by (M(G), β(G))∗∗

we mean ((M(G), β(G))∗, τn)∗. Consequently, the adjoint of Ψ0 identifies
(M(G), β(G))∗∗ with GL0(G)∗.

3. The main results. We begin with the following key result which
enables us to define an Arens-type multiplication on the second dual of
(M(G), β(G)). Part (ii) of the following proposition is the analogue of [19,
Theorem 3.2] for (M(G), β(G)).

Proposition 3.1. Let G be a locally compact group.

(i) For ζ ∈M(G) and L∈ (M(G), β(G))∗, we have Lζ, ζL∈ (M(G), β(G))∗

where Lζ and ζL are defined by

〈Lζ, µ〉 = 〈L, ζ ∗ µ〉, 〈ζL, µ〉 = 〈L, µ ∗ ζ〉 (µ ∈M(G)).
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(ii) The isomorphism Ψ−10 commutes with convolutions, that is, for every
ζ ∈M(G) and L ∈ (M(G), β(G))∗, we have

Ψ−10 (ζ ◦ L) = ζ ◦ Ψ−10 (L), Ψ−10 (L ◦ ζ) = Ψ−10 (L) ◦ ζ.
(iii) For any m ∈ (M(G), β(G))∗∗, we have mL ∈ (M(G), β(G))∗, where mL

is defined by

〈mL, ζ〉 = 〈m, Lζ〉 (ζ ∈M(G)).

Proof. We prove parts (i) and (ii) simultaneously. Let ζ ∈ M(G) and
L ∈ (M(G), β(G))∗. First we show that ζ ◦ Ψ−10 (L) ∈ GL0(G). To this
end, without loss of generality, we may suppose that ζ is positive and
Ψ−10 (L) 6= 0. By the regularity of ζ, we can choose a compact subset K1

of G such that ζ(K1) > 0 and 0 < ζ(G \K1) < ε/(2‖Ψ−10 (L)‖∞). Moreover,
since Ψ−10 (L) vanishes at infinity, there is a compact subset K2 of G with
‖Ψ−10 (L)− χK2Ψ

−1
0 (L)‖∞ < ε/(2ζ(K1)). Therefore

‖ζ ◦ Ψ−10 (L)− (χK1ζ) ◦ (χK2Ψ
−1
0 (L))‖∞

≤ ‖ζ − χK1ζ‖ ‖Ψ−10 (L)‖∞ + ‖χK1ζ‖ ‖Ψ−10 (L)− χK2Ψ
−1
0 (L)‖∞ ≤ ε.

On the other hand, if we set η := (χK1ζ) ∗ µ, then(
(χK1ζ) ◦ (χK2Ψ

−1
0 (L))

)
µ
(x) =

�

G
χK2(yx)(Ψ−10 (L))η(yx) d(χK1ζ)(y)

=
�

K1

χK2(yx)(Ψ−10 (L))η(yx) dζ(y).

For every x ∈ G \K−11 K2, we get K1x ⊆ G \K2, and hence(
(χK1ζ) ◦ (χK2Ψ

−1
0 (L))

)
µ
(x)χG\K−1

1 K2
(x) = 0 µ-a.e. (µ ∈M(G)).

Therefore (χK1ζ) ◦ (χK2Ψ
−1
0 (L)) is in GL0(G), and so ζ ◦Ψ−10 (L) ∈ GL0(G).

Now, for every µ ∈ M(G) and every Borel subset A of G, we have
χAµ� µ, where χAµ ∈M(G) is defined by χAµ(B) =

	
B χA dµ. So

�

G
χA(Ψ−1(Lζ))µ dµ =

�

G
(Ψ−1(Lζ))χAµ d(χAµ) = 〈L, ζ ∗ (χAµ)〉

=
�

G
(Ψ−10 (L))ζ∗(χAµ) d(ζ ∗ (χAµ))

=
�

G
lζ(Ψ

−1
0 (L))ζ∗(χAµ) d(χAµ)

=
�

G
χA(ζ ◦ Ψ−10 (L))µ dµ.

Thus Ψ−1(Lζ) = ζ ◦Ψ−10 (L) ∈ GL0(G), and hence Lζ ∈ (M(G), β(G))∗. This
gives the first identity of (i). The second one can be proved in a similar way.



202 G. H. Esslamzadeh et al.

Moreover

Ψ−10 (ζ ◦ L) = Ψ−10 (Lζ) = Ψ−1(Lζ) = ζ ◦ Ψ−10 (L),

which is the first identity of (ii). The proof of the other is similar.

