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On square classes in generalized Fibonacci sequences

by

Zafer Şı̇ar (Bingöl) and Refı̇k Keskı̇n (Sakarya)

1. Introduction. Let P and Q be nonzero integers. The generalized
Fibonacci and Lucas sequences, (Un(P,Q)) and (Vn(P,Q)), are defined as
follows:

U0(P,Q) = 0, U1(P,Q) = 1,

Un+1(P,Q) = PUn(P,Q) + QUn−1(P,Q) for n ≥ 1,

and

V0(P,Q) = 2, V1(P,Q) = P,

Vn+1(P,Q) = PVn(P,Q) + QVn−1(P,Q) for n ≥ 1,

respectively. Un(P,Q) and Vn(P,Q) are called the nth generalized Fibonacci
number and nth generalized Lucas number, respectively. Since

Un(−P,Q) = (−1)n−1Un(P,Q) and Vn(−P,Q) = (−1)nVn(P,Q),

it will be assumed that P ≥ 1. Moreover, we will assume that P 2 + 4Q > 0.
Sometimes, instead of Un(P,Q) and Vn(P,Q), we write just Un and Vn. For
more information about these sequences one can consult [7].

For P = Q = 1, we have the classical Fibonacci and Lucas sequences (Fn)
and (Ln). In this paper, we determine all n and m such that Un = wUmx2

or UnUm = wx2 with w = 1, 2, 3, or 6 under the following assumption:

(1.1) P 2 + 4Q > 0, P ≥ 1 and Q are odd, (P,Q) = 1.

Regarding this issue, Keskin and Yosma [2] showed that if Fn = 2Fmx2 for
m ≥ 3, then (m,n) = (3, 12) or (6, 12); if Fn = 3Fmx2 for m ≥ 3, then
(m,n) = (4, 12); and no Fn satisfies Fn = 6Fmx2 for m ≥ 1. Moreover,
Cohn [1] determined all n and m such that UnUm = x2 and UnUm = 2x2

when P is odd and Q = ±1.
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Also, in this paper, we will solve each of the equations Un = kx2 and Un =
2kx2 when k |P , k > 1, under the assumption (1.1). As an application, we
determine all n such that Un = 6x2. First of all, we will solve the equations
V 2
n − 3(−Q)n = wx2 and V 2

n − (−Q)n = wx2 for w ∈ {1, 2, 3, 6} , which is
used to solve Un = wUmx2, Un = kx2, and Un = 2kx2.

On the other hand, Cohn [1] studied the equations Un = kx2 and Un =
2kx2 when P ≥ 1 is odd and Q = 1, and he obtained the following results,
with r = min{n : n > 0 and k |Un}:

1. If r 6≡ 0 (mod 3), then Un = kx2 can occur only for n = r, and
Un = 2kx2 is impossible for n > 0.

2. If r ≡ 3 (mod 6), then Un = kx2 is impossible for n > 0, and similarly
for Un = 2kx2.

3. If r ≡ 0 (mod 6), and if 22t+1 ‖ r, then Un = kx2 is impossible except
if P = 5, k = 455, n = 12; if 22t ‖ r, then Un = 2kx2 is impossible for
n > 0.

Moreover, Ribenboim and McDaniel [10] solved the equation Un = kx2

under the assumption (1.1) and that the Jacobi symbol
(−V2u

h

)
is defined

and equals 1 for each odd divisor h of k with u ≥ 1. In particular, they
solved Un = 3x2 and gave the solutions as n = 1, 3, 4, or 6 but they must
have forgotten writing n = 2.

2. Preliminaries. In this paper, we assume that P ≥ 1 is an odd
integer unless indicated otherwise, and also Q is an odd integer such that
(P,Q) = 1. Firstly, we will give a list of properties of generalized Fibonacci
and Lucas numbers, which will be needed later. Throughout, the symbol �
denotes a perfect square.

U−n = −(−Q)−nUn,(2.1)

V−n = (−Q)−nVn,(2.2)

U2n = UnVn,(2.3)

V2n = V 2
n − 2(−Q)n,(2.4)

U3n = Un((P 2 + 4Q)U2
n + 3(−Q)n) = Un(V 2

n − (−Q)n),(2.5)

V3n = Vn(V 2
n − 3(−Q)n),(2.6)

(U2n+1, P ) = (Un+1, Q) = 1 for n ≥ 0,(2.7)

(V2n, P ) = (Vn, Q) = 1 for n ≥ 0,(2.8)

2 |Vn ⇔ 2 |Un ⇔ 3 |n,(2.9)

if Um 6= 1, then Um |Un ⇔ m |n,(2.10)
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if Vm 6= 1, then Vm |Vn ⇔ m |n and n/m is odd,(2.11)

if d = (m,n), then (Um, Un) = Ud,(2.12)

(Um, Vm) = 1 or 2,(2.13)

U2n ≡ nPQn−1 (mod P 2) and U2n+1 ≡ Qn (mod P 2),(2.14)

V2n ≡ 2Qn (mod P 2) and V2n+1 ≡ nPQn (mod P 2),(2.15)

Umn(P,Q)

Um(P,Q)
= Un(Vm,−(−Q)m).(2.16)

All the above identities except (2.14)–(2.16) can be found in [3, 9]; (2.16)
is given in [8]; and (2.14) and (2.15) can be proved by induction on n.
Moreover, when P is even, it is well known that

Un is even ⇔ n is even,(2.17)

Un is odd ⇔ n is odd.(2.18)

Now, we give some theorems and lemmas which will be used in the proofs
of the main theorems. The following theorem is proved in [13].

Theorem 2.1. Let n,m ∈ N ∪ {0} and r ∈ Z. Then
U2mn+r ≡ (−(−Q)m)nUr (mod Vm),(2.19)

V2mn+r ≡ (−(−Q)m)nVr (mod Vm),(2.20)

where we require mn + r ≥ 0 if Q 6= ±1.

