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RIEMANNIAN MANIFOLDS WITH HARMONIC CURVATURE

BY

GUANGYUE HUANG and BINGQING MA (Xinxiang)

Abstract. We prove an integral inequality for compact n-dimensional manifolds with
harmonic curvature tensor and positive scalar curvature, generalizing a recent result of
Catino that deals with the conformally flat case, and classify those manifolds for which
our inequality is an equality: they are either Einstein, S1 × Sn−1 with the product metric,
or S1 × Sn−1 with a rotationally symmetric Derdziński metric.

1. Introduction. In the last years, much attention has been paid to
the classification of conformally flat Riemannian manifolds under topolog-
ical and/or geometrical assumptions. Tani [T] proved that any compact
conformally flat n-dimensional manifold with positive Ricci curvature and
constant scalar curvature is covered isometrically by Sn with the round met-
ric. Carron and Herzlich [CH] classified complete conformally flat manifolds
with dimension n ≥ 3 and non-negative Ricci curvature. Gursky [G1] and
Hebey and Vaugon [HV1, HV2] classified compact conformally flat manifolds
satisfying an integral pinching condition. For related research and some im-
provements in this direction, see for instance [C, G2, HL, PRS, XZ, DG, D, Z]
and references therein.

Let (Mn, g) be an n-dimensional Riemannian manifold. Denote by R
and Rij the scalar curvature and the Ricci curvature respectively. We let
Eij = Rij− R

n gij be the traceless Ricci tensor. Recently, Catino [C1] studied
compact conformally flat n-dimensional manifolds with constant positive
scalar curvature and satisfying an optimal integral pinching condition. He
proved the following

Theorem A. Let (Mn, g) be a compact conformally flat n-dimensional
Riemannian manifold with constant positive scalar curvature. Then�

M

(R−
√
n(n− 1) |E|)|E|(n−2)/n ≤ 0,

and equality occurs if and only if (Mn, g) is covered isometrically by either
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Sn with the round metric, S1 × Sn−1 with the product metric, or S1 × Sn−1

with a rotationally symmetric Derdziński metric.

We say that (Mn, g) has harmonic curvature if the divergence of the
Riemannian curvature vanishes (that is, Rijkl,

l = 0). Obviously, every mani-
fold with a parallel Ricci curvature tensor has harmonic curvature (see (2.1)
below). However, there are examples of compact and noncompact Rieman-
nian manifolds with harmonic curvature and the Ricci curvature tensor not
parallel (see [D] and [G, Theorem 5.2]). That is, the conditions of harmonic
curvature are weaker than those of parallel Ricci curvature tensor or con-
formal flatness. Therefore, it is natural to ask what is the classification for
manifolds with harmonic curvature. In the following we show a new classifi-
cation result for compact Riemannian manifolds with harmonic curvature.

Theorem 1.1. Let (Mn, g) be a compact n-dimensional Riemannian
manifold, n ≥ 3, with harmonic curvature tensor. If the scalar curvature
is positive, then

(1.1)
�

M

(R−
√
n(n−1) |E|)|E|(n−2)/n ≤

√
(n−1)(n−2)

2

�

M

|W | |E|(n−2)/n,

and equality occurs if and only if (Mn, g) is either Einstein or isometrically
covered by one of:

(1) S1 × Sn−1 with the product metric;
(2) S1 × Sn−1 with a rotationally symmetric Derdziński metric.

Remark 1.2. The Cotton tensor is defined by

(1.2) Cijk = Akj,i −Aki,j ,

where Aij is called the Schouten tensor given by

Aij = Rij −
R

2(n− 1)
gij .

The divergence of the Weyl curvature tensor is related to the Cotton tensor
by (cf. [HW])

(1.3) −n− 3

n− 2
Cijk = Wijkl,

l.

By virtue of (2.1), we have Cijk = 0 for Riemannian manifolds with har-
monic curvature tensor. Hence, we conclude from (1.3) that the Weyl cur-
vature tensor is harmonic.

