On square classes in generalized Fibonacci sequences

by
\section*{Zafer Şíar (Bingöl) and Refik Keskin (Sakarya)}

1. Introduction. Let P and Q be nonzero integers. The generalized Fibonacci and Lucas sequences, $\left(U_{n}(P, Q)\right)$ and $\left(V_{n}(P, Q)\right)$, are defined as follows:

$$
\begin{aligned}
U_{0}(P, Q) & =0, \quad U_{1}(P, Q)=1 \\
U_{n+1}(P, Q) & =P U_{n}(P, Q)+Q U_{n-1}(P, Q) \quad \text { for } n \geq 1
\end{aligned}
$$

and

$$
\begin{aligned}
V_{0}(P, Q) & =2, \quad V_{1}(P, Q)=P \\
V_{n+1}(P, Q) & =P V_{n}(P, Q)+Q V_{n-1}(P, Q) \quad \text { for } n \geq 1
\end{aligned}
$$

respectively. $U_{n}(P, Q)$ and $V_{n}(P, Q)$ are called the nth generalized Fibonacci number and nth generalized Lucas number, respectively. Since

$$
U_{n}(-P, Q)=(-1)^{n-1} U_{n}(P, Q) \quad \text { and } \quad V_{n}(-P, Q)=(-1)^{n} V_{n}(P, Q)
$$

it will be assumed that $P \geq 1$. Moreover, we will assume that $P^{2}+4 Q>0$. Sometimes, instead of $U_{n}(P, Q)$ and $V_{n}(P, Q)$, we write just U_{n} and V_{n}. For more information about these sequences one can consult [7].

For $P=Q=1$, we have the classical Fibonacci and Lucas sequences $\left(F_{n}\right)$ and $\left(L_{n}\right)$. In this paper, we determine all n and m such that $U_{n}=w U_{m} x^{2}$ or $U_{n} U_{m}=w x^{2}$ with $w=1,2,3$, or 6 under the following assumption:

$$
\begin{equation*}
P^{2}+4 Q>0, \quad P \geq 1 \text { and } Q \text { are odd, } \quad(P, Q)=1 \tag{1.1}
\end{equation*}
$$

Regarding this issue, Keskin and Yosma [2] showed that if $F_{n}=2 F_{m} x^{2}$ for $m \geq 3$, then $(m, n)=(3,12)$ or $(6,12)$; if $F_{n}=3 F_{m} x^{2}$ for $m \geq 3$, then $(m, n)=(4,12)$; and no F_{n} satisfies $F_{n}=6 F_{m} x^{2}$ for $m \geq 1$. Moreover, Cohn [1] determined all n and m such that $U_{n} U_{m}=x^{2}$ and $U_{n} U_{m}=2 x^{2}$ when P is odd and $Q= \pm 1$.

[^0]Received 8 February 2016; revised 8 April 2016.
Published online 22 June 2016.

Also, in this paper, we will solve each of the equations $U_{n}=k x^{2}$ and $U_{n}=$ $2 k x^{2}$ when $k \mid P, k>1$, under the assumption (1.1. As an application, we determine all n such that $U_{n}=6 x^{2}$. First of all, we will solve the equations $V_{n}^{2}-3(-Q)^{n}=w x^{2}$ and $V_{n}^{2}-(-Q)^{n}=w x^{2}$ for $w \in\{1,2,3,6\}$, which is used to solve $U_{n}=w U_{m} x^{2}, U_{n}=k x^{2}$, and $U_{n}=2 k x^{2}$.

On the other hand, Cohn [1] studied the equations $U_{n}=k x^{2}$ and $U_{n}=$ $2 k x^{2}$ when $P \geq 1$ is odd and $Q=1$, and he obtained the following results, with $r=\min \left\{n: n>0\right.$ and $\left.k \mid U_{n}\right\}$:

1. If $r \not \equiv 0(\bmod 3)$, then $U_{n}=k x^{2}$ can occur only for $n=r$, and $U_{n}=2 k x^{2}$ is impossible for $n>0$.
2. If $r \equiv 3(\bmod 6)$, then $U_{n}=k x^{2}$ is impossible for $n>0$, and similarly for $U_{n}=2 k x^{2}$.
3. If $r \equiv 0(\bmod 6)$, and if $2^{2 t+1} \| r$, then $U_{n}=k x^{2}$ is impossible except if $P=5, k=455, n=12$; if $2^{2 t} \| r$, then $U_{n}=2 k x^{2}$ is impossible for $n>0$.

Moreover, Ribenboim and McDaniel [10] solved the equation $U_{n}=k x^{2}$ under the assumption (1.1) and that the Jacobi symbol $\left(\frac{-V_{2} u}{h}\right)$ is defined and equals 1 for each odd divisor h of k with $u \geq 1$. In particular, they solved $U_{n}=3 x^{2}$ and gave the solutions as $n=1,3,4$, or 6 but they must have forgotten writing $n=2$.
2. Preliminaries. In this paper, we assume that $P \geq 1$ is an odd integer unless indicated otherwise, and also Q is an odd integer such that $(P, Q)=1$. Firstly, we will give a list of properties of generalized Fibonacci and Lucas numbers, which will be needed later. Throughout, the symbol \square denotes a perfect square.

$$
\begin{align*}
& U_{-n}=-(-Q)^{-n} U_{n} \tag{2.1}\\
& V_{-n}=(-Q)^{-n} V_{n} \tag{2.2}\\
& U_{2 n}=U_{n} V_{n} \tag{2.3}\\
& V_{2 n}=V_{n}^{2}-2(-Q)^{n}, \tag{2.4}\\
& U_{3 n}=U_{n}\left(\left(P^{2}+4 Q\right) U_{n}^{2}+3(-Q)^{n}\right)=U_{n}\left(V_{n}^{2}-(-Q)^{n}\right), \tag{2.5}\\
& V_{3 n}=V_{n}\left(V_{n}^{2}-3(-Q)^{n}\right) \tag{2.6}\\
& \left(U_{2 n+1}, P\right)=\left(U_{n+1}, Q\right)=1 \text { for } n \geq 0, \tag{2.7}\\
& \left(V_{2 n}, P\right)=\left(V_{n}, Q\right)=1 \text { for } n \geq 0, \tag{2.8}\\
& 2\left|V_{n} \Leftrightarrow 2\right| U_{n} \Leftrightarrow 3 \mid n, \tag{2.9}\\
& \text { if } U_{m} \neq 1, \text { then } U_{m}\left|U_{n} \Leftrightarrow m\right| n \tag{2.10}
\end{align*}
$$

$$
\begin{align*}
& \text { if } V_{m} \neq 1, \text { then } V_{m}\left|V_{n} \Leftrightarrow m\right| n \text { and } n / m \text { is odd, } \tag{2.11}\\
& \text { if } d=(m, n) \text {, then }\left(U_{m}, U_{n}\right)=U_{d}, \tag{2.12}\\
& \left(U_{m}, V_{m}\right)=1 \text { or } 2, \tag{2.13}\\
& U_{2 n} \equiv n P Q^{n-1}\left(\bmod P^{2}\right) \text { and } U_{2 n+1} \equiv Q^{n}\left(\bmod P^{2}\right), \tag{2.14}\\
& V_{2 n} \equiv 2 Q^{n}\left(\bmod P^{2}\right) \text { and } V_{2 n+1} \equiv n P Q^{n}\left(\bmod P^{2}\right), \tag{2.15}\\
& \frac{U_{m n}(P, Q)}{U_{m}(P, Q)}=U_{n}\left(V_{m},-(-Q)^{m}\right) . \tag{2.16}
\end{align*}
$$

All the above identities except (2.14)-2.16) can be found in [3, 9] ; 2.16) is given in [8] and (2.14) and 2.15 can be proved by induction on n. Moreover, when P is even, it is well known that

$$
\begin{align*}
& U_{n} \text { is even } \Leftrightarrow n \text { is even, } \tag{2.17}\\
& U_{n} \text { is odd } \Leftrightarrow n \text { is odd. } \tag{2.18}
\end{align*}
$$

Now, we give some theorems and lemmas which will be used in the proofs of the main theorems. The following theorem is proved in [13].

