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WEIGHTED INEQUALITIES FOR THE DYADIC MAXIMAL
OPERATOR INVOLVING AN INFINITE PRODUCT

BY

WEI CHEN (Yangzhou), RUIJUAN CHEN (Yangzhou) and CHAO ZHANG (Hangzhou)

Abstract. We define a generalized dyadic maximal operator involving an infinite
product. We get adapted Ap and Sp weighted inequalities for this operator. A version of the
Carleson embedding theorem is also proved. Our results heavily depend on a generalized
Hölder inequality.

1. Introduction. The Hardy–Littlewood maximal operator M is an op-
erator acting on real valued Lebesgue measurable functions f by the formula

Mf(x) = sup
x∈Q

1

|Q|

�

Q

|f(y)| dy,

where Q is a nondegenerate cube in the n-dimensional real Euclidean
space Rn with sides parallel to the coordinate axes, and |Q| is the Lebesgue
measure of Q.

Let u, v be two weights, i.e., positive locally integrable functions. As is
well known, for p ≥ 1, Muckenhoupt [M] showed that the inequality

λp
�

{Mf>λ}

u(x) dx ≤ C
�

Rn
|f(x)|pv(x) dx, ∀λ > 0, ∀f ∈ Lp(v),

holds if and only if (u, v) ∈ Ap, i.e., for any cube Q in Rn with sides parallel
to the axes,(

1

|Q|

�

Q

u(x) dx

)(
1

|Q|

�

Q

v(x)−1/(p−1) dx

)p−1
< C, p > 1;

1

|Q|

�

Q

u(x) dx ≤ C ess inf
Q

v(x), p = 1.
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Suppose that u = v and p > 1. Muckenhoupt [M] also proved that�

Rn
(Mf(x))pv(x) dx ≤ C

�

Rn
|f(x)|pv(x) dx, ∀f ∈ Lp(v),

holds if and only if v satisfies(
1

|Q|

�

Q

v(x) dx

)(
1

|Q|

�

Q

v(x)−1/(p−1) dx

)p−1
< C, ∀Q.

But the problem of finding all u and v such that�

Rn
(Mf(x))pu(x) dx ≤ C

�

Rn
|f(x)|pv(x) dx, ∀f ∈ Lp(v),

is much harder and complicated. In order to solve the problem, Sawyer
[S] established the testing condition Sp,q: for any cube Q in Rn with sides
parallel to the axes,( �

Q

(
M(χQv

1−p′)(x)
)q
u(x) dx

)1/q
≤ C

( �
Q

v(x)1−p
′
dx
)1/p

,

where 1 < p ≤ q < ∞. The condition Sp,q is a sufficient and necessary
condition for the weighted inequality( �

Rn
(Mf(x))qu(x) dx

)1/q
≤ C

( �

Rn
|f(x)|pv(x) dx

)1/p
, ∀f ∈ Lp(v),

to hold. Motivated by these results, the theory of weighted inequalities devel-
oped rapidly in the last years, not only for the Hardy–Littlewood maximal
operator but also for other operators in harmonic analysis like Calderón-
Zygmund operators (see [CMP] and [GR] for more information).

Recently, the multisublinear maximal function

M(f1, . . . , fm)(x) = sup
x∈Q

m∏
i=1

1

|Q|

�

Q

|fi(yi)| dyi,

associated with cubes with sides parallel to the coordinate axes, was stud-
ied in [LOPTT]. The importance of this operator is that it generalizes the
Hardy–Littlewood maximal function (case m = 1) and it controls the class
of multilinear Calderón–Zygmund operators in several ways, as shown in
[LOPTT]. The relevant class of multiple weights forM is given by the con-
dition A~p : for ~p = (p1, . . . , pm), ~ω = (ω1, . . . , ωm) and a weight v, the weight
vector (v, ~ω) is in A~p if

sup
Q

v(Q)

|Q|

m∏
i=1

(
1

|Q|

�

Q

ωi(yi)
−1/(pi−1) dyi

)p/p′i
<∞,

where 1/p =
∑m

i=1 1/pi and 1 ≤ p1, . . . , pm <∞.
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It is easy to see that in the linear case (that is, if m = 1), condition A~p is
the usual Ap. In [LOPTT] the following multilinear extension of the Muck-
enhoupt Ap theorem for the maximal function was obtained: the inequality

‖M(~f )‖Lp,∞(v) ≤ C
m∏
i=1

‖fi‖Lpi (ωi), ∀fi ∈ Lpi(ωi),

holds if and only if (v, ~ω) ∈ A~p. Moreover, if 1 < p1, . . . , pm < ∞ and

v =
∏m
i=1w

p/pi
i , then the inequality

(1.1) ‖M(~f )‖Lp(v) ≤ C
m∏
i=1

‖fi‖Lpi (ωi), ∀fi ∈ Lpi(ωi),

holds if and only if (v, ~ω) ∈ A~p. The more general case was extensively
discussed in [GLY, GLPT].