The proofs of the following two lemmas can be found in [9].

Lemma 2.2. Let m be an odd positive integer and r ≥ 1.

(a) If 3 |m, then V2rm ≡ 2 (mod 8).
(b) If 3 - m, then

V2rm ≡

{
3 (mod 8) if r = 1 and Q ≡ 1 (mod 8),

7 (mod 8) otherwise.

Lemma 2.3. Let r be a positive integer. Then

(i)
( −1
V2r

)
= −1,

(ii)
(

2
V2r

)
=

{
−
(−1

Q

)
if r = 1,

1 if r ≥ 2,

(iii)
( Q
V2r

)
=
(−1

Q

)
,

(iv)
(
U3
V2r

)
=

{
−
(−1

Q

)
if r = 1,

1 if r ≥ 2,

(v)
(P 2+3Q

V2r

)
=

{(−1
Q

)
if r = 1,

1 if r ≥ 2.
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The following lemma can be proved by induction.

Lemma 2.4. If 3 - P, then

V2r ≡



0 (mod 3) if r = 1 and Q ≡ 1 (mod 3),

1 (mod 3) if r ≥ 1 and Q ≡ 0 (mod 3)

or r = 2 and Q ≡ 1 (mod 3),

2 (mod 3) if r = 1, 2 and Q ≡ 2 (mod 3)

or r ≥ 3 and Q ≡ 1, 2 (mod 3),

and if 3 |P, then V2r ≡ 2 (mod 3) for r ≥ 2.

Using Lemmas 2.3 and 2.4, we can see that

(2.21)

(
3

V2r

)
= 1 if Q ≡ 2 (mod 3), r ≥ 2 or Q ≡ 1 (mod 3), r ≥ 3.

We recall the following results from [9] and [14].

Lemma 2.5. If Vn = x2, then n = 1, 3, or 5; if V3 = x2, then Q ≡ 1
(mod 4) and also P = �, P 2 + 3Q = � or P = 3�, P 2 + 3Q = 3�; if
V5 = x2, then Q ≡ 3 (mod 8), P = 5�, and P 4 + 5P 2Q + 5Q2 = 5�.

Lemma 2.6. If Vn = 2x2, then n = 0, 3, or 6; if V3 = 2x2, then Q ≡ 5, 7
(mod 8), P = 3�, and P 2 + 3Q = 6�; if V6 = 2x2, then Q ≡ 1 (mod 4),
P 2 + 2Q = 3�, and (P 2 + 2Q)2 − 3Q2 = 6�.

Lemma 2.7. If Vn = 3x2, then n = 1, 2, 3, or 5; V1 = 3x2 iff P = 3�;
V2 = 3x2 iff P 2 + 2Q = 3� and Q ≡ 1 (mod 3); V3 = 3x2 iff P = �,
P 2 + 3Q = 3�, and Q ≡ 1 (mod 4); V5 = 3x2 iff P = 15�, P 4 + 5P 2Q +
5Q2 = 5�, and Q ≡ 3 (mod 8).

Lemma 2.8. If Vn = 6x2, then n = 3; V3 = 6x2 iff P = �, P 2 + 3Q =
6�, and Q ≡ 5, 7 (mod 8).

Theorem 2.9. Let k > 1 and k |P. If Vn = kx2 for some integer x,
then n = 1, 3, or 5; if V5 = x2, then P = 5k�, P 4 + 5P 2Q+ 5Q2 = 5�, and
Q ≡ 3 (mod 8).

Theorem 2.10. Let k > 1 and k |P. If Vn = 2kx2 for some integer x,
then n = 3.

The proofs of the following four theorems can be found in [9] and [10].

Theorem 2.11. Un = x2 if and only if either (i) n = 0, 1, 2, or 3,
(ii) n = 6, P = 3�, P 2+Q = 2�, and P 2+3Q = 6�, or (iii) n = 12, P = �,
P 2 + Q = 2�, P 2 + 2Q = 3�, P 2 + 3Q = �, and (P 2 + 2Q)2 − 3Q2 = 6�.

Theorem 2.12. Un = 2x2 if and only if either (i) n = 0 or 3, or
(ii) n = 6, P = �, P 2 + Q = 2�, and P 2 + 3Q = �.
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Theorem 2.13. Un = 3x2 if and only if either (i) n = 0 or 2, or
(ii) n = 3, P 2 + Q = 3�, and 3 - P, or (iii) n = 4, P = �, P 2 + 2Q = 3�,
Q ≡ 1 (mod 12), and 3 - P, or (iv) n = 6, P = �, P 2 + Q = 2�,
P 2 + 3Q = 6�, and 3 |P.

Theorem 2.14.

(i) If 3 |P, then 3 |Un ⇔ n is even.
(ii) If 3 - P, then

3 |Un ⇔


12 |n and Q ≡ 1, 2 (mod 3), or

4 |n, 3 - n, and Q ≡ 1 (mod 3), or

4 - n, 3 |n, and Q ≡ 2 (mod 3).

The proof of the following lemma is given in [12].

Lemma 2.15. If 3 |P, then 3 |Vn iff n is odd. If 3 - P, then 3 |Vn iff
n ≡ 2 (mod 4) and Q ≡ 1 (mod 3).

Lastly, we will require the following theorem given in [11].

Theorem 2.16. If P is even, Q ≡ −1 (mod 4), (P,Q) = 1, and n is
odd, then Un(P,Q) = � only if n = �.

3. Auxiliary theorems. From now on, assume that n and m are pos-
itive integers.

The following lemma can be proved by induction and therefore we omit
its proof.

Lemma 3.1. For k ≥ 1,

V2k+2 ≡ −Q2k+1
(mod V2k+1 +Q2k) and V2k+2 ≡ −Q2k+1

(mod V4−Q2).