Theorem 2.1. Let $n, m \in \mathbb{N} \cup\{0\}$ and $r \in \mathbb{Z}$. Then

$$
\begin{align*}
U_{2 m n+r} & \equiv\left(-(-Q)^{m}\right)^{n} U_{r}\left(\bmod V_{m}\right), \tag{2.19}\\
V_{2 m n+r} & \equiv\left(-(-Q)^{m}\right)^{n} V_{r}\left(\bmod V_{m}\right), \tag{2.20}
\end{align*}
$$

where we require $m n+r \geq 0$ if $Q \neq \pm 1$.
The proofs of the following two lemmas can be found in [9].
Lemma 2.2. Let m be an odd positive integer and $r \geq 1$.
(a) If $3 \mid m$, then $V_{2^{r} m} \equiv 2(\bmod 8)$.
(b) If $3 \nmid m$, then

$$
V_{2^{r} m} \equiv \begin{cases}3(\bmod 8) & \text { if } r=1 \text { and } Q \equiv 1(\bmod 8) \\ 7(\bmod 8) & \text { otherwise } .\end{cases}
$$

Lemma 2.3. Let r be a positive integer. Then
(i) $\left(\frac{-1}{V_{2^{r}}}\right)=-1$,
(ii) $\left(\frac{2}{V_{2^{r}}}\right)= \begin{cases}-\left(\frac{-1}{Q}\right) & \text { if } r=1, \\ 1 & \text { if } r \geq 2,\end{cases}$
(iii) $\left(\frac{Q}{V_{2^{r}}}\right)=\left(\frac{-1}{Q}\right)$,
(iv) $\left(\frac{U_{3}}{V_{2^{r}}}\right)= \begin{cases}-\left(\frac{-1}{Q}\right) & \text { if } r=1, \\ 1 & \text { if } r \geq 2,\end{cases}$
(v) $\left(\frac{P^{2}+3 Q}{V_{2} r}\right)= \begin{cases}\left(\frac{-1}{Q}\right) & \text { if } r=1, \\ 1 & \text { if } r \geq 2 .\end{cases}$

The following lemma can be proved by induction.
Lemma 2.4. If $3 \nmid P$, then

$$
V_{2^{r}} \equiv \begin{cases}0(\bmod 3) & \text { if } r=1 \text { and } Q \equiv 1(\bmod 3), \\ 1(\bmod 3) & \text { if } r \geq 1 \text { and } Q \equiv 0(\bmod 3) \\ & \text { or } r=2 \text { and } Q \equiv 1(\bmod 3), \\ 2(\bmod 3) & \text { if } r=1,2 \text { and } Q \equiv 2(\bmod 3) \\ & \text { or } r \geq 3 \text { and } Q \equiv 1,2(\bmod 3),\end{cases}
$$

and if $3 \mid P$, then $V_{2^{r}} \equiv 2(\bmod 3)$ for $r \geq 2$.
Using Lemmas 2.3 and 2.4, we can see that

$$
\begin{equation*}
\left(\frac{3}{V_{2^{r}}}\right)=1 \quad \text { if } Q \equiv 2(\bmod 3), r \geq 2 \text { or } Q \equiv 1(\bmod 3), r \geq 3 . \tag{2.21}
\end{equation*}
$$

We recall the following results from [9] and [14].
Lemma 2.5. If $V_{n}=x^{2}$, then $n=1$, 3 , or 5 ; if $V_{3}=x^{2}$, then $Q \equiv 1$ $(\bmod 4)$ and also $P=\square, P^{2}+3 Q=\square$ or $P=3 \square, P^{2}+3 Q=3 \square$; if $V_{5}=x^{2}$, then $Q \equiv 3(\bmod 8), P=5 \square$, and $P^{4}+5 P^{2} Q+5 Q^{2}=5 \square$.

Lemma 2.6. If $V_{n}=2 x^{2}$, then $n=0,3$, or 6 ; if $V_{3}=2 x^{2}$, then $Q \equiv 5,7$ $(\bmod 8), P=3 \square$, and $P^{2}+3 Q=6 \square$; if $V_{6}=2 x^{2}$, then $Q \equiv 1(\bmod 4)$, $P^{2}+2 Q=3 \square$, and $\left(P^{2}+2 Q\right)^{2}-3 Q^{2}=6 \square$.

Lemma 2.7. If $V_{n}=3 x^{2}$, then $n=1,2$, 3 , or 5 ; $V_{1}=3 x^{2}$ iff $P=3 \square$; $V_{2}=3 x^{2}$ iff $P^{2}+2 Q=3 \square$ and $Q \equiv 1(\bmod 3) ; V_{3}=3 x^{2}$ iff $P=\square$, $P^{2}+3 Q=3 \square$, and $Q \equiv 1(\bmod 4) ; V_{5}=3 x^{2}$ iff $P=15 \square, P^{4}+5 P^{2} Q+$ $5 Q^{2}=5 \square$, and $Q \equiv 3(\bmod 8)$.

Lemma 2.8. If $V_{n}=6 x^{2}$, then $n=3 ; V_{3}=6 x^{2}$ iff $P=\square, P^{2}+3 Q=$ $6 \square$, and $Q \equiv 5,7(\bmod 8)$.

Theorem 2.9. Let $k>1$ and $k \mid P$. If $V_{n}=k x^{2}$ for some integer x, then $n=1,3$, or 5 ; if $V_{5}=x^{2}$, then $P=5 k \square, P^{4}+5 P^{2} Q+5 Q^{2}=5 \square$, and $Q \equiv 3(\bmod 8)$.

Theorem 2.10. Let $k>1$ and $k \mid P$. If $V_{n}=2 k x^{2}$ for some integer x, then $n=3$.

The proofs of the following four theorems can be found in [9] and [10.
Theorem 2.11. $U_{n}=x^{2}$ if and only if either (i) $n=0,1,2$, or 3 , (ii) $n=6, P=3 \square, P^{2}+Q=2 \square$, and $P^{2}+3 Q=6 \square$, or (iii) $n=12, P=\square$, $P^{2}+Q=2 \square, P^{2}+2 Q=3 \square, P^{2}+3 Q=\square$, and $\left(P^{2}+2 Q\right)^{2}-3 Q^{2}=6 \square$.

Theorem 2.12. $U_{n}=2 x^{2}$ if and only if either (i) $n=0$ or 3 , or (ii) $n=6, P=\square, P^{2}+Q=2 \square$, and $P^{2}+3 Q=\square$.

ThEOREM 2.13. $U_{n}=3 x^{2}$ if and only if either (i) $n=0$ or 2 , or (ii) $n=3, P^{2}+Q=3 \square$, and $3 \nmid P$, or (iii) $n=4, P=\square, P^{2}+2 Q=3 \square$, $Q \equiv 1(\bmod 12)$, and $3 \nmid P$, or (iv) $n=6, P=\square, P^{2}+Q=2 \square$, $P^{2}+3 Q=6 \square$, and $3 \mid P$.

Theorem 2.14.
(i) If $3 \mid P$, then $3 \mid U_{n} \Leftrightarrow n$ is even.
(ii) If $3 \nmid P$, then

$$
3 \left\lvert\, U_{n} \Leftrightarrow\left\{\begin{array}{l}
12 \mid n \text { and } Q \equiv 1,2(\bmod 3), \text { or } \\
4 \mid n, 3 \nmid n, \text { and } Q \equiv 1(\bmod 3), \text { or } \\
4 \nmid n, 3 \mid n, \text { and } Q \equiv 2(\bmod 3) .
\end{array}\right.\right.
$$

The proof of the following lemma is given in [12].
Lemma 2.15. If $3 \mid P$, then $3 \mid V_{n}$ iff n is odd. If $3 \nmid P$, then $3 \mid V_{n}$ iff $n \equiv 2(\bmod 4)$ and $Q \equiv 1(\bmod 3)$.

Lastly, we will require the following theorem given in 11].
Theorem 2.16. If P is even, $Q \equiv-1(\bmod 4),(P, Q)=1$, and n is odd, then $U_{n}(P, Q)=\square$ only if $n=\square$.
3. Auxiliary theorems. From now on, assume that n and m are positive integers.

The following lemma can be proved by induction and therefore we omit its proof.

Lemma 3.1. For $k \geq 1$, $V_{2^{k+2}} \equiv-Q^{2^{k+1}}\left(\bmod V_{2^{k+1}}+Q^{2^{k}}\right) \quad$ and $\quad V_{2^{k+2}} \equiv-Q^{2^{k+1}}\left(\bmod V_{4}-Q^{2}\right)$.

By Lemmas 2.3 and 3.1, we can see that

$$
\begin{equation*}
J=\left(\frac{V_{4}-Q^{2}}{V_{2^{k+2}}}\right)=1 \quad \text { for } k \geq 1 \tag{3.1}
\end{equation*}
$$

Lemma 3.2. Let $w \in\{1,2,3,6\}$ and $V_{n}^{2}-3(-Q)^{n}=w x^{2}$ for some integer x. Then $n=1$ or $n=2$.