In order to establish a generalization of Sawyer’s theorem to the multilin-
ear setting, Chen and Damián [CD] introduced a reverse Hölder inequality
RH~p on weights and established a multilinear version of Sawyer’s result;
however, the method does not work without RH~p. In our opinion, it is
difficult to establish a multilinear version of Sawyer’s result without any
assumptions. In fact, we also found that Li, Xue and Yan [LXY] introduced
a kind of monotonicity property and established a multilinear version of
Sawyer’s result.

In this paper, for suitable ~f = (f1, f2, . . . ) (see Remarks 2.4 and 3.1
for two kinds of suitable conditions), we define a new generalized dyadic
maximal function

Md(~f )(x) , sup
x∈B∈D

∞∏
i=1

1

|B|

�

B

|fi(yi)| dyi,

where D is the family of dyadic cubes in Rn. This operator involves an infi-
nite product. With some assumptions and notation described in Section 3,
our main results are weighted inequalities for the operator Md.

Firstly, we have weighted weak type inequalities.

Theorem 1.1. Let 1 < pi < ∞ for i ∈ N, and 1/p =
∑∞

i=1 1/pi. Let v
and ωi be weights. Then the following statements are equivalent:

(1) There exists a positive constant C such that(
1

|B|

�

B

v(x) dx

)1/p ∞∏
i=1

(
1

|B|

�

B

ωi(yi)
−1/(pi−1) dyi

)1/p′i
≤ C, ∀B ∈ D.

(2) There exists a positive constant C such that

v(B)1/p
∞∏
i=1

(
1

|B|

�

B

fi(yi) dyi

)
≤ C

∞∏
i=1

‖fiχB‖Lpi (ωi)

for any ~f ∈
∏∞
i=1 L

pi(ωi) and B ∈ D.
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(3) There exists a positive constant C such that

λv({Md(~f ) ≥ λ})1/p ≤ C
∞∏
i=1

‖fi‖Lpi (ωi)

for any ~f ∈
∏∞
i=1 L

pi(ωi) and λ > 0.
(4) There exists a positive constant C such that

λv({Md(~f ) > λ})1/p ≤ C
∞∏
i=1

‖fi‖Lpi (ωi), ∀~f ∈
∞∏
i=1

Lpi(ωi), ∀λ > 0.

Moreover, if we denote the smallest constants C in (1)–(4) by [v, ~ω]A~p,
[v, ~ω]′A~p, ‖Md‖′ and ‖Md‖, respectively, then

[v, ~ω]A~p = [v, ~ω]′A~p = ‖Md‖′ = ‖Md‖.

Secondly, we give a strong type inequality which partially generalizes
(1.1). Let 1 < pi < ∞ for i ∈ N, and 1/p =

∑∞
i=1 1/pi. Let ωi ∈ Api for

i ∈ N. We say that the weight vector ~ω satisfies the condition A∗~p if

∞∏
i=1

[ωi]
1/pi
Api

<∞.

Proposition 1.2. Let 1 < pi < ∞ for i ∈ N, and 1/p =
∑∞

i=1 1/pi. If∑∞
i=1(ln pi)/pi <∞ and the weight vector ~ω satisfies the condition A∗~p, then

‖Md(~f )‖Lp(v) ≤ C
∞∏
i=1

‖fi‖Lpi (ωi), ∀~f ∈
∞∏
i=1

Lpi(ωi),

where

v =

∞∏
i=1

ω
1/pi
i and C =

∞∏
i=1

[ωi]
p′i/pi
Api

∞∏
i=1

p
p′i/pi
i

∞∏
i=1

p′i.