If the Weyl curvature tensor is zero and the scalar curvature is constant,
we easily see from (1.2) and (1.3) that the Ricci curvature is a Codazzi
tensor for n ≥ 4 and hence the curvature tensor is harmonic. Therefore, our
Theorem 1.1 obviously generalizes Theorem A of Catino [C1].
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2. Proof of Theorem 1.1. Throughout this paper, we use moving
frames in all calculations and the Einstein convention of summing over the
repeated indices. First we have the following identities, the validity of which
is well-known (see for instance [MMP]):

Rij,k −Rik,j = Rjkil,l,(2.1)

Rij,kl −Rij,lk = RljRlikl +RilRljkl,

Rij,j = 1
2R,i,(2.2)

where Rijkl denotes the components of the Riemannian curvature. Since the
curvature tensor is harmonic, we deduce from (2.1) that the Ricci tensor is
a Codazzi tensor. Thus, from (2.2) we derive

R,i = Rjj,i = Rij,j = 1
2R,i,

which shows that R,i = 0 and the scalar curvature R is constant. We let
Eij = Rij − R

n gij be the traceless Ricci tensor. Then Eij is also a Codazzi
tensor, that is,

(2.3) Eij,k = Eik,j .

The Laplacian of Eij is

∆Eij = Eij,kk = Eik,jk = −RikjlEkl +RjkEik,

where we have used (2.3) and Eik,k = Ekk,i = 0. In particular, the following
Weitzenböck formula holds:

(2.4) 1
2∆|E|

2 = |∇E|2 −RikjlEijEkl +RjkEijEik.

For n ≥ 3, the Weyl curvature tensor is defined by

Wijkl = Rijkl −
1

n− 2
(Rikgjl −Rilgjk +Rjlgik −Rjkgil)(2.5)

+
R

(n− 1)(n− 2)
(gikgjl − gilgjk)

= Rijkl −
1

n− 2
(Eikgjl − Eilgjk + Ejlgik − Ejkgil)

− R

n(n− 1)
(gikgjl − gilgjk)

and a simple computation shows

(2.6) −RikjlEijEkl +RjkEijEik

= −WikjlEijEkl +
R

n− 1
|E|2 +

n

n− 2
EijEjkEki.
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Inserting (2.6) into (2.4) gives

(2.7) 1
2∆|E|

2 = |∇E|2 −WikjlEijEkl +
R

n− 1
|E|2 +

n

n− 2
EijEjkEki.

We recall the following inequality which was first proved by Huisken (cf.
[H, Lemma 3.4]):

(2.8) |WikjlEijEkl| ≤

√
n− 2

2(n− 1)
|W | |E|2,

and

(2.9) EijEjkEki ≥ −
n− 2√
n(n− 1)

|E|3,

with equality in (2.9) at some point p ∈M if and only if E can be diagonal-
ized at p and the eigenvalue multiplicity of E is at least n− 1 (see also [C2]
or [O]). As first observed by Bourguignon [B], any traceless Codazzi tensor
satisfies the following sharp inequality (for a proof, see e.g. [HV2]):

(2.10) |∇E|2 ≥ n+ 2

n

∣∣∇|E|∣∣2.
Applying (2.8)–(2.10) to (2.7) yields

1

2
∆|E|2 ≥ n+ 2

n

∣∣∇|E|∣∣2 −√ n− 2

2(n− 1)
|W | |E|2(2.11)

+
R

n− 1
|E|2 −

√
n

n− 1
|E|3.

Let Ω0 = {p ∈ M : |E| 6= 0}. Then Vol(M \ Ω0) = 0 from [K, Theo-
rem 1.8] (for details see [C1, Lemma 2.2]). For any ε > 0, we define Ωε =
{p ∈M : |E| ≥ ε} and

fε(p) =

{
|E|(p) if p ∈ Ωε,

ε if p ∈M \Ωε.