Proof. If n is odd, it has been shown in [12] that the equation $V_{n}^{2}-$ $3(-Q)^{n}=w x^{2}$ has no solutions for $n>1$. So let n be even. Thus, $V_{2 n}-Q^{n}=$ $w x^{2}$ by (2.4). It is obvious that $w x^{2}=V_{2 n}-Q^{n} \equiv 1$ or $6(\bmod 8)$ by Lemma 2.2, When $w=2$ or $w=3$, we have a contradiction.

Now assume that $w=1$ or $w=6$. We can write $n=2^{r} z$ for some odd positive integer z with $r \geq 1$.

If $z=1$, then $n=2^{r}$, where $r \neq 1$, i.e., $r \geq 2$ since $n>2$. In this case, if $w=1$, then

$$
x^{2}=V_{2 n}-Q^{n}=V_{2 \cdot 2^{r}}-Q^{2^{r}} \equiv 7-1 \equiv 6(\bmod 8)
$$

by Lemma 2.2. This is impossible. If $w=6$, then

$$
6 x^{2}=V_{2 \cdot 2^{r}}-Q^{2^{r}} \equiv-Q^{2^{r}} V_{0}-Q^{2^{r}} \equiv-3 Q^{2^{r}}\left(\bmod V_{2^{r}}\right)
$$

by 2.20 . Consequently, $1=\left(\frac{-2}{V_{2 r} r}\right)=\left(\frac{-1}{V_{2 r} r}\right)\left(\frac{2}{V_{2 r}}\right)=-1$ by Lemma 2.3, a contradiction.

Thus $z>1$. So, we can write $z=4 q \pm 1$ for some $q>0$. Hence $2 n=$ $2\left(2^{r} z\right)=2\left(2^{r+2} q \pm 2^{r}\right)=2 \cdot 2^{r+2} q \pm 2^{r+1}$.

Let q be odd. Using (2.2) and 2.20 , we get

$$
\begin{aligned}
& w x^{2}=V_{2 n}-Q^{n} \equiv \\
& -Q^{2^{r+2} q} V_{2^{r+1}}-Q^{2^{r+2} q+2^{r}} \text { or }-Q^{2^{r+2} q-2^{r+1}} V_{2^{r+1}}-Q^{2^{r+2} q-2^{r}}\left(\bmod V_{2^{r+2}}\right),
\end{aligned}
$$ i.e.,

$$
w x^{2} \equiv-Q^{2^{r+2} q}\left(V_{2^{r+1}}+Q^{2^{r}}\right) \text { or }-Q^{2^{r+2} q-2^{r+1}}\left(V_{2^{r+1}}+Q^{2^{r}}\right)\left(\bmod V_{2^{r+2}}\right) .
$$

In both cases,

$$
J=\left(\frac{-w\left(V_{2^{r+1}}+Q^{2^{r}}\right)}{V_{2^{r+2}}}\right)=1 .
$$

On the other hand, $V_{2^{r+1}}+Q^{2^{r}} \equiv 0(\bmod 8)$ by Lemma 2.2. So, $V_{2^{r+1}}+Q^{2^{r}}$ $=2^{s} t$ for some odd t and $s \geq 3$. Hence, $V_{2^{r+2}} \equiv-Q^{2^{r+1}}(\bmod t)$ by Lemma 3.1. If $w=1$, then we get

$$
\begin{aligned}
J & =\left(\frac{-\left(V_{2^{r+1}}+Q^{2^{r}}\right)}{V_{2^{r+2}}}\right)=-\left(\frac{V_{2^{r+1}}+Q^{2^{r}}}{V_{2^{r+2}}}\right)=-\left(\frac{2}{V_{2^{r+2}}}\right)^{s}\left(\frac{t}{V_{2^{r+2}}}\right) \\
& =-(-1)^{(t-1) / 2}\left(\frac{V_{2^{r+2}}^{t}}{t}\right)=-(-1)^{(t-1) / 2}\left(\frac{-1}{t}\right) \\
& =-(-1)^{(t-1) / 2}(-1)^{(t-1) / 2}=-1
\end{aligned}
$$

by Lemma [2.3, contrary to $J=1$.
Now, let $w=6$. If $3 \mid Q$, from the equation $V_{2 n}-Q^{n}=6 x^{2}$, we have $3 \mid V_{2 n}$ and therefore $2 n \equiv 2(\bmod 4)$, i.e., $n \equiv 1(\bmod 2)$ by Lemma 2.15 . This contradicts n being even. If $3 \nmid Q$, then we obtain

$$
\begin{aligned}
J & =\left(\frac{-6\left(V_{2^{r+1}}+Q^{2^{r}}\right)}{V_{2^{r+2}}}\right)=-\left(\frac{2}{V_{2^{r+2}}}\right)\left(\frac{3}{V_{2^{r+2}}}\right)\left(\frac{2}{V_{2^{r+2}}}\right)^{s}\left(\frac{t}{V_{2^{r+2}}}\right) \\
& =-(-1)^{(t-1) / 2}\left(\frac{V_{2 r+2}}{t}\right)=-(-1)^{(t-1) / 2}(-1)^{(t-1) / 2}=-1
\end{aligned}
$$

by Lemma 2.3 and 2.21), a contradiction again.
Now, let q be even. Then $2 n=2\left(2^{r} z\right)=2\left(2^{r+2} q \pm 2^{r}\right)=2 \cdot 2^{r+k+2} b \pm 2^{r+1}$ with b odd and $k \geq 1$. Similarly, we can see that

$$
w x^{2} \equiv-Q^{2^{r+k+2} b}\left(V_{2^{r+1}}+Q^{2^{r}}\right) \text { or }-Q^{2^{r+k+2} b-2^{r+1}}\left(V_{2^{r+1}}+Q^{2^{r}}\right)\left(\bmod V_{2^{r+k+2}}\right)
$$

by (2.2) and (2.20). This shows that

$$
J=\left(\frac{-w\left(V_{2^{r+1}}+Q^{2^{r}}\right)}{V_{2^{r+k+2}}}\right)=1
$$

A similar argument shows that this is impossible.
Lemma 3.3. Let $n \geq 1$ be an integer, $w \in\{1,2,3,6\}$, and $V_{n}^{2}-(-Q)^{n}=$ $w x^{2}$ for some integer x. Then $n=1,2$ or 4 . In particular, $V_{n}^{2}-(-Q)^{n}=x^{2}$ has a solution only for $n=1 ; V_{n}^{2}-(-Q)^{n}=w x^{2}, w \in\{2,6\}$, has a solution only for $n=1$ or 2 ; $V_{n}^{2}-(-Q)^{n}=3 x^{2}$ has a solution for $n=1,2$, or 4 .

Proof. We divide the proof into two cases.
CASE 1: n odd. If $n=1$, it is obvious that $P^{2}+Q=w x^{2}$ has a solution for $w \in\{1,2,3,6\}$. So, assume that $n>1$. Since n is odd, we have $V_{n}^{2}-$ $(-Q)^{n}=V_{2 n}-Q^{n}=w x^{2}$ by 2.4 . We can write $2 n=2\left(2^{r} z \pm 1\right)=2 \cdot 2^{r} z \pm 2$ for some odd positive integer z with $r \geq 2$. Thus,

$$
w x^{2}=V_{2 n}-Q^{n} \equiv-Q^{2^{r} z} V_{2}-Q^{2^{r} z+1} \text { or }-Q^{2^{r} z-2} V_{2}-Q^{2^{r} z-1}\left(\bmod V_{2^{r}}\right)
$$

i.e.,

$$
w x^{2} \equiv-Q^{2^{r} z}\left(P^{2}+3 Q\right) \text { or }-Q^{2^{r} z-2}\left(P^{2}+3 Q\right)\left(\bmod V_{2^{r}}\right)
$$

by 2.20. Hence

$$
\left(\frac{-w\left(P^{2}+3 Q\right)}{V_{2^{r}}}\right)=1
$$

If $w=1$ or $w=2$, then, using Lemma 2.3 , it can be easily seen that $J=-1$. This is impossible.