Finally, we can get Sp weighted inequalities involving infinite products.
Let 1 < pi < ∞ for i ∈ N, and 1/p =

∑∞
i=1 1/pi. Let ωi be weights and

let σi = ω
−1/(pi−1)
i for i ∈ N. We say that the weight vector ~ω satisfies the

reverse Hölder condition RH~p if there exists a positive constant C such that

(1.2)
∞∏
i=1

(
1

|B|

�

B

σi dx

)p/pi
≤ C 1

|B|

�

B

∞∏
i=1

σ
p/pi
i dx, ∀B ∈ D.

Moreover, we denote the smallest constant C in (1.2) by [~ω]RH~p .

Theorem 1.3. Let 1 < pi < ∞ for i ∈ N, and 1/p =
∑∞

i=1 1/pi. If
(ω1, ω2, . . . ) ∈ RH~p then the following statements are equivalent:
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(1) There exists a positive constant C such that

‖Md(~f )‖Lp(v) ≤ C
∞∏
i=1

‖fi‖Lpi (ωi), ∀~f ∈
∞∏
i=1

Lpi(ωi).

(2) There exists a positive constant C such that( �
B

(Md(
−−→σχB)(x))pv(x) dx

)1/p
≤ C

∞∏
i=1

( �
B

σi(x) dx
)1/pi

, ∀B ∈ D.

Moreover, if we denote the smallest constants C in (1) and (2) by ‖Md‖
and [v, ~ω]S~p, respectively, then

[v, ~ω]S~p ≤ ‖Md‖ ≤ [v, ~ω]S~p [~ω]
1/p
RH~p

.

The paper is organized as follows. Section 2 contains a generalized Hölder
inequality proved in [CJJ]. Theorems 1.1 and 1.3 are proved in Section 3,
and Proposition 1.2 is deduced from Lemma 3.3.

Throughout this paper, the letter C will denote a positive constant which
may change from one instance to another.

2. Preliminaries

2.1. Generalized Hölder inequality for integrals. In this subsec-
tion, we suppose that (Ω,F , µ) is a measure space and {fi} is a sequence
of nonnegative measurable functions on (Ω,F , µ). We recall the follow-
ing lemma which is a generalized Hölder inequality (see, e.g., [CJJ, Theo-
rem 2.11]). This kind of inequality is also discussed in the context of σ-finite
measure spaces in [K].

Lemma 2.1. Let 0 < pi < ∞ for i ∈ N, and
∑∞

i=1 1/pi = 1/p. If∏∞
i=1 ‖fi‖Lpi <∞, then the function

∏∞
i=1 fi is well defined and ‖

∏∞
i=1 fi‖Lp

≤
∏∞
i=1 ‖fi‖Lpi .

2.2. Dyadic cubes and the dyadic maximal function in Rn. For
a given k ∈ Z, let Dk be the collection of all cubes of the form

[m12
−k, (m1 + 1)2−k)× · · · × [mn2−k, (mn + 1)2−k),

where m1, . . . ,mn run over the set of integers. The elements of D =
⋃
k∈ZDk

are called dyadic cubes. Given a cube B ∈ D, we denote its Lebesgue measure
by |B|. Observe that two dyadic cubes are either disjoint, or one is contained
in the other. For each x ∈ Rn and k ∈ Z, there is a unique element of Dk
containing x. Moreover, the σ-algebra σ(Dk) of measurable subsets of Rn
formed by countable unions and complements of elements of Dk increases
as k increases.
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Given a locally integrable function on Rn, we define its dyadic maximal
function Md(f) by

Md(f)(x) = sup
x∈B∈D

1

|B|

�

B

|f(y)| dy.

Recall that the conditional expectation of a locally integrable function f on
Rn with respect to the family of the σ-algebras σ(Dk) is defined as (see, e.g.,
[G, p. 384])

Ek(f)(x) =
∑
B∈Dk

(
1

|B|

�

B

f(y) dy

)
χB(x).

Then we have Md(f)(x) = supk∈ZEk(|f |)(x). Moreover, for a suitable ~f =

(f1, f2, . . . ), we also have Md(~f )(x) = supk∈Z
∏∞
i=1Ek(|fi|)(x).

Remark 2.2. Let q > 1. We have (see, e.g., [G, p. 94])

‖Mdf‖Lp ≤
q

q − 1
‖f‖Lp .

Remark 2.3. Let 1 < pi <∞ for i ∈ N, and
∑∞

i=1 1/pi = 1/p. Then
∞∏
i=1

p′i <∞,

where 1/pi + 1/p′i = 1, i ∈ N. This can be checked easily (see, e.g., [CJJ,
Theorem 2.12]).