By Lemmas 2.3 and 3.1, we can see that

(3.1) J =

(
V4 −Q2

V2k+2

)
= 1 for k ≥ 1.

Lemma 3.2. Let w ∈ {1, 2, 3, 6} and V 2
n − 3(−Q)n = wx2 for some

integer x. Then n = 1 or n = 2.

Proof. If n is odd, it has been shown in [12] that the equation V 2
n −

3(−Q)n = wx2 has no solutions for n > 1. So let n be even. Thus, V2n−Qn =
wx2 by (2.4). It is obvious that wx2 = V2n−Qn ≡ 1 or 6 (mod 8) by Lemma
2.2. When w = 2 or w = 3, we have a contradiction.

Now assume that w = 1 or w = 6. We can write n = 2rz for some odd
positive integer z with r ≥ 1.

If z = 1, then n = 2r, where r 6= 1, i.e., r ≥ 2 since n > 2. In this case,
if w = 1, then

x2 = V2n −Qn = V2·2r −Q2r ≡ 7− 1 ≡ 6 (mod 8)
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by Lemma 2.2. This is impossible. If w = 6, then

6x2 = V2·2r −Q2r ≡ −Q2rV0 −Q2r ≡ −3Q2r (mod V2r)

by (2.20). Consequently, 1 =
( −2
V2r

)
=
( −1
V2r

)(
2

V2r

)
= −1 by Lemma 2.3, a

contradiction.

Thus z > 1. So, we can write z = 4q ± 1 for some q > 0. Hence 2n =
2(2rz) = 2(2r+2q ± 2r) = 2 · 2r+2q ± 2r+1.

Let q be odd. Using (2.2) and (2.20), we get

wx2 = V2n −Qn ≡
−Q2r+2qV2r+1 −Q2r+2q+2r or −Q2r+2q−2r+1

V2r+1 −Q2r+2q−2r (mod V2r+2),

i.e.,

wx2 ≡ −Q2r+2q(V2r+1 + Q2r) or −Q2r+2q−2r+1
(V2r+1 + Q2r) (mod V2r+2).

In both cases,

J =

(
−w(V2r+1 + Q2r)

V2r+2

)
= 1.

On the other hand, V2r+1 +Q2r ≡ 0 (mod 8) by Lemma 2.2. So, V2r+1 +Q2r

= 2st for some odd t and s ≥ 3. Hence, V2r+2 ≡ −Q2r+1
(mod t) by Lem-

ma 3.1. If w = 1, then we get

J =

(
−(V2r+1 + Q2r)

V2r+2

)
= −

(
V2r+1 + Q2r

V2r+2

)
= −

(
2

V2r+2

)s( t

V2r+2

)
= −(−1)(t−1)/2

(
V2r+2

t

)
= −(−1)(t−1)/2

(
−1

t

)
= −(−1)(t−1)/2(−1)(t−1)/2 = −1

by Lemma 2.3, contrary to J = 1.

Now, let w = 6. If 3 |Q, from the equation V2n − Qn = 6x2, we have
3 |V2n and therefore 2n ≡ 2 (mod 4), i.e., n ≡ 1 (mod 2) by Lemma 2.15.
This contradicts n being even. If 3 - Q, then we obtain

J =

(
−6(V2r+1 + Q2r)

V2r+2

)
= −

(
2

V2r+2

)(
3

V2r+2

)(
2

V2r+2

)s( t

V2r+2

)
= −(−1)(t−1)/2

(
V2r+2

t

)
= −(−1)(t−1)/2(−1)(t−1)/2 = −1

by Lemma 2.3 and (2.21), a contradiction again.

Now, let q be even. Then 2n = 2(2rz) = 2(2r+2q±2r) = 2·2r+k+2b±2r+1

with b odd and k ≥ 1. Similarly, we can see that

wx2 ≡ −Q2r+k+2b(V2r+1 + Q2r) or −Q2r+k+2b−2r+1
(V2r+1 + Q2r)

(mod V2r+k+2)
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by (2.2) and (2.20). This shows that

J =

(
−w(V2r+1 + Q2r)

V2r+k+2

)
= 1.

A similar argument shows that this is impossible.

Lemma 3.3. Let n ≥ 1 be an integer, w ∈ {1, 2, 3, 6}, and V 2
n −(−Q)n =

wx2 for some integer x. Then n = 1, 2 or 4. In particular, V 2
n − (−Q)n = x2

has a solution only for n = 1; V 2
n − (−Q)n = wx2, w ∈ {2, 6}, has a solution

only for n = 1 or 2; V 2
n − (−Q)n = 3x2 has a solution for n = 1, 2, or 4.

Proof. We divide the proof into two cases.

Case 1: n odd. If n = 1, it is obvious that P 2 +Q = wx2 has a solution
for w ∈ {1, 2, 3, 6}. So, assume that n > 1. Since n is odd, we have V 2

n −
(−Q)n = V2n−Qn = wx2 by (2.4). We can write 2n = 2(2rz±1) = 2 ·2rz±2
for some odd positive integer z with r ≥ 2. Thus,

wx2 = V2n −Qn ≡ −Q2rzV2 −Q2rz+1 or −Q2rz−2V2 −Q2rz−1 (mod V2r),

i.e.,

wx2 ≡ −Q2rz(P 2 + 3Q) or −Q2rz−2(P 2 + 3Q) (mod V2r)

by (2.20). Hence (
−w(P 2 + 3Q)

V2r

)
= 1.

If w = 1 or w = 2, then, using Lemma 2.3, it can be easily seen that
J = −1. This is impossible.