Let $w=3$ and $3 \mid Q$. Then $3 \mid V_{n}$ since $V_{n}^{2}-(-Q)^{n}=3 x^{2}$. This implies $3 \mid P$ by Lemma 2.15, contradicting $(P, Q)=1$. Thus $3 \nmid Q$ and therefore $3 \nmid V_{n}$. This shows that $Q \equiv 2(\bmod 3)$. Consequently,

$$
1=\left(\frac{-3\left(P^{2}+3 Q\right)}{V_{2^{r}}}\right)=\left(\frac{-1}{V_{2^{r}}}\right)\left(\frac{3}{V_{2^{r}}}\right)\left(\frac{P^{2}+3 Q}{V_{2^{r}}}\right)=-1
$$

by Lemma 2.3 and 2.21 , which is impossible.
If $w=6$, a similar argument shows that $3 \nmid Q$ and $Q \equiv 2(\bmod 3)$, and therefore

$$
1=\left(\frac{-6\left(P^{2}+3 Q\right)}{V_{2^{r}}}\right)=\left(\frac{-1}{V_{2^{r}}}\right)\left(\frac{2}{V_{2^{r}}}\right)\left(\frac{3}{V_{2^{r}}}\right)\left(\frac{P^{2}+3 Q}{V_{2^{r}}}\right)=-1
$$

by Lemma 2.3 and 2.21, a contradiction again.
Case 2: n even. Then $V_{n}^{2}-Q^{n}=w x^{2}$ and thus $V_{2 n}+Q^{n}=w x^{2}$ by (2.4). If we write $2 n=2\left(2^{r} z\right)$ for some odd positive integer z with $r \geq 1$, then

$$
w x^{2}=V_{2 n}+Q^{n}=V_{2\left(2^{r} z\right)}+Q^{2^{r} z} \equiv-Q^{2^{r} z} V_{0}+Q^{2^{r} z} \equiv-Q^{2^{r} z}\left(\bmod V_{2^{r}}\right)
$$

by 2.20 . This shows that

$$
J=\left(\frac{-w}{V_{2^{r}}}\right)=1
$$

When $w=1$ or $w=2, r \geq 2$, it can be seen that $J=-1$ by Lemma 2.3. This is impossible.

If $w=3$ or $w=6$, it follows that $J=-1$ for $r \geq 3$ by Lemma 2.3 and (2.21) when $3 \nmid Q$, a contradiction.

If $w=3$ or $w=6$, it follows that $3 \mid V_{n}$ from the equation $V_{n}^{2}-Q^{n}=w x^{2}$ when $3 \mid Q$. This implies $3 \nmid P$ since $(P, Q)=1$, and therefore $Q \equiv 1(\bmod 3)$ by Lemma 2.15 , contradicting $3 \mid Q$.

Now we consider each of the cases $w=2, r=1$ and $w=3$ or $6,3 \nmid Q, r=$ 1 or 2 . Let $r=1$. Then $n=2 z$. If $n=2$, we have $\left(P^{2}+Q\right)\left(P^{2}+3 Q\right)=w x^{2}$. We can see that this equation has a solution for some values of P and Q when $w \in\{2,3,6\}$. Therefore assume that $n>2$. Then we can write $n=2 z=2(4 q \pm 1)=8 q \pm 2$ for some $q>0$. Assume that q is odd. Thus $w x^{2}=V_{2 \cdot 8 q \pm 4}+Q^{8 q \pm 2} \equiv-Q^{8 q} V_{4}+Q^{8 q+2}$ or $-Q^{8 q-4} V_{4}+Q^{8 q-2}\left(\bmod V_{8}\right)$, i.e.,

$$
w x^{2} \equiv-Q^{8 q}\left(V_{4}-Q^{2}\right) \text { or }-Q^{8 q-4}\left(V_{4}-Q^{2}\right)\left(\bmod V_{8}\right)
$$

by 2.20. Hence,

$$
J=\left(\frac{-w\left(V_{4}-Q^{2}\right)}{V_{8}}\right)=1
$$

On the other hand, since $3 \nmid Q$ for $w=3$ or $w=6$, it can be seen that $\left(\frac{3}{V_{8}}\right)=1$ and $\left(\frac{6}{V_{8}}\right)=1$ by Lemma 2.3 and 2.21 . Thus when $w \in\{2,3,6\}$, we have

$$
J=\left(\frac{-w\left(V_{4}-Q^{2}\right)}{V_{8}}\right)=-\left(\frac{w}{V_{8}}\right)\left(\frac{V_{4}-Q^{2}}{V_{8}}\right)=-1
$$

by Lemma 2.3 and (3.1), a contradiction.
Now assume that q is even. Then we can write $q=2^{k} s$ for some odd $s \geq 1$ with $k \geq 1$. Thus $n=8 q \pm 2=2^{k+3} s \pm 2$. Therefore

$$
w x^{2} \equiv-Q^{2^{k+3} s} V_{4}+Q^{2^{k+3} s+2} \text { or }-Q^{2^{k+3} s-4} V_{4}+Q^{2^{k+3} s-2}\left(\bmod V_{2^{k+3}}\right)
$$

i.e.,

$$
w x^{2} \equiv-Q^{2^{k+3} s}\left(V_{4}-Q^{2}\right) \text { or }-Q^{2^{k+3} s-4}\left(V_{4}-Q^{2}\right)\left(\bmod V_{2^{k+3}}\right)
$$

by 2.20 . This shows that

$$
\left(\frac{-w\left(V_{4}-Q^{2}\right)}{V_{2^{k+3}}}\right)=1
$$

On the other hand, since $3 \nmid Q$ for $w=3$ or $w=6$, it can be seen that $\left(\frac{3}{V_{2^{k+3}}}\right)=1$ and $\left(\frac{6}{V_{2^{k+3}}}\right)=1$ by Lemma 2.3 and 2.21 . Thus when $w \in$
$\{2,3,6\}$, we have

$$
1=\left(\frac{-w\left(V_{4}-Q^{2}\right)}{V_{2^{k+3}}}\right)=-\left(\frac{w}{V_{2^{k+3}}}\right)\left(\frac{V_{4}-Q^{2}}{V_{2^{k+3}}}\right)=-1
$$

by Lemma 2.3 and (3.1), a contradiction.
Now let $r=2, w=3$ or 6 , and $3 \nmid Q$. Then $n=4 z$. Assume that $z>1$. Then we can write $n=4 z=4(4 q \pm 1)=2 \cdot 8 q \pm 4$ for some odd positive integer q. A similar argument shows that $V_{n}^{2}-Q^{n}=w x^{2}$ has no solutions when q is odd or even. When $z=1$, the equation $V_{4}^{2}-Q^{4}=3 x^{2}$ has a solution, at least for $P=Q=1$. But $V_{4}^{2}-Q^{4}=6 x^{2}$ has no solutions. Indeed, by 2.4, it follows that $6 x^{2}=V_{4}^{2}-Q^{4}=V_{8}+Q^{4}$ and thus

$$
6 x^{2}=V_{8}+Q^{4} \equiv-Q^{4} V_{0}+Q^{4} \equiv-Q^{4}\left(\bmod V_{4}\right)
$$

by 2.20. This shows that

$$
1=J=\left(\frac{-6}{V_{4}}\right)=-\left(\frac{2}{V_{4}}\right)\left(\frac{3}{V_{4}}\right)=-\left(\frac{3}{V_{4}}\right)
$$

by Lemma 2.3. On the other hand, if $3 \mid P$, then $J=-1$ by Lemma 2.4 . Therefore $3 \nmid P$. Now, if $Q \equiv 2(\bmod 3)$, then $J=-1$ by (2.21). This is impossible.

Thus $Q \equiv 1(\bmod 3)$ since $3 \nmid Q$. Moreover, the equation $V_{4}^{2}-Q^{4}=6 x^{2}$ implies that

$$
\begin{equation*}
\left(\frac{V_{4}-Q^{2}}{6}\right)\left(V_{4}+Q^{2}\right)=x^{2} \tag{3.2}
\end{equation*}
$$

since $V_{4}-Q^{2} \equiv 6(\bmod 8)$ and $3 \mid\left(V_{4}-Q^{2}\right)$ by Lemmas 2.2 and 2.4. Thus, (3.2) implies

$$
\begin{equation*}
V_{4}+Q^{2}=\left(P^{2}+Q\right)\left(P^{2}+3 Q\right)=\square \tag{3.3}
\end{equation*}
$$

since $\left(\frac{V_{4}-Q^{2}}{6}, V_{4}+Q^{2}\right)=1$. Then 3.3 implies

$$
\begin{equation*}
P^{2}+Q=2 \square \quad \text { and } \quad P^{2}+3 Q=2 \square \tag{3.4}
\end{equation*}
$$

since $\left(P^{2}+Q, P^{2}+3 Q\right)=2$. It can be easily shown that 3.4 is impossible, by reducing modulo 8 .

4. Main theorems

4.1. Solutions of $U_{n}=k x^{2}, U_{n}=2 k x^{2}$ and $U_{n}=w U_{m} x^{2}$

Theorem 4.1. Let $k>1$ be a square free positive divisor of P. If $U_{n}=$ $k x^{2}$ for some integer x, then $n=2,6$, or 12 .