Remark 2.4. Let pi > 1 for i ∈ N. If
∏∞
i=1 ‖fi‖Lpi <∞ and

∑∞
i=1 1/pi

= 1/p, then

‖Md(~f )‖Lp ≤
∥∥∥ ∞∏
i=1

Mdfi

∥∥∥
Lp
≤
∞∏
i=1

‖Mdfi‖Lpi ≤
( ∞∏
i=1

p′i

) ∞∏
i=1

‖fi‖Lpi <∞,

where we have used Lemma 2.1 and Remarks 2.2 and 2.3.

3. Main results and proofs. There are a lot of assumptions and no-
tation which will be used in this section. For convenience, we state them at
the beginning of this part.

Assumptions and notation. Let ωi ∈ L1
loc and 1 < pi <∞ for i ∈ N,

and let {fi} be a sequence of nonnegative measurable functions on Rn. Write

~p = (p1, p2, . . . ), ~ω = (ω1, ω2, . . . ), ~f = (f1, f2, . . . ) and σi = ω
−1/(pi−1)
i for

i ∈ N. In addition, we also write
−−→
fχG = (f1χG, f2χG, . . . ) and −−→σχG =

(σ1χG, σ2χG, . . . ), where G is a measurable set.

Assume that
∏∞
i=1Ek(ω

1−p′i
i )1/p

′
i <∞. We suppose that 1/p =

∑∞
i=1 1/pi

and
∏∞
i=1 σ

1/pi
i > 0. We also suppose that

∏∞
i=1 ‖fi‖Lpi (ωi) < ∞, written
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~f ∈
∏∞
i=1 L

pi(ωi). Moreover, we assume that −−→σχB ∈
∏∞
i=1 L

pi(ωi) for all
B ∈ D, and denote this by ~σ ∈

∏∞
i=1 L

pi
loc(ωi).

Remark 3.1. It follows from the generalized Hölder inequality for inte-
grals that

�

Rn

∞∏
i=1

Ek(f
pi
i ωi)

p/pi dx ≤
∞∏
i=1

( �

Rn
Ek(f

pi
i ωi) dx

)p/pi
=
∞∏
i=1

( �

Rn
fpii ωi dx

)p/pi
<∞.

Hence,
∏∞
i=1Ek(f

pi
i ωi)

1/pi <∞. By Hölder’s inequality, we have

∞∏
i=1

Ek(fi) ≤
∞∏
i=1

Ek(f
pi
i ωi)

1/piEk(ω
−1/(pi−1)
i )1/p

′
i

=

∞∏
i=1

Ek(f
pi
i ωi)

1/pi

∞∏
i=1

Ek(ω
−1/(pi−1)
i )1/p

′
i <∞.

Thus Md(~f ) is well defined. Moreover, for B ∈ D, we have
∏∞
i=1Ek(σiχB)

<∞ and Md(
−−→σχB) is well defined.

3.1. Generalized Ap weights involving infinite products. Now,
we can give the proof of our main results relating to Ap weights involving
infinite products.

Proof of Theorem 1.1. We shall follow the scheme: (1)⇔(2), (3)⇔(4)
and (3)⇒(2)⇒(4). Obviously, the equivalence (3)⇔(4) is trivial.

(1)⇒(2). For B ∈ D, it follows from Hölder’s inequality and (1) that

v(B)1/p
∞∏
i=1

(
1

|B|

�

B

fi(yi) dyi

)

≤ v(B)1/p
∞∏
i=1

(
1

|B|

�

B

fi(yi)
piωi(yi) dyi

)1/pi( 1

|B|

�

B

ωi(yi)
−p′i/pi dyi

)1/p′i

=
∞∏
i=1

( �
B

fi(yi)
piωi(yi) dyi

)1/pi
×
((

1

|B|

�

B

v(x) dx

)1/p ∞∏
i=1

(
1

|B|

�

B

ωi(yi)
−1/pi−1 dyi

)1/p′i
)

≤ [v, ~ω]A~p

∞∏
i=1

‖fiχB‖Lpi (ωi).
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(2)⇒(1). Let fi = ω
−1/(pi−1)
i . For B ∈ D, we have(

1

|B|

�

B

v(x) dx

)1/p ∞∏
i=1

(
1

|B|

�

B

ωi(yi)
−1/(pi−1) dyi

)

=

(
1

|B|

)1/p

v(B)1/p
∞∏
i=1

(
1

|B|

�

B

fi(yi) dyi

)

≤ [v, ~ω]′A~p

(
1

|B|

)1/p ∞∏
i=1

( �

B

ωi(yi)
−1/(pi−1) dyi

)1/pi

= [v, ~ω]′A~p

∞∏
i=1

(
1

|B|

�

B

ωi(yi)
−1/(pi−1) dyi

)1/pi

.