Let w = 3 and 3 |Q. Then 3 |Vn since V 2
n − (−Q)n = 3x2. This implies

3 |P by Lemma 2.15, contradicting (P,Q) = 1. Thus 3 - Q and therefore
3 - Vn. This shows that Q ≡ 2 (mod 3). Consequently,

1 =

(
−3(P 2 + 3Q)

V2r

)
=

(
−1

V2r

)(
3

V2r

)(
P 2 + 3Q

V2r

)
= −1

by Lemma 2.3 and (2.21), which is impossible.

If w = 6, a similar argument shows that 3 - Q and Q ≡ 2 (mod 3), and
therefore

1 =

(
−6(P 2 + 3Q)

V2r

)
=

(
−1

V2r

)(
2

V2r

)(
3

V2r

)(
P 2 + 3Q

V2r

)
= −1

by Lemma 2.3 and (2.21), a contradiction again.

Case 2: n even. Then V 2
n − Qn = wx2 and thus V2n + Qn = wx2 by

(2.4). If we write 2n = 2(2rz) for some odd positive integer z with r ≥ 1,
then

wx2 = V2n + Qn = V2(2rz) + Q2rz ≡ −Q2rzV0 + Q2rz ≡ −Q2rz (mod V2r)
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by (2.20). This shows that

J =

(
−w
V2r

)
= 1.

When w = 1 or w = 2, r ≥ 2, it can be seen that J = −1 by Lemma 2.3.
This is impossible.

If w = 3 or w = 6, it follows that J = −1 for r ≥ 3 by Lemma 2.3 and
(2.21) when 3 - Q, a contradiction.

If w = 3 or w = 6, it follows that 3 |Vn from the equation V 2
n −Qn = wx2

when 3 |Q. This implies 3 - P since (P,Q) = 1, and therefore Q ≡ 1 (mod 3)
by Lemma 2.15, contradicting 3 |Q.

Now we consider each of the cases w = 2, r = 1 and w = 3 or 6, 3 - Q, r =
1 or 2. Let r = 1. Then n = 2z. If n = 2, we have (P 2 +Q)(P 2 +3Q) = wx2.
We can see that this equation has a solution for some values of P and
Q when w ∈ {2, 3, 6} . Therefore assume that n > 2. Then we can write
n = 2z = 2(4q ± 1) = 8q ± 2 for some q > 0. Assume that q is odd. Thus

wx2 = V2·8q±4 + Q8q±2 ≡ −Q8qV4 + Q8q+2 or −Q8q−4V4 + Q8q−2 (mod V8),

i.e.,
wx2 ≡ −Q8q(V4 −Q2) or −Q8q−4(V4 −Q2) (mod V8)

by (2.20). Hence,

J =

(
−w(V4 −Q2)

V8

)
= 1.

On the other hand, since 3 - Q for w = 3 or w = 6, it can be seen that(
3
V8

)
= 1 and

(
6
V8

)
= 1 by Lemma 2.3 and (2.21). Thus when w ∈ {2, 3, 6},

we have

J =

(
−w(V4 −Q2)

V8

)
= −

(
w

V8

)(
V4 −Q2

V8

)
= −1

by Lemma 2.3 and (3.1), a contradiction.
Now assume that q is even. Then we can write q = 2ks for some odd

s ≥ 1 with k ≥ 1. Thus n = 8q ± 2 = 2k+3s± 2. Therefore

wx2 ≡ −Q2k+3sV4 + Q2k+3s+2 or −Q2k+3s−4V4 + Q2k+3s−2 (mod V2k+3),

i.e.,

wx2 ≡ −Q2k+3s
(
V4 −Q2

)
or −Q2k+3s−4

(
V4 −Q2

)
(mod V2k+3)

by (2.20). This shows that(
−w(V4 −Q2)

V2k+3

)
= 1.

On the other hand, since 3 - Q for w = 3 or w = 6, it can be seen that(
3

V
2k+3

)
= 1 and

(
6

V
2k+3

)
= 1 by Lemma 2.3 and (2.21). Thus when w ∈
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{2, 3, 6}, we have

1 =

(
−w(V4 −Q2)

V
2k+3

)
= −

(
w

V
2k+3

)(
V4 −Q2

V
2k+3

)
= −1

by Lemma 2.3 and (3.1), a contradiction.

Now let r = 2, w = 3 or 6, and 3 - Q. Then n = 4z. Assume that z > 1.
Then we can write n = 4z = 4(4q ± 1) = 2 · 8q ± 4 for some odd positive
integer q. A similar argument shows that V 2

n − Qn = wx2 has no solutions
when q is odd or even. When z = 1, the equation V 2

4 − Q4 = 3x2 has a
solution, at least for P = Q = 1. But V 2

4 − Q4 = 6x2 has no solutions.
Indeed, by (2.4), it follows that 6x2 = V 2

4 −Q4 = V8 + Q4 and thus

6x2 = V8 + Q4 ≡ −Q4V0 + Q4 ≡ −Q4 (mod V4)

by (2.20). This shows that

1 = J =

(
−6

V4

)
= −

(
2

V4

)(
3

V4

)
= −

(
3

V4

)
by Lemma 2.3. On the other hand, if 3 |P , then J = −1 by Lemma 2.4.
Therefore 3 - P. Now, if Q ≡ 2 (mod 3), then J = −1 by (2.21). This is
impossible.

Thus Q ≡ 1 (mod 3) since 3 - Q. Moreover, the equation V 2
4 −Q4 = 6x2

implies that

(3.2)

(
V4 −Q2

6

)
(V4 + Q2) = x2

since V4 −Q2 ≡ 6 (mod 8) and 3 | (V4 −Q2) by Lemmas 2.2 and 2.4. Thus,
(3.2) implies

(3.3) V4 + Q2 = (P 2 + Q)(P 2 + 3Q) = �

since
(V4−Q2

6 , V4 + Q2
)

= 1. Then (3.3) implies

(3.4) P 2 + Q = 2� and P 2 + 3Q = 2�

since (P 2 +Q,P 2 + 3Q) = 2. It can be easily shown that (3.4) is impossible,
by reducing modulo 8.