Proof. Assume that $U_{n}=k x^{2}$ for some integer x and $k \mid P$ with $k>1$. Then n is even by 2.14. Let $n=2 m$. Hence $k x^{2}=U_{n}=U_{2 m}=U_{m} V_{m}$ by
(2.3) and this implies that

$$
\begin{equation*}
U_{m}=a \square \quad \text { and } \quad V_{m}=b \square \tag{4.1}
\end{equation*}
$$

or

$$
\begin{equation*}
U_{m}=2 a \square \quad \text { and } \quad V_{m}=2 b \square \tag{4.2}
\end{equation*}
$$

for some integers a and b with $a b=k$ since $\left(U_{m}, V_{m}\right)=1$ or 2 by 2.13.
Assume that (4.1) is satisfied. By Theorem 2.9, we have $m=1,3$, or 5 if $b>1$ since $b \mid P$. If $b=1$, then $V_{m}=\square$ implies $m=1,3$, or 5 by Lemma 2.5. Consequently, $n=2,6$, or 10 . But, if $n=10$, the equation $U_{10}=U_{5} V_{5}=k x^{2}$ implies $U_{5}=\square$ by (2.13) and 2.14 , which is impossible by Theorem 2.11 .

Assume that 4.2 is satisfied. By Theorem 2.10, we have $m=3$ if $b>1$ since $b \mid P$. If $b=1$, then $V_{m}=2 \square$ implies $m=3$ or 6 by Lemma 2.6. Thus $n=6$ or 12 .

TheOrem 4.2. Let $k>1$ be a square free positive divisor of P. If $U_{n}=$ $2 k x^{2}$ for some integer x, then $n=6$ or 12 .

Proof. Assume that $k>1, k \mid P$, and $U_{n}=2 k x^{2}$. Then n is even by (2.14). Let $n=2 m$. Since $2 \mid U_{n}$, it follows that $3 \mid n$ by 2.9 , and therefore $3 \mid m$. Hence $k x^{2}=U_{n} / 2=U_{2 m} / 2=U_{m}\left(V_{m} / 2\right)$ and this implies

$$
\begin{equation*}
U_{m}=a \square \quad \text { and } \quad V_{m}=2 b \square \tag{4.3}
\end{equation*}
$$

or

$$
\begin{equation*}
U_{m}=2 a \square \quad \text { and } \quad V_{m}=b \square \tag{4.4}
\end{equation*}
$$

for some integers a and b with $a b=k$ since $\left(U_{m}, V_{m}\right)=1$ or 2 by (2.13). Moreover, it can be easily seen that $a=1, b=k$ or $a=k, b=1$ since either $\left(U_{m}, k\right)=1$ or $\left(V_{m} / 2, k\right)=1$ by (2.7) and (2.8). Then (4.3) implies that $m=3$ or $m=6$ by Lemma 2.6 and Theorems 2.10, 2.11, and 4.1 since $3 \mid m$. Similarly, (4.4) implies that $m=3$ by Lemma 2.5 and Theorems 2.9 and 2.12. Consequently, $n=6$ or $n=12$.

Corollary 4.3. If $U_{n}=6 x^{2}$ for some integer x, then $n=3$ or $n=6$. $U_{3}=6 x^{2}$ if and only if $P^{2}+Q=6 x^{2} ; U_{6}=6 x^{2}$ if and only if $P=\square$, $P^{2}+Q=2 \square, P^{2}+3 Q=3 \square$, and $Q \equiv 1(\bmod 8)$ or $P=\square, P^{2}+Q=\square$, $P^{2}+3 Q=6 \square$, and $Q \equiv 7(\bmod 8)$.

Proof. Assume that $U_{n}=6 x^{2}$. We divide the proof into two cases.
Case 1: $3 \mid P$. Then, since $U_{n}=2 \cdot 3 x^{2}$, it follows that $n=6$ or 12 by Theorem 4.2.

If $n=6$, it can be seen from $U_{6}=6 x^{2}$ that $V_{3}=3 \square, U_{3}=2 \square$ or $V_{3}=$ $6 \square, U_{3}=\square$ by Theorem 2.14 and Lemma 2.15. Hence, $P=\square, P^{2}+Q=2 \square$, $P^{2}+3 Q=3 \square$, and $Q \equiv 1(\bmod 8)$ or $P=\square, P^{2}+Q=\square, P^{2}+3 Q=6 \square$, and $Q \equiv 7(\bmod 8)$, respectively, by Lemmas 2.7 and 2.8 and Theorems 2.11 and 2.12 .

If $n=12$, then $U_{12}=6 x^{2}$ implies $U_{6}=3 \square$ and $V_{6}=2 \square$ by Lemma 2.2, Theorem 2.14, and Lemma 2.15. This is impossible by Lemma 2.6 and Theorem 2.13 .

Case $2: 3 \nmid P$. Since $2 \mid U_{n}$ and $3 \mid U_{n}$, it is seen that $12 \mid n, 3 \nmid Q$ or $3 \mid n$, $4 \nmid n$, and $Q \equiv 2(\bmod 3)$ by 2.9$)$ and Theorem 2.14 .

Firstly, assume that $12 \mid n$ and $3 \nmid Q$. Then $n=12 m$. Hence $6 x^{2}=U_{n}=$ $U_{12 m}=U_{6 m} V_{6 m}$, which implies

$$
\begin{align*}
& U_{6 m}=\square \quad \text { and } \quad V_{6 m}=6 \square, \tag{4.5}\\
& U_{6 m}=2 \square \quad \text { and } \quad V_{6 m}=3 \square, \tag{4.6}\\
& U_{6 m}=3 \square \quad \text { and } \quad V_{6 m}=2 \square, \tag{4.7}
\end{align*}
$$

or

$$
\begin{equation*}
U_{6 m}=6 \square \quad \text { and } \quad V_{6 m}=\square \tag{4.8}
\end{equation*}
$$

by (2.13). The identities (4.5), (4.6), and (4.8) are impossible by Lemmas $2.5,2.7$ and 2.8 , and Theorems 2.11 and 2.12 . The identity 4.7 implies that $m=1$ by Lemma 2.6 and Theorem 2.13 . Then $U_{6}=3 \square$ and therefore $3 \mid P$ by Theorem 2.13. This contradicts $3 \nmid P$.

Secondly, assume that $3 \mid n, 4 \nmid n$, and $Q \equiv 2(\bmod 3)$. Then $n=3 m$. Hence,

$$
2 x^{2}=\frac{U_{n}}{3}=\frac{U_{3 m}}{3}=U_{m}\left(\frac{V_{m}^{2}-(-Q)^{m}}{3}\right)
$$

by 2.5. Since

$$
\left(U_{m}, \frac{\left(P^{2}+4 Q\right) U_{m}^{2}+3(-Q)^{m}}{3}\right)=1
$$

by 2.7), it follows that

$$
\begin{equation*}
U_{m}=\square \quad \text { and } \quad V_{m}^{2}-(-Q)^{m}=6 \square \tag{4.9}
\end{equation*}
$$

or

$$
\begin{equation*}
U_{m}=2 \square \quad \text { and } \quad V_{m}^{2}-(-Q)^{m}=3 \square . \tag{4.10}
\end{equation*}
$$

Assume that (4.9) is satisfied. Then $m=1$ or $m=2$ by Theorem 2.11 and Lemma 3.3. Therefore $n=3$ or $n=6$. The identity 4.10) is impossible by Theorem 2.12 and Lemma 3.3 .

In the following four theorems, we assume that $U_{m} \neq 1$ for all m. When $U_{m}=1$, we have $U_{n}=w x^{2}$ with $w \in\{1,2,3,6\}$. In this case, the solutions of these equations are given in Theorems $2.11 / 2.13$ and Corollary 4.3.

Theorem 4.4. Assume that $m>1$ and $U_{n}=U_{m} x^{2}$ for some integer x. Then $m=n$ or $(m, n)=(5,10),(2,12)$, or $(3,6)$.

Proof. Since $U_{m} \mid U_{n}$, we have $n=m r$ for some integer r by 2.10. Thus,

$$
\begin{equation*}
x^{2}=\frac{U_{n}}{U_{m}}=\frac{U_{m r}}{U_{m}}=U_{r}\left(V_{m},-(-Q)^{m}\right) \tag{4.11}
\end{equation*}
$$

by (2.16). If $r=1$, then $m=n$. So, assume that $r \neq 1$.
Let $3 \nmid m$. Then V_{m} is odd by (2.9) and also $\left(V_{m},-(-Q)^{m}\right)=1$ by (2.8). Hence, (4.11) implies that $r=2,3,6$, or 12 , and therefore

$$
\begin{align*}
& V_{m}=x^{2} \quad \text { if } r=2, \tag{4.12}\\
& V_{m}^{2}-(-Q)^{m}=x^{2} \quad \text { if } r=3, \tag{4.13}\\
& V_{m}=3 \square, V_{m}^{2}-(-Q)^{m}=2 \square, V_{m}^{2}-3(-Q)^{m}=6 \square \quad \text { if } r=6, \tag{4.14}\\
& V_{m}=\square, V_{m}^{2}-(-Q)^{m}=2 \square, \tag{4.15}\\
& V_{m}^{2}-2(-Q)^{m}=3 \square, V_{m}^{2}-3(-Q)^{m}=\square \quad \text { if } r=12,
\end{align*}
$$

by Theorem 2.11. Since $3 \nmid m$ and $m>1$, (4.12) implies that $m=5$ and so $n=10$ by Lemma 2.5 . The identity 4.13) is impossible by Lemma 3.3 since $m>1$. The identity (4.14) implies $m=2$ by Lemmas 2.7, 3.2 and 3.3. Therefore $n=12$. Lastly, 4.15 is impossible by Lemmas 2.5 and 3.2 since $m>1$.