It follows that(
1

|B|

�

B

v(x) dx

)1/p ∞∏
i=1

(
1

|B|

�

B

ωi(yi)
−1/(pi−1) dyi

)1/p′i
≤ [v, ~ω]′A~p .

(3)⇒(2). Let B ∈ D. For x ∈ B, we have
∞∏
i=1

(
1

|B|

�

B

fi(yi) dyi

)
≤Md(

−−→
fχB)(x).

It follows from (3) that
∞∏
i=1

(
1

|B|

�

B

fi(yi) dyi

)
v(B)1/p ≤ λv({Md(

−−→
fχB) ≥ λ})1/p

≤ ‖Md‖′
∞∏
i=1

‖fiχB‖Lpi (ωi),

where λ =
∏∞
i=1(|B|−1

	
B fi(yi) dyi).

(2)⇒(4). For R > 0, we shall denote by M
(R)
d (~f ) the maximal oper-

ator obtained by taking in the corresponding definition just those cubes
whose side length is less than or equal to R. We have Md(~f )(x) =

limR→∞M
(R)
d (~f )(x) and M

(R)
d (~f )(x) increases with R, so it will be enough

to prove the inequality for M
(R)
d with constant independent of R. But, after

fixing R > 0 and λ > 0, observe that {x ∈ Rn : M
(R)
d (~f )(x) > λ} =

⋃
j Qj ,

where Qj are the maximal dyadic cubes of side length ≤ R for which
∞∏
i=1

(
1

|Qj |

�

Qj

fi(yi) dyi

)
> λ.

These maximal dyadic cubes do exist because of the restriction on their size.
Moreover, they are disjoint. It follows from (2) and the generalized Hölder
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inequality that

λpv({x ∈ Rn : M
(R)
d (~f ) > λ}) = λp

∑
j

v(Qj)

≤
∑
j

v(Qj)

( ∞∏
i=1

(
1

|Qj |

�

Qj

fi(yi) dyi

))p
≤ ([v, ~ω]′A~p)

p
∑
j

∞∏
i=1

‖fiχQj‖
p
Lpi (ωi)

≤ ([v, ~ω]′A~p)
p
∞∏
i=1

(∑
j

�

Qj

fi(yi)
piωi(yi) dyi

)p/pi
≤
(

[v, ~ω]′A~p

∞∏
i=1

‖fi‖Lpi (ωi)
)p
.

Thus

λv({Md(~f ) > λ})1/p ≤ [v, ~ω]′A~p

∞∏
i=1

‖fi‖Lpi (ωi).

Lemma 3.2. Let 1 < pi < ∞ for i ∈ N, and 1/p =
∑∞

i=1 1/(pi). If∑∞
i=1(ln pi)/pi <∞, then

∏∞
i=1 p

p′i/pi
i p′i <∞.

Proof. (1) We first prove
∏∞
i=1 p

′
i < ∞. It suffices to prove

∑∞
i=1 ln p′i

<∞. As p′i = (1−1/pi)
−1, we should prove

∑∞
i=1 ln(1−1/pi)

−1 <∞. Since

lim
i→∞

ln(1− 1/pi)
−1

1/pi
= 1

and
∑∞

i=1 1/pi = 1/p, we have
∑∞

i=1 ln(1 − 1/pi)
−1 < ∞ by the Limit

Comparison Test.

(2) We now prove
∏∞
i=1 p

p′i/pi
i <∞. It suffices to prove

∑∞
i=1 (p′i/pi) ln pi

< ∞. As 1/p =
∑∞

i=1 1/pi, we have limi→∞ pi = ∞. Hence limi→∞ p
′
i = 1.

It follows that M , supi≥1 p
′
i <∞. Thus,

∞∑
i=1

p′i
pi

ln pi ≤M
∞∑
i=1

ln pi
pi

<∞.

It follows from (1) and (2) that
∏∞
i=1 p

p′i/pi
i p′i <∞.