4. Main theorems

4.1. Solutions of Un = kx2, Un = 2kx2 and Un = wUmx2

Theorem 4.1. Let k > 1 be a square free positive divisor of P. If Un =
kx2 for some integer x, then n = 2, 6, or 12.

Proof. Assume that Un = kx2 for some integer x and k |P with k > 1.
Then n is even by (2.14). Let n = 2m. Hence kx2 = Un = U2m = UmVm by
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(2.3) and this implies that

Um = a� and Vm = b�(4.1)

or

Um = 2a� and Vm = 2b�(4.2)

for some integers a and b with ab = k since (Um, Vm) = 1 or 2 by (2.13).
Assume that (4.1) is satisfied. By Theorem 2.9, we have m = 1, 3, or 5 if

b > 1 since b |P. If b = 1, then Vm = � implies m = 1, 3, or 5 by Lemma 2.5.
Consequently, n = 2, 6, or 10. But, if n = 10, the equation U10 = U5V5 = kx2

implies U5 = � by (2.13) and (2.14), which is impossible by Theorem 2.11.
Assume that (4.2) is satisfied. By Theorem 2.10, we have m = 3 if b > 1

since b |P . If b = 1, then Vm = 2� implies m = 3 or 6 by Lemma 2.6. Thus
n = 6 or 12.

Theorem 4.2. Let k > 1 be a square free positive divisor of P. If Un =
2kx2 for some integer x, then n = 6 or 12.

Proof. Assume that k > 1, k |P , and Un = 2kx2. Then n is even by
(2.14). Let n = 2m. Since 2 |Un, it follows that 3 |n by (2.9), and therefore
3 |m. Hence kx2 = Un/2 = U2m/2 = Um(Vm/2) and this implies

Um = a� and Vm = 2b�(4.3)

or

Um = 2a� and Vm = b�(4.4)

for some integers a and b with ab = k since (Um, Vm) = 1 or 2 by (2.13).
Moreover, it can be easily seen that a = 1, b = k or a = k, b = 1 since
either (Um, k) = 1 or (Vm/2, k) = 1 by (2.7) and (2.8). Then (4.3) implies
that m = 3 or m = 6 by Lemma 2.6 and Theorems 2.10, 2.11, and 4.1 since
3 |m. Similarly, (4.4) implies that m = 3 by Lemma 2.5 and Theorems 2.9
and 2.12. Consequently, n = 6 or n = 12.

Corollary 4.3. If Un = 6x2 for some integer x, then n = 3 or n = 6.
U3 = 6x2 if and only if P 2 + Q = 6x2; U6 = 6x2 if and only if P = �,
P 2 + Q = 2�, P 2 + 3Q = 3�, and Q ≡ 1 (mod 8) or P = �, P 2 + Q = �,
P 2 + 3Q = 6�, and Q ≡ 7 (mod 8).

Proof. Assume that Un = 6x2. We divide the proof into two cases.

Case 1: 3 |P . Then, since Un = 2 · 3x2, it follows that n = 6 or 12 by
Theorem 4.2.

If n = 6, it can be seen from U6 = 6x2 that V3 = 3�, U3 = 2� or V3 =
6�, U3 = � by Theorem 2.14 and Lemma 2.15. Hence, P = �, P 2+Q = 2�,
P 2 + 3Q = 3�, and Q ≡ 1 (mod 8) or P = �, P 2 + Q = �, P 2 + 3Q = 6�,
and Q ≡ 7 (mod 8), respectively, by Lemmas 2.7 and 2.8 and Theorems 2.11
and 2.12.
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If n = 12, then U12 = 6x2 implies U6 = 3� and V6 = 2� by Lemma
2.2, Theorem 2.14, and Lemma 2.15. This is impossible by Lemma 2.6 and
Theorem 2.13.

Case 2: 3 - P . Since 2 |Un and 3 |Un, it is seen that 12 |n, 3 - Q or 3 |n,
4 - n, and Q ≡ 2 (mod 3) by (2.9) and Theorem 2.14.

Firstly, assume that 12 |n and 3 - Q. Then n = 12m. Hence 6x2 = Un =
U12m = U6mV6m, which implies

U6m = � and V6m = 6�,(4.5)

U6m = 2� and V6m = 3�,(4.6)

U6m = 3� and V6m = 2�,(4.7)

or

U6m = 6� and V6m = �(4.8)

by (2.13). The identities (4.5), (4.6), and (4.8) are impossible by Lemmas
2.5, 2.7 and 2.8, and Theorems 2.11 and 2.12. The identity (4.7) implies that
m = 1 by Lemma 2.6 and Theorem 2.13. Then U6 = 3� and therefore 3 |P
by Theorem 2.13. This contradicts 3 - P .

Secondly, assume that 3|n, 4 - n, and Q ≡ 2 (mod 3). Then n = 3m.
Hence,

2x2 =
Un

3
=

U3m

3
= Um

(
V 2
m − (−Q)m

3

)
by (2.5). Since (

Um,
(P 2 + 4Q)U2

m + 3(−Q)m

3

)
= 1

by (2.7), it follows that

Um = � and V 2
m − (−Q)m = 6�,(4.9)

or

Um = 2� and V 2
m − (−Q)m = 3�.(4.10)

Assume that (4.9) is satisfied. Then m = 1 or m = 2 by Theorem 2.11 and
Lemma 3.3. Therefore n = 3 or n = 6. The identity (4.10) is impossible by
Theorem 2.12 and Lemma 3.3.

In the following four theorems, we assume that Um 6= 1 for all m. When
Um = 1, we have Un = wx2 with w ∈ {1, 2, 3, 6}. In this case, the solutions
of these equations are given in Theorems 2.11–2.13 and Corollary 4.3.