Now let $3 \mid m$. If r is even, then $r=2 a$ and therefore $n=m r=2 m a$. Hence, using 2.3 we get

$$
x^{2}=\frac{U_{n}}{U_{m}}=\frac{U_{2 m a}}{U_{m}}=\frac{U_{m a}}{U_{m}} V_{m a}
$$

and this implies

$$
\begin{equation*}
U_{m a}=U_{m} \square \quad \text { and } \quad V_{m a}=\square \tag{4.16}
\end{equation*}
$$

or

$$
\begin{equation*}
U_{m a}=2 U_{m} \square \quad \text { and } \quad V_{m a}=2 \square \tag{4.17}
\end{equation*}
$$

since $\left(U_{m a} / U_{m}, V_{m a}\right)=1$ or 2 by 2.13 .
Assume that 4.16 is satisfied. Then $m=3, a=1$ by Lemma 2.5 since $3 \mid m$. Thus $n=6$.

Assume that (4.17) is satisfied. Then $m=3, a=1$ or $m=3, a=2$, or $m=6, a=1$ by Lemma 2.6. It can be seen that neither $m=3, a=1$ nor $m=6, a=1$ is possible for the equation $U_{m a}=2 U_{m} \square$. If $m=3$ and $a=2$, then we get $V_{6}=2 \square$ and $V_{3}=2 \square$, which is impossible by Lemma 2.6.

Assume that r is odd. Since $3 \mid m$, we can write $m=3 s$.
If s is even, then $s=2 b$ and so $n=m r=3 s r=6 b r$. Hence, using (2.3) and 2.11, we get

$$
x^{2}=\frac{U_{n}}{U_{m}}=\frac{U_{6 b r}}{U_{6 b}}=\frac{U_{3 b r}}{U_{3 b}} \frac{V_{3 b r}}{V_{3 b}}
$$

and this implies

$$
\begin{equation*}
U_{3 b r}=U_{3 b} \square \quad \text { and } \quad V_{3 b r}=V_{3 b} \square \tag{4.18}
\end{equation*}
$$

or

$$
\begin{equation*}
U_{3 b r}=2 U_{3 b} \square \quad \text { and } \quad V_{3 b r}=2 V_{3 b} \square \tag{4.19}
\end{equation*}
$$

since $\left(U_{3 b r} / U_{3 b}, V_{3 b r} / V_{3 b}\right)=1$ or 2 by (2.13). Each of 4.18) and 4.19) is impossible, by [12, Theorems 3.2 and 3.3] respectively.

Now let s be odd. Then m is odd too.
Let $r \equiv 1(\bmod 4)$. Then writing $n=m r=m(r-1)+m=2 \cdot 2^{k} m z+m$ for some odd positive integer z with $k \geq 1$, we get

$$
U_{m} x^{2}=U_{n}=U_{2 \cdot 2^{k} m z+m} \equiv-Q^{2^{k} m z} U_{m}\left(\bmod V_{2^{k}}\right)
$$

by 2.19). Since $\left(U_{m}, V_{2^{k}}\right)=1$ by 2.13 , the above congruence yields

$$
x^{2} \equiv-Q^{2^{k} m z}\left(\bmod V_{2^{k}}\right)
$$

This shows that $\left(\frac{-1}{V_{2^{k}}}\right)=1$, which is impossible by Lemma 2.3 .
If $r \equiv-1(\bmod 4)$, then $n=m r=m(r+1)-m=2 \cdot 2^{k} m z-m$ with z odd and $k \geq 1$. Thus

$$
U_{m} x^{2}=U_{n}=U_{2 \cdot 2^{k} m z-m} \equiv-Q^{2^{k} m z-m} U_{m}\left(\bmod V_{2^{k}}\right)
$$

by (2.1) and (2.19). Since $\left(U_{m}, V_{2^{k}}\right)=1$ by (2.13), we obtain

$$
x^{2} \equiv-Q^{2^{k} m z-m}\left(\bmod V_{2^{k}}\right)
$$

This shows that $\left(\frac{-Q}{V_{2^{k}}}\right)=1$. If $Q \equiv 1(\bmod 4)$, then, by Lemma 2.3 ,

$$
1=\left(\frac{-Q}{V_{2^{k}}}\right)=\left(\frac{-1}{V_{2^{k}}}\right)\left(\frac{Q}{V_{2^{k}}}\right)=-\left(\frac{-1}{Q}\right)=-1
$$

a contradiction. If $Q \equiv-1(\bmod 4)$, then (4.11) implies that r is a perfect square by Theorem 2.16 , contrary to $r \equiv-1(\bmod 4)$.

Theorem 4.5. Assume that $m>1$ and $U_{n}=2 U_{m} x^{2}$ for some integer x. Then $(m, n)=(2,6),(3,6),(3,12)$, or $(6,12)$.

Proof. Since $U_{m} \mid U_{n}$, it follows that $n=m r$ for some positive integer r by 2.10). Thus,

$$
\begin{equation*}
2 x^{2}=\frac{U_{n}}{U_{m}}=\frac{U_{m r}}{U_{m}}=U_{r}\left(V_{m},-(-Q)^{m}\right) \tag{4.20}
\end{equation*}
$$

by (2.16).
Firstly, let $3 \nmid m$. Then V_{m} is odd by $(2.9\rangle$ and also $\left(V_{m},-(-Q)^{m}\right)=1$ by (2.8). Hence, $r=3$ or 6 by Theorem 2.12. If $r=3$, then we obtain $V_{m}^{2}-(-Q)^{m}=2 x^{2}$ from 4.20 . Thus $m=2$, and therefore $n=6$ by Lemma 3.3. If $r=6$, then $V_{m}=\square, V_{m}^{2}-(-Q)^{m}=2 \square$, and $V_{m}^{2}-3(-Q)^{m}=\square$ by Theorem 2.12. This is impossible by Lemmas 2.5, 3.2, and 3.3.

Secondly, let $3 \mid m$. Then V_{m} is even by 2.9 . Thus, since $2 \mid U_{r}, r$ is even by (2.17). Let $r=2 a$. Hence, using (2.3), we get

$$
x^{2}=\frac{U_{n}}{2 U_{m}}=\frac{U_{2 m a}}{2 U_{m}}=\frac{U_{m a}}{U_{m}} \cdot \frac{V_{m a}}{2}
$$

and this implies

$$
\begin{equation*}
U_{m a}=U_{m} \square \quad \text { and } \quad V_{m a}=2 \square \tag{4.21}
\end{equation*}
$$

or

$$
\begin{equation*}
U_{m a}=2 U_{m} \square \quad \text { and } \quad V_{m a}=\square \tag{4.22}
\end{equation*}
$$

since $\left(U_{m a} / U_{m}, V_{m a} / 2\right)=1$ or 2 by (2.13).
Assume that (4.21) holds. Then $(m, a)=(3,1),(6,1)$, or $(3,2)$ by Lemma 2.6 and Theorem 4.4. Thus $(m, n)=(3,6),(6,12)$, or $(3,12)$.

Assume that (4.22) is satisfied. Then $m=3, a=1$ by Lemma 2.5 since $3 \mid m$. But these values are impossible for $U_{m a}=2 U_{m} \square$.

Theorem 4.6. Assume that $m>1$ and $U_{n}=3 U_{m} x^{2}$ for some integer x. Then $(m, n)=(2,4),(2,6),(3,6),(4,12)$, or $(5,10)$.