(iii) Let m ∈ (M(G), β(G))∗∗. Then mL ∈ (M(G), n(G))∗, since for any
µ ∈M(G), we have

|〈mL, µ〉| = |〈Ψ∗0 (m), Ψ−10 (Lµ)〉| ≤ ‖Ψ∗0 (m)‖ ‖L‖ ‖µ‖.

So it remains to show that Ψ−1(mL) vanishes at infinity. Suppose that K(G)
is directed by inclusion and, for eachK ∈ K(G), uK ∈ C0(G) is chosen so that
0 ≤ uK ≤ 1 and uK(x) = 1 (x ∈ K). Then (uK) is a bounded approximate
identity for GL0(G). Also, since GL0(G) and its dual are spanned by their
positive elements, we can suppose that Ψ−10 (L) and Ψ∗0 (m) are real and
positive. Let σ denote the restriction of Ψ∗0 (m) to C0(G), and consider σ
as an element of M(G). Then, for given ε > 0, there is a set K in K(G)
such that σ(G \K) < ε/2. Now let π be the continuous linear functional on
GL0(G) defined by

〈π, f〉 = 〈Ψ∗0 (m), fχG\K〉 (f ∈ GL0(G)).

Since π is a positive, there exists K0 ∈ K(G) such that ‖π‖−ε/2 ≤ 〈π, uK0〉.
Thus

‖π‖ − ε/2 ≤ ‖π|C0(G)‖ = σ(G \K),

which shows that ‖π‖ ≤ ε.
Since Ψ−10 (L) ∈ GL0(G), there is a set B in K(G) with

|(Ψ−10 (L))µ(x)χG\B(x)| < ε µ-a.e. (µ ∈M(G)).

Moreover, if ν is an arbitrary probability measure in M(G) and if we set
ζ := (χG\BK−1)ν, then supp(ζ) ⊆ G \ BK−1 and there is a compact subset

D in G with D ⊆ G \BK−1 and |ζ|(G \D) < ε . So, for every x ∈ G \D−1B,
we see that Dx ⊆ G \B, and hence∣∣(ζ ◦ Ψ−10 (L))µ(x)

∣∣ =
∣∣∣ �
G
(Ψ−10 (L))ζ∗µ(yx) dζ(y)

∣∣∣
≤

�

G\D

|(Ψ−10 (L))ζ∗µ(yx)| d|ζ|(y)

+
�

D

|(Ψ−10 (L))ζ∗µ(yx)| d|ζ|(y)

≤ ε(‖Ψ−10 (L)‖∞ + 1).

Thus,

|(ζ ◦ Ψ−10 (L))µ(x)χG\D−1B(x)| ≤ (‖Ψ−10 (L)‖∞ + 1)ε µ-a.e. (µ ∈M(G)).
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This together with D−1B ∩K = ∅ implies that

‖Ψ−1(Lζ)χK‖∞ = sup
µ∈M(G)

‖(ζ ◦ Ψ−10 (L))µχK‖∞ < ε(‖L‖+ 1).

Thus �

G\BK−1

(Ψ−1(mL))ζ dζ = 〈Ψ∗0 (m), Ψ−10 (Lζ)χK〉+ 〈π, Ψ−10 (Lζ)〉

≤ ε(‖L‖+ 1)‖Ψ∗0 (m)‖+ ε‖L‖.
On the other hand, since ζ � ν, we have�

G\BK−1

(Ψ−1(mL))ζ(x) dζ(x) =
�

G\BK−1

(Ψ−1(mL))ν(x) dζ(x)

=
�

G\BK−1

(Ψ−1(mL))ν(x) dν(x).

This shows that if ν ∈M(G), then

(Ψ−1(mL))ν(x) ≤ ε[(‖L‖+ 1)‖Ψ∗0 (m)‖+ ‖L‖]
for ν-almost all x ∈ G \ BK−1. Therefore Ψ−1(mL) ∈ GL0(G). That is,
mL ∈ (M(G), β(G))∗.

Theorem 3.2. The space (M(G), β(G))∗∗ with the first Arens multipli-
cation � is a Banach algebra, where m � n is defined by the equation

〈m � n, L〉 = 〈m, nL〉 (m, n ∈ (M(G), β(G))∗∗, L ∈ (M(G), β(G))∗).