Theorem 4.4. Assume that m > 1 and Un = Umx2 for some integer x.
Then m = n or (m,n) = (5, 10), (2, 12), or (3, 6).
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Proof. Since Um |Un, we have n = mr for some integer r by (2.10). Thus,

(4.11) x2 =
Un

Um
=

Umr

Um
= Ur(Vm,−(−Q)m)

by (2.16). If r = 1, then m = n. So, assume that r 6= 1.

Let 3 - m. Then Vm is odd by (2.9) and also (Vm,−(−Q)m) = 1 by (2.8).
Hence, (4.11) implies that r = 2, 3, 6, or 12, and therefore

Vm = x2 if r = 2,(4.12)

V 2
m − (−Q)m = x2 if r = 3,(4.13)

Vm = 3�, V 2
m − (−Q)m = 2�, V 2

m − 3(−Q)m = 6� if r = 6,(4.14)

Vm = �, V 2
m − (−Q)m = 2�,(4.15)

V 2
m − 2(−Q)m = 3�, V 2

m − 3(−Q)m = � if r = 12,

by Theorem 2.11. Since 3 - m and m > 1, (4.12) implies that m = 5 and
so n = 10 by Lemma 2.5. The identity (4.13) is impossible by Lemma 3.3
since m > 1. The identity (4.14) implies m = 2 by Lemmas 2.7, 3.2 and 3.3.
Therefore n = 12. Lastly, (4.15) is impossible by Lemmas 2.5 and 3.2 since
m > 1.

Now let 3 |m. If r is even, then r = 2a and therefore n = mr = 2ma.
Hence, using (2.3) we get

x2 =
Un

Um
=

U2ma

Um
=

Uma

Um
Vma,

and this implies

Uma = Um� and Vma = �(4.16)

or

Uma = 2Um� and Vma = 2�(4.17)

since (Uma/Um, Vma) = 1 or 2 by (2.13).

Assume that (4.16) is satisfied. Then m = 3, a = 1 by Lemma 2.5 since
3 |m. Thus n = 6.

Assume that (4.17) is satisfied. Then m = 3, a = 1 or m = 3, a = 2, or
m = 6, a = 1 by Lemma 2.6. It can be seen that neither m = 3, a = 1 nor
m = 6, a = 1 is possible for the equation Uma = 2Um�. If m = 3 and a = 2,
then we get V6 = 2� and V3 = 2�, which is impossible by Lemma 2.6.

Assume that r is odd. Since 3 |m, we can write m = 3s.

If s is even, then s = 2b and so n = mr = 3sr = 6br. Hence, using (2.3)
and (2.11), we get

x2 =
Un

Um
=

U6br

U6b
=

U3br

U3b

V3br

V3b
,
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and this implies

U3br = U3b� and V3br = V3b�,(4.18)

or

U3br = 2U3b� and V3br = 2V3b�(4.19)

since (U3br/U3b, V3br/V3b) = 1 or 2 by (2.13). Each of (4.18) and (4.19) is
impossible, by [12, Theorems 3.2 and 3.3] respectively.

Now let s be odd. Then m is odd too.
Let r ≡ 1 (mod 4). Then writing n = mr = m(r−1) +m = 2 ·2kmz+m

for some odd positive integer z with k ≥ 1, we get

Umx2 = Un = U2·2kmz+m ≡ −Q2kmzUm (mod V2k)

by (2.19). Since (Um, V2k) = 1 by (2.13), the above congruence yields

x2 ≡ −Q2kmz (mod V2k).

This shows that
( −1
V
2k

)
= 1, which is impossible by Lemma 2.3.

If r ≡ −1 (mod 4), then n = mr = m(r + 1)−m = 2 · 2kmz −m with z
odd and k ≥ 1. Thus

Umx2 = Un = U2·2kmz−m ≡ −Q2kmz−mUm (mod V2k)

by (2.1) and (2.19). Since (Um, V2k) = 1 by (2.13), we obtain

x2 ≡ −Q2kmz−m (mod V2k).

This shows that
(−Q
V
2k

)
= 1. If Q ≡ 1 (mod 4), then, by Lemma 2.3,

1 =

(
−Q
V2k

)
=

(
−1

V2k

)(
Q

V2k

)
= −

(
−1

Q

)
= −1,

a contradiction. If Q ≡ −1 (mod 4), then (4.11) implies that r is a perfect
square by Theorem 2.16, contrary to r ≡ −1 (mod 4).

Theorem 4.5. Assume that m > 1 and Un = 2Umx2 for some integer x.
Then (m,n) = (2, 6), (3, 6), (3, 12), or (6, 12).

Proof. Since Um |Un, it follows that n = mr for some positive integer r
by (2.10). Thus,

(4.20) 2x2 =
Un

Um
=

Umr

Um
= Ur(Vm,−(−Q)m)

by (2.16).
Firstly, let 3 - m. Then Vm is odd by (2.9) and also (Vm,−(−Q)m) = 1

by (2.8). Hence, r = 3 or 6 by Theorem 2.12. If r = 3, then we obtain
V 2
m−(−Q)m = 2x2 from (4.20). Thus m = 2, and therefore n = 6 by Lemma

3.3. If r = 6, then Vm = �, V 2
m − (−Q)m = 2�, and V 2

m − 3(−Q)m = � by
Theorem 2.12. This is impossible by Lemmas 2.5, 3.2, and 3.3.
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Secondly, let 3 |m. Then Vm is even by (2.9). Thus, since 2 |Ur, r is even
by (2.17). Let r = 2a. Hence, using (2.3), we get

x2 =
Un

2Um
=

U2ma

2Um
=

Uma

Um
· Vma

2
,

and this implies

Uma = Um� and Vma = 2�,(4.21)

or

Uma = 2Um� and Vma = �(4.22)

since (Uma/Um, Vma/2) = 1 or 2 by (2.13).