Proof. Since $U_{m} \mid U_{n}$, we have $n=m r$ for some integer r by (2.10). Thus

$$
\begin{equation*}
3 x^{2}=\frac{U_{n}}{U_{m}}=\frac{U_{m r}}{U_{m}}=U_{r}\left(V_{m},-(-Q)^{m}\right) \tag{4.23}
\end{equation*}
$$

by (2.16).
Let $3 \nmid m$. Then V_{m} is odd by (2.9) and also $\left(V_{m},-(-Q)^{m}\right)=1$ by (2.8). Thus 4.23 implies $r=2,3,4$, or 6 . Therefore, by Theorem 2.13 ,
(4.24) $\quad V_{m}=3 x^{2} \quad$ if $r=2$,

$$
\begin{equation*}
V_{m}^{2}-(-Q)^{m}=3 x^{2} \quad \text { if } r=3 \tag{4.25}
\end{equation*}
$$

$$
\begin{equation*}
V_{m}=\square \text { and } V_{m}^{2}-2(-Q)^{m}=3 \square \quad \text { if } r=4 \tag{4.26}
\end{equation*}
$$

$$
\begin{equation*}
V_{m}=\square, V_{m}^{2}-(-Q)^{m}=2 \square \text { and } V_{m}^{2}-3(-Q)^{m}=6 \square \quad \text { if } r=6 \tag{4.27}
\end{equation*}
$$

The identity 4.24 implies that $m=2$ or $m=5$ by Lemma 2.7 since $3 \nmid m$ and $m>1$. Thus $n=4$ or $n=10$. The identity 4.25 implies that $m=2$ or $m=4$ by Lemma 3.3 and therefore $n=6$ or $n=12$.

Assume that 4.26 is satisfied. Since $V_{2 m}=V_{m}^{2}-2(-Q)^{m}$ by (2.4), we have $V_{m}=\square$ and $V_{2 m}=3 \square$. This is impossible by Lemmas 2.5 and 2.7 . The identity 4.27) is impossible by Lemmas $2.5,3.2$, and 3.3 .

Now let $3 \mid m$. Firstly, assume that r is even. Then $r=2 a$ and thus $n=m r=2 m a$. Hence, using (2.3), we have

$$
3 x^{2}=\frac{U_{n}}{U_{m}}=\frac{U_{2 m a}}{U_{m}}=\frac{U_{m a}}{U_{m}} \cdot V_{m a}
$$

and this implies that

$$
\begin{array}{ll}
U_{m a}=U_{m} \square \quad \text { and } \quad V_{m a}=3 \square, \\
U_{m a}=3 U_{m} \square \quad \text { and } \quad V_{m a}=\square, \\
U_{m a}=2 U_{m} \square & \text { and } \quad V_{m a}=6 \square, \tag{4.30}
\end{array}
$$

or

$$
\begin{equation*}
U_{m a}=6 U_{m} \square \quad \text { and } \quad V_{m a}=2 \square . \tag{4.31}
\end{equation*}
$$

The identity (4.28) implies that $m=3, a=1$ by Lemma 2.7 since $3 \mid m$. Thus $n=6$. The identity (4.29) implies that $m=3, a=1$ by Lemma 2.5 . But this is impossible for the equation $U_{m a}=3 U_{m} \square$. It can be seen that 4.30) is impossible by Lemma 2.8 and Theorem 4.5. The identity (4.31) implies $(m, a)=(3,1),(6,1)$, or $(3,2)$ by Lemma 2.6. It can be seen that $(m, a)=(3,1)$ or $(6,1)$ is impossible. If $m=3, a=2$, then $V_{6}=2 \square$ and $V_{3}=6 \square$. This is impossible by Lemma 2.6 and Lemma 2.8.

Secondly, assume that r is odd. Then, since $3 \mid U_{r}$ by (4.23), it follows that $3 \mid r$ by Theorem 2.14. Let $r=3 s$ for some positive integer s. Then $n=m r=3 m s$ and thus

$$
3 x^{2}=\frac{U_{n}}{U_{m}}=\frac{U_{3 m s}}{U_{m}}=\frac{U_{m s}}{U_{m}}\left(V_{m s}^{2}-(-Q)^{m s}\right)
$$

by (2.5). Since

$$
\left(\frac{U_{m s}}{U_{m}},\left(P^{2}+4 Q\right) U_{m s}^{2}+3(-Q)^{m s}\right)=1,3
$$

by (2.7), it follows that

$$
\begin{equation*}
U_{m s}=U_{m} \square \quad \text { and } \quad V_{m s}^{2}-(-Q)^{m s}=3 \square \tag{4.32}
\end{equation*}
$$

or

$$
\begin{equation*}
U_{m s}=3 U_{m} \square \quad \text { and } \quad V_{m s}^{2}-(-Q)^{m s}=\square . \tag{4.33}
\end{equation*}
$$

But (4.32) and (4.33) are impossible by Lemma 3.3 since $3 \mid \mathrm{m}$.
Theorem 4.7. Assume that $m>1$ and $U_{n}=6 U_{m} x^{2}$ for some integer x. Then $(m, n)=(2,6)$ or $(3,6)$.

Proof. Since $U_{m} \mid U_{n}$, it follows that $n=m r$ for some integer r by (2.10). Hence,

$$
\begin{equation*}
6 x^{2}=\frac{U_{n}}{U_{m}}=\frac{U_{m r}}{U_{m}}=U_{r}\left(V_{m},-(-Q)^{m}\right) \tag{4.34}
\end{equation*}
$$

by (2.16).
Firstly, let $3 \nmid m$. Then V_{m} is odd by $\left(2.9\right.$ and also $\left(V_{m},-(-Q)^{m}\right)=1$ by (2.8). Thus (4.34) implies that $r=3$ or 6 by Corollary 4.3. If $r=3$, we have $V_{m}^{2}-(-Q)^{m}=6 \square$. Thus $m=2$ by Lemma 3.3 since $m>1$. Therefore
$n=6$. If $r=6$, then

$$
V_{m}=\square, \quad V_{m}^{2}-(-Q)^{m}=2 \square, \quad V_{m}^{2}-3(-Q)^{m}=3 \square
$$

or

$$
V_{m}=\square, \quad V_{m}^{2}-(-Q)^{m}=\square, \quad V_{m}^{2}-3(-Q)^{m}=6 \square
$$

by Corollary 4.3. But both of these are impossible by Lemmas 2.5, 3.2, and 3.3 .

Secondly, let $3 \mid m$. Then V_{m} is even by (2.9). Thus, since $2 \mid U_{r}$ by (4.34), r is even by (2.17). Let $r=2 s$. Hence, using (2.3), we have

$$
3 x^{2}=\frac{U_{n}}{2 U_{m}}=\frac{U_{m r}}{2 U_{m}}=\frac{U_{2 m s}}{2 U_{m}}=\frac{U_{m s}}{U_{m}} \cdot \frac{V_{m s}}{2}
$$

since $3 \mid \mathrm{m}$. This implies

$$
\begin{align*}
& U_{m s}=U_{m} \square \quad \text { and } \quad V_{m s}=6 \square \tag{4.35}\\
& U_{m s}=3 U_{m} \square \quad \text { and } \quad V_{m s}=2 \square \tag{4.36}\\
& U_{m s}=2 U_{m} \square \quad \text { and } \quad V_{m s}=3 \square \tag{4.37}
\end{align*}
$$

or

$$
\begin{equation*}
U_{m s}=6 U_{m} \square \quad \text { and } \quad V_{m s}=\square \tag{4.38}
\end{equation*}
$$

since $\left(U_{m s} / U_{m}, V_{m s} / 2\right)=1$ or 2 by 2.13 .
The identity (4.35) implies $m=3, s=1$ by Lemma 2.8 and so $n=6$. The identity 4.36) implies $m=3, s=2$ by Lemma 2.6 and Theorem 4.6 . But, in this case, we obtain $V_{3}=3 \square$ and $V_{6}=2 \square$. This is impossible by Lemmas 2.6 and 2.7. The identity 4.37) is impossible by Lemma 2.7 and Theorem 4.5. The identity (4.38) implies $m=3, s=1$ by Lemma 2.5. But this is impossible for the equation $U_{m s}=6 U_{m} \square$.
4.2. On square classes in a generalized Fibonacci sequence. In [4, 5, 8], the authors defined $U_{n} \sim U_{m}$ iff there exist nonzero integers x and y such that $x^{2} U_{n}=y^{2} U_{m}$, or equivalently, $U_{n} U_{m}=\square$. If $U_{n} \sim U_{m}$, then U_{n} and U_{m} are said to be in the same square class, and a square class containing more than one term of the sequence $\left(U_{n}\right)$ is called non-trivial.