We assume that ε is a regular value of |E|. Integration by parts gives

(2.12)
�

M

(
−1

2
∆|E|2 +

n+ 2

n

∣∣∇|E|∣∣2)f−(n+2)/n
ε

= −n+ 2

n

�

M

〈∇|E|,∇fε〉|E|f−(n+2)/n−1
ε +

n+ 2

n

�

M

∣∣∇|E|∣∣2f−(n+2)/n
ε = 0,

where in the last equality we have used fε = |E| on Ωε and ∇fε = 0 on

M \Ωε. Multiplying both sides of (2.11) by f
−(n+2)/n
ε and applying (2.12),
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we get

(2.13) 0 ≥
�

M

(
−1

2∆|E|
2 +

n+ 2

n

∣∣∇|E|∣∣2)f−(n+2)/n
ε

+
�

M

(
−

√
n− 2

2(n− 1)
|W | |E|2 +

R

n− 1
|E|2 −

√
n

n− 1
|E|3

)
f−(n+2)/n
ε

=
�

M

(
−

√
n− 2

2(n− 1)
|W | |E|2 +

R

n− 1
|E|2 −

√
n

n− 1
|E|3

)
f−(n+2)/n
ε

=
�

M

|E|(n−2)/n

(
−

√
n− 2

2(n−1)
|W |+ R

n−1
−
√

n

n−1
|E|
)
|E|(n+2)/nf−(n+2)/n

ε .

Letting ε→ 0 in (2.13), we see that |E|(n+2)/nf
−(n+2)/n
ε → 1 a.e. on M . We

have thus proved (1.1).

Let us now assume the equality case in (1.1), that is,

�

M

(
−

√
n− 2

2(n− 1)
|W |+ R

n− 1
−
√

n

n− 1
|E|
)
|E|(n−2)/n = 0.

The three inequalities (2.8)–(2.10) that led to (2.11) and (2.13) must now
all be equalities. Hence, as stated in the lines following (2.9), E has, at each
point p, an eigenvalue of multiplicity n− 1 or n. Writing Eij = agij + bvivj
at p, with some scalars a, b and a vector v, we see that the left-hand side of
(2.8) is zero at every point p. As (2.8) holds with equality and, according
to [DG], g is real-analytic, (M, g) must be conformally flat or Einstein. Our
claim about the equality case now follows from Catino’s Theorem A. This
completes the proof of Theorem 1.1.
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Tôhoku Math. 19 (1967), 227–231.

[XZ] H.-W. Xu and E.-T. Zhao, Lp Ricci curvature pinching theorems for conformally

flat Riemannian manifolds, Pacific J. Math. 245 (2010), 381–396.

[Z] S.-H. Zhu, The classification of complete locally conformally flat manifolds of
nonnegative Ricci curvature, Pacific J. Math. 163 (1994), 189–199.

http://dx.doi.org/10.1007/s00208-012-0800-6
http://dx.doi.org/10.1112/S0010437X06002016
http://dx.doi.org/10.1017/S0024609301008074
http://dx.doi.org/10.1007/BF01457307
http://dx.doi.org/10.1512/iumj.1994.43.43033
http://dx.doi.org/10.1007/s002090050514
http://dx.doi.org/10.1007/BF02921622
http://dx.doi.org/10.1112/S0024609304003455
http://dx.doi.org/10.1007/s10455-013-9366-0
http://dx.doi.org/10.1002/cpa.3160410508
http://dx.doi.org/10.1016/j.jmaa.2012.10.044
http://dx.doi.org/10.2307/2373587
http://dx.doi.org/10.2748/tmj/1178243319
http://dx.doi.org/10.2140/pjm.2010.245.381


MANIFOLDS WITH HARMONIC CURVATURE 257

Guangyue Huang
College of Mathematics and Information Science
Henan Normal University
453007 Xinxiang, P.R. China
and
Henan Engineering Laboratory
for Big Data Statistical Analysis
and Optimal Control
E-mail: hgy@henannu.edu.cn

Bingqing Ma
College of Mathematics and

Information Science
Henan Normal University

453007 Xinxiang, P.R. China
E-mail: bqma@henannu.edu.cn




	1 Introduction
	2 Proof of Theorem 1.1
	REFERENCES