Assume that (4.21) holds. Then (m, a) = (3, 1), (6, 1), or (3, 2) by Lemma
2.6 and Theorem 4.4. Thus (m,n) = (3, 6), (6, 12), or (3, 12).

Assume that (4.22) is satisfied. Then m = 3, a = 1 by Lemma 2.5 since
3 |m. But these values are impossible for Uma = 2Um�.

Theorem 4.6. Assume that m > 1 and Un = 3Umx2 for some integer x.
Then (m,n) = (2, 4), (2, 6), (3, 6), (4, 12), or (5, 10).

Proof. Since Um |Un, we have n = mr for some integer r by (2.10). Thus

(4.23) 3x2 =
Un

Um
=

Umr

Um
= Ur(Vm,−(−Q)m)

by (2.16).

Let 3 - m. Then Vm is odd by (2.9) and also (Vm,−(−Q)m) = 1 by (2.8).
Thus (4.23) implies r = 2, 3, 4, or 6. Therefore, by Theorem 2.13,

Vm = 3x2 if r = 2,(4.24)

V 2
m − (−Q)m = 3x2 if r = 3,(4.25)

Vm = � and V 2
m − 2(−Q)m = 3� if r = 4,(4.26)

Vm = �, V 2
m − (−Q)m = 2� and V 2

m − 3(−Q)m = 6� if r = 6.(4.27)

The identity (4.24) implies that m = 2 or m = 5 by Lemma 2.7 since 3 - m
and m > 1. Thus n = 4 or n = 10. The identity (4.25) implies that m = 2
or m = 4 by Lemma 3.3 and therefore n = 6 or n = 12.

Assume that (4.26) is satisfied. Since V2m = V 2
m − 2(−Q)m by (2.4), we

have Vm = � and V2m = 3�. This is impossible by Lemmas 2.5 and 2.7.
The identity (4.27) is impossible by Lemmas 2.5, 3.2, and 3.3.

Now let 3 |m. Firstly, assume that r is even. Then r = 2a and thus
n = mr = 2ma. Hence, using (2.3), we have

3x2 =
Un

Um
=

U2ma

Um
=

Uma

Um
· Vma,
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and this implies that

Uma = Um� and Vma = 3�,(4.28)

Uma = 3Um� and Vma = �,(4.29)

Uma = 2Um� and Vma = 6�,(4.30)

or

Uma = 6Um� and Vma = 2�.(4.31)

The identity (4.28) implies that m = 3, a = 1 by Lemma 2.7 since 3 |m.
Thus n = 6. The identity (4.29) implies that m = 3, a = 1 by Lemma 2.5.
But this is impossible for the equation Uma = 3Um�. It can be seen that
(4.30) is impossible by Lemma 2.8 and Theorem 4.5. The identity (4.31)
implies (m, a) = (3, 1), (6, 1), or (3, 2) by Lemma 2.6. It can be seen that
(m, a) = (3, 1) or (6, 1) is impossible. If m = 3, a = 2, then V6 = 2� and
V3 = 6�. This is impossible by Lemma 2.6 and Lemma 2.8.

Secondly, assume that r is odd. Then, since 3 |Ur by (4.23), it follows
that 3 | r by Theorem 2.14. Let r = 3s for some positive integer s. Then
n = mr = 3ms and thus

3x2 =
Un

Um
=

U3ms

Um
=

Ums

Um

(
V 2
ms − (−Q)ms

)
by (2.5). Since (

Ums

Um
, (P 2 + 4Q)U2

ms + 3(−Q)ms

)
= 1, 3

by (2.7), it follows that

Ums = Um� and V 2
ms − (−Q)ms = 3�(4.32)

or

Ums = 3Um� and V 2
ms − (−Q)ms = �.(4.33)

But (4.32) and (4.33) are impossible by Lemma 3.3 since 3 |m.

Theorem 4.7. Assume that m > 1 and Un = 6Umx2 for some integer x.
Then (m,n) = (2, 6) or (3, 6).

Proof. Since Um |Un, it follows that n = mr for some integer r by (2.10).
Hence,

(4.34) 6x2 =
Un

Um
=

Umr

Um
= Ur

(
Vm,−(−Q)m

)
by (2.16).

Firstly, let 3 - m. Then Vm is odd by (2.9) and also (Vm,−(−Q)m) = 1
by (2.8). Thus (4.34) implies that r = 3 or 6 by Corollary 4.3. If r = 3, we
have V 2

m− (−Q)m = 6�. Thus m = 2 by Lemma 3.3 since m > 1. Therefore
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n = 6. If r = 6, then

Vm = �, V 2
m − (−Q)m = 2�, V 2

m − 3(−Q)m = 3�

or

Vm = �, V 2
m − (−Q)m = �, V 2

m − 3(−Q)m = 6�

by Corollary 4.3. But both of these are impossible by Lemmas 2.5, 3.2,
and 3.3.

Secondly, let 3 |m. Then Vm is even by (2.9). Thus, since 2 |Ur by (4.34),
r is even by (2.17). Let r = 2s. Hence, using (2.3), we have

3x2 =
Un

2Um
=

Umr

2Um
=

U2ms

2Um
=

Ums

Um
· Vms

2

since 3 |m. This implies

Ums = Um� and Vms = 6�,(4.35)

Ums = 3Um� and Vms = 2�,(4.36)

Ums = 2Um� and Vms = 3�,(4.37)

or

Ums = 6Um� and Vms = �(4.38)

since (Ums/Um, Vms/2) = 1 or 2 by (2.13).
The identity (4.35) implies m = 3, s = 1 by Lemma 2.8 and so n = 6.