Now we briefly summarize the relevant known facts. Ribenboim [5] has explicitly shown that if $m \neq 1,2,3,6,12$, then the square classes of F_{m} is trivial. That is, if $m \neq 1,2,3,6,12$ and $F_{n} F_{m}=\square$, then $m=n$. It should be pointed out that more generally, Cohn [1] determined the square classes of the sequence $\left(U_{n}(P, Q)\right)$ when $Q= \pm 1$ and P is odd. Ribenboim [6] has determined the square classes of the sequences $U_{n}(Q+1, Q)$. Moreover, when P and Q are nonzero relatively prime integers such that $P^{2}+4 Q \neq 0$, Ribenboim and McDaniel [8] showed that each square class of the sequences $\left(U_{n}\right)$ and $\left(V_{n}\right)$ is finite, and its elements are effectively computable. Moreover, in [4] they showed that for all odd relatively prime integers P and Q
with $P>0$ and $P^{2}+4 Q>0$, if $U_{n} U_{m}=\square$ for $1 \leq m<n$, then either $(m, n)=(1,2),(1,6),(1,12),(2,3),(2,12),(3,6),(5,10)$, or $(10,15)$, or $n=$ $3 m, 3 \nmid m, m$ odd. But $(m, n)=(10,15)$ is impossible: if $(m, n)=(10,15)$, then

$$
U_{15} U_{10}=U_{5}^{2}\left(V_{5}^{2}+Q^{5}\right) V_{5}=\square
$$

by 2.3 and 2.5 and this implies that

$$
V_{5}=\square \text { and } V_{5}^{2}+Q^{5}=\square
$$

since $\left(V_{5}^{2}+Q^{5}, V_{5}\right)=1$ by 2.8$)$. The equation $V_{5}^{2}+Q^{5}=\square$ has no solutions by Lemma 3.3 . Moreover, we will prove in Theorem 4.8 that m may only be 1 , and therefore $n=3$, in case $U_{n} U_{m}=\square$ for $n=3 m, 3 \nmid m, m$ odd. Lastly, Şiar [12] determined all n and m such that $V_{n} V_{m}=w \square$ with $w \in\{1,2,3,6\}$.

Now let a and b be square-free positive integers such that $(a, b)=1$. Then we define an equivalence relation as follows: $a U_{n} \sim b U_{m}$ iff there exist non-zero integers x and y such that $x^{2} a U_{n}=y^{2} b U_{m}$, or equivalently, $U_{n} U_{m}=a b \square$.

Now, we consider the equivalence relation $a U_{n} \sim b U_{m}$ when $a b \in$ $\{1,2,3,6\}$. In the following four theorems, we assume (1.1).

Theorem 4.8. Assume that $U_{n} U_{m}=x^{2}$ for $1 \leq m \leq n$. Then $m=n$ or $(m, n)=(1,2),(1,3),(1,6),(1,12),(2,3),(2,12),(3,6)$, or $(5,10)$.

Proof. It is obvious that $m=n$ is a solution. So, let $m \neq n$. Let $d=$ (m, n). Then $\left(U_{m}, U_{n}\right)=U_{d}$ by (2.12) and therefore

$$
\frac{U_{n}}{U_{d}} \frac{U_{m}}{U_{d}}=\left(\frac{x}{U_{d}}\right)^{2}
$$

Since $\left(U_{n} / U_{d}, U_{m} / U_{d}\right)=1$, it follows that $U_{n}=U_{d} \square$ and $U_{m}=U_{d} \square$. Assume that $U_{d} \neq 1$. Then it is obvious that $d>1$. Thus, by Theorem 4.4,

$$
\begin{array}{r}
n=d, \quad \text { or } \quad(d, n)=(5,10),(2,12), \text { or }(3,6), \\
m=d, \quad \text { or } \quad(d, m)=(5,10),(2,12), \text { or }(3,6) . \tag{4.40}
\end{array}
$$

The identities 4.39) and 4.40 imply that $(m, n)=(5,10),(2,12)$, or $(3,6)$. If $U_{d}=1$, then $U_{n}=\square$ and $U_{m}=\square$, and these imply that

$$
(m, n)=(1,2),(1,3),(1,6),(1,12),(2,3),(2,6), \text { or }(2,12)
$$

by Theorem 2.11. But $(m, n)=(2,6)$ is impossible for $U_{n} U_{m}=x^{2}$.
Theorem 4.9. Assume that $U_{n} U_{m}=2 x^{2}$ for $1 \leq m \leq n$. Then $(m, n)=$ $(1,3),(1,6),(2,3),(2,6),(3,6),(3,12)$, or $(6,12)$.

Proof. It is obvious that $m \neq n$. Let $d=(m, n)$. Then $\left(U_{m}, U_{n}\right)=U_{d}$ by (2.12) and therefore

$$
\frac{U_{n}}{U_{d}} \frac{U_{m}}{U_{d}}=2\left(\frac{x}{U_{d}}\right)^{2}
$$

Since $\left(U_{n} / U_{d}, U_{m} / U_{d}\right)=1$, it follows that

$$
\begin{equation*}
U_{n}=U_{d} \square \quad \text { and } \quad U_{m}=2 U_{d} \square \tag{4.41}
\end{equation*}
$$

or

$$
\begin{equation*}
U_{n}=2 U_{d} \square \quad \text { and } \quad U_{m}=U_{d} \square . \tag{4.42}
\end{equation*}
$$

Assume that $U_{d} \neq 1$. Then it is obvious that $d>1$. Thus (4.41) and (4.42) imply that $(m, n)=(6,12)$ and $(m, n)=(2,6),(3,6),(3,12)$, or $(6,12)$ by Theorems 4.4 and 4.5. If $U_{d}=1$, then $U_{n}=\square, U_{m}=2 \square$ or $U_{n}=2 \square$, $U_{m}=\square$. From these equations, we can see that $(m, n)=(1,3),(1,6),(2,3)$, or $(2,6)$ by Theorems 2.11 and 2.12 .

Similarly, the following theorems can be proved using Theorems 2.11 2.13, Corollary 4.3, and Theorems 4.6 and 4.7. Therefore we omit their proofs.

Theorem 4.10. If $U_{n} U_{m}=3 x^{2}$ for $1 \leq m \leq n$, then $(m, n)=(1,2)$, $(1,3),(1,4),(1,6),(2,3),(2,4),(2,6),(3,6),(4,12)$, or $(5,10)$.

Theorem 4.11. If $U_{n} U_{m}=6 x^{2}$ for $1 \leq m \leq n$, then $(m, n)=(1,3)$, $(1,6),(2,3),(2,6),(3,4),(3,6)$, or $(4,6)$.

References

[1] J. H. E. Cohn, Squares in some recurrent sequences, Pacific J. Math. 41 (1972), 631-646.
[2] R. Keskin and Z. Yosma, On Fibonacci and Lucas numbers of the form $c x^{2}$, J. Integer Sequences 14 (2011), art. 11.9.3, 12 pp.
[3] W. L. McDaniel, The g.c.d. in Lucas sequences and Lehmer number sequences, Fibonacci Quart. 29 (1991), 24-30.
[4] W. L. McDaniel and P. Ribenboim, Square-classes in Lucas sequences having odd parameters, J. Number Theory 73 (1998), 14-27.
[5] P. Ribenboim, Square-classes of Fibonacci and Lucas numbers, Portugal. Math. 46 (1989), 159-175.
[6] P. Ribenboim, Square classes of $\frac{a^{n}-1}{a-1}$ and $a^{n}+1$, J. Sichuan Univ. 26 (1989), 196-199.
[7] P. Ribenboim, My Numbers, My Friends, Springer, New York, 2000.
[8] P. Ribenboim and W. L. McDaniel, Square classes of Lucas sequences, Portugal. Math. 48 (1991), 469-473.
[9] P. Ribenboim and W. L. McDaniel, The square terms in Lucas sequences, J. Number Theory 58 (1996), 104-123; Addendum, ibid. 61 (1996), 420.
[10] P. Ribenboim and W. L. McDaniel, On Lucas sequence terms of the form $k x^{2}$, in: Number Theory, in memory of Kustaa Inkeri (Turku, 1999), de Gruyter, Berlin, 2001, 293-303.
[11] A. Rotkiewicz, Applications of Jacobi's symbol to Lehmer's numbers, Acta Arith. 42 (1983), 163-187.
[12] Z. Şiar, On square classes in generalized Lucas sequences, Int. J. Number Theory 11 (2015), 661-672.
[13] Z. Şiar and R. Keskin, Some new identities concerning generalized Fibonacci and Lucas numbers, Hacettepe J. Math. Statist. 42 (2013), 211-222.
[14] Z. Şiar and R. Keskin, The square terms in generalized Lucas sequence with parameters P and Q, Math. Scand. 118 (2016), 13-26.

Zafer Şiar
Mathematics Department
Bingöl University
12000 Bingöl, Turkey
Mathematics Department
Sakarya University
54050 Sakarya, Turkey
E-mail: zsiar@bingol.edu.tr
E-mail: rkeskin@sakarya.edu.tr

[^0]: 2010 Mathematics Subject Classification: 11B37, 11B39.
 Key words and phrases: generalized Fibonacci numbers, generalized Lucas numbers, congruences.