Proof. Using Proposition 3.1, we need to show only that m � n ∈
(M(G), β(G))∗∗. Note that, for every f ∈ GL0(G), we have

〈m � n, Ψ0(f)〉 = 〈m, nΨ0(f)〉 = 〈Ψ∗0 (m), Ψ−10 (nΨ0(f))〉.
Moreover it follows easily that

‖Ψ−10 (nΨ0(f))‖ ≤ ‖Ψ∗0 (n)‖ ‖f‖∞.
So the linear functional Λ on GL0(G) defined by

Λ(f) = 〈m � n, Ψ0(f)〉 (f ∈ GL0(G))

is bounded by ‖Ψ∗0 (m)‖ ‖Ψ∗0 (n)‖. In particular, Λ ∈ GL0(G)∗ and hence
m � n = Ψ∗−10 (Λ) ∈ (M(G), β(G))∗∗. Moreover ‖m � n‖ ≤ ‖m‖ ‖n‖. Finally,
one can see easily that � is an associative product on (M(G), β(G))∗∗.

Let Ma(G) be the closed, two-sided ideal of all measures in M(G) which
are absolutely continuous with respect to the Haar measure of G, and iden-
tify Ma(G) with L1(G). It is well known that when G is compact, L1(G)
is a two-sided ideal of (M(G), n(G))∗∗ [4, Lemma 2.16]. Since the coinci-
dence of the two topologies β(G) and n(G) is equivalent to the compactness
of G [10], the following proposition can be considered as an extension of



204 G. H. Esslamzadeh et al.

[4, Lemma 2.16]. Note that if P : GL(G) → L∞(G) denotes the adjoint
of the natural embedding from Ma(G) into M(G), then P is a surjective
norm-decreasing map.

Proposition 3.3. The space Ma(G) is a closed ideal in (M(G), β(G))∗∗.

Proof. Since Ψ∗0 (Ma(G)) is a closed subspace of GL0(G)∗, it follows that
Ma(G) is a closed subspace of (M(G), β(G))∗∗. Now suppose that ζ ∈Ma(G)
and m ∈ (M(G), β(G))∗∗. We show only that m � ζ ∈ Ma(G); with a similar
argument one can show that ζ � m ∈ Ma(G). To this end, suppose that
σ denotes the restriction of Ψ∗0 (m) to C0(G). Then Ψ∗0 (m) = σ + n, where
n ∈ C0(G)⊥. Since Ma(G) is an ideal in M(G), we have σ ∗ ζ ∈Ma(G). So it
suffices to show that m � ζ = σ ∗ ζ.

First let us recall that C0(G) is a closed subspace of GL0(G) in a natural
way, as observed in Section 1, and note that if L ∈ (M(G), β(G))∗, then, by
Proposition 3.1, Ψ−10 (ζL) = Ψ−10 (L)◦ ζ ∈ GL0(G), that is, Ψ−1(ζL) vanishes
at infinity. Moreover, Ψ−10 (L) ◦ ζ is the generalized function h = (hµ)µ∈M(G)
in GL(G) for which

hµ(x) = (Ψ−10 (L) ◦ ζ)µ(x) = rζfµ∗ζ(x) =
�

G
(Ψ−10 (L))µ∗ζ(xy) dζ(y)

for all µ ∈M(G). On the other hand, if P is as in the paragraph preceding
this proposition, then, for an arbitrary µ in M(G) and any Borel subset A
of G, we have�

G
χAhµ dµ =

�

G
hχAµ d(χAµ) =

�

G
(Ψ−10 (L))(χAµ)∗ζ d((χAµ) ∗ ζ)

= 〈P (Ψ−10 (L)), (χAµ) ∗ ζ〉

=
�

G
χA(x)

(�
G
P (Ψ−10 (L))(xy) dζ(y)

)
dµ(x).

Hence (Ψ−10 (L) ◦ ζ)µ = g |µ|-a.e., where g(x) =
	
G P (Ψ−10 (L))(xy) dζ(y) for

all µ ∈M(G). In particular, g ∈ Cb(G): this follows from the known fact that
Ma(G) can be identified with those ν ∈M(G) such that the maps x 7→ δx∗|ν|
and x 7→ |ν|∗δx from G into M(G) are norm-continuous [8, 19.27 and 20.31].
Therefore Ψ−10 (ζL) ∈ C0(G). Hence we have

〈m � ζ, L〉 = 〈σ, Ψ−10 (ζL)〉+ 〈n, Ψ−10 (ζL)〉 = 〈σ ∗ ζ, L〉,
whence m � ζ = σ ∗ ζ ∈Ma(G), as required.

We say that a functional m ∈ GL(G)∗ [respectively, m ∈ GL0(G)∗] has
compact carrier if there exists a compact set K such that 〈m, f〉 = 〈m, χKf〉
for all f ∈ GL(G) [respectively, f ∈ GL0(G)]. Such a compact set K is called
a compact carrier for m. Now let MG be the norm-closure of the set of func-
tionals with compact carrier in GL(G)∗. Using the identification of GL(G)
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[respectively, GL0(G)] with (M(G), n(G))∗ [respectively, (M(G), β(G))∗], we
consider (M(G), β(G))∗∗ as a subspace of (M(G), n(G))∗∗ by the following
lemma, which is needed for the proof of our main result.