The identity (4.36) implies m = 3, s = 2 by Lemma 2.6 and Theorem 4.6.
But, in this case, we obtain V3 = 3� and V6 = 2�. This is impossible by
Lemmas 2.6 and 2.7. The identity (4.37) is impossible by Lemma 2.7 and
Theorem 4.5. The identity (4.38) implies m = 3, s = 1 by Lemma 2.5. But
this is impossible for the equation Ums = 6Um�.

4.2. On square classes in a generalized Fibonacci sequence. In
[4, 5, 8], the authors defined Un ∼ Um iff there exist nonzero integers x
and y such that x2Un = y2Um, or equivalently, UnUm = �. If Un ∼ Um,
then Un and Um are said to be in the same square class, and a square class
containing more than one term of the sequence (Un) is called non-trivial.

Now we briefly summarize the relevant known facts. Ribenboim [5] has
explicitly shown that if m 6= 1, 2, 3, 6, 12, then the square classes of Fm is
trivial. That is, if m 6= 1, 2, 3, 6, 12 and FnFm = �, then m = n. It should
be pointed out that more generally, Cohn [1] determined the square classes
of the sequence (Un(P,Q)) when Q = ±1 and P is odd. Ribenboim [6]
has determined the square classes of the sequences Un(Q+ 1, Q). Moreover,
when P and Q are nonzero relatively prime integers such that P 2 + 4Q 6= 0,
Ribenboim and McDaniel [8] showed that each square class of the sequences
(Un) and (Vn) is finite, and its elements are effectively computable. More-
over, in [4] they showed that for all odd relatively prime integers P and Q
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with P > 0 and P 2 + 4Q > 0, if UnUm = � for 1 ≤ m < n, then either
(m,n) = (1, 2), (1, 6), (1, 12), (2, 3), (2, 12), (3, 6), (5, 10), or (10, 15), or n =
3m, 3 - m, m odd. But (m,n) = (10, 15) is impossible: if (m,n) = (10, 15),
then

U15U10 = U2
5 (V 2

5 + Q5)V5 = �

by (2.3) and (2.5) and this implies that

V5 = � and V 2
5 + Q5 = �

since (V 2
5 +Q5, V5) = 1 by (2.8). The equation V 2

5 +Q5 = � has no solutions
by Lemma 3.3. Moreover, we will prove in Theorem 4.8 that m may only be 1,
and therefore n = 3, in case UnUm = � for n = 3m, 3 - m, m odd. Lastly,
Şiar [12] determined all n and m such that VnVm = w� with w ∈ {1, 2, 3, 6}.

Now let a and b be square-free positive integers such that (a, b) = 1.
Then we define an equivalence relation as follows: aUn ∼ bUm iff there
exist non-zero integers x and y such that x2aUn = y2bUm, or equivalently,
UnUm = ab�.

Now, we consider the equivalence relation aUn ∼ bUm when ab ∈
{1, 2, 3, 6}. In the following four theorems, we assume (1.1).

Theorem 4.8. Assume that UnUm = x2 for 1 ≤ m ≤ n. Then m = n
or (m,n) = (1, 2), (1, 3), (1, 6), (1, 12), (2, 3), (2, 12), (3, 6), or (5, 10).

Proof. It is obvious that m = n is a solution. So, let m 6= n. Let d =
(m,n). Then (Um, Un) = Ud by (2.12) and therefore

Un

Ud

Um

Ud
=

(
x

Ud

)2

.

Since (Un/Ud, Um/Ud) = 1, it follows that Un = Ud� and Um = Ud�.
Assume that Ud 6= 1. Then it is obvious that d > 1. Thus, by Theorem 4.4,

n = d, or (d, n) = (5, 10), (2, 12), or (3, 6),(4.39)

m = d, or (d,m) = (5, 10), (2, 12), or (3, 6).(4.40)

The identities (4.39) and (4.40) imply that (m,n) = (5, 10), (2, 12), or (3, 6).
If Ud = 1, then Un = � and Um = �, and these imply that

(m,n) = (1, 2), (1, 3), (1, 6), (1, 12), (2, 3), (2, 6), or (2, 12)

by Theorem 2.11. But (m,n) = (2, 6) is impossible for UnUm = x2.

Theorem 4.9. Assume that UnUm = 2x2 for 1 ≤ m ≤ n. Then (m,n) =
(1, 3), (1, 6), (2, 3), (2, 6), (3, 6), (3, 12), or (6, 12).

Proof. It is obvious that m 6= n. Let d = (m,n). Then (Um, Un) = Ud

by (2.12) and therefore

Un

Ud

Um

Ud
= 2

(
x

Ud

)2

.
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Since (Un/Ud, Um/Ud) = 1, it follows that

Un = Ud� and Um = 2Ud�(4.41)

or

Un = 2Ud� and Um = Ud�.(4.42)

Assume that Ud 6= 1. Then it is obvious that d > 1. Thus (4.41) and (4.42)
imply that (m,n) = (6, 12) and (m,n) = (2, 6), (3, 6), (3, 12), or (6, 12) by
Theorems 4.4 and 4.5. If Ud = 1, then Un = �, Um = 2� or Un = 2�,
Um = �. From these equations, we can see that (m,n) = (1, 3), (1, 6), (2, 3),
or (2, 6) by Theorems 2.11 and 2.12.

Similarly, the following theorems can be proved using Theorems 2.11–
2.13, Corollary 4.3, and Theorems 4.6 and 4.7. Therefore we omit their
proofs.

Theorem 4.10. If UnUm = 3x2 for 1 ≤ m ≤ n, then (m,n) = (1, 2),
(1, 3), (1, 4), (1, 6), (2, 3), (2, 4), (2, 6), (3, 6), (4, 12), or (5, 10).

Theorem 4.11. If UnUm = 6x2 for 1 ≤ m ≤ n, then (m,n) = (1, 3),
(1, 6), (2, 3), (2, 6), (3, 4), (3, 6), or (4, 6).
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