In order to prove Proposition 1.2, we give the following lemma which is
essentially taken from A. K. Lerner [L]. Combining it with Remark 3.2, we
get Proposition 1.2.

Lemma 3.3. Let ω be a weight and 1 < p < ∞. Suppose that σ =
ω−1/(p−1) ∈ L1

loc. Then the following statements are equivalent:

(1) There exists a positive constant C such that

‖Md(f)‖Lp(ω) ≤ C‖f‖Lp(ω), ∀f ∈ Lp(ω).
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(2) There exists a positive constant C such that

ω(B)

|B|

(
σ(B)

|B|

)p−1
≤ C, ∀B ∈ D.

Moreover, if we denote the smallest constants C in (1) and (2) by ‖Md‖
and [ω]Ap, respectively, then

[ω]
1/p
Ap
≤ ‖Md‖ ≤ [ω]

p′/p
Ap

pp
′/pp′.

3.2. Generalized Sp weights involving infinite products. In this
final part of the paper, we will establish generalized Sp weighted inequalities.

In order to prove Theorem 1.3, we need a lemma related to the Carleson
embedding theorem. Its linear version can be found in [HP].

Lemma 3.4. Let 1 < pi <∞ for i ∈ N, and 1/p =
∑∞

i=1 1/pi. Let ωi be

weights and let σi = ω
−1/(pi−1)
i for i ∈ N. Suppose {aB}B∈D are nonnegative

numbers that satisfy

∑
B⊂G

aB ≤ A
�

G

∞∏
i=1

σ
p/pi
i dx, ∀G ∈ D.

Then for all ~f ∈
∏∞
i=1 L

pi(σi), we have(∑
B∈D

aB

( ∞∏
i=1

1

σi(B)

�

B

fi(yi)σi(yi)dyi

)p)1/p

≤ A1/p‖M~σ
d(~f )‖Lp(ν~σ) ≤ A

1/p
∞∏
i=1

p′i‖fi‖Lpi (σi),

where

ν~σ =

∞∏
i=1

σ
p/pi
i and M~σ

d(~f )(x) = sup
x∈B∈D

∞∏
i=1

1

σi(B)

�

B

fi(yi)σi(yi) dyi.

Proof. Let us look at the sum

∑
B∈D

aB

( ∞∏
i=1

1

σi(B)

�

B

fi(yi)σi(yi) dyi

)p
as an integral on a measure space (D, 2D, µ) built over the set of dyadic
cubes D, assigning to each B ∈ D the measure aB. Thus
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∑
B∈D

aB

( ∞∏
i=1

1

σi(B)

�

B

fi(yi)σi(yi) dyi

)p
=

∞�

0

pλp−1µ

{
B ∈ D :

∞∏
i=1

1

σi(B)

�

B

fi(yi)σi(yi) dyi > λ

}
dλ

=:

∞�

0

pλp−1µ(Dλ) dλ.

Denote by Dλ(R) the dyadic cubes having side length ≤ R such that

∞∏
i=1

1

σi(B)

�

B

fi(yi)σi(yi) dyi > λ.

Since the cubes in Dλ(R) have uniformly bounded side length, every cube
is contained in a maximal one. Let D∗λ(R) denote the subfamily formed by
these maximal cubes. Then the cubes Q ∈ D∗λ(R) are disjoint and their

union is contained in the set {M~σ
d(~f ) > λ}. Thus

µ(Dλ(R)) =
∑

B∈Dλ(R)

aB ≤
∑

Q∈D∗λ(R)

∑
B⊂Q

aB

≤ A
∑

Q∈D∗λ(R)

�

Q

∞∏
i=1

σ
p/pi
i dx ≤ A

�

{Md
~σ
(~f )>λ}

∞∏
i=1

σ
p/pi
i dx.

It follows that µ(Dλ) ≤ A
	
{Md

~σ
(~f )>λ}

∏∞
i=1 σ

p/pi
i dx. Then we obtain

∑
B∈D

aB

( ∞∏
i=1

1

σi(B)

�

B

fi(yi)σi(yi) dyi

)p
≤ A

∞�

0

pλp−1
�

{M~σ
d (
~f )>λ}

∞∏
i=1

σ
p/pi
i dx dλ

= A
�

Rn
M~σ

d(~f )p
∞∏
i=1

σ
p/pi
i dx ≤ A

�

Rn

∞∏
i=1

(
(Mσi

d (fi))
piσi

)p/pi
dx

≤ A
∞∏
i=1

( �

Rn
(Mσi

d (fi))
piσi dx

)p/pi
≤ A

∞∏
i=1

(p′i)
p
( �

Rn
fpii σi dx

)p/pi
,

where we have used M~σ
d(~f ) ≤

∏∞
i=1M

σi
d (fi), the generalized Hölder inequal-

ity and the boundedness properties of Mσi
d in Lpi(σi).