Lemma 3.4. The subspace MG of (M(G), n(G))∗∗ is isometrically iso-
morphic to (M(G), β(G))∗∗.

Proof. Let (uK) be the approximate identity of GL0(G) which is defined
on page 202. Then an argument similar to the proof of [15, Proposition 2.6]
shows that the space of all functionals in GL0(G)∗ with compact carrier is
norm-dense in GL0(G)∗. So it is enough to show that the restriction map is
an isometry from the space of all compact carrier elements of GL(G)∗ onto
the space of compact carrier elements of GL0(G)∗. To see this, suppose that
m ∈ GL0(G)∗ has compact carrier and n is a Hahn–Banach extension of m
to GL(G). Choose a compact set K in G such that 〈m, f〉 = 〈m, χKf〉 (f ∈
GL0(G)). Then n′ ∈ GL(G)∗ defined by 〈n′, f〉 = 〈n, χKf〉 (f ∈ GL(G)) is
also an extension of m to GL(G) with norm ‖n‖. Moreover, the restriction of
every n ∈ GL(G)∗ with compact carrier to GL(G) has the same norm as n.

Recall that, for a locally compact space X, a subset S ⊆M(X) is called
solid with respect to absolute continuity if n ∈ S whenever n � s for some
s ∈ S, where M(X) is the Banach space of all complex regular Borel mea-
sures on X with the total variation norm.

Now we can state our main result.

Theorem 3.5. Let G1 and G2 be two locally compact groups. Suppose that
T is an isometric isomorphism from (M(G1), β(G1))∗∗ onto (M(G2), β(G2))∗∗.
Then G1 and G2 are isomorphic in the category of topological groups.

Proof. By Proposition 3.3, Ma(Gi) is a closed ideal in (M(Gi), β(Gi))∗∗
for i = 1, 2. So we can adapt the arguments of [6, Lemma 5 and Theorem 6],
as compactness of G in those results was used only to conclude that Ma(G)
is an ideal in (M(G1), n(G1))∗∗. Thus using those arguments we conclude
that Ma(Gi) is the unique minimal proper closed subset of (M(Gi), β(Gi))∗∗
which is an algebraic ideal and a solid set in (M(Gi), β(Gi))∗∗ with respect to
absolute continuity. Being an algebra isomorphism, T is an order-preserving
map from (M(G1), β(G1))∗∗ = GL0(G1)∗ = M(X1) onto (M(G2), β(G2))∗∗ =
GL0(G2)∗ = M(X2), where Xi, for i = 1, 2, are the character spaces of the
C∗-algebras GL0(Gi). Hence T restricted to Ma(G1) is an isometric isomor-
phism from Ma(G1) onto Ma(G2). Thus Wendel’s Theorem [18] implies that
G1 and G2 are isomorphic in the category of topological groups.

Let σ0(G) be the weak topology σ(M(G),GL0(G)). Then σ0(G) ≤ β(G)
≤ n(G). As was shown in [10, Theorem 2.5], except for the trivial case
where G is finite, M(G) has infinitely many locally convex topologies τ
with σ0(G) ≤ τ ≤ β(G), and therefore (M(G), τ)∗∗ can be identified with
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GL0(G)∗. The following theorem, which is our main result, is an immediate
consequence of the above theorem.

Theorem 3.6. Let G be a locally compact group, and let τ be a locally
convex topology on M(G) with σ0(G) ≤ τ ≤ β(G). Then (M(G), τ)∗∗ deter-
mines G in the category of topological groups.

If G is a compact group, then GL0(G) = GL(G), and hence (M(G), τ)∗∗

= M(G)∗∗. So we obtain the following corollary, which is the main result
of [6] and was reproved in [1]. Note that our approach is different from those
of [6] and [1].

Corollary 3.7. Suppose that G1 and G2 are compact groups such that
M(G1)∗∗ and M(G2)∗∗ are isometrically isomorphic. Then G1 and G2 are
topologically isomorphic.

For arbitrary locally compact groups, if the answer to the following prob-
lem is positive, then an alternative proof of Ghahramani–Lau’s isometrical
isomorphism theorem would be obtained.

Problem 3.8. Suppose that G1 and G2 are two locally compact groups
and T is an isometric isomorphism from M(G1)∗∗ onto M(G2)∗∗. Can we
say that

T ((M(G1), β(G1))∗∗) = (M(G2), β(G2))∗∗ ?
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