Proof of Theorem 1.3. It is clear that (1)⇒(2) without (v, ~ω) ∈ RH~p, so
we omit it.
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Next, assuming (2), we shall prove (1). Let ~f ∈
∏∞
i=1 L

pi(ωi) and α > 1.
For every integer k, we shall consider the set

Sk = {x ∈ Rn : αk <Md(~f )(x) ≤ αk+1}.
From the definition of Md, Sk ⊆

⋃
j Bk,j , where for each k, {Bk,j}j=1,2,... is

the collection of all dyadic cubes satisfying
∞∏
i=1

1

|Bk,j |

�

Bk,j

fi(yi) dyi > αk.

Define Ek,1 = Bk,1 ∩ Sk and for j > 1,

Ek,j =
(
Bk,j\

⋃
s<j

Bk,s

)
∩ Sk.

The sets Sk form a disjoint collection and each Sk is disjoint union of the
sets Ek,j for varying j. We have

�

Rn
Md(~f )pv dx ≤ αp

∑
k,j∈Z

v(Ek,j)

( ∞∏
i=1

1

|Bk,j |

�

Bk,j

fi(yi) dyi

)p

= αp
∑
k,j∈Z

v(Ek,j)

( ∞∏
i=1

σi(Bk,j)

|Bk,j |

)p
×
( ∞∏
i=1

1

σi(Bk,j)

�

Bk,j

fi(yi)σi(yi)
−1σi(yi) dyi

)p

= αp
∑
k,j∈Z

aB

( ∞∏
i=1

1

σi(B)

�

B

fi(yi)σi(yi)
−1σi(yi) dyi

)p
.

Here aB = v(E(B))(
∏∞
i=1 σi(B)/|B|)p if B = Bk,j for some (k, j), where

E(B) denotes the corresponding set Ek,j associated to Bk,j , and aB = 0
otherwise. If we apply the Carleson embedding theorem to these aB, we will
find the desired result provided that∑

B⊂G
aB ≤ A

�

G

∞∏
i=1

σ
p/pi
i dx, G ∈ D.

However, for G ∈ D, we obtain∑
B⊂G

aB =
∑

Bk,j⊂G
v(Ek,j)

( ∞∏
i=1

σi(Bk,j)

|Bk,j |

)p

=
∑

Bk,j⊂G

�

Ek,j

( ∞∏
i=1

σi(Bk,j)

|Bk,j |

)p
v(x) dx
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≤
∑

Bk,j⊂G

�

Ek,j

Md(
−−→σχG)pv dx ≤ [v, ~w]pS~p

∞∏
i=1

σi(G)p/pi

≤ [v, ~w]pS~p [~ω]RH~p

�

G

∞∏
i=1

σ
p/pi
i dx,

where in the next to last inequality we have used the S~p condition and in
the last inequality we have used the RH~p condition. Thus, by Lemma 3.4,

‖Md(~f )‖Lp(v) ≤ α[v, ~w]S~p [~ω]
1/p
RH~p

( ∞∏
i=1

p′i

) ∞∏
i=1

‖fi‖Lpi (ωi).

Then we can take the limit α→ 1 to obtain( �

Rn
Md(~f )pv dx

)1/p
≤ [v, ~ω]S~p [~ω]

1/p
RH~p

( ∞∏
i=1

p′i

) ∞∏
i=1

‖fi‖Lpi (ωi).

Remark 3.5. Let 1 < pi < ∞ for i ∈ N, and 1/p =
∑∞

i=1 1/pi.
It is trivial that [v, ~ω]S~p < ∞ implies [v, ~ω]A~p < ∞. Moreover, suppose∑∞

i=1(ln pi)/pi <∞ and let v =
∏∞
i=1 ω

1/pi
i . It follows from Proposition 1.2

and Theorem 1.3 that ~ω ∈ A∗~p implies [v, ~ω]S~p <∞.